1 | //===-- BenchmarkRunner.cpp -------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "BenchmarkRunner.h" |
10 | #include "Assembler.h" |
11 | #include "Error.h" |
12 | #include "MCInstrDescView.h" |
13 | #include "MmapUtils.h" |
14 | #include "PerfHelper.h" |
15 | #include "SubprocessMemory.h" |
16 | #include "Target.h" |
17 | #include "llvm/ADT/ScopeExit.h" |
18 | #include "llvm/ADT/StringExtras.h" |
19 | #include "llvm/ADT/StringRef.h" |
20 | #include "llvm/ADT/Twine.h" |
21 | #include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX |
22 | #include "llvm/Support/CrashRecoveryContext.h" |
23 | #include "llvm/Support/Error.h" |
24 | #include "llvm/Support/FileSystem.h" |
25 | #include "llvm/Support/MemoryBuffer.h" |
26 | #include "llvm/Support/Program.h" |
27 | #include "llvm/Support/Signals.h" |
28 | #include "llvm/Support/SystemZ/zOSSupport.h" |
29 | #include <cmath> |
30 | #include <memory> |
31 | #include <string> |
32 | |
33 | #ifdef __linux__ |
34 | #ifdef HAVE_LIBPFM |
35 | #include <perfmon/perf_event.h> |
36 | #endif |
37 | #include <sys/mman.h> |
38 | #include <sys/ptrace.h> |
39 | #include <sys/resource.h> |
40 | #include <sys/socket.h> |
41 | #include <sys/syscall.h> |
42 | #include <sys/wait.h> |
43 | #include <unistd.h> |
44 | |
45 | #if defined(__GLIBC__) && __has_include(<sys/rseq.h>) && defined(HAVE_BUILTIN_THREAD_POINTER) |
46 | #include <sys/rseq.h> |
47 | #if defined(RSEQ_SIG) && defined(SYS_rseq) |
48 | #define GLIBC_INITS_RSEQ |
49 | #endif |
50 | #endif |
51 | #endif // __linux__ |
52 | |
53 | namespace llvm { |
54 | namespace exegesis { |
55 | |
56 | BenchmarkRunner::BenchmarkRunner(const LLVMState &State, Benchmark::ModeE Mode, |
57 | BenchmarkPhaseSelectorE BenchmarkPhaseSelector, |
58 | ExecutionModeE ExecutionMode, |
59 | ArrayRef<ValidationEvent> ValCounters) |
60 | : State(State), Mode(Mode), BenchmarkPhaseSelector(BenchmarkPhaseSelector), |
61 | ExecutionMode(ExecutionMode), ValidationCounters(ValCounters), |
62 | Scratch(std::make_unique<ScratchSpace>()) {} |
63 | |
64 | BenchmarkRunner::~BenchmarkRunner() = default; |
65 | |
66 | void BenchmarkRunner::FunctionExecutor::accumulateCounterValues( |
67 | const SmallVectorImpl<int64_t> &NewValues, |
68 | SmallVectorImpl<int64_t> *Result) { |
69 | const size_t NumValues = std::max(a: NewValues.size(), b: Result->size()); |
70 | if (NumValues > Result->size()) |
71 | Result->resize(N: NumValues, NV: 0); |
72 | for (size_t I = 0, End = NewValues.size(); I < End; ++I) |
73 | (*Result)[I] += NewValues[I]; |
74 | } |
75 | |
76 | Expected<SmallVector<int64_t, 4>> |
77 | BenchmarkRunner::FunctionExecutor::runAndSample( |
78 | const char *Counters, ArrayRef<const char *> ValidationCounters, |
79 | SmallVectorImpl<int64_t> &ValidationCounterValues) const { |
80 | // We sum counts when there are several counters for a single ProcRes |
81 | // (e.g. P23 on SandyBridge). |
82 | SmallVector<int64_t, 4> CounterValues; |
83 | SmallVector<StringRef, 2> CounterNames; |
84 | StringRef(Counters).split(A&: CounterNames, Separator: '+'); |
85 | for (auto &CounterName : CounterNames) { |
86 | CounterName = CounterName.trim(); |
87 | Expected<SmallVector<int64_t, 4>> ValueOrError = runWithCounter( |
88 | CounterName, ValidationCounters, ValidationCounterValues); |
89 | if (!ValueOrError) |
90 | return ValueOrError.takeError(); |
91 | accumulateCounterValues(NewValues: ValueOrError.get(), Result: &CounterValues); |
92 | } |
93 | return CounterValues; |
94 | } |
95 | |
96 | namespace { |
97 | class InProcessFunctionExecutorImpl : public BenchmarkRunner::FunctionExecutor { |
98 | public: |
99 | static Expected<std::unique_ptr<InProcessFunctionExecutorImpl>> |
100 | create(const LLVMState &State, object::OwningBinary<object::ObjectFile> Obj, |
101 | BenchmarkRunner::ScratchSpace *Scratch, |
102 | std::optional<int> BenchmarkProcessCPU) { |
103 | Expected<ExecutableFunction> EF = |
104 | ExecutableFunction::create(TM: State.createTargetMachine(), ObjectFileHolder: std::move(Obj)); |
105 | |
106 | if (!EF) |
107 | return EF.takeError(); |
108 | |
109 | return std::unique_ptr<InProcessFunctionExecutorImpl>( |
110 | new InProcessFunctionExecutorImpl(State, std::move(*EF), Scratch)); |
111 | } |
112 | |
113 | private: |
