1 | //===-- ProfileGenerator.cpp - Profile Generator ---------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "ProfileGenerator.h" |
9 | #include "ErrorHandling.h" |
10 | #include "MissingFrameInferrer.h" |
11 | #include "PerfReader.h" |
12 | #include "ProfiledBinary.h" |
13 | #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" |
14 | #include "llvm/ProfileData/ProfileCommon.h" |
15 | #include <algorithm> |
16 | #include <float.h> |
17 | #include <unordered_set> |
18 | #include <utility> |
19 | |
20 | cl::opt<std::string> OutputFilename("output" , cl::value_desc("output" ), |
21 | cl::Required, |
22 | cl::desc("Output profile file" )); |
23 | static cl::alias OutputA("o" , cl::desc("Alias for --output" ), |
24 | cl::aliasopt(OutputFilename)); |
25 | |
26 | static cl::opt<SampleProfileFormat> OutputFormat( |
27 | "format" , cl::desc("Format of output profile" ), cl::init(Val: SPF_Ext_Binary), |
28 | cl::values( |
29 | clEnumValN(SPF_Binary, "binary" , "Binary encoding (default)" ), |
30 | clEnumValN(SPF_Ext_Binary, "extbinary" , "Extensible binary encoding" ), |
31 | clEnumValN(SPF_Text, "text" , "Text encoding" ), |
32 | clEnumValN(SPF_GCC, "gcc" , |
33 | "GCC encoding (only meaningful for -sample)" ))); |
34 | |
35 | static cl::opt<bool> UseMD5( |
36 | "use-md5" , cl::Hidden, |
37 | cl::desc("Use md5 to represent function names in the output profile (only " |
38 | "meaningful for -extbinary)" )); |
39 | |
40 | static cl::opt<bool> PopulateProfileSymbolList( |
41 | "populate-profile-symbol-list" , cl::init(Val: false), cl::Hidden, |
42 | cl::desc("Populate profile symbol list (only meaningful for -extbinary)" )); |
43 | |
44 | static cl::opt<bool> FillZeroForAllFuncs( |
45 | "fill-zero-for-all-funcs" , cl::init(Val: false), cl::Hidden, |
46 | cl::desc("Attribute all functions' range with zero count " |
47 | "even it's not hit by any samples." )); |
48 | |
49 | static cl::opt<int32_t, true> RecursionCompression( |
50 | "compress-recursion" , |
51 | cl::desc("Compressing recursion by deduplicating adjacent frame " |
52 | "sequences up to the specified size. -1 means no size limit." ), |
53 | cl::Hidden, |
54 | cl::location(L&: llvm::sampleprof::CSProfileGenerator::MaxCompressionSize)); |
55 | |
56 | static cl::opt<bool> |
57 | TrimColdProfile("trim-cold-profile" , |
58 | cl::desc("If the total count of the profile is smaller " |
59 | "than threshold, it will be trimmed." )); |
60 | |
61 | static cl::opt<bool> CSProfMergeColdContext( |
62 | "csprof-merge-cold-context" , cl::init(Val: true), |
63 | cl::desc("If the total count of context profile is smaller than " |
64 | "the threshold, it will be merged into context-less base " |
65 | "profile." )); |
66 | |
67 | static cl::opt<uint32_t> CSProfMaxColdContextDepth( |
68 | "csprof-max-cold-context-depth" , cl::init(Val: 1), |
69 | cl::desc("Keep the last K contexts while merging cold profile. 1 means the " |
70 | "context-less base profile" )); |
71 | |
72 | static cl::opt<int, true> CSProfMaxContextDepth( |
73 | "csprof-max-context-depth" , |
74 | cl::desc("Keep the last K contexts while merging profile. -1 means no " |
75 | "depth limit." ), |
76 | cl::location(L&: llvm::sampleprof::CSProfileGenerator::MaxContextDepth)); |
77 | |
78 | static cl::opt<double> ProfileDensityThreshold( |
79 | "profile-density-threshold" , llvm::cl::init(Val: 50), |
80 | llvm::cl::desc("If the profile density is below the given threshold, it " |
81 | "will be suggested to increase the sampling rate." ), |
82 | llvm::cl::Optional); |
83 | static cl::opt<bool> ShowDensity("show-density" , llvm::cl::init(Val: false), |
84 | llvm::cl::desc("show profile density details" ), |
85 | llvm::cl::Optional); |
86 | static cl::opt<int> ProfileDensityCutOffHot( |
87 | "profile-density-cutoff-hot" , llvm::cl::init(Val: 990000), |
88 | llvm::cl::desc("Total samples cutoff for functions used to calculate " |
89 | "profile density." )); |
90 | |
91 | static cl::opt<bool> UpdateTotalSamples( |
92 | "update-total-samples" , llvm::cl::init(Val: false), |
93 | llvm::cl::desc( |
94 | "Update total samples by accumulating all its body samples." ), |
95 | llvm::cl::Optional); |
96 | |
97 | static cl::opt<bool> GenCSNestedProfile( |
98 | "gen-cs-nested-profile" , cl::Hidden, cl::init(Val: true), |
99 | cl::desc("Generate nested function profiles for CSSPGO" )); |
100 | |
101 | cl::opt<bool> InferMissingFrames( |
102 | "infer-missing-frames" , llvm::cl::init(Val: true), |
103 | llvm::cl::desc( |
104 | "Infer missing call frames due to compiler tail call elimination." ), |
105 | llvm::cl::Optional); |
106 | |
107 | using namespace llvm; |
108 | using namespace sampleprof; |
109 | |
110 | namespace llvm { |
111 | |
112 | namespace sampleprof { |
113 | |
114 | // Initialize the MaxCompressionSize to -1 which means no size limit |
115 | int32_t CSProfileGenerator::MaxCompressionSize = -1; |
116 | |
117 | int CSProfileGenerator::MaxContextDepth = -1; |
118 | |
119 | bool ProfileGeneratorBase::UseFSDiscriminator = false; |
120 | |
121 | std::unique_ptr<ProfileGeneratorBase> |
122 | ProfileGeneratorBase::create(ProfiledBinary *Binary, |
123 | const ContextSampleCounterMap *SampleCounters, |
124 | bool ProfileIsCS) { |
125 | std::unique_ptr<ProfileGeneratorBase> Generator; |
126 | if (ProfileIsCS) { |
127 | Generator.reset(p: new CSProfileGenerator(Binary, SampleCounters)); |
128 | } else { |
129 | Generator.reset(p: new ProfileGenerator(Binary, SampleCounters)); |
130 | } |
131 | ProfileGeneratorBase::UseFSDiscriminator = Binary->useFSDiscriminator(); |
132 | FunctionSamples::ProfileIsFS = Binary->useFSDiscriminator(); |
133 | |
134 | return Generator; |
135 | } |
136 | |
137 | std::unique_ptr<ProfileGeneratorBase> |
138 | ProfileGeneratorBase::create(ProfiledBinary *Binary, SampleProfileMap &Profiles, |
139 | bool ProfileIsCS) { |
140 | std::unique_ptr<ProfileGeneratorBase> Generator; |
141 | if (ProfileIsCS) { |
142 | Generator.reset(p: new CSProfileGenerator(Binary, Profiles)); |
143 | } else { |
144 | Generator.reset(p: new ProfileGenerator(Binary, std::move(Profiles))); |
145 | } |
146 | ProfileGeneratorBase::UseFSDiscriminator = Binary->useFSDiscriminator(); |
147 | FunctionSamples::ProfileIsFS = Binary->useFSDiscriminator(); |
148 | |
149 | return Generator; |
150 | } |
151 | |
152 | void ProfileGeneratorBase::write(std::unique_ptr<SampleProfileWriter> Writer, |
153 | SampleProfileMap &ProfileMap) { |
154 | // Populate profile symbol list if extended binary format is used. |
155 | ProfileSymbolList SymbolList; |
156 | |
157 | if (PopulateProfileSymbolList && OutputFormat == SPF_Ext_Binary) { |
158 | Binary->populateSymbolListFromDWARF(SymbolList); |
159 | Writer->setProfileSymbolList(&SymbolList); |
160 | } |
161 | |
162 | if (std::error_code EC = Writer->write(ProfileMap)) |
163 | exitWithError(EC: std::move(EC)); |
164 | } |
165 | |
166 | void ProfileGeneratorBase::write() { |
167 | auto WriterOrErr = SampleProfileWriter::create(Filename: OutputFilename, Format: OutputFormat); |
168 | if (std::error_code EC = WriterOrErr.getError()) |
169 | exitWithError(EC, Whence: OutputFilename); |
170 | |
171 | if (UseMD5) { |
172 | if (OutputFormat != SPF_Ext_Binary) |
173 | WithColor::warning() << "-use-md5 is ignored. Specify " |
174 | "--format=extbinary to enable it\n" ; |
175 | else |
176 | WriterOrErr.get()->setUseMD5(); |
177 | } |
178 | |
179 | write(Writer: std::move(WriterOrErr.get()), ProfileMap); |
180 | } |
181 | |
