| 1 | //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "SchedClassResolution.h" |
| 10 | #include "BenchmarkResult.h" |
| 11 | #include "llvm/ADT/STLExtras.h" |
| 12 | #include "llvm/MC/MCAsmInfo.h" |
| 13 | #include "llvm/MCA/Support.h" |
| 14 | #include "llvm/Support/FormatVariadic.h" |
| 15 | #include <vector> |
| 16 | |
| 17 | namespace llvm { |
| 18 | namespace exegesis { |
| 19 | |
| 20 | // Return the non-redundant list of WriteProcRes used by the given sched class. |
| 21 | // The scheduling model for LLVM is such that each instruction has a certain |
| 22 | // number of uops which consume resources which are described by WriteProcRes |
| 23 | // entries. Each entry describe how many cycles are spent on a specific ProcRes |
| 24 | // kind. |
| 25 | // For example, an instruction might have 3 uOps, one dispatching on P0 |
| 26 | // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). |
| 27 | // Note that LLVM additionally denormalizes resource consumption to include |
| 28 | // usage of super resources by subresources. So in practice if there exists a |
| 29 | // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by |
| 30 | // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed |
| 31 | // by P06 are also consumed by P016. In the figure below, parenthesized cycles |
| 32 | // denote implied usage of superresources by subresources: |
| 33 | // P0 P06 P016 |
| 34 | // uOp1 1 (1) (1) |
| 35 | // uOp2 1 (1) |
| 36 | // uOp3 1 (1) |
| 37 | // ============================= |
| 38 | // 1 3 3 |
| 39 | // Eventually we end up with three entries for the WriteProcRes of the |
| 40 | // instruction: |
| 41 | // {ProcResIdx=1, Cycles=1} // P0 |
| 42 | // {ProcResIdx=7, Cycles=3} // P06 |
| 43 | // {ProcResIdx=10, Cycles=3} // P016 |
| 44 | // |
| 45 | // Note that in this case, P016 does not contribute any cycles, so it would |
| 46 | // be removed by this function. |
| 47 | // FIXME: Merge this with the equivalent in llvm-mca. |
| 48 | static SmallVector<MCWriteProcResEntry, 8> |
| 49 | getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc, |
| 50 | const MCSubtargetInfo &STI) { |
| 51 | SmallVector<MCWriteProcResEntry, 8> Result; |
| 52 | const auto &SM = STI.getSchedModel(); |
| 53 | const unsigned NumProcRes = SM.getNumProcResourceKinds(); |
| 54 | |
| 55 | // Collect resource masks. |
| 56 | SmallVector<uint64_t> ProcResourceMasks(NumProcRes); |
| 57 | mca::computeProcResourceMasks(SM, Masks: ProcResourceMasks); |
| 58 | |
| 59 | // Sort entries by smaller resources for (basic) topological ordering. |
| 60 | using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>; |
| 61 | SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries; |
| 62 | for (const auto *WPR = STI.getWriteProcResBegin(SC: &SCDesc), |
| 63 | *const WPREnd = STI.getWriteProcResEnd(SC: &SCDesc); |
| 64 | WPR != WPREnd; ++WPR) { |
| 65 | uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx]; |
| 66 | ResourceMaskAndEntries.push_back(Elt: {Mask, WPR}); |
| 67 | } |
| 68 | sort(C&: ResourceMaskAndEntries, |
| 69 | Comp: [](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) { |
| 70 | unsigned popcntA = popcount(Value: A.first); |
| 71 | unsigned popcntB = popcount(Value: B.first); |
| 72 | return std::tie(args&: popcntA, args: A.first) < std::tie(args&: popcntB, args: B.first); |
| 73 | }); |
| 74 | |
| 75 | SmallVector<float, 32> ProcResUnitUsage(NumProcRes); |
| 76 | for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) { |
| 77 | const MCWriteProcResEntry *WPR = Entry.second; |
| 78 | const MCProcResourceDesc *const ProcResDesc = |
| 79 | SM.getProcResource(ProcResourceIdx: WPR->ProcResourceIdx); |
| 80 | // TODO: Handle AcquireAtAtCycle in llvm-exegesis and llvm-mca. See |
| 81 | // https://github.com/llvm/llvm-project/issues/62680 and |
| 82 | // https://github.com/llvm/llvm-project/issues/62681 |
| 83 | assert(WPR->AcquireAtCycle == 0 && |
| 84 | "`llvm-exegesis` does not handle AcquireAtCycle > 0" ); |
| 85 | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| 86 | // This is a ProcResUnit. |