114 | InProcessFunctionExecutorImpl(const LLVMState &State, |
115 | ExecutableFunction Function, |
116 | BenchmarkRunner::ScratchSpace *Scratch) |
117 | : State(State), Function(std::move(Function)), Scratch(Scratch) {} |
118 | |
119 | static void accumulateCounterValues(const SmallVector<int64_t, 4> &NewValues, |
120 | SmallVector<int64_t, 4> *Result) { |
121 | const size_t NumValues = std::max(a: NewValues.size(), b: Result->size()); |
122 | if (NumValues > Result->size()) |
123 | Result->resize(N: NumValues, NV: 0); |
124 | for (size_t I = 0, End = NewValues.size(); I < End; ++I) |
125 | (*Result)[I] += NewValues[I]; |
126 | } |
127 | |
128 | Expected<SmallVector<int64_t, 4>> runWithCounter( |
129 | StringRef CounterName, ArrayRef<const char *> ValidationCounters, |
130 | SmallVectorImpl<int64_t> &ValidationCounterValues) const override { |
131 | const ExegesisTarget &ET = State.getExegesisTarget(); |
132 | char *const ScratchPtr = Scratch->ptr(); |
133 | auto CounterOrError = |
134 | ET.createCounter(CounterName, State, ValidationCounters); |
135 | |
136 | if (!CounterOrError) |
137 | return CounterOrError.takeError(); |
138 | |
139 | pfm::CounterGroup *Counter = CounterOrError.get().get(); |
140 | Scratch->clear(); |
141 | { |
142 | auto PS = ET.withSavedState(); |
143 | CrashRecoveryContext CRC; |
144 | CrashRecoveryContext::Enable(); |
145 | const bool Crashed = !CRC.RunSafely(Fn: [this, Counter, ScratchPtr]() { |
146 | Counter->start(); |
147 | this->Function(ScratchPtr); |
148 | Counter->stop(); |
149 | }); |
150 | CrashRecoveryContext::Disable(); |
151 | PS.reset(); |
152 | if (Crashed) { |
153 | #ifdef LLVM_ON_UNIX |
154 | // See "Exit Status for Commands": |
155 | // https://pubs.opengroup.org/onlinepubs/9699919799/xrat/V4_xcu_chap02.html |
156 | constexpr const int kSigOffset = 128; |
157 | return make_error<SnippetSignal>(Args: CRC.RetCode - kSigOffset); |
158 | #else |
159 | // The exit code of the process on windows is not meaningful as a |
160 | // signal, so simply pass in -1 as the signal into the error. |
161 | return make_error<SnippetSignal>(-1); |
162 | #endif // LLVM_ON_UNIX |
163 | } |
164 | } |
165 | |
166 | auto ValidationValuesOrErr = Counter->readValidationCountersOrError(); |
167 | if (!ValidationValuesOrErr) |
168 | return ValidationValuesOrErr.takeError(); |
169 | |
170 | ArrayRef RealValidationValues = *ValidationValuesOrErr; |
171 | for (size_t I = 0; I < RealValidationValues.size(); ++I) |
172 | ValidationCounterValues[I] = RealValidationValues[I]; |
173 | |
174 | return Counter->readOrError(FunctionBytes: Function.getFunctionBytes()); |
175 | } |
176 | |
177 | const LLVMState &State; |
178 | const ExecutableFunction Function; |
179 | BenchmarkRunner::ScratchSpace *const Scratch; |
180 | }; |
181 | |
182 | #ifdef __linux__ |
183 | // The following class implements a function executor that executes the |
184 | // benchmark code within a subprocess rather than within the main llvm-exegesis |
185 | // process. This allows for much more control over the execution context of the |
186 | // snippet, particularly with regard to memory. This class performs all the |
187 | // necessary functions to create the subprocess, execute the snippet in the |
188 | // subprocess, and report results/handle errors. |
189 | class SubProcessFunctionExecutorImpl |
190 | : public BenchmarkRunner::FunctionExecutor { |
191 | public: |
192 | static Expected<std::unique_ptr<SubProcessFunctionExecutorImpl>> |
193 | create(const LLVMState &State, object::OwningBinary<object::ObjectFile> Obj, |
194 | const BenchmarkKey &Key, std::optional<int> BenchmarkProcessCPU) { |
195 | Expected<ExecutableFunction> EF = |
196 | ExecutableFunction::create(TM: State.createTargetMachine(), ObjectFileHolder: std::move(Obj)); |
197 | if (!EF) |
198 | return EF.takeError(); |
199 | |
200 | return std::unique_ptr<SubProcessFunctionExecutorImpl>( |
201 | new SubProcessFunctionExecutorImpl(State, std::move(*EF), Key, |
202 | BenchmarkProcessCPU)); |
203 | } |
204 | |
205 | private: |
206 | SubProcessFunctionExecutorImpl(const LLVMState &State, |
207 | ExecutableFunction Function, |
208 | const BenchmarkKey &Key, |
209 | std::optional<int> BenchmarkCPU) |
210 | : State(State), Function(std::move(Function)), Key(Key), |