182 | void ProfileGeneratorBase::showDensitySuggestion(double Density) { |
183 | if (Density == 0.0) |
184 | WithColor::warning() << "The output profile is empty or the " |
185 | "--profile-density-cutoff-hot option is " |
186 | "set too low. Please check your command.\n" ; |
187 | else if (Density < ProfileDensityThreshold) |
188 | WithColor::warning() |
189 | << "Sample PGO is estimated to optimize better with " |
190 | << format(Fmt: "%.1f" , Vals: ProfileDensityThreshold / Density) |
191 | << "x more samples. Please consider increasing sampling rate or " |
192 | "profiling for longer duration to get more samples.\n" ; |
193 | |
194 | if (ShowDensity) |
195 | outs() << "Functions with density >= " << format(Fmt: "%.1f" , Vals: Density) |
196 | << " account for " |
197 | << format(Fmt: "%.2f" , |
198 | Vals: static_cast<double>(ProfileDensityCutOffHot) / 10000) |
199 | << "% total sample counts.\n" ; |
200 | } |
201 | |
202 | bool ProfileGeneratorBase::filterAmbiguousProfile(FunctionSamples &FS) { |
203 | for (const auto &Prefix : FuncPrefixsToFilter) { |
204 | if (FS.getFuncName().starts_with(Prefix)) |
205 | return true; |
206 | } |
207 | |
208 | // Filter the function profiles for the inlinees. It's useful for fuzzy |
209 | // profile matching which flattens the profile and inlinees' samples are |
210 | // merged into top-level function. |
211 | for (auto &Callees : |
212 | const_cast<CallsiteSampleMap &>(FS.getCallsiteSamples())) { |
213 | auto &CalleesMap = Callees.second; |
214 | for (auto I = CalleesMap.begin(); I != CalleesMap.end();) { |
215 | auto FS = I++; |
216 | if (filterAmbiguousProfile(FS&: FS->second)) |
217 | CalleesMap.erase(position: FS); |
218 | } |
219 | } |
220 | return false; |
221 | } |
222 | |
223 | // For built-in local initialization function such as __cxx_global_var_init, |
224 | // __tls_init prefix function, there could be multiple versions of the functions |
225 | // in the final binary. However, in the profile generation, we call |
226 | // getCanonicalFnName to canonicalize the names which strips the suffixes. |
227 | // Therefore, samples from different functions queries the same profile and the |
228 | // samples are merged. As the functions are essentially different, entries of |
229 | // the merged profile are ambiguous. In sample loader, the IR from one version |
230 | // would be attributed towards a merged entries, which is inaccurate. Especially |
231 | // for fuzzy profile matching, it gets multiple callsites(from different |
232 | // function) but used to match one callsite, which misleads the matching and |
233 | // causes a lot of false positives report. Hence, we want to filter them out |
234 | // from the profile map during the profile generation time. The profiles are all |
235 | // cold functions, it won't have perf impact. |
236 | void ProfileGeneratorBase::filterAmbiguousProfile(SampleProfileMap &Profiles) { |
237 | for (auto I = ProfileMap.begin(); I != ProfileMap.end();) { |
238 | auto FS = I++; |
239 | if (filterAmbiguousProfile(FS&: FS->second)) |
240 | ProfileMap.erase(It: FS); |
241 | } |
242 | } |
243 | |
244 | void ProfileGeneratorBase::findDisjointRanges(RangeSample &DisjointRanges, |
245 | const RangeSample &Ranges) { |
246 | |
247 | /* |
248 | Regions may overlap with each other. Using the boundary info, find all |
249 | disjoint ranges and their sample count. BoundaryPoint contains the count |
250 | multiple samples begin/end at this points. |
251 | |
252 | |<--100-->| Sample1 |
253 | |<------200------>| Sample2 |
254 | A B C |
255 | |
256 | In the example above, |
257 | Sample1 begins at A, ends at B, its value is 100. |
258 | Sample2 beings at A, ends at C, its value is 200. |
259 | For A, BeginCount is the sum of sample begins at A, which is 300 and no |
260 | samples ends at A, so EndCount is 0. |
261 | Then boundary points A, B, and C with begin/end counts are: |
262 | A: (300, 0) |
263 | B: (0, 100) |
264 | C: (0, 200) |
265 | */ |
266 | struct BoundaryPoint { |
267 | // Sum of sample counts beginning at this point |
268 | uint64_t BeginCount = UINT64_MAX; |
269 | // Sum of sample counts ending at this point |
270 | uint64_t EndCount = UINT64_MAX; |
271 | // Is the begin point of a zero range. |
272 | bool IsZeroRangeBegin = false; |
273 | // Is the end point of a zero range. |
274 | bool IsZeroRangeEnd = false; |
275 | |
276 | void addBeginCount(uint64_t Count) { |
277 | if (BeginCount == UINT64_MAX) |
278 | BeginCount = 0; |
279 | BeginCount += Count; |
280 | } |
281 | |
282 | void addEndCount(uint64_t Count) { |
283 | if (EndCount == UINT64_MAX) |
284 | EndCount = 0; |
285 | EndCount += Count; |
286 | } |
287 | }; |
288 | |
289 | /* |
290 | For the above example. With boundary points, follwing logic finds two |
291 | disjoint region of |
292 | |
293 | [A,B]: 300 |
294 | [B+1,C]: 200 |
295 | |
296 | If there is a boundary point that both begin and end, the point itself |
297 | becomes a separate disjoint region. For example, if we have original |
298 | ranges of |
299 | |
300 | |<--- 100 --->| |
301 | |<--- 200 --->| |
302 | A B C |
303 | |
304 | there are three boundary points with their begin/end counts of |
305 | |
306 | A: (100, 0) |
307 | B: (200, 100) |
308 | C: (0, 200) |
309 | |
310 | the disjoint ranges would be |
311 | |
312 | [A, B-1]: 100 |
313 | [B, B]: 300 |
314 | [B+1, C]: 200. |
315 | |
316 | Example for zero value range: |
317 | |
318 | |<--- 100 --->| |
319 | |<--- 200 --->| |
320 | |<--------------- 0 ----------------->| |
321 | A B C D E F |
322 | |
323 | [A, B-1] : 0 |
324 | [B, C] : 100 |
325 | [C+1, D-1]: 0 |
326 | [D, E] : 200 |
327 | [E+1, F] : 0 |
328 | */ |
329 | std::map<uint64_t, BoundaryPoint> Boundaries; |
330 | |
331 | for (const auto &Item : Ranges) { |
332 | assert(Item.first.first <= Item.first.second && |
333 | "Invalid instruction range" ); |
334 | auto &BeginPoint = Boundaries[Item.first.first]; |
335 | auto &EndPoint = Boundaries[Item.first.second]; |
336 | uint64_t Count = Item.second; |
337 | |
338 | BeginPoint.addBeginCount(Count); |
339 | EndPoint.addEndCount(Count); |
340 | if (Count == 0) { |
341 | BeginPoint.IsZeroRangeBegin = true; |
342 | EndPoint.IsZeroRangeEnd = true; |
343 | } |
344 | } |
345 | |
346 | // Use UINT64_MAX to indicate there is no existing range between BeginAddress |
347 | // and the next valid address |
348 | uint64_t BeginAddress = UINT64_MAX; |
349 | int ZeroRangeDepth = 0; |
350 | uint64_t Count = 0; |
351 | for (const auto &Item : Boundaries) { |
352 | uint64_t Address = Item.first; |
353 | const BoundaryPoint &Point = Item.second; |
354 | if (Point.BeginCount != UINT64_MAX) { |
355 | if (BeginAddress != UINT64_MAX) |
356 | DisjointRanges[{BeginAddress, Address - 1}] = Count; |
357 | Count += Point.BeginCount; |
358 | BeginAddress = Address; |
359 | ZeroRangeDepth += Point.IsZeroRangeBegin; |
360 | } |
361 | if (Point.EndCount != UINT64_MAX) { |
362 | assert((BeginAddress != UINT64_MAX) && |
363 | "First boundary point cannot be 'end' point" ); |
364 | DisjointRanges[{BeginAddress, Address}] = Count; |
365 | assert(Count >= Point.EndCount && "Mismatched live ranges" ); |
366 | Count -= Point.EndCount; |
367 | BeginAddress = Address + 1; |
368 | ZeroRangeDepth -= Point.IsZeroRangeEnd; |
369 | // If the remaining count is zero and it's no longer in a zero range, this |
370 | // means we consume all the ranges before, thus mark BeginAddress as |
371 | // UINT64_MAX. e.g. supposing we have two non-overlapping ranges: |
372 | // [<---- 10 ---->] |
