| 1 | //===-- dfsan_allocator.cpp -------------------------- --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of DataflowSanitizer. |
| 10 | // |
| 11 | // DataflowSanitizer allocator. |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "dfsan_allocator.h" |
| 15 | |
| 16 | #include "dfsan.h" |
| 17 | #include "dfsan_flags.h" |
| 18 | #include "dfsan_thread.h" |
| 19 | #include "sanitizer_common/sanitizer_allocator.h" |
| 20 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
| 21 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
| 22 | #include "sanitizer_common/sanitizer_allocator_report.h" |
| 23 | #include "sanitizer_common/sanitizer_errno.h" |
| 24 | |
| 25 | using namespace __dfsan; |
| 26 | |
| 27 | namespace { |
| 28 | |
| 29 | struct Metadata { |
| 30 | uptr requested_size; |
| 31 | }; |
| 32 | |
| 33 | struct DFsanMapUnmapCallback { |
| 34 | void OnMap(uptr p, uptr size) const { dfsan_set_label(label: 0, addr: (void *)p, size); } |
| 35 | void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
| 36 | uptr user_size) const { |
| 37 | OnMap(p, size); |
| 38 | } |
| 39 | void OnUnmap(uptr p, uptr size) const { dfsan_set_label(label: 0, addr: (void *)p, size); } |
| 40 | }; |
| 41 | |
| 42 | // Note: to ensure that the allocator is compatible with the application memory |
| 43 | // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be |
| 44 | // duplicated as MappingDesc::ALLOCATOR in dfsan_platform.h. |
| 45 | #if defined(__aarch64__) |
| 46 | const uptr kAllocatorSpace = 0xE00000000000ULL; |
| 47 | #else |
| 48 | const uptr kAllocatorSpace = 0x700000000000ULL; |
| 49 | #endif |
| 50 | const uptr kMaxAllowedMallocSize = 1ULL << 40; |
| 51 | |
| 52 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 53 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 54 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
| 55 | static const uptr kMetadataSize = sizeof(Metadata); |
| 56 | typedef DefaultSizeClassMap SizeClassMap; |
| 57 | typedef DFsanMapUnmapCallback MapUnmapCallback; |
| 58 | static const uptr kFlags = 0; |
| 59 | using AddressSpaceView = LocalAddressSpaceView; |
| 60 | }; |
| 61 | |
| 62 | typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
| 63 | |
| 64 | typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| 65 | typedef Allocator::AllocatorCache AllocatorCache; |
| 66 | |
| 67 | static Allocator allocator; |
| 68 | static AllocatorCache fallback_allocator_cache; |
| 69 | static StaticSpinMutex fallback_mutex; |
| 70 | |
| 71 | static uptr max_malloc_size; |
| 72 | } // namespace |
| 73 | |
| 74 | void __dfsan::dfsan_allocator_init() { |
| 75 | SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
| 76 | allocator.Init(release_to_os_interval_ms: common_flags()->allocator_release_to_os_interval_ms); |
| 77 | if (common_flags()->max_allocation_size_mb) |
| 78 | max_malloc_size = Min(a: common_flags()->max_allocation_size_mb << 20, |
| 79 | b: kMaxAllowedMallocSize); |
| 80 | else |
| 81 | max_malloc_size = kMaxAllowedMallocSize; |
| 82 | } |
| 83 | |
| 84 | static AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) { |
| 85 | CHECK(ms); |
| 86 | CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
| 87 | return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
| 88 | } |
| 89 | |
| 90 | void DFsanThreadLocalMallocStorage::CommitBack() { |
| 91 | allocator.SwallowCache(cache: GetAllocatorCache(ms: this)); |
| 92 | } |
| 93 | |
| 94 | static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) { |
| 95 | if (size > max_malloc_size) { |
| 96 | if (AllocatorMayReturnNull()) { |
| 97 | Report(format: "WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n" , |
| 98 | size); |
| 99 | return nullptr; |
| 100 | } |
| 101 | UNINITIALIZED BufferedStackTrace stack; |
| 102 | ReportAllocationSizeTooBig(user_size: size, max_size: max_malloc_size, stack: &stack); |
| 103 | } |
| 104 | if (UNLIKELY(IsRssLimitExceeded())) { |
| 105 | if (AllocatorMayReturnNull()) |
| 106 | return nullptr; |
| 107 | UNINITIALIZED BufferedStackTrace stack; |
| 108 | ReportRssLimitExceeded(stack: &stack); |
| 109 | } |
| 110 | DFsanThread *t = GetCurrentThread(); |
| 111 | void *allocated; |
| 112 | if (t) { |
| 113 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
| 114 | allocated = allocator.Allocate(cache, size, alignment); |
| 115 | } else { |