211 | BenchmarkProcessCPU(BenchmarkCPU) {} |
212 | |
213 | enum ChildProcessExitCodeE { |
214 | CounterFDReadFailed = 1, |
215 | RSeqDisableFailed, |
216 | FunctionDataMappingFailed, |
217 | AuxiliaryMemorySetupFailed, |
218 | SetCPUAffinityFailed |
219 | }; |
220 | |
221 | StringRef childProcessExitCodeToString(int ExitCode) const { |
222 | switch (ExitCode) { |
223 | case ChildProcessExitCodeE::CounterFDReadFailed: |
224 | return "Counter file descriptor read failed" ; |
225 | case ChildProcessExitCodeE::RSeqDisableFailed: |
226 | return "Disabling restartable sequences failed" ; |
227 | case ChildProcessExitCodeE::FunctionDataMappingFailed: |
228 | return "Failed to map memory for assembled snippet" ; |
229 | case ChildProcessExitCodeE::AuxiliaryMemorySetupFailed: |
230 | return "Failed to setup auxiliary memory" ; |
231 | case ChildProcessExitCodeE::SetCPUAffinityFailed: |
232 | return "Failed to set CPU affinity of the benchmarking process" ; |
233 | default: |
234 | return "Child process returned with unknown exit code" ; |
235 | } |
236 | } |
237 | |
238 | Error sendFileDescriptorThroughSocket(int SocketFD, int FD) const { |
239 | struct msghdr Message = {}; |
240 | char Buffer[CMSG_SPACE(sizeof(FD))]; |
241 | memset(s: Buffer, c: 0, n: sizeof(Buffer)); |
242 | Message.msg_control = Buffer; |
243 | Message.msg_controllen = sizeof(Buffer); |
244 | |
245 | struct cmsghdr *ControlMessage = CMSG_FIRSTHDR(&Message); |
246 | ControlMessage->cmsg_level = SOL_SOCKET; |
247 | ControlMessage->cmsg_type = SCM_RIGHTS; |
248 | ControlMessage->cmsg_len = CMSG_LEN(sizeof(FD)); |
249 | |
250 | memcpy(CMSG_DATA(ControlMessage), src: &FD, n: sizeof(FD)); |
251 | |
252 | Message.msg_controllen = CMSG_SPACE(sizeof(FD)); |
253 | |
254 | ssize_t BytesWritten = sendmsg(fd: SocketFD, message: &Message, flags: 0); |
255 | |
256 | if (BytesWritten < 0) |
257 | return make_error<Failure>(Args: "Failed to write FD to socket: " + |
258 | Twine(strerror(errno))); |
259 | |
260 | return Error::success(); |
261 | } |
262 | |
263 | Expected<int> getFileDescriptorFromSocket(int SocketFD) const { |
264 | struct msghdr Message = {}; |
265 | |
266 | char ControlBuffer[256]; |
267 | Message.msg_control = ControlBuffer; |
268 | Message.msg_controllen = sizeof(ControlBuffer); |
269 | |
270 | ssize_t BytesRead = recvmsg(fd: SocketFD, message: &Message, flags: 0); |
271 | |
272 | if (BytesRead < 0) |
273 | return make_error<Failure>(Args: "Failed to read FD from socket: " + |
274 | Twine(strerror(errno))); |
275 | |
276 | struct cmsghdr *ControlMessage = CMSG_FIRSTHDR(&Message); |
277 | |
278 | int FD; |
279 | |
280 | if (ControlMessage->cmsg_len != CMSG_LEN(sizeof(FD))) |
281 | return make_error<Failure>(Args: "Failed to get correct number of bytes for " |
282 | "file descriptor from socket." ); |
283 | |
284 | memcpy(dest: &FD, CMSG_DATA(ControlMessage), n: sizeof(FD)); |
285 | |
286 | return FD; |
287 | } |
288 | |
289 | Error |
290 | runParentProcess(pid_t ChildPID, int WriteFD, StringRef CounterName, |
291 | SmallVectorImpl<int64_t> &CounterValues, |
292 | ArrayRef<const char *> ValidationCounters, |
293 | SmallVectorImpl<int64_t> &ValidationCounterValues) const { |
294 | auto WriteFDClose = make_scope_exit(F: [WriteFD]() { close(fd: WriteFD); }); |
295 | const ExegesisTarget &ET = State.getExegesisTarget(); |
296 | auto CounterOrError = |
297 | ET.createCounter(CounterName, State, ValidationCounters, ProcessID: ChildPID); |
298 | |
299 | if (!CounterOrError) |
300 | return CounterOrError.takeError(); |
301 | |
302 | pfm::CounterGroup *Counter = CounterOrError.get().get(); |
303 | |
304 | // Make sure to attach to the process (and wait for the sigstop to be |
305 | // delivered and for the process to continue) before we write to the counter |
306 | // file descriptor. Attaching to the process before writing to the socket |
307 | // ensures that the subprocess at most has blocked on the read call. If we |
308 | // attach afterwards, the subprocess might exit before we get to the attach |
309 | // call due to effects like scheduler contention, introducing transient |
310 | // failures. |
311 | if (ptrace(request: PTRACE_ATTACH, ChildPID, NULL, NULL) != 0) |
312 | return make_error<Failure>(Args: "Failed to attach to the child process: " + |