373 | // [<---- 20 ---->] |
374 | // A B C D |
375 | // The BeginAddress(B+1) will reset to invalid(UINT64_MAX), so we won't |
376 | // have the [B+1, C-1] zero range. |
377 | if (Count == 0 && ZeroRangeDepth == 0) |
378 | BeginAddress = UINT64_MAX; |
379 | } |
380 | } |
381 | } |
382 | |
383 | void ProfileGeneratorBase::updateBodySamplesforFunctionProfile( |
384 | FunctionSamples &FunctionProfile, const SampleContextFrame &LeafLoc, |
385 | uint64_t Count) { |
386 | // Use the maximum count of samples with same line location |
387 | uint32_t Discriminator = getBaseDiscriminator(Discriminator: LeafLoc.Location.Discriminator); |
388 | |
389 | // Use duplication factor to compensated for loop unroll/vectorization. |
390 | // Note that this is only needed when we're taking MAX of the counts at |
391 | // the location instead of SUM. |
392 | Count *= getDuplicationFactor(Discriminator: LeafLoc.Location.Discriminator); |
393 | |
394 | ErrorOr<uint64_t> R = |
395 | FunctionProfile.findSamplesAt(LineOffset: LeafLoc.Location.LineOffset, Discriminator); |
396 | |
397 | uint64_t PreviousCount = R ? R.get() : 0; |
398 | if (PreviousCount <= Count) { |
399 | FunctionProfile.addBodySamples(LineOffset: LeafLoc.Location.LineOffset, Discriminator, |
400 | Num: Count - PreviousCount); |
401 | } |
402 | } |
403 | |
404 | void ProfileGeneratorBase::updateTotalSamples() { |
405 | for (auto &Item : ProfileMap) { |
406 | FunctionSamples &FunctionProfile = Item.second; |
407 | FunctionProfile.updateTotalSamples(); |
408 | } |
409 | } |
410 | |
411 | void ProfileGeneratorBase::updateCallsiteSamples() { |
412 | for (auto &Item : ProfileMap) { |
413 | FunctionSamples &FunctionProfile = Item.second; |
414 | FunctionProfile.updateCallsiteSamples(); |
415 | } |
416 | } |
417 | |
418 | void ProfileGeneratorBase::updateFunctionSamples() { |
419 | updateCallsiteSamples(); |
420 | |
421 | if (UpdateTotalSamples) |
422 | updateTotalSamples(); |
423 | } |
424 | |
425 | void ProfileGeneratorBase::collectProfiledFunctions() { |
426 | std::unordered_set<const BinaryFunction *> ProfiledFunctions; |
427 | if (collectFunctionsFromRawProfile(ProfiledFunctions)) |
428 | Binary->setProfiledFunctions(ProfiledFunctions); |
429 | else if (collectFunctionsFromLLVMProfile(ProfiledFunctions)) |
430 | Binary->setProfiledFunctions(ProfiledFunctions); |
431 | else |
432 | llvm_unreachable("Unsupported input profile" ); |
433 | } |
434 | |
435 | bool ProfileGeneratorBase::collectFunctionsFromRawProfile( |
436 | std::unordered_set<const BinaryFunction *> &ProfiledFunctions) { |
437 | if (!SampleCounters) |
438 | return false; |
439 | // Go through all the stacks, ranges and branches in sample counters, use |
440 | // the start of the range to look up the function it belongs and record the |
441 | // function. |
442 | for (const auto &CI : *SampleCounters) { |
443 | if (const auto *CtxKey = dyn_cast<AddrBasedCtxKey>(Val: CI.first.getPtr())) { |
444 | for (auto StackAddr : CtxKey->Context) { |
445 | if (FuncRange *FRange = Binary->findFuncRange(Address: StackAddr)) |
446 | ProfiledFunctions.insert(x: FRange->Func); |
447 | } |
448 | } |
449 | |
450 | for (auto Item : CI.second.RangeCounter) { |
451 | uint64_t StartAddress = Item.first.first; |
452 | if (FuncRange *FRange = Binary->findFuncRange(Address: StartAddress)) |
453 | ProfiledFunctions.insert(x: FRange->Func); |
454 | } |
455 | |
456 | for (auto Item : CI.second.BranchCounter) { |
457 | uint64_t SourceAddress = Item.first.first; |
458 | uint64_t TargetAddress = Item.first.second; |
459 | if (FuncRange *FRange = Binary->findFuncRange(Address: SourceAddress)) |
460 | ProfiledFunctions.insert(x: FRange->Func); |
461 | if (FuncRange *FRange = Binary->findFuncRange(Address: TargetAddress)) |
462 | ProfiledFunctions.insert(x: FRange->Func); |
463 | } |
464 | } |
465 | return true; |
466 | } |
467 | |
468 | bool ProfileGenerator::collectFunctionsFromLLVMProfile( |
469 | std::unordered_set<const BinaryFunction *> &ProfiledFunctions) { |
470 | for (const auto &FS : ProfileMap) { |
471 | if (auto *Func = Binary->getBinaryFunction(FName: FS.second.getFunction())) |
472 | ProfiledFunctions.insert(x: Func); |
473 | } |
474 | return true; |
475 | } |
476 | |
477 | bool CSProfileGenerator::collectFunctionsFromLLVMProfile( |
478 | std::unordered_set<const BinaryFunction *> &ProfiledFunctions) { |
479 | for (auto *Node : ContextTracker) { |
480 | if (!Node->getFuncName().empty()) |
481 | if (auto *Func = Binary->getBinaryFunction(FName: Node->getFuncName())) |
482 | ProfiledFunctions.insert(x: Func); |
483 | } |
484 | return true; |
485 | } |
486 | |
487 | FunctionSamples & |
488 | ProfileGenerator::getTopLevelFunctionProfile(FunctionId FuncName) { |
489 | SampleContext Context(FuncName); |
490 | return ProfileMap.create(Ctx: Context); |
491 | } |
492 | |
493 | void ProfileGenerator::generateProfile() { |
494 | collectProfiledFunctions(); |
495 | |
496 | if (Binary->usePseudoProbes()) |
497 | Binary->decodePseudoProbe(); |
498 | |
499 | if (SampleCounters) { |
500 | if (Binary->usePseudoProbes()) { |
501 | generateProbeBasedProfile(); |
502 | } else { |
503 | generateLineNumBasedProfile(); |
504 | } |
505 | } |
506 | |
507 | postProcessProfiles(); |
508 | } |
509 | |
510 | void ProfileGenerator::postProcessProfiles() { |
511 | computeSummaryAndThreshold(ProfileMap); |
512 | trimColdProfiles(Profiles: ProfileMap, ColdCntThreshold: ColdCountThreshold); |
513 | filterAmbiguousProfile(Profiles&: ProfileMap); |
514 | calculateAndShowDensity(Profiles: ProfileMap); |
515 | } |
516 | |
517 | void ProfileGenerator::trimColdProfiles(const SampleProfileMap &Profiles, |
518 | uint64_t ColdCntThreshold) { |
519 | if (!TrimColdProfile) |
520 | return; |
521 | |
522 | // Move cold profiles into a tmp container. |
523 | std::vector<hash_code> ColdProfileHashes; |
524 | for (const auto &I : ProfileMap) { |
525 | if (I.second.getTotalSamples() < ColdCntThreshold) |
526 | ColdProfileHashes.emplace_back(args: I.first); |
527 | } |
528 | |
529 | // Remove the cold profile from ProfileMap. |
530 | for (const auto &I : ColdProfileHashes) |
531 | ProfileMap.erase(Key: I); |
532 | } |
533 | |
534 | void ProfileGenerator::generateLineNumBasedProfile() { |
535 | assert(SampleCounters->size() == 1 && |
536 | "Must have one entry for profile generation." ); |
537 | const SampleCounter &SC = SampleCounters->begin()->second; |
538 | // Fill in function body samples |
539 | populateBodySamplesForAllFunctions(RangeCounter: SC.RangeCounter); |
540 | // Fill in boundary sample counts as well as call site samples for calls |
541 | populateBoundarySamplesForAllFunctions(BranchCounters: SC.BranchCounter); |
542 | |
543 | updateFunctionSamples(); |
544 | } |
545 | |
546 | void ProfileGenerator::generateProbeBasedProfile() { |
547 | assert(SampleCounters->size() == 1 && |
548 | "Must have one entry for profile generation." ); |
549 | // Enable pseudo probe functionalities in SampleProf |
550 | FunctionSamples::ProfileIsProbeBased = true; |
551 | const SampleCounter &SC = SampleCounters->begin()->second; |
552 | // Fill in function body samples |
553 | populateBodySamplesWithProbesForAllFunctions(RangeCounter: SC.RangeCounter); |
554 | // Fill in boundary sample counts as well as call site samples for calls |
555 | populateBoundarySamplesWithProbesForAllFunctions(BranchCounters: SC.BranchCounter); |
556 | |
557 | updateFunctionSamples(); |
558 | } |
559 | |
560 | void ProfileGenerator::populateBodySamplesWithProbesForAllFunctions( |