| 87 | Result.push_back( |
| 88 | Elt: {.ProcResourceIdx: WPR->ProcResourceIdx, .ReleaseAtCycle: WPR->ReleaseAtCycle, .AcquireAtCycle: WPR->AcquireAtCycle}); |
| 89 | ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->ReleaseAtCycle; |
| 90 | } else { |
| 91 | // This is a ProcResGroup. First see if it contributes any cycles or if |
| 92 | // it has cycles just from subunits. |
| 93 | float RemainingCycles = WPR->ReleaseAtCycle; |
| 94 | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| 95 | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| 96 | ++SubResIdx) { |
| 97 | RemainingCycles -= ProcResUnitUsage[*SubResIdx]; |
| 98 | } |
| 99 | if (RemainingCycles < 0.01f) { |
| 100 | // The ProcResGroup contributes no cycles of its own. |
| 101 | continue; |
| 102 | } |
| 103 | // The ProcResGroup contributes `RemainingCycles` cycles of its own. |
| 104 | Result.push_back(Elt: {.ProcResourceIdx: WPR->ProcResourceIdx, |
| 105 | .ReleaseAtCycle: static_cast<uint16_t>(std::round(x: RemainingCycles)), |
| 106 | .AcquireAtCycle: WPR->AcquireAtCycle}); |
| 107 | // Spread the remaining cycles over all subunits. |
| 108 | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; |
| 109 | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; |
| 110 | ++SubResIdx) { |
| 111 | ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | return Result; |
| 116 | } |
| 117 | |
| 118 | // Distributes a pressure budget as evenly as possible on the provided subunits |
| 119 | // given the already existing port pressure distribution. |
| 120 | // |
| 121 | // The algorithm is as follows: while there is remaining pressure to |
| 122 | // distribute, find the subunits with minimal pressure, and distribute |
| 123 | // remaining pressure equally up to the pressure of the unit with |
| 124 | // second-to-minimal pressure. |
| 125 | // For example, let's assume we want to distribute 2*P1256 |
| 126 | // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: |
| 127 | // DensePressure = P0 P1 P2 P3 P4 P5 P6 P7 |
| 128 | // 0.1 0.3 0.2 0.0 0.0 0.5 0.5 0.5 |
| 129 | // RemainingPressure = 2.0 |
| 130 | // We sort the subunits by pressure: |
| 131 | // Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] |
| 132 | // We'll first start by the subunits with minimal pressure, which are at |
| 133 | // the beginning of the sorted array. In this example there is one (P2). |
| 134 | // The subunit with second-to-minimal pressure is the next one in the |
| 135 | // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles |
| 136 | // from the budget. |
| 137 | // Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] |
| 138 | // RemainingPressure = 1.9 |
| 139 | // We repeat this process: distribute 0.2 pressure on each of the minimal |
| 140 | // P2 and P1, decrease budget by 2*0.2: |
| 141 | // Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] |
| 142 | // RemainingPressure = 1.5 |
| 143 | // There are no second-to-minimal subunits so we just share the remaining |
| 144 | // budget (1.5 cycles) equally: |
| 145 | // Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] |
| 146 | // RemainingPressure = 0.0 |
| 147 | // We stop as there is no remaining budget to distribute. |
| 148 | static void distributePressure(float RemainingPressure, |
| 149 | SmallVector<uint16_t, 32> Subunits, |
| 150 | SmallVector<float, 32> &DensePressure) { |
| 151 | // Find the number of subunits with minimal pressure (they are at the |
| 152 | // front). |
| 153 | sort(C&: Subunits, Comp: [&DensePressure](const uint16_t A, const uint16_t B) { |
| 154 | return DensePressure[A] < DensePressure[B]; |
| 155 | }); |
| 156 | const auto getPressureForSubunit = [&DensePressure, |
| 157 | &Subunits](size_t I) -> float & { |
| 158 | return DensePressure[Subunits[I]]; |
| 159 | }; |
| 160 | size_t NumMinimalSU = 1; |
| 161 | while (NumMinimalSU < Subunits.size() && |
| 162 | getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { |
| 163 | ++NumMinimalSU; |
| 164 | } |
| 165 | while (RemainingPressure > 0.0f) { |