313 | Twine(strerror(errno))); |
314 | |
315 | if (waitpid(pid: ChildPID, NULL, options: 0) == -1) { |
316 | return make_error<Failure>( |
317 | Args: "Failed to wait for child process to stop after attaching: " + |
318 | Twine(strerror(errno))); |
319 | } |
320 | |
321 | if (ptrace(request: PTRACE_CONT, ChildPID, NULL, NULL) != 0) |
322 | return make_error<Failure>( |
323 | Args: "Failed to continue execution of the child process: " + |
324 | Twine(strerror(errno))); |
325 | |
326 | int CounterFileDescriptor = Counter->getFileDescriptor(); |
327 | Error SendError = |
328 | sendFileDescriptorThroughSocket(SocketFD: WriteFD, FD: CounterFileDescriptor); |
329 | |
330 | if (SendError) |
331 | return SendError; |
332 | |
333 | int ChildStatus; |
334 | if (waitpid(pid: ChildPID, stat_loc: &ChildStatus, options: 0) == -1) { |
335 | return make_error<Failure>( |
336 | Args: "Waiting for the child process to complete failed: " + |
337 | Twine(strerror(errno))); |
338 | } |
339 | |
340 | if (WIFEXITED(ChildStatus)) { |
341 | int ChildExitCode = WEXITSTATUS(ChildStatus); |
342 | if (ChildExitCode == 0) { |
343 | // The child exited succesfully, read counter values and return |
344 | // success. |
345 | auto CounterValueOrErr = Counter->readOrError(); |
346 | if (!CounterValueOrErr) |
347 | return CounterValueOrErr.takeError(); |
348 | CounterValues = std::move(*CounterValueOrErr); |
349 | |
350 | auto ValidationValuesOrErr = Counter->readValidationCountersOrError(); |
351 | if (!ValidationValuesOrErr) |
352 | return ValidationValuesOrErr.takeError(); |
353 | |
354 | ArrayRef RealValidationValues = *ValidationValuesOrErr; |
355 | for (size_t I = 0; I < RealValidationValues.size(); ++I) |
356 | ValidationCounterValues[I] = RealValidationValues[I]; |
357 | |
358 | return Error::success(); |
359 | } |
360 | // The child exited, but not successfully. |
361 | return make_error<Failure>( |
362 | Args: "Child benchmarking process exited with non-zero exit code: " + |
363 | childProcessExitCodeToString(ExitCode: ChildExitCode)); |
364 | } |
365 | |
366 | // An error was encountered running the snippet, process it |
367 | siginfo_t ChildSignalInfo; |
368 | if (ptrace(request: PTRACE_GETSIGINFO, ChildPID, NULL, &ChildSignalInfo) == -1) { |
369 | return make_error<Failure>(Args: "Getting signal info from the child failed: " + |
370 | Twine(strerror(errno))); |
371 | } |
372 | |
373 | // Send SIGKILL rather than SIGTERM as the child process has no SIGTERM |
374 | // handlers to run, and calling SIGTERM would mean that ptrace will force |
375 | // it to block in the signal-delivery-stop for the SIGSEGV/other signals, |
376 | // and upon exit. |
377 | if (kill(pid: ChildPID, SIGKILL) == -1) |
378 | return make_error<Failure>(Args: "Failed to kill child benchmarking proces: " + |
379 | Twine(strerror(errno))); |
380 | |
381 | // Wait for the process to exit so that there are no zombie processes left |
382 | // around. |
383 | if (waitpid(pid: ChildPID, NULL, options: 0) == -1) |
384 | return make_error<Failure>(Args: "Failed to wait for process to die: " + |
385 | Twine(strerror(errno))); |
386 | |
387 | if (ChildSignalInfo.si_signo == SIGSEGV) |
388 | return make_error<SnippetSegmentationFault>( |
389 | Args: reinterpret_cast<uintptr_t>(ChildSignalInfo.si_addr)); |
390 | |
391 | return make_error<SnippetSignal>(Args&: ChildSignalInfo.si_signo); |
392 | } |
393 | |
394 | static void setCPUAffinityIfRequested(int CPUToUse) { |
395 | // Special case this function for x86_64 for now as certain more esoteric |
396 | // platforms have different definitions for some of the libc functions that |
397 | // cause buildtime failures. Additionally, the subprocess executor mode (the |
398 | // sole mode where this is supported) currently only supports x86_64. |
399 | |
400 | // Also check that we have the SYS_getcpu macro defined, meaning the syscall |
401 | // actually exists within the build environment. We manually use the syscall |
402 | // rather than the libc wrapper given the wrapper for getcpu is only available |
403 | // in glibc 2.29 and later. |
404 | #if defined(__x86_64__) && defined(SYS_getcpu) |
405 | // Set the CPU affinity for the child process, so that we ensure that if |