561 | const RangeSample &RangeCounter) { |
562 | ProbeCounterMap ProbeCounter; |
563 | // preprocessRangeCounter returns disjoint ranges, so no longer to redo it |
564 | // inside extractProbesFromRange. |
565 | extractProbesFromRange(RangeCounter: preprocessRangeCounter(RangeCounter), ProbeCounter, |
566 | FindDisjointRanges: false); |
567 | |
568 | for (const auto &PI : ProbeCounter) { |
569 | const MCDecodedPseudoProbe *Probe = PI.first; |
570 | uint64_t Count = PI.second; |
571 | SampleContextFrameVector FrameVec; |
572 | Binary->getInlineContextForProbe(Probe, InlineContextStack&: FrameVec, IncludeLeaf: true); |
573 | FunctionSamples &FunctionProfile = |
574 | getLeafProfileAndAddTotalSamples(FrameVec, Count); |
575 | FunctionProfile.addBodySamples(LineOffset: Probe->getIndex(), Discriminator: Probe->getDiscriminator(), |
576 | Num: Count); |
577 | if (Probe->isEntry()) |
578 | FunctionProfile.addHeadSamples(Num: Count); |
579 | } |
580 | } |
581 | |
582 | void ProfileGenerator::populateBoundarySamplesWithProbesForAllFunctions( |
583 | const BranchSample &BranchCounters) { |
584 | for (const auto &Entry : BranchCounters) { |
585 | uint64_t SourceAddress = Entry.first.first; |
586 | uint64_t TargetAddress = Entry.first.second; |
587 | uint64_t Count = Entry.second; |
588 | assert(Count != 0 && "Unexpected zero weight branch" ); |
589 | |
590 | StringRef CalleeName = getCalleeNameForAddress(TargetAddress); |
591 | if (CalleeName.size() == 0) |
592 | continue; |
593 | |
594 | const MCDecodedPseudoProbe *CallProbe = |
595 | Binary->getCallProbeForAddr(Address: SourceAddress); |
596 | if (CallProbe == nullptr) |
597 | continue; |
598 | |
599 | // Record called target sample and its count. |
600 | SampleContextFrameVector FrameVec; |
601 | Binary->getInlineContextForProbe(Probe: CallProbe, InlineContextStack&: FrameVec, IncludeLeaf: true); |
602 | |
603 | if (!FrameVec.empty()) { |
604 | FunctionSamples &FunctionProfile = |
605 | getLeafProfileAndAddTotalSamples(FrameVec, Count: 0); |
606 | FunctionProfile.addCalledTargetSamples( |
607 | LineOffset: FrameVec.back().Location.LineOffset, |
608 | Discriminator: FrameVec.back().Location.Discriminator, |
609 | Func: FunctionId(CalleeName), Num: Count); |
610 | } |
611 | } |
612 | } |
613 | |
614 | FunctionSamples &ProfileGenerator::getLeafProfileAndAddTotalSamples( |
615 | const SampleContextFrameVector &FrameVec, uint64_t Count) { |
616 | // Get top level profile |
617 | FunctionSamples *FunctionProfile = |
618 | &getTopLevelFunctionProfile(FuncName: FrameVec[0].Func); |
619 | FunctionProfile->addTotalSamples(Num: Count); |
620 | if (Binary->usePseudoProbes()) { |
621 | const auto *FuncDesc = Binary->getFuncDescForGUID( |
622 | GUID: FunctionProfile->getFunction().getHashCode()); |
623 | FunctionProfile->setFunctionHash(FuncDesc->FuncHash); |
624 | } |
625 | |
626 | for (size_t I = 1; I < FrameVec.size(); I++) { |
627 | LineLocation Callsite( |
628 | FrameVec[I - 1].Location.LineOffset, |
629 | getBaseDiscriminator(Discriminator: FrameVec[I - 1].Location.Discriminator)); |
630 | FunctionSamplesMap &SamplesMap = |
631 | FunctionProfile->functionSamplesAt(Loc: Callsite); |
632 | auto Ret = |
633 | SamplesMap.emplace(args: FrameVec[I].Func, args: FunctionSamples()); |
634 | if (Ret.second) { |
635 | SampleContext Context(FrameVec[I].Func); |
636 | Ret.first->second.setContext(Context); |
637 | } |
638 | FunctionProfile = &Ret.first->second; |
639 | FunctionProfile->addTotalSamples(Num: Count); |
640 | if (Binary->usePseudoProbes()) { |
641 | const auto *FuncDesc = Binary->getFuncDescForGUID( |
642 | GUID: FunctionProfile->getFunction().getHashCode()); |
643 | FunctionProfile->setFunctionHash(FuncDesc->FuncHash); |
644 | } |
645 | } |
646 | |
647 | return *FunctionProfile; |
648 | } |
649 | |
650 | RangeSample |
651 | ProfileGenerator::preprocessRangeCounter(const RangeSample &RangeCounter) { |
652 | RangeSample Ranges(RangeCounter.begin(), RangeCounter.end()); |
653 | if (FillZeroForAllFuncs) { |
654 | for (auto &FuncI : Binary->getAllBinaryFunctions()) { |
655 | for (auto &R : FuncI.second.Ranges) { |
656 | Ranges[{R.first, R.second - 1}] += 0; |
657 | } |
658 | } |
659 | } else { |
660 | // For each range, we search for all ranges of the function it belongs to |
661 | // and initialize it with zero count, so it remains zero if doesn't hit any |
662 | // samples. This is to be consistent with compiler that interpret zero count |
663 | // as unexecuted(cold). |
664 | for (const auto &I : RangeCounter) { |
665 | uint64_t StartAddress = I.first.first; |
666 | for (const auto &Range : Binary->getRanges(Address: StartAddress)) |
667 | Ranges[{Range.first, Range.second - 1}] += 0; |
668 | } |
669 | } |
670 | RangeSample DisjointRanges; |
671 | findDisjointRanges(DisjointRanges, Ranges); |
672 | return DisjointRanges; |
673 | } |
674 | |
675 | void ProfileGenerator::populateBodySamplesForAllFunctions( |
676 | const RangeSample &RangeCounter) { |
677 | for (const auto &Range : preprocessRangeCounter(RangeCounter)) { |
678 | uint64_t RangeBegin = Range.first.first; |
679 | uint64_t RangeEnd = Range.first.second; |
680 | uint64_t Count = Range.second; |
681 | |
682 | InstructionPointer IP(Binary, RangeBegin, true); |
683 | // Disjoint ranges may have range in the middle of two instr, |
684 | // e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range |
685 | // can be Addr1+1 to Addr2-1. We should ignore such range. |
686 | if (IP.Address > RangeEnd) |
687 | continue; |
688 | |
689 | do { |
690 | const SampleContextFrameVector FrameVec = |
691 | Binary->getFrameLocationStack(Address: IP.Address); |
692 | if (!FrameVec.empty()) { |
693 | // FIXME: As accumulating total count per instruction caused some |
694 | // regression, we changed to accumulate total count per byte as a |
695 | // workaround. Tuning hotness threshold on the compiler side might be |
696 | // necessary in the future. |
697 | FunctionSamples &FunctionProfile = getLeafProfileAndAddTotalSamples( |
698 | FrameVec, Count: Count * Binary->getInstSize(Address: IP.Address)); |
699 | updateBodySamplesforFunctionProfile(FunctionProfile, LeafLoc: FrameVec.back(), |
700 | Count); |
701 | } |
702 | } while (IP.advance() && IP.Address <= RangeEnd); |
703 | } |
704 | } |
705 | |
706 | StringRef |
707 | ProfileGeneratorBase::getCalleeNameForAddress(uint64_t TargetAddress) { |
708 | // Get the function range by branch target if it's a call branch. |
709 | auto *FRange = Binary->findFuncRangeForStartAddr(Address: TargetAddress); |
710 | |
711 | // We won't accumulate sample count for a range whose start is not the real |
712 | // function entry such as outlined function or inner labels. |
713 | if (!FRange || !FRange->IsFuncEntry) |
714 | return StringRef(); |
715 | |
716 | return FunctionSamples::getCanonicalFnName(FnName: FRange->getFuncName()); |
717 | } |
718 | |
719 | void ProfileGenerator::populateBoundarySamplesForAllFunctions( |
720 | const BranchSample &BranchCounters) { |
721 | for (const auto &Entry : BranchCounters) { |
722 | uint64_t SourceAddress = Entry.first.first; |
723 | uint64_t TargetAddress = Entry.first.second; |
724 | uint64_t Count = Entry.second; |
725 | assert(Count != 0 && "Unexpected zero weight branch" ); |
726 | |
727 | StringRef CalleeName = getCalleeNameForAddress(TargetAddress); |
728 | if (CalleeName.size() == 0) |
729 | continue; |
730 | // Record called target sample and its count. |