| 166 | if (NumMinimalSU == Subunits.size()) { |
| 167 | // All units are minimal, just distribute evenly and be done. |
| 168 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 169 | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| 170 | } |
| 171 | return; |
| 172 | } |
| 173 | // Distribute the remaining pressure equally. |
| 174 | const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); |
| 175 | const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); |
| 176 | assert(MinimalPressure < SecondToMinimalPressure); |
| 177 | const float Increment = SecondToMinimalPressure - MinimalPressure; |
| 178 | if (RemainingPressure <= NumMinimalSU * Increment) { |
| 179 | // There is not enough remaining pressure. |
| 180 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 181 | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; |
| 182 | } |
| 183 | return; |
| 184 | } |
| 185 | // Bump all minimal pressure subunits to `SecondToMinimalPressure`. |
| 186 | for (size_t I = 0; I < NumMinimalSU; ++I) { |
| 187 | getPressureForSubunit(I) = SecondToMinimalPressure; |
| 188 | RemainingPressure -= SecondToMinimalPressure; |
| 189 | } |
| 190 | while (NumMinimalSU < Subunits.size() && |
| 191 | getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { |
| 192 | ++NumMinimalSU; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | std::vector<std::pair<uint16_t, float>> |
| 198 | computeIdealizedProcResPressure(const MCSchedModel &SM, |
| 199 | SmallVector<MCWriteProcResEntry, 8> WPRS) { |
| 200 | // DensePressure[I] is the port pressure for Proc Resource I. |
| 201 | SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); |
| 202 | sort(C&: WPRS, Comp: [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) { |
| 203 | return A.ProcResourceIdx < B.ProcResourceIdx; |
| 204 | }); |
| 205 | for (const MCWriteProcResEntry &WPR : WPRS) { |
| 206 | // Get units for the entry. |
| 207 | const MCProcResourceDesc *const ProcResDesc = |
| 208 | SM.getProcResource(ProcResourceIdx: WPR.ProcResourceIdx); |
| 209 | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { |
| 210 | // This is a ProcResUnit. |
| 211 | DensePressure[WPR.ProcResourceIdx] += WPR.ReleaseAtCycle; |
| 212 | } else { |
| 213 | // This is a ProcResGroup. |
| 214 | SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, |
| 215 | ProcResDesc->SubUnitsIdxBegin + |
| 216 | ProcResDesc->NumUnits); |
| 217 | distributePressure(RemainingPressure: WPR.ReleaseAtCycle, Subunits, DensePressure); |
| 218 | } |
| 219 | } |
| 220 | // Turn dense pressure into sparse pressure by removing zero entries. |
| 221 | std::vector<std::pair<uint16_t, float>> Pressure; |
| 222 | for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { |
| 223 | if (DensePressure[I] > 0.0f) |
| 224 | Pressure.emplace_back(args&: I, args&: DensePressure[I]); |
| 225 | } |
| 226 | return Pressure; |
| 227 | } |
| 228 | |
| 229 | ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI, |
| 230 | unsigned ResolvedSchedClassId, |
| 231 | bool WasVariant) |
| 232 | : SchedClassId(ResolvedSchedClassId), |
| 233 | SCDesc(STI.getSchedModel().getSchedClassDesc(SchedClassIdx: ResolvedSchedClassId)), |
| 234 | WasVariant(WasVariant), |
| 235 | NonRedundantWriteProcRes(getNonRedundantWriteProcRes(SCDesc: *SCDesc, STI)), |
| 236 | IdealizedProcResPressure(computeIdealizedProcResPressure( |
| 237 | SM: STI.getSchedModel(), WPRS: NonRedundantWriteProcRes)) { |
| 238 | assert((SCDesc == nullptr || !SCDesc->isVariant()) && |
| 239 | "ResolvedSchedClass should never be variant" ); |
| 240 | } |
| 241 | |
| 242 | static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI, |
| 243 | const MCInstrInfo &InstrInfo, |
| 244 | unsigned SchedClassId, |
| 245 | const MCInst &MCI) { |
| 246 | const auto &SM = STI.getSchedModel(); |
| 247 | while (SchedClassId && SM.getSchedClassDesc(SchedClassIdx: SchedClassId)->isVariant()) { |
| 248 | SchedClassId = STI.resolveVariantSchedClass(SchedClass: SchedClassId, MI: &MCI, MCII: &InstrInfo, |
| 249 | CPUID: SM.getProcessorID()); |