| 116 | SpinMutexLock l(&fallback_mutex); |
| 117 | AllocatorCache *cache = &fallback_allocator_cache; |
| 118 | allocated = allocator.Allocate(cache, size, alignment); |
| 119 | } |
| 120 | if (UNLIKELY(!allocated)) { |
| 121 | SetAllocatorOutOfMemory(); |
| 122 | if (AllocatorMayReturnNull()) |
| 123 | return nullptr; |
| 124 | UNINITIALIZED BufferedStackTrace stack; |
| 125 | ReportOutOfMemory(requested_size: size, stack: &stack); |
| 126 | } |
| 127 | Metadata *meta = |
| 128 | reinterpret_cast<Metadata *>(allocator.GetMetaData(p: allocated)); |
| 129 | meta->requested_size = size; |
| 130 | if (zeroise) { |
| 131 | internal_memset(s: allocated, c: 0, n: size); |
| 132 | dfsan_set_label(label: 0, addr: allocated, size); |
| 133 | } else if (flags().zero_in_malloc) { |
| 134 | dfsan_set_label(label: 0, addr: allocated, size); |
| 135 | } |
| 136 | return allocated; |
| 137 | } |
| 138 | |
| 139 | void __dfsan::dfsan_deallocate(void *p) { |
| 140 | CHECK(p); |
| 141 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
| 142 | uptr size = meta->requested_size; |
| 143 | meta->requested_size = 0; |
| 144 | if (flags().zero_in_free) |
| 145 | dfsan_set_label(label: 0, addr: p, size); |
| 146 | DFsanThread *t = GetCurrentThread(); |
| 147 | if (t) { |
| 148 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
| 149 | allocator.Deallocate(cache, p); |
| 150 | } else { |
| 151 | SpinMutexLock l(&fallback_mutex); |
| 152 | AllocatorCache *cache = &fallback_allocator_cache; |
| 153 | allocator.Deallocate(cache, p); |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | static void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) { |
| 158 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p: old_p)); |
| 159 | uptr old_size = meta->requested_size; |
| 160 | uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(p: old_p); |
| 161 | if (new_size <= actually_allocated_size) { |
| 162 | // We are not reallocating here. |
| 163 | meta->requested_size = new_size; |
| 164 | if (new_size > old_size && flags().zero_in_malloc) |
| 165 | dfsan_set_label(label: 0, addr: (char *)old_p + old_size, size: new_size - old_size); |
| 166 | return old_p; |
| 167 | } |
| 168 | uptr memcpy_size = Min(a: new_size, b: old_size); |
| 169 | void *new_p = DFsanAllocate(size: new_size, alignment, zeroise: false /*zeroise*/); |
| 170 | if (new_p) { |
| 171 | dfsan_copy_memory(dst: new_p, src: old_p, size: memcpy_size); |
| 172 | dfsan_deallocate(p: old_p); |
| 173 | } |
| 174 | return new_p; |
| 175 | } |
| 176 | |
| 177 | static void *DFsanCalloc(uptr nmemb, uptr size) { |
| 178 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 179 | if (AllocatorMayReturnNull()) |
| 180 | return nullptr; |
| 181 | UNINITIALIZED BufferedStackTrace stack; |
| 182 | ReportCallocOverflow(count: nmemb, size, stack: &stack); |
| 183 | } |
| 184 | return DFsanAllocate(size: nmemb * size, alignment: sizeof(u64), zeroise: true /*zeroise*/); |
| 185 | } |
| 186 | |
| 187 | static const void *AllocationBegin(const void *p) { |
| 188 | if (!p) |
| 189 | return nullptr; |
| 190 | void *beg = allocator.GetBlockBegin(p); |
| 191 | if (!beg) |
| 192 | return nullptr; |
| 193 | Metadata *b = (Metadata *)allocator.GetMetaData(p: beg); |
| 194 | if (!b) |
| 195 | return nullptr; |
| 196 | if (b->requested_size == 0) |
| 197 | return nullptr; |
| 198 | return (const void *)beg; |
| 199 | } |
| 200 | |
| 201 | static uptr AllocationSize(const void *p) { |
| 202 | if (!p) |
| 203 | return 0; |
| 204 | const void *beg = allocator.GetBlockBegin(p); |
| 205 | if (beg != p) |
| 206 | return 0; |
| 207 | Metadata *b = (Metadata *)allocator.GetMetaData(p); |
| 208 | return b->requested_size; |
| 209 | } |
| 210 | |
| 211 | static uptr AllocationSizeFast(const void *p) { |
| 212 | return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; |
| 213 | } |
| 214 | |
| 215 | void *__dfsan::dfsan_malloc(uptr size) { |
| 216 | return SetErrnoOnNull(DFsanAllocate(size, alignment: sizeof(u64), zeroise: false /*zeroise*/)); |
| 217 | } |
| 218 | |
| 219 | void *__dfsan::dfsan_calloc(uptr nmemb, uptr size) { |
| 220 | return SetErrnoOnNull(DFsanCalloc(nmemb, size)); |
| 221 | } |
| 222 | |
| 223 | void *__dfsan::dfsan_realloc(void *ptr, uptr size) { |
| 224 | if (!ptr) |
| 225 | return SetErrnoOnNull(DFsanAllocate(size, alignment: sizeof(u64), zeroise: false /*zeroise*/)); |