731 | const SampleContextFrameVector &FrameVec = |
732 | Binary->getCachedFrameLocationStack(Address: SourceAddress); |
733 | if (!FrameVec.empty()) { |
734 | FunctionSamples &FunctionProfile = |
735 | getLeafProfileAndAddTotalSamples(FrameVec, Count: 0); |
736 | FunctionProfile.addCalledTargetSamples( |
737 | LineOffset: FrameVec.back().Location.LineOffset, |
738 | Discriminator: getBaseDiscriminator(Discriminator: FrameVec.back().Location.Discriminator), |
739 | Func: FunctionId(CalleeName), Num: Count); |
740 | } |
741 | // Add head samples for callee. |
742 | FunctionSamples &CalleeProfile = |
743 | getTopLevelFunctionProfile(FuncName: FunctionId(CalleeName)); |
744 | CalleeProfile.addHeadSamples(Num: Count); |
745 | } |
746 | } |
747 | |
748 | void ProfileGeneratorBase::calculateBodySamplesAndSize( |
749 | const FunctionSamples &FSamples, uint64_t &TotalBodySamples, |
750 | uint64_t &FuncBodySize) { |
751 | // Note that ideally the size should be the number of function instruction. |
752 | // However, for probe-based profile, we don't have the accurate instruction |
753 | // count for each probe, instead, the probe sample is the samples count for |
754 | // the block, which is equivelant to |
755 | // total_instruction_samples/num_of_instruction in one block. Hence, we use |
756 | // the number of probe as a proxy for the function's size. |
757 | FuncBodySize += FSamples.getBodySamples().size(); |
758 | |
759 | // The accumulated body samples re-calculated here could be different from the |
760 | // TotalSamples(getTotalSamples) field of FunctionSamples for line-number |
761 | // based profile. The reason is that TotalSamples is the sum of all the |
762 | // samples of the machine instruction in one source-code line, however, the |
763 | // entry of Bodysamples is the only max number of them, so the TotalSamples is |
764 | // usually much bigger than the accumulated body samples as one souce-code |
765 | // line can emit many machine instructions. We observed a regression when we |
766 | // switched to use the accumulated body samples(by using |
767 | // -update-total-samples). Hence, it's safer to re-calculate here to avoid |
768 | // such discrepancy. There is no problem for probe-based profile, as the |
769 | // TotalSamples is exactly the same as the accumulated body samples. |
770 | for (const auto &I : FSamples.getBodySamples()) |
771 | TotalBodySamples += I.second.getSamples(); |
772 | |
773 | for (const auto &CallsiteSamples : FSamples.getCallsiteSamples()) |
774 | for (const auto &Callee : CallsiteSamples.second) { |
775 | // For binary-level density, the inlinees' samples and size should be |
776 | // included in the calculation. |
777 | calculateBodySamplesAndSize(FSamples: Callee.second, TotalBodySamples, |
778 | FuncBodySize); |
779 | } |
780 | } |
781 | |
782 | // Calculate Profile-density: |
783 | // Calculate the density for each function and sort them in descending order, |
784 | // keep accumulating their total samples unitl it exceeds the |
785 | // percentage_threshold(cut-off) of total profile samples, the profile-density |
786 | // is the last(minimum) function-density of the processed functions, which means |
787 | // all the functions hot to perf are on good density if the profile-density is |
788 | // good. The percentage_threshold(--profile-density-cutoff-hot) is configurable |
789 | // depending on how much regression the system want to tolerate. |
790 | double |
791 | ProfileGeneratorBase::calculateDensity(const SampleProfileMap &Profiles) { |
792 | double ProfileDensity = 0.0; |
793 | |
794 | uint64_t TotalProfileSamples = 0; |
795 | // A list of the function profile density and its total samples. |
796 | std::vector<std::pair<double, uint64_t>> FuncDensityList; |
797 | for (const auto &I : Profiles) { |
798 | uint64_t TotalBodySamples = 0; |
799 | uint64_t FuncBodySize = 0; |
800 | calculateBodySamplesAndSize(FSamples: I.second, TotalBodySamples, FuncBodySize); |
801 | |
802 | if (FuncBodySize == 0) |
803 | continue; |
804 | |
805 | double FuncDensity = static_cast<double>(TotalBodySamples) / FuncBodySize; |
806 | TotalProfileSamples += TotalBodySamples; |
807 | FuncDensityList.emplace_back(args&: FuncDensity, args&: TotalBodySamples); |
808 | } |
809 | |
810 | // Sorted by the density in descending order. |
811 | llvm::stable_sort(Range&: FuncDensityList, C: [&](const std::pair<double, uint64_t> &A, |
812 | const std::pair<double, uint64_t> &B) { |
813 | if (A.first != B.first) |
814 | return A.first > B.first; |
815 | return A.second < B.second; |
816 | }); |
817 | |
818 | uint64_t AccumulatedSamples = 0; |
819 | uint32_t I = 0; |
820 | assert(ProfileDensityCutOffHot <= 1000000 && |
821 | "The cutoff value is greater than 1000000(100%)" ); |
822 | while (AccumulatedSamples < TotalProfileSamples * |
823 | static_cast<float>(ProfileDensityCutOffHot) / |
824 | 1000000 && |
825 | I < FuncDensityList.size()) { |
826 | AccumulatedSamples += FuncDensityList[I].second; |
827 | ProfileDensity = FuncDensityList[I].first; |
828 | I++; |
829 | } |
830 | |
831 | return ProfileDensity; |
832 | } |
833 | |
834 | void ProfileGeneratorBase::calculateAndShowDensity( |
835 | const SampleProfileMap &Profiles) { |
836 | double Density = calculateDensity(Profiles); |
837 | showDensitySuggestion(Density); |
838 | } |
839 | |
840 | FunctionSamples * |
841 | CSProfileGenerator::getOrCreateFunctionSamples(ContextTrieNode *ContextNode, |
842 | bool WasLeafInlined) { |
843 | FunctionSamples *FProfile = ContextNode->getFunctionSamples(); |
844 | if (!FProfile) { |
845 | FSamplesList.emplace_back(); |
846 | FProfile = &FSamplesList.back(); |
847 | FProfile->setFunction(ContextNode->getFuncName()); |
848 | ContextNode->setFunctionSamples(FProfile); |
849 | } |
850 | // Update ContextWasInlined attribute for existing contexts. |
851 | // The current function can be called in two ways: |
852 | // - when processing a probe of the current frame |
853 | // - when processing the entry probe of an inlinee's frame, which |
854 | // is then used to update the callsite count of the current frame. |
855 | // The two can happen in any order, hence here we are making sure |
856 | // `ContextWasInlined` is always set as expected. |
857 | // TODO: Note that the former does not always happen if no probes of the |
858 | // current frame has samples, and if the latter happens, we could lose the |
859 | // attribute. This should be fixed. |
860 | if (WasLeafInlined) |
861 | FProfile->getContext().setAttribute(ContextWasInlined); |
862 | return FProfile; |
863 | } |
864 | |
865 | ContextTrieNode * |
866 | CSProfileGenerator::getOrCreateContextNode(const SampleContextFrames Context, |
867 | bool WasLeafInlined) { |
868 | ContextTrieNode *ContextNode = |
869 | ContextTracker.getOrCreateContextPath(Context, AllowCreate: true); |
870 | getOrCreateFunctionSamples(ContextNode, WasLeafInlined); |
871 | return ContextNode; |
872 | } |
873 | |
874 | void CSProfileGenerator::generateProfile() { |
875 | FunctionSamples::ProfileIsCS = true; |
876 | |
877 | collectProfiledFunctions(); |
878 | |
879 | if (Binary->usePseudoProbes()) { |
880 | Binary->decodePseudoProbe(); |
881 | if (InferMissingFrames) |
882 | initializeMissingFrameInferrer(); |
883 | } |
884 | |
885 | if (SampleCounters) { |
886 | if (Binary->usePseudoProbes()) { |
887 | generateProbeBasedProfile(); |
888 | } else { |
889 | generateLineNumBasedProfile(); |
890 | } |
891 | } |
892 | |
893 | if (Binary->getTrackFuncContextSize()) |