| 250 | } |
| 251 | return SchedClassId; |
| 252 | } |
| 253 | |
| 254 | std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/> |
| 255 | ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo, |
| 256 | const MCInstrInfo &InstrInfo, |
| 257 | const MCInst &MCI) { |
| 258 | unsigned SchedClassId = InstrInfo.get(Opcode: MCI.getOpcode()).getSchedClass(); |
| 259 | const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel() |
| 260 | .getSchedClassDesc(SchedClassIdx: SchedClassId) |
| 261 | ->isVariant(); |
| 262 | SchedClassId = |
| 263 | ResolveVariantSchedClassId(STI: SubtargetInfo, InstrInfo, SchedClassId, MCI); |
| 264 | return std::make_pair(x&: SchedClassId, y: WasVariant); |
| 265 | } |
| 266 | |
| 267 | // Returns a ProxResIdx by id or name. |
| 268 | static unsigned findProcResIdx(const MCSubtargetInfo &STI, |
| 269 | const StringRef NameOrId) { |
| 270 | // Interpret the key as an ProcResIdx. |
| 271 | unsigned ProcResIdx = 0; |
| 272 | if (to_integer(S: NameOrId, Num&: ProcResIdx, Base: 10)) |
| 273 | return ProcResIdx; |
| 274 | // Interpret the key as a ProcRes name. |
| 275 | const auto &SchedModel = STI.getSchedModel(); |
| 276 | for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { |
| 277 | if (NameOrId == SchedModel.getProcResource(ProcResourceIdx: I)->Name) |
| 278 | return I; |
| 279 | } |
| 280 | return 0; |
| 281 | } |
| 282 | |
| 283 | std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint( |
| 284 | Benchmark::ModeE Mode, const MCSubtargetInfo &STI, |
| 285 | ArrayRef<PerInstructionStats> Representative) const { |
| 286 | const size_t NumMeasurements = Representative.size(); |
| 287 | |
| 288 | std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); |
| 289 | |
| 290 | if (Mode == Benchmark::Latency) { |
| 291 | assert(NumMeasurements == 1 && "Latency is a single measure." ); |
| 292 | BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0]; |
| 293 | |
| 294 | // Find the latency. |
| 295 | LatencyMeasure.PerInstructionValue = 0.0; |
| 296 | |
| 297 | for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) { |
| 298 | const MCWriteLatencyEntry *const WLE = |
| 299 | STI.getWriteLatencyEntry(SC: SCDesc, DefIdx: I); |
| 300 | LatencyMeasure.PerInstructionValue = |
| 301 | std::max<double>(a: LatencyMeasure.PerInstructionValue, b: WLE->Cycles); |
| 302 | } |
| 303 | } else if (Mode == Benchmark::Uops) { |
| 304 | for (auto I : zip(t&: SchedClassPoint, u&: Representative)) { |
| 305 | BenchmarkMeasure &Measure = std::get<0>(t&: I); |
| 306 | const PerInstructionStats &Stats = std::get<1>(t&: I); |
| 307 | |
| 308 | StringRef Key = Stats.key(); |
| 309 | uint16_t ProcResIdx = findProcResIdx(STI, NameOrId: Key); |
| 310 | if (ProcResIdx > 0) { |
| 311 | // Find the pressure on ProcResIdx `Key`. |
| 312 | const auto ProcResPressureIt = |
| 313 | find_if(Range: IdealizedProcResPressure, |
| 314 | P: [ProcResIdx](const std::pair<uint16_t, float> &WPR) { |
| 315 | return WPR.first == ProcResIdx; |
| 316 | }); |
| 317 | Measure.PerInstructionValue = |
| 318 | ProcResPressureIt == IdealizedProcResPressure.end() |
| 319 | ? 0.0 |
| 320 | : ProcResPressureIt->second; |
| 321 | } else if (Key == "NumMicroOps" ) { |
| 322 | Measure.PerInstructionValue = SCDesc->NumMicroOps; |
| 323 | } else { |
| 324 | errs() << "expected `key` to be either a ProcResIdx or a ProcRes " |
| 325 | "name, got " |
| 326 | << Key << "\n" ; |
| 327 | return {}; |
| 328 | } |
| 329 | } |
| 330 | } else if (Mode == Benchmark::InverseThroughput) { |
| 331 | assert(NumMeasurements == 1 && "Inverse Throughput is a single measure." ); |
| 332 | BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0]; |
| 333 | |
| 334 | RThroughputMeasure.PerInstructionValue = |
| 335 | MCSchedModel::getReciprocalThroughput(STI, SCDesc: *SCDesc); |
| 336 | } else { |
| 337 | llvm_unreachable("unimplemented measurement matching mode" ); |
| 338 | } |
| 339 | |
| 340 | return SchedClassPoint; |
| 341 | } |
| 342 | |
| 343 | } // namespace exegesis |
| 344 | } // namespace llvm |
| 345 | |