406 | // the user specified a CPU the process should run on, the benchmarking |
407 | // process is running on that CPU. |
408 | cpu_set_t CPUMask; |
409 | CPU_ZERO(&CPUMask); |
410 | CPU_SET(CPUToUse, &CPUMask); |
411 | // TODO(boomanaiden154): Rewrite this to use LLVM primitives once they |
412 | // are available. |
413 | int SetAffinityReturn = sched_setaffinity(pid: 0, cpusetsize: sizeof(CPUMask), cpuset: &CPUMask); |
414 | if (SetAffinityReturn == -1) { |
415 | exit(status: ChildProcessExitCodeE::SetCPUAffinityFailed); |
416 | } |
417 | |
418 | // Check (if assertions are enabled) that we are actually running on the |
419 | // CPU that was specified by the user. |
420 | [[maybe_unused]] unsigned int CurrentCPU; |
421 | assert(syscall(SYS_getcpu, &CurrentCPU, nullptr) == 0 && |
422 | "Expected getcpu call to succeed." ); |
423 | assert(static_cast<int>(CurrentCPU) == CPUToUse && |
424 | "Expected current CPU to equal the CPU requested by the user" ); |
425 | #else |
426 | exit(ChildProcessExitCodeE::SetCPUAffinityFailed); |
427 | #endif // defined(__x86_64__) && defined(SYS_getcpu) |
428 | } |
429 | |
430 | Error createSubProcessAndRunBenchmark( |
431 | StringRef CounterName, SmallVectorImpl<int64_t> &CounterValues, |
432 | ArrayRef<const char *> ValidationCounters, |
433 | SmallVectorImpl<int64_t> &ValidationCounterValues) const { |
434 | int PipeFiles[2]; |
435 | int PipeSuccessOrErr = socketpair(AF_UNIX, SOCK_DGRAM, protocol: 0, fds: PipeFiles); |
436 | if (PipeSuccessOrErr != 0) { |
437 | return make_error<Failure>( |
438 | Args: "Failed to create a pipe for interprocess communication between " |
439 | "llvm-exegesis and the benchmarking subprocess: " + |
440 | Twine(strerror(errno))); |
441 | } |
442 | |
443 | SubprocessMemory SPMemory; |
444 | Error MemoryInitError = SPMemory.initializeSubprocessMemory(ProcessID: getpid()); |
445 | if (MemoryInitError) |
446 | return MemoryInitError; |
447 | |
448 | Error AddMemDefError = |
449 | SPMemory.addMemoryDefinition(MemoryDefinitions: Key.MemoryValues, ProcessID: getpid()); |
450 | if (AddMemDefError) |
451 | return AddMemDefError; |
452 | |
453 | long ParentTID = SubprocessMemory::getCurrentTID(); |
454 | pid_t ParentOrChildPID = fork(); |
455 | |
456 | if (ParentOrChildPID == -1) { |
457 | return make_error<Failure>(Args: "Failed to create child process: " + |
458 | Twine(strerror(errno))); |
459 | } |
460 | |
461 | if (ParentOrChildPID == 0) { |
462 | if (BenchmarkProcessCPU.has_value()) { |
463 | setCPUAffinityIfRequested(*BenchmarkProcessCPU); |
464 | } |
465 | |
466 | // We are in the child process, close the write end of the pipe. |
467 | close(fd: PipeFiles[1]); |
468 | // Unregister handlers, signal handling is now handled through ptrace in |
469 | // the host process. |
470 | sys::unregisterHandlers(); |
471 | runChildSubprocess(Pipe: PipeFiles[0], Key, ParentTID); |
472 | // The child process terminates in the above function, so we should never |
473 | // get to this point. |
474 | llvm_unreachable("Child process didn't exit when expected." ); |
475 | } |
476 | |
477 | // Close the read end of the pipe as we only need to write to the subprocess |
478 | // from the parent process. |
479 | close(fd: PipeFiles[0]); |
480 | return runParentProcess(ChildPID: ParentOrChildPID, WriteFD: PipeFiles[1], CounterName, |
481 | CounterValues, ValidationCounters, |
482 | ValidationCounterValues); |
483 | } |
484 | |
485 | void disableCoreDumps() const { |
486 | struct rlimit rlim; |
487 | |
488 | rlim.rlim_cur = 0; |
489 | setrlimit(RLIMIT_CORE, rlimits: &rlim); |
490 | } |
491 | |
492 | [[noreturn]] void runChildSubprocess(int Pipe, const BenchmarkKey &Key, |
493 | long ParentTID) const { |
494 | // Disable core dumps in the child process as otherwise everytime we |
495 | // encounter an execution failure like a segmentation fault, we will create |
496 | // a core dump. We report the information directly rather than require the |
497 | // user inspect a core dump. |
498 | disableCoreDumps(); |
499 | |
500 | // The following occurs within the benchmarking subprocess. |
501 | pid_t ParentPID = getppid(); |
502 | |
503 | Expected<int> CounterFileDescriptorOrError = |
504 | getFileDescriptorFromSocket(SocketFD: Pipe); |
505 | |
506 | if (!CounterFileDescriptorOrError) |