894 | computeSizeForProfiledFunctions(); |
895 | |
896 | postProcessProfiles(); |
897 | } |
898 | |
899 | void CSProfileGenerator::initializeMissingFrameInferrer() { |
900 | Binary->getMissingContextInferrer()->initialize(SampleCounters); |
901 | } |
902 | |
903 | void CSProfileGenerator::inferMissingFrames( |
904 | const SmallVectorImpl<uint64_t> &Context, |
905 | SmallVectorImpl<uint64_t> &NewContext) { |
906 | Binary->inferMissingFrames(Context, NewContext); |
907 | } |
908 | |
909 | void CSProfileGenerator::computeSizeForProfiledFunctions() { |
910 | for (auto *Func : Binary->getProfiledFunctions()) |
911 | Binary->computeInlinedContextSizeForFunc(Func); |
912 | |
913 | // Flush the symbolizer to save memory. |
914 | Binary->flushSymbolizer(); |
915 | } |
916 | |
917 | void CSProfileGenerator::updateFunctionSamples() { |
918 | for (auto *Node : ContextTracker) { |
919 | FunctionSamples *FSamples = Node->getFunctionSamples(); |
920 | if (FSamples) { |
921 | if (UpdateTotalSamples) |
922 | FSamples->updateTotalSamples(); |
923 | FSamples->updateCallsiteSamples(); |
924 | } |
925 | } |
926 | } |
927 | |
928 | void CSProfileGenerator::generateLineNumBasedProfile() { |
929 | for (const auto &CI : *SampleCounters) { |
930 | const auto *CtxKey = cast<StringBasedCtxKey>(Val: CI.first.getPtr()); |
931 | |
932 | ContextTrieNode *ContextNode = &getRootContext(); |
933 | // Sample context will be empty if the jump is an external-to-internal call |
934 | // pattern, the head samples should be added for the internal function. |
935 | if (!CtxKey->Context.empty()) { |
936 | // Get or create function profile for the range |
937 | ContextNode = |
938 | getOrCreateContextNode(Context: CtxKey->Context, WasLeafInlined: CtxKey->WasLeafInlined); |
939 | // Fill in function body samples |
940 | populateBodySamplesForFunction(FunctionProfile&: *ContextNode->getFunctionSamples(), |
941 | RangeCounters: CI.second.RangeCounter); |
942 | } |
943 | // Fill in boundary sample counts as well as call site samples for calls |
944 | populateBoundarySamplesForFunction(CallerNode: ContextNode, BranchCounters: CI.second.BranchCounter); |
945 | } |
946 | // Fill in call site value sample for inlined calls and also use context to |
947 | // infer missing samples. Since we don't have call count for inlined |
948 | // functions, we estimate it from inlinee's profile using the entry of the |
949 | // body sample. |
950 | populateInferredFunctionSamples(Node&: getRootContext()); |
951 | |
952 | updateFunctionSamples(); |
953 | } |
954 | |
955 | void CSProfileGenerator::populateBodySamplesForFunction( |
956 | FunctionSamples &FunctionProfile, const RangeSample &RangeCounter) { |
957 | // Compute disjoint ranges first, so we can use MAX |
958 | // for calculating count for each location. |
959 | RangeSample Ranges; |
960 | findDisjointRanges(DisjointRanges&: Ranges, Ranges: RangeCounter); |
961 | for (const auto &Range : Ranges) { |
962 | uint64_t RangeBegin = Range.first.first; |
963 | uint64_t RangeEnd = Range.first.second; |
964 | uint64_t Count = Range.second; |
965 | // Disjoint ranges have introduce zero-filled gap that |
966 | // doesn't belong to current context, filter them out. |
967 | if (Count == 0) |
968 | continue; |
969 | |
970 | InstructionPointer IP(Binary, RangeBegin, true); |
971 | // Disjoint ranges may have range in the middle of two instr, |
972 | // e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range |
973 | // can be Addr1+1 to Addr2-1. We should ignore such range. |
974 | if (IP.Address > RangeEnd) |
975 | continue; |
976 | |
977 | do { |
978 | auto LeafLoc = Binary->getInlineLeafFrameLoc(Address: IP.Address); |
979 | if (LeafLoc) { |
980 | // Recording body sample for this specific context |
981 | updateBodySamplesforFunctionProfile(FunctionProfile, LeafLoc: *LeafLoc, Count); |
982 | FunctionProfile.addTotalSamples(Num: Count); |
983 | } |
984 | } while (IP.advance() && IP.Address <= RangeEnd); |
985 | } |
986 | } |
987 | |
988 | void CSProfileGenerator::populateBoundarySamplesForFunction( |
989 | ContextTrieNode *Node, const BranchSample &BranchCounters) { |
990 | |
991 | for (const auto &Entry : BranchCounters) { |
992 | uint64_t SourceAddress = Entry.first.first; |
993 | uint64_t TargetAddress = Entry.first.second; |
994 | uint64_t Count = Entry.second; |
995 | assert(Count != 0 && "Unexpected zero weight branch" ); |
996 | |
997 | StringRef CalleeName = getCalleeNameForAddress(TargetAddress); |
998 | if (CalleeName.size() == 0) |
999 | continue; |
1000 | |
1001 | ContextTrieNode *CallerNode = Node; |
1002 | LineLocation CalleeCallSite(0, 0); |
1003 | if (CallerNode != &getRootContext()) { |
1004 | // Record called target sample and its count |
1005 | auto LeafLoc = Binary->getInlineLeafFrameLoc(Address: SourceAddress); |
1006 | if (LeafLoc) { |
1007 | CallerNode->getFunctionSamples()->addCalledTargetSamples( |
1008 | LineOffset: LeafLoc->Location.LineOffset, |
1009 | Discriminator: getBaseDiscriminator(Discriminator: LeafLoc->Location.Discriminator), |
1010 | Func: FunctionId(CalleeName), |
1011 | Num: Count); |
1012 | // Record head sample for called target(callee) |
1013 | CalleeCallSite = LeafLoc->Location; |
1014 | } |
1015 | } |
1016 | |
1017 | ContextTrieNode *CalleeNode = |
1018 | CallerNode->getOrCreateChildContext(CallSite: CalleeCallSite, |
1019 | ChildName: FunctionId(CalleeName)); |
1020 | FunctionSamples *CalleeProfile = getOrCreateFunctionSamples(ContextNode: CalleeNode); |
1021 | CalleeProfile->addHeadSamples(Num: Count); |
1022 | } |
1023 | } |
1024 | |
1025 | void CSProfileGenerator::populateInferredFunctionSamples( |
1026 | ContextTrieNode &Node) { |
1027 | // There is no call jmp sample between the inliner and inlinee, we need to use |
1028 | // the inlinee's context to infer inliner's context, i.e. parent(inliner)'s |
1029 | // sample depends on child(inlinee)'s sample, so traverse the tree in |
1030 | // post-order. |
1031 | for (auto &It : Node.getAllChildContext()) |
1032 | populateInferredFunctionSamples(Node&: It.second); |
1033 | |
1034 | FunctionSamples *CalleeProfile = Node.getFunctionSamples(); |
1035 | if (!CalleeProfile) |
1036 | return; |
1037 | // If we already have head sample counts, we must have value profile |
1038 | // for call sites added already. Skip to avoid double counting. |
1039 | if (CalleeProfile->getHeadSamples()) |
1040 | return; |
1041 | ContextTrieNode *CallerNode = Node.getParentContext(); |
1042 | // If we don't have context, nothing to do for caller's call site. |
1043 | // This could happen for entry point function. |
1044 | if (CallerNode == &getRootContext()) |
1045 | return; |
1046 | |
1047 | LineLocation CallerLeafFrameLoc = Node.getCallSiteLoc(); |
1048 | FunctionSamples &CallerProfile = *getOrCreateFunctionSamples(ContextNode: CallerNode); |
1049 | // Since we don't have call count for inlined functions, we |
1050 | // estimate it from inlinee's profile using entry body sample. |
1051 | uint64_t EstimatedCallCount = CalleeProfile->getHeadSamplesEstimate(); |
1052 | // If we don't have samples with location, use 1 to indicate live. |
1053 | if (!EstimatedCallCount && !CalleeProfile->getBodySamples().size()) |
1054 | EstimatedCallCount = 1; |
1055 | CallerProfile.addCalledTargetSamples(LineOffset: CallerLeafFrameLoc.LineOffset, |
1056 | Discriminator: CallerLeafFrameLoc.Discriminator, |
1057 | Func: Node.getFuncName(), Num: EstimatedCallCount); |
1058 | CallerProfile.addBodySamples(LineOffset: CallerLeafFrameLoc.LineOffset, |