| 226 | if (size == 0) { |
| 227 | dfsan_deallocate(p: ptr); |
| 228 | return nullptr; |
| 229 | } |
| 230 | return SetErrnoOnNull(DFsanReallocate(old_p: ptr, new_size: size, alignment: sizeof(u64))); |
| 231 | } |
| 232 | |
| 233 | void *__dfsan::dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) { |
| 234 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 235 | errno = errno_ENOMEM; |
| 236 | if (AllocatorMayReturnNull()) |
| 237 | return nullptr; |
| 238 | UNINITIALIZED BufferedStackTrace stack; |
| 239 | ReportReallocArrayOverflow(count: nmemb, size, stack: &stack); |
| 240 | } |
| 241 | return dfsan_realloc(ptr, size: nmemb * size); |
| 242 | } |
| 243 | |
| 244 | void *__dfsan::dfsan_valloc(uptr size) { |
| 245 | return SetErrnoOnNull( |
| 246 | DFsanAllocate(size, alignment: GetPageSizeCached(), zeroise: false /*zeroise*/)); |
| 247 | } |
| 248 | |
| 249 | void *__dfsan::dfsan_pvalloc(uptr size) { |
| 250 | uptr PageSize = GetPageSizeCached(); |
| 251 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
| 252 | errno = errno_ENOMEM; |
| 253 | if (AllocatorMayReturnNull()) |
| 254 | return nullptr; |
| 255 | UNINITIALIZED BufferedStackTrace stack; |
| 256 | ReportPvallocOverflow(size, stack: &stack); |
| 257 | } |
| 258 | // pvalloc(0) should allocate one page. |
| 259 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
| 260 | return SetErrnoOnNull(DFsanAllocate(size, alignment: PageSize, zeroise: false /*zeroise*/)); |
| 261 | } |
| 262 | |
| 263 | void *__dfsan::dfsan_aligned_alloc(uptr alignment, uptr size) { |
| 264 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
| 265 | errno = errno_EINVAL; |
| 266 | if (AllocatorMayReturnNull()) |
| 267 | return nullptr; |
| 268 | UNINITIALIZED BufferedStackTrace stack; |
| 269 | ReportInvalidAlignedAllocAlignment(size, alignment, stack: &stack); |
| 270 | } |
| 271 | return SetErrnoOnNull(DFsanAllocate(size, alignment, zeroise: false /*zeroise*/)); |
| 272 | } |
| 273 | |
| 274 | void *__dfsan::dfsan_memalign(uptr alignment, uptr size) { |
| 275 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
| 276 | errno = errno_EINVAL; |
| 277 | if (AllocatorMayReturnNull()) |
| 278 | return nullptr; |
| 279 | UNINITIALIZED BufferedStackTrace stack; |
| 280 | ReportInvalidAllocationAlignment(alignment, stack: &stack); |
| 281 | } |
| 282 | return SetErrnoOnNull(DFsanAllocate(size, alignment, zeroise: false /*zeroise*/)); |
| 283 | } |
| 284 | |
| 285 | int __dfsan::dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) { |
| 286 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
| 287 | if (AllocatorMayReturnNull()) |
| 288 | return errno_EINVAL; |
| 289 | UNINITIALIZED BufferedStackTrace stack; |
| 290 | ReportInvalidPosixMemalignAlignment(alignment, stack: &stack); |
| 291 | } |
| 292 | void *ptr = DFsanAllocate(size, alignment, zeroise: false /*zeroise*/); |
| 293 | if (UNLIKELY(!ptr)) |
| 294 | // OOM error is already taken care of by DFsanAllocate. |
| 295 | return errno_ENOMEM; |
| 296 | CHECK(IsAligned((uptr)ptr, alignment)); |
| 297 | *memptr = ptr; |
| 298 | return 0; |
| 299 | } |
| 300 | |
| 301 | extern "C" { |
| 302 | uptr __sanitizer_get_current_allocated_bytes() { |
| 303 | uptr stats[AllocatorStatCount]; |
| 304 | allocator.GetStats(s: stats); |
| 305 | return stats[AllocatorStatAllocated]; |
| 306 | } |
| 307 | |
| 308 | uptr __sanitizer_get_heap_size() { |
| 309 | uptr stats[AllocatorStatCount]; |
| 310 | allocator.GetStats(s: stats); |
| 311 | return stats[AllocatorStatMapped]; |
| 312 | } |
| 313 | |
| 314 | uptr __sanitizer_get_free_bytes() { return 1; } |
| 315 | |
| 316 | uptr __sanitizer_get_unmapped_bytes() { return 1; } |
| 317 | |
| 318 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
| 319 | |
| 320 | int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
| 321 | |
| 322 | const void *__sanitizer_get_allocated_begin(const void *p) { |
| 323 | return AllocationBegin(p); |
| 324 | } |
| 325 | |
| 326 | uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |
| 327 | |
| 328 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
| 329 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
| 330 | uptr ret = AllocationSizeFast(p); |
| 331 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
| 332 | return ret; |
| 333 | } |
| 334 | } |
| 335 | |