507 | exit(status: ChildProcessExitCodeE::CounterFDReadFailed); |
508 | |
509 | int CounterFileDescriptor = *CounterFileDescriptorOrError; |
510 | |
511 | // Glibc versions greater than 2.35 automatically call rseq during |
512 | // initialization. Unmapping the region that glibc sets up for this causes |
513 | // segfaults in the program. Unregister the rseq region so that we can safely |
514 | // unmap it later |
515 | #ifdef GLIBC_INITS_RSEQ |
516 | unsigned int RseqStructSize = __rseq_size; |
517 | |
518 | // Glibc v2.40 (the change is also expected to be backported to v2.35) |
519 | // changes the definition of __rseq_size to be the usable area of the struct |
520 | // rather than the actual size of the struct. v2.35 uses only 20 bytes of |
521 | // the 32 byte struct. For now, it should be safe to assume that if the |
522 | // usable size is less than 32, the actual size of the struct will be 32 |
523 | // bytes given alignment requirements. |
524 | if (__rseq_size < 32) |
525 | RseqStructSize = 32; |
526 | |
527 | long RseqDisableOutput = syscall( |
528 | SYS_rseq, |
529 | reinterpret_cast<uintptr_t>(__builtin_thread_pointer()) + __rseq_offset, |
530 | RseqStructSize, RSEQ_FLAG_UNREGISTER, RSEQ_SIG); |
531 | if (RseqDisableOutput != 0) |
532 | exit(status: ChildProcessExitCodeE::RSeqDisableFailed); |
533 | #endif // GLIBC_INITS_RSEQ |
534 | |
535 | // The frontend that generates the memory annotation structures should |
536 | // validate that the address to map the snippet in at is a multiple of |
537 | // the page size. Assert that this is true here. |
538 | assert(Key.SnippetAddress % getpagesize() == 0 && |
539 | "The snippet address needs to be aligned to a page boundary." ); |
540 | |
541 | size_t FunctionDataCopySize = this->Function.FunctionBytes.size(); |
542 | void *MapAddress = NULL; |
543 | int MapFlags = MAP_PRIVATE | MAP_ANONYMOUS; |
544 | |
545 | if (Key.SnippetAddress != 0) { |
546 | MapAddress = reinterpret_cast<void *>(Key.SnippetAddress); |
547 | MapFlags |= MAP_FIXED_NOREPLACE; |
548 | } |
549 | |
550 | char *FunctionDataCopy = |
551 | (char *)mmap(addr: MapAddress, len: FunctionDataCopySize, PROT_READ | PROT_WRITE, |
552 | flags: MapFlags, fd: 0, offset: 0); |
553 | if (reinterpret_cast<intptr_t>(FunctionDataCopy) == -1) |
554 | exit(status: ChildProcessExitCodeE::FunctionDataMappingFailed); |
555 | |
556 | memcpy(dest: FunctionDataCopy, src: this->Function.FunctionBytes.data(), |
557 | n: this->Function.FunctionBytes.size()); |
558 | mprotect(addr: FunctionDataCopy, len: FunctionDataCopySize, PROT_READ | PROT_EXEC); |
559 | |
560 | Expected<int> AuxMemFDOrError = |
561 | SubprocessMemory::setupAuxiliaryMemoryInSubprocess( |
562 | MemoryDefinitions: Key.MemoryValues, ParentPID, ParentTID, CounterFileDescriptor); |
563 | if (!AuxMemFDOrError) |
564 | exit(status: ChildProcessExitCodeE::AuxiliaryMemorySetupFailed); |
565 | |
566 | ((void (*)(size_t, int))(uintptr_t)FunctionDataCopy)(FunctionDataCopySize, |
567 | *AuxMemFDOrError); |
568 | |
569 | exit(status: 0); |
570 | } |
571 | |
572 | Expected<SmallVector<int64_t, 4>> runWithCounter( |
573 | StringRef CounterName, ArrayRef<const char *> ValidationCounters, |
574 | SmallVectorImpl<int64_t> &ValidationCounterValues) const override { |
575 | SmallVector<int64_t, 4> Value(1, 0); |
576 | Error PossibleBenchmarkError = createSubProcessAndRunBenchmark( |
577 | CounterName, CounterValues&: Value, ValidationCounters, ValidationCounterValues); |
578 | |
579 | if (PossibleBenchmarkError) |
580 | return std::move(PossibleBenchmarkError); |
581 | |
582 | return Value; |
583 | } |
584 | |
585 | const LLVMState &State; |
586 | const ExecutableFunction Function; |
587 | const BenchmarkKey &Key; |
588 | const std::optional<int> BenchmarkProcessCPU; |
589 | }; |
590 | #endif // __linux__ |
591 | } // namespace |
592 | |
593 | Expected<SmallString<0>> BenchmarkRunner::assembleSnippet( |
594 | const BenchmarkCode &BC, const SnippetRepetitor &Repetitor, |
595 | unsigned MinInstructions, unsigned LoopBodySize, |
596 | bool GenerateMemoryInstructions) const { |
597 | const std::vector<MCInst> &Instructions = BC.Key.Instructions; |
598 | SmallString<0> Buffer; |
599 | raw_svector_ostream OS(Buffer); |
600 | if (Error E = assembleToStream( |