1059 | Discriminator: CallerLeafFrameLoc.Discriminator, |
1060 | Num: EstimatedCallCount); |
1061 | CallerProfile.addTotalSamples(Num: EstimatedCallCount); |
1062 | } |
1063 | |
1064 | void CSProfileGenerator::convertToProfileMap( |
1065 | ContextTrieNode &Node, SampleContextFrameVector &Context) { |
1066 | FunctionSamples *FProfile = Node.getFunctionSamples(); |
1067 | if (FProfile) { |
1068 | Context.emplace_back(Args: Node.getFuncName(), Args: LineLocation(0, 0)); |
1069 | // Save the new context for future references. |
1070 | SampleContextFrames NewContext = *Contexts.insert(x: Context).first; |
1071 | auto Ret = ProfileMap.emplace(Args&: NewContext, Args: std::move(*FProfile)); |
1072 | FunctionSamples &NewProfile = Ret.first->second; |
1073 | NewProfile.getContext().setContext(Context: NewContext); |
1074 | Context.pop_back(); |
1075 | } |
1076 | |
1077 | for (auto &It : Node.getAllChildContext()) { |
1078 | ContextTrieNode &ChildNode = It.second; |
1079 | Context.emplace_back(Args: Node.getFuncName(), Args: ChildNode.getCallSiteLoc()); |
1080 | convertToProfileMap(Node&: ChildNode, Context); |
1081 | Context.pop_back(); |
1082 | } |
1083 | } |
1084 | |
1085 | void CSProfileGenerator::convertToProfileMap() { |
1086 | assert(ProfileMap.empty() && |
1087 | "ProfileMap should be empty before converting from the trie" ); |
1088 | assert(IsProfileValidOnTrie && |
1089 | "Do not convert the trie twice, it's already destroyed" ); |
1090 | |
1091 | SampleContextFrameVector Context; |
1092 | for (auto &It : getRootContext().getAllChildContext()) |
1093 | convertToProfileMap(Node&: It.second, Context); |
1094 | |
1095 | IsProfileValidOnTrie = false; |
1096 | } |
1097 | |
1098 | void CSProfileGenerator::postProcessProfiles() { |
1099 | // Compute hot/cold threshold based on profile. This will be used for cold |
1100 | // context profile merging/trimming. |
1101 | computeSummaryAndThreshold(); |
1102 | |
1103 | // Run global pre-inliner to adjust/merge context profile based on estimated |
1104 | // inline decisions. |
1105 | if (EnableCSPreInliner) { |
1106 | ContextTracker.populateFuncToCtxtMap(); |
1107 | CSPreInliner(ContextTracker, *Binary, Summary.get()).run(); |
1108 | // Turn off the profile merger by default unless it is explicitly enabled. |
1109 | if (!CSProfMergeColdContext.getNumOccurrences()) |
1110 | CSProfMergeColdContext = false; |
1111 | } |
1112 | |
1113 | convertToProfileMap(); |
1114 | |
1115 | // Trim and merge cold context profile using cold threshold above. |
1116 | if (TrimColdProfile || CSProfMergeColdContext) { |
1117 | SampleContextTrimmer(ProfileMap) |
1118 | .trimAndMergeColdContextProfiles( |
1119 | ColdCountThreshold: HotCountThreshold, TrimColdContext: TrimColdProfile, MergeColdContext: CSProfMergeColdContext, |
1120 | ColdContextFrameLength: CSProfMaxColdContextDepth, TrimBaseProfileOnly: EnableCSPreInliner); |
1121 | } |
1122 | |
1123 | if (GenCSNestedProfile) { |
1124 | ProfileConverter CSConverter(ProfileMap); |
1125 | CSConverter.convertCSProfiles(); |
1126 | FunctionSamples::ProfileIsCS = false; |
1127 | } |
1128 | filterAmbiguousProfile(Profiles&: ProfileMap); |
1129 | ProfileGeneratorBase::calculateAndShowDensity(Profiles: ProfileMap); |
1130 | } |
1131 | |
1132 | void ProfileGeneratorBase::computeSummaryAndThreshold( |
1133 | SampleProfileMap &Profiles) { |
1134 | SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); |
1135 | Summary = Builder.computeSummaryForProfiles(Profiles); |
1136 | HotCountThreshold = ProfileSummaryBuilder::getHotCountThreshold( |
1137 | DS: (Summary->getDetailedSummary())); |
1138 | ColdCountThreshold = ProfileSummaryBuilder::getColdCountThreshold( |
1139 | DS: (Summary->getDetailedSummary())); |
1140 | } |
1141 | |
1142 | void CSProfileGenerator::computeSummaryAndThreshold() { |
1143 | // Always merge and use context-less profile map to compute summary. |
1144 | SampleProfileMap ContextLessProfiles; |
1145 | ContextTracker.createContextLessProfileMap(ContextLessProfiles); |
1146 | |
1147 | // Set the flag below to avoid merging the profile again in |
1148 | // computeSummaryAndThreshold |
1149 | FunctionSamples::ProfileIsCS = false; |
1150 | assert( |
1151 | (!UseContextLessSummary.getNumOccurrences() || UseContextLessSummary) && |
1152 | "Don't set --profile-summary-contextless to false for profile " |
1153 | "generation" ); |
1154 | ProfileGeneratorBase::computeSummaryAndThreshold(Profiles&: ContextLessProfiles); |
1155 | // Recover the old value. |
1156 | FunctionSamples::ProfileIsCS = true; |
1157 | } |
1158 | |
1159 | void ProfileGeneratorBase::( |
1160 | const RangeSample &RangeCounter, ProbeCounterMap &ProbeCounter, |
1161 | bool FindDisjointRanges) { |
1162 | const RangeSample *PRanges = &RangeCounter; |
1163 | RangeSample Ranges; |
1164 | if (FindDisjointRanges) { |
1165 | findDisjointRanges(DisjointRanges&: Ranges, Ranges: RangeCounter); |
1166 | PRanges = &Ranges; |
1167 | } |
1168 | |
1169 | for (const auto &Range : *PRanges) { |
1170 | uint64_t RangeBegin = Range.first.first; |
1171 | uint64_t RangeEnd = Range.first.second; |
1172 | uint64_t Count = Range.second; |
1173 | |
1174 | InstructionPointer IP(Binary, RangeBegin, true); |
1175 | // Disjoint ranges may have range in the middle of two instr, |
1176 | // e.g. If Instr1 at Addr1, and Instr2 at Addr2, disjoint range |
1177 | // can be Addr1+1 to Addr2-1. We should ignore such range. |
1178 | if (IP.Address > RangeEnd) |
1179 | continue; |
1180 | |
1181 | do { |
1182 | const AddressProbesMap &Address2ProbesMap = |
1183 | Binary->getAddress2ProbesMap(); |
1184 | for (const MCDecodedPseudoProbe &Probe : |
1185 | Address2ProbesMap.find(Address: IP.Address)) { |
1186 | ProbeCounter[&Probe] += Count; |
1187 | } |
1188 | } while (IP.advance() && IP.Address <= RangeEnd); |
1189 | } |
1190 | } |
1191 | |
1192 | static void (SampleContextFrameVector &ContextStack, |
1193 | const SmallVectorImpl<uint64_t> &AddrVec, |
1194 | ProfiledBinary *Binary) { |
1195 | SmallVector<const MCDecodedPseudoProbe *, 16> Probes; |
1196 | for (auto Address : reverse(C: AddrVec)) { |
1197 | const MCDecodedPseudoProbe *CallProbe = |
1198 | Binary->getCallProbeForAddr(Address); |
1199 | // These could be the cases when a probe is not found at a calliste. Cutting |
1200 | // off the context from here since the inliner will not know how to consume |
1201 | // a context with unknown callsites. |
1202 | // 1. for functions that are not sampled when |
1203 | // --decode-probe-for-profiled-functions-only is on. |
1204 | // 2. for a merged callsite. Callsite merging may cause the loss of original |
1205 | // probe IDs. |
1206 | // 3. for an external callsite. |
1207 | if (!CallProbe) |
1208 | break; |
1209 | Probes.push_back(Elt: CallProbe); |
1210 | } |
1211 | |
1212 | std::reverse(first: Probes.begin(), last: Probes.end()); |
1213 | |
1214 | // Extract context stack for reusing, leaf context stack will be added |
1215 | // compressed while looking up function profile. |
1216 | for (const auto *P : Probes) { |
1217 | Binary->getInlineContextForProbe(Probe: P, InlineContextStack&: ContextStack, IncludeLeaf: true); |
1218 | } |
1219 | } |
1220 | |
1221 | void CSProfileGenerator::generateProbeBasedProfile() { |
1222 | // Enable pseudo probe functionalities in SampleProf |
1223 | FunctionSamples::ProfileIsProbeBased = true; |
1224 | for (const auto &CI : *SampleCounters) { |
1225 | const AddrBasedCtxKey *CtxKey = |
1226 | dyn_cast<AddrBasedCtxKey>(Val: CI.first.getPtr()); |
1227 | // Fill in function body samples from probes, also infer caller's samples |
1228 | // from callee's probe |
1229 | populateBodySamplesWithProbes(RangeCounter: CI.second.RangeCounter, CtxKey); |
1230 | // Fill in boundary samples for a call probe |
1231 | populateBoundarySamplesWithProbes(BranchCounter: CI.second.BranchCounter, CtxKey); |
1232 | } |
1233 | } |
1234 | |
1235 | void CSProfileGenerator::populateBodySamplesWithProbes( |
1236 | const RangeSample &RangeCounter, const AddrBasedCtxKey *CtxKey) { |
1237 | ProbeCounterMap ProbeCounter; |
1238 | // Extract the top frame probes by looking up each address among the range in |
1239 | // the Address2ProbeMap |
1240 | extractProbesFromRange(RangeCounter, ProbeCounter); |
1241 | std::unordered_map<MCDecodedPseudoProbeInlineTree *, |
1242 | std::unordered_set<FunctionSamples *>> |
1243 | FrameSamples; |
1244 | for (const auto &PI : ProbeCounter) { |
1245 | const MCDecodedPseudoProbe *Probe = PI.first; |
1246 | uint64_t Count = PI.second; |
1247 | // Disjoint ranges have introduce zero-filled gap that |
1248 | // doesn't belong to current context, filter them out. |
1249 | if (!Probe->isBlock() || Count == 0) |
1250 | continue; |
1251 | |
1252 | ContextTrieNode *ContextNode = getContextNodeForLeafProbe(CtxKey, LeafProbe: Probe); |
1253 | FunctionSamples &FunctionProfile = *ContextNode->getFunctionSamples(); |
1254 | // Record the current frame and FunctionProfile whenever samples are |
1255 | // collected for non-danglie probes. This is for reporting all of the |
1256 | // zero count probes of the frame later. |
1257 | FrameSamples[Probe->getInlineTreeNode()].insert(x: &FunctionProfile); |
1258 | FunctionProfile.addBodySamples(LineOffset: Probe->getIndex(), Discriminator: Probe->getDiscriminator(), |
1259 | Num: Count); |
1260 | FunctionProfile.addTotalSamples(Num: Count); |
1261 | if (Probe->isEntry()) { |
1262 | FunctionProfile.addHeadSamples(Num: Count); |
1263 | // Look up for the caller's function profile |
1264 | const auto *InlinerDesc = Binary->getInlinerDescForProbe(Probe); |
1265 | ContextTrieNode *CallerNode = ContextNode->getParentContext(); |
1266 | if (InlinerDesc != nullptr && CallerNode != &getRootContext()) { |
1267 | // Since the context id will be compressed, we have to use callee's |
1268 | // context id to infer caller's context id to ensure they share the |
1269 | // same context prefix. |
1270 | uint64_t CallerIndex = ContextNode->getCallSiteLoc().LineOffset; |
1271 | uint64_t CallerDiscriminator = ContextNode->getCallSiteLoc().Discriminator; |
1272 | assert(CallerIndex && |
1273 | "Inferred caller's location index shouldn't be zero!" ); |
1274 | assert(!CallerDiscriminator && |
1275 | "Callsite probe should not have a discriminator!" ); |
1276 | FunctionSamples &CallerProfile = |
1277 | *getOrCreateFunctionSamples(ContextNode: CallerNode); |
1278 | CallerProfile.setFunctionHash(InlinerDesc->FuncHash); |
1279 | CallerProfile.addBodySamples(LineOffset: CallerIndex, Discriminator: CallerDiscriminator, Num: Count); |
1280 | CallerProfile.addTotalSamples(Num: Count); |
1281 | CallerProfile.addCalledTargetSamples(LineOffset: CallerIndex, Discriminator: CallerDiscriminator, |
1282 | Func: ContextNode->getFuncName(), Num: Count); |
1283 | } |
1284 | } |
1285 | } |
1286 | |
1287 | // Assign zero count for remaining probes without sample hits to |
1288 | // differentiate from probes optimized away, of which the counts are unknown |
1289 | // and will be inferred by the compiler. |
1290 | for (auto &I : FrameSamples) { |
1291 | for (auto *FunctionProfile : I.second) { |
1292 | for (const MCDecodedPseudoProbe &Probe : I.first->getProbes()) { |
1293 | FunctionProfile->addBodySamples(LineOffset: Probe.getIndex(), |
1294 | Discriminator: Probe.getDiscriminator(), Num: 0); |
1295 | } |
1296 | } |
1297 | } |
1298 | } |
1299 | |
1300 | void CSProfileGenerator::populateBoundarySamplesWithProbes( |
1301 | const BranchSample &BranchCounter, const AddrBasedCtxKey *CtxKey) { |
1302 | for (const auto &BI : BranchCounter) { |
1303 | uint64_t SourceAddress = BI.first.first; |
1304 | uint64_t TargetAddress = BI.first.second; |
1305 | uint64_t Count = BI.second; |
1306 | const MCDecodedPseudoProbe *CallProbe = |
1307 | Binary->getCallProbeForAddr(Address: SourceAddress); |
1308 | if (CallProbe == nullptr) |
1309 | continue; |
1310 | FunctionSamples &FunctionProfile = |
1311 | getFunctionProfileForLeafProbe(CtxKey, LeafProbe: CallProbe); |
1312 | FunctionProfile.addBodySamples(LineOffset: CallProbe->getIndex(), Discriminator: 0, Num: Count); |
1313 | FunctionProfile.addTotalSamples(Num: Count); |
1314 | StringRef CalleeName = getCalleeNameForAddress(TargetAddress); |
1315 | if (CalleeName.size() == 0) |
1316 | continue; |
1317 | FunctionProfile.addCalledTargetSamples(LineOffset: CallProbe->getIndex(), |
1318 | Discriminator: CallProbe->getDiscriminator(), |
1319 | Func: FunctionId(CalleeName), Num: Count); |
1320 | } |
1321 | } |
1322 | |
1323 | ContextTrieNode *CSProfileGenerator::getContextNodeForLeafProbe( |
1324 | const AddrBasedCtxKey *CtxKey, const MCDecodedPseudoProbe *LeafProbe) { |
1325 | |
1326 | const SmallVectorImpl<uint64_t> *PContext = &CtxKey->Context; |
1327 | SmallVector<uint64_t, 16> NewContext; |
1328 | |
1329 | if (InferMissingFrames) { |
1330 | SmallVector<uint64_t, 16> Context = CtxKey->Context; |
1331 | // Append leaf frame for a complete inference. |
1332 | Context.push_back(Elt: LeafProbe->getAddress()); |
1333 | inferMissingFrames(Context, NewContext); |
1334 | // Pop out the leaf probe that was pushed in above. |
1335 | NewContext.pop_back(); |
1336 | PContext = &NewContext; |
1337 | } |
1338 | |
1339 | SampleContextFrameVector ContextStack; |
1340 | extractPrefixContextStack(ContextStack, AddrVec: *PContext, Binary); |
1341 | |
1342 | // Explicitly copy the context for appending the leaf context |
1343 | SampleContextFrameVector NewContextStack(ContextStack.begin(), |
1344 | ContextStack.end()); |
1345 | Binary->getInlineContextForProbe(Probe: LeafProbe, InlineContextStack&: NewContextStack, IncludeLeaf: true); |
1346 | // For leaf inlined context with the top frame, we should strip off the top |
1347 | // frame's probe id, like: |
1348 | // Inlined stack: [foo:1, bar:2], the ContextId will be "foo:1 @ bar" |
1349 | auto LeafFrame = NewContextStack.back(); |
1350 | LeafFrame.Location = LineLocation(0, 0); |
1351 | NewContextStack.pop_back(); |
1352 | // Compress the context string except for the leaf frame |
1353 | CSProfileGenerator::compressRecursionContext(Context&: NewContextStack); |
1354 | CSProfileGenerator::trimContext(S&: NewContextStack); |
1355 | NewContextStack.push_back(Elt: LeafFrame); |
1356 | |
1357 | const auto *FuncDesc = Binary->getFuncDescForGUID(GUID: LeafProbe->getGuid()); |
1358 | bool WasLeafInlined = LeafProbe->getInlineTreeNode()->hasInlineSite(); |
1359 | ContextTrieNode *ContextNode = |
1360 | getOrCreateContextNode(Context: NewContextStack, WasLeafInlined); |
1361 | ContextNode->getFunctionSamples()->setFunctionHash(FuncDesc->FuncHash); |
1362 | return ContextNode; |
1363 | } |
1364 | |
1365 | FunctionSamples &CSProfileGenerator::getFunctionProfileForLeafProbe( |
1366 | const AddrBasedCtxKey *CtxKey, const MCDecodedPseudoProbe *LeafProbe) { |
1367 | return *getContextNodeForLeafProbe(CtxKey, LeafProbe)->getFunctionSamples(); |
1368 | } |
1369 | |
1370 | } // end namespace sampleprof |
1371 | } // end namespace llvm |
1372 | |