601 | ET: State.getExegesisTarget(), TM: State.createTargetMachine(), LiveIns: BC.LiveIns, |
602 | Fill: Repetitor.Repeat(Instructions, MinInstructions, LoopBodySize, |
603 | CleanupMemory: GenerateMemoryInstructions), |
604 | AsmStreamm&: OS, Key: BC.Key, GenerateMemoryInstructions)) { |
605 | return std::move(E); |
606 | } |
607 | return Buffer; |
608 | } |
609 | |
610 | Expected<BenchmarkRunner::RunnableConfiguration> |
611 | BenchmarkRunner::getRunnableConfiguration( |
612 | const BenchmarkCode &BC, unsigned MinInstructions, unsigned LoopBodySize, |
613 | const SnippetRepetitor &Repetitor) const { |
614 | RunnableConfiguration RC; |
615 | |
616 | Benchmark &BenchmarkResult = RC.BenchmarkResult; |
617 | BenchmarkResult.Mode = Mode; |
618 | BenchmarkResult.CpuName = |
619 | std::string(State.getTargetMachine().getTargetCPU()); |
620 | BenchmarkResult.LLVMTriple = |
621 | State.getTargetMachine().getTargetTriple().normalize(); |
622 | BenchmarkResult.MinInstructions = MinInstructions; |
623 | BenchmarkResult.Info = BC.Info; |
624 | |
625 | const std::vector<MCInst> &Instructions = BC.Key.Instructions; |
626 | |
627 | bool GenerateMemoryInstructions = ExecutionMode == ExecutionModeE::SubProcess; |
628 | |
629 | BenchmarkResult.Key = BC.Key; |
630 | |
631 | // Assemble at least kMinInstructionsForSnippet instructions by repeating |
632 | // the snippet for debug/analysis. This is so that the user clearly |
633 | // understands that the inside instructions are repeated. |
634 | if (BenchmarkPhaseSelector > BenchmarkPhaseSelectorE::PrepareSnippet) { |
635 | const int MinInstructionsForSnippet = 4 * Instructions.size(); |
636 | const int LoopBodySizeForSnippet = 2 * Instructions.size(); |
637 | auto Snippet = |
638 | assembleSnippet(BC, Repetitor, MinInstructions: MinInstructionsForSnippet, |
639 | LoopBodySize: LoopBodySizeForSnippet, GenerateMemoryInstructions); |
640 | if (Error E = Snippet.takeError()) |
641 | return std::move(E); |
642 | |
643 | if (auto Err = getBenchmarkFunctionBytes(InputData: *Snippet, |
644 | Bytes&: BenchmarkResult.AssembledSnippet)) |
645 | return std::move(Err); |
646 | } |
647 | |
648 | // Assemble enough repetitions of the snippet so we have at least |
649 | // MinInstructions instructions. |
650 | if (BenchmarkPhaseSelector > |
651 | BenchmarkPhaseSelectorE::PrepareAndAssembleSnippet) { |
652 | auto Snippet = |
653 | assembleSnippet(BC, Repetitor, MinInstructions: BenchmarkResult.MinInstructions, |
654 | LoopBodySize, GenerateMemoryInstructions); |
655 | if (Error E = Snippet.takeError()) |
656 | return std::move(E); |
657 | RC.ObjectFile = getObjectFromBuffer(Buffer: *Snippet); |
658 | } |
659 | |
660 | return std::move(RC); |
661 | } |
662 | |
663 | Expected<std::unique_ptr<BenchmarkRunner::FunctionExecutor>> |
664 | BenchmarkRunner::createFunctionExecutor( |
665 | object::OwningBinary<object::ObjectFile> ObjectFile, |
666 | const BenchmarkKey &Key, std::optional<int> BenchmarkProcessCPU) const { |
667 | switch (ExecutionMode) { |
668 | case ExecutionModeE::InProcess: { |
669 | if (BenchmarkProcessCPU.has_value()) |
670 | return make_error<Failure>(Args: "The inprocess execution mode does not " |
671 | "support benchmark core pinning." ); |
672 | |
673 | auto InProcessExecutorOrErr = InProcessFunctionExecutorImpl::create( |
674 | State, Obj: std::move(ObjectFile), Scratch: Scratch.get(), BenchmarkProcessCPU); |
675 | if (!InProcessExecutorOrErr) |
676 | return InProcessExecutorOrErr.takeError(); |
677 | |
678 | return std::move(*InProcessExecutorOrErr); |
679 | } |
680 | case ExecutionModeE::SubProcess: { |
681 | #ifdef __linux__ |
682 | auto SubProcessExecutorOrErr = SubProcessFunctionExecutorImpl::create( |
683 | State, Obj: std::move(ObjectFile), Key, BenchmarkProcessCPU); |
684 | if (!SubProcessExecutorOrErr) |
685 | return SubProcessExecutorOrErr.takeError(); |
686 | |
687 | return std::move(*SubProcessExecutorOrErr); |
688 | #else |
689 | return make_error<Failure>( |
690 | "The subprocess execution mode is only supported on Linux" ); |
691 | #endif |
692 | } |
693 | } |
694 | llvm_unreachable("ExecutionMode is outside expected range" ); |
695 | } |
696 | |
697 | std::pair<Error, Benchmark> BenchmarkRunner::runConfiguration( |
698 | RunnableConfiguration &&RC, const std::optional<StringRef> &DumpFile, |
699 | std::optional<int> BenchmarkProcessCPU) const { |
700 | Benchmark &BenchmarkResult = RC.BenchmarkResult; |
701 | object::OwningBinary<object::ObjectFile> &ObjectFile = RC.ObjectFile; |
702 | |
703 | if (DumpFile && BenchmarkPhaseSelector > |
704 | BenchmarkPhaseSelectorE::PrepareAndAssembleSnippet) { |
705 | auto ObjectFilePath = |
706 | writeObjectFile(Buffer: ObjectFile.getBinary()->getData(), FileName: *DumpFile); |
707 | if (Error E = ObjectFilePath.takeError()) { |
708 | return {std::move(E), std::move(BenchmarkResult)}; |
709 | } |
710 | outs() << "Check generated assembly with: /usr/bin/objdump -d " |
711 | << *ObjectFilePath << "\n" ; |
712 | } |
713 | |
714 | if (BenchmarkPhaseSelector < BenchmarkPhaseSelectorE::Measure) { |
715 | BenchmarkResult.Error = "actual measurements skipped." ; |
716 | return {Error::success(), std::move(BenchmarkResult)}; |
717 | } |
718 | |
719 | Expected<std::unique_ptr<BenchmarkRunner::FunctionExecutor>> Executor = |
720 | createFunctionExecutor(ObjectFile: std::move(ObjectFile), Key: RC.BenchmarkResult.Key, |
721 | BenchmarkProcessCPU); |
722 | if (!Executor) |
723 | return {Executor.takeError(), std::move(BenchmarkResult)}; |
724 | auto NewMeasurements = runMeasurements(Executor: **Executor); |
725 | |
726 | if (Error E = NewMeasurements.takeError()) { |
727 | return {std::move(E), std::move(BenchmarkResult)}; |
728 | } |
729 | assert(BenchmarkResult.MinInstructions > 0 && "invalid MinInstructions" ); |
730 | for (BenchmarkMeasure &BM : *NewMeasurements) { |
731 | // Scale the measurements by the number of instructions. |
732 | BM.PerInstructionValue /= BenchmarkResult.MinInstructions; |
733 | // Scale the measurements by the number of times the entire snippet is |
734 | // repeated. |
735 | BM.PerSnippetValue /= |
736 | std::ceil(x: BenchmarkResult.MinInstructions / |
737 | static_cast<double>(BenchmarkResult.Key.Instructions.size())); |
738 | } |
739 | BenchmarkResult.Measurements = std::move(*NewMeasurements); |
740 | |
741 | return {Error::success(), std::move(BenchmarkResult)}; |
742 | } |
743 | |
744 | Expected<std::string> |
745 | BenchmarkRunner::writeObjectFile(StringRef Buffer, StringRef FileName) const { |
746 | int ResultFD = 0; |
747 | SmallString<256> ResultPath = FileName; |
748 | if (Error E = errorCodeToError( |
749 | EC: FileName.empty() ? sys::fs::createTemporaryFile(Prefix: "snippet" , Suffix: "o" , |
750 | ResultFD, ResultPath) |
751 | : sys::fs::openFileForReadWrite( |
752 | Name: FileName, ResultFD, Disp: sys::fs::CD_CreateAlways, |
753 | Flags: sys::fs::OF_None))) |
754 | return std::move(E); |
755 | raw_fd_ostream OFS(ResultFD, true /*ShouldClose*/); |
756 | OFS.write(Ptr: Buffer.data(), Size: Buffer.size()); |
757 | OFS.flush(); |
758 | return std::string(ResultPath); |
759 | } |
760 | |
761 | static bool EventLessThan(const std::pair<ValidationEvent, const char *> LHS, |
762 | const ValidationEvent RHS) { |
763 | return static_cast<int>(LHS.first) < static_cast<int>(RHS); |
764 | } |
765 | |
766 | Error BenchmarkRunner::getValidationCountersToRun( |
767 | SmallVector<const char *> &ValCountersToRun) const { |
768 | const PfmCountersInfo &PCI = State.getPfmCounters(); |
769 | ValCountersToRun.reserve(N: ValidationCounters.size()); |
770 | |
771 | ValCountersToRun.reserve(N: ValidationCounters.size()); |
772 | ArrayRef TargetValidationEvents(PCI.ValidationEvents, |
773 | PCI.NumValidationEvents); |
774 | for (const ValidationEvent RequestedValEvent : ValidationCounters) { |
775 | auto ValCounterIt = |
776 | lower_bound(Range&: TargetValidationEvents, Value: RequestedValEvent, C: EventLessThan); |
777 | if (ValCounterIt == TargetValidationEvents.end() || |
778 | ValCounterIt->first != RequestedValEvent) |
779 | return make_error<Failure>(Args: "Cannot create validation counter" ); |
780 | |
781 | assert(ValCounterIt->first == RequestedValEvent && |
782 | "The array of validation events from the target should be sorted" ); |
783 | ValCountersToRun.push_back(Elt: ValCounterIt->second); |
784 | } |
785 | |
786 | return Error::success(); |
787 | } |
788 | |
789 | BenchmarkRunner::FunctionExecutor::~FunctionExecutor() {} |
790 | |
791 | } // namespace exegesis |
792 | } // namespace llvm |
793 | |