| 1 | //===-- msan_allocator.cpp -------------------------- ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of MemorySanitizer. |
| 10 | // |
| 11 | // MemorySanitizer allocator. |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "msan_allocator.h" |
| 15 | |
| 16 | #include "msan.h" |
| 17 | #include "msan_interface_internal.h" |
| 18 | #include "msan_origin.h" |
| 19 | #include "msan_poisoning.h" |
| 20 | #include "msan_thread.h" |
| 21 | #include "sanitizer_common/sanitizer_allocator.h" |
| 22 | #include "sanitizer_common/sanitizer_allocator_checks.h" |
| 23 | #include "sanitizer_common/sanitizer_allocator_interface.h" |
| 24 | #include "sanitizer_common/sanitizer_allocator_report.h" |
| 25 | #include "sanitizer_common/sanitizer_errno.h" |
| 26 | |
| 27 | using namespace __msan; |
| 28 | |
| 29 | namespace { |
| 30 | struct Metadata { |
| 31 | uptr requested_size; |
| 32 | }; |
| 33 | |
| 34 | struct MsanMapUnmapCallback { |
| 35 | void OnMap(uptr p, uptr size) const {} |
| 36 | void OnMapSecondary(uptr p, uptr size, uptr user_begin, |
| 37 | uptr user_size) const {} |
| 38 | void OnUnmap(uptr p, uptr size) const { |
| 39 | __msan_unpoison(a: (void *)p, size); |
| 40 | |
| 41 | // We are about to unmap a chunk of user memory. |
| 42 | // Mark the corresponding shadow memory as not needed. |
| 43 | uptr shadow_p = MEM_TO_SHADOW(p); |
| 44 | ReleaseMemoryPagesToOS(beg: shadow_p, end: shadow_p + size); |
| 45 | if (__msan_get_track_origins()) { |
| 46 | uptr origin_p = MEM_TO_ORIGIN(p); |
| 47 | ReleaseMemoryPagesToOS(beg: origin_p, end: origin_p + size); |
| 48 | } |
| 49 | } |
| 50 | }; |
| 51 | |
| 52 | // Note: to ensure that the allocator is compatible with the application memory |
| 53 | // layout (especially with high-entropy ASLR), kSpaceBeg and kSpaceSize must be |
| 54 | // duplicated as MappingDesc::ALLOCATOR in msan.h. |
| 55 | #if defined(__mips64) |
| 56 | const uptr kMaxAllowedMallocSize = 2UL << 30; |
| 57 | |
| 58 | struct AP32 { |
| 59 | static const uptr kSpaceBeg = 0; |
| 60 | static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE; |
| 61 | static const uptr kMetadataSize = sizeof(Metadata); |
| 62 | using SizeClassMap = __sanitizer::CompactSizeClassMap; |
| 63 | static const uptr kRegionSizeLog = 20; |
| 64 | using AddressSpaceView = LocalAddressSpaceView; |
| 65 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 66 | static const uptr kFlags = 0; |
| 67 | }; |
| 68 | using PrimaryAllocator = SizeClassAllocator32<AP32>; |
| 69 | #elif defined(__x86_64__) |
| 70 | #if SANITIZER_NETBSD || SANITIZER_LINUX |
| 71 | const uptr kAllocatorSpace = 0x700000000000ULL; |
| 72 | #else |
| 73 | const uptr kAllocatorSpace = 0x600000000000ULL; |
| 74 | #endif |
| 75 | const uptr kMaxAllowedMallocSize = 1ULL << 40; |
| 76 | |
| 77 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 78 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 79 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
| 80 | static const uptr kMetadataSize = sizeof(Metadata); |
| 81 | using SizeClassMap = DefaultSizeClassMap; |
| 82 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 83 | static const uptr kFlags = 0; |
| 84 | using AddressSpaceView = LocalAddressSpaceView; |
| 85 | }; |
| 86 | |
| 87 | using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| 88 | |
| 89 | #elif defined(__loongarch_lp64) |
| 90 | const uptr kAllocatorSpace = 0x700000000000ULL; |
| 91 | const uptr kMaxAllowedMallocSize = 8UL << 30; |
| 92 | |
| 93 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 94 | static const uptr kSpaceBeg = kAllocatorSpace; |
| 95 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
| 96 | static const uptr kMetadataSize = sizeof(Metadata); |
| 97 | using SizeClassMap = DefaultSizeClassMap; |
| 98 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 99 | static const uptr kFlags = 0; |
| 100 | using AddressSpaceView = LocalAddressSpaceView; |
| 101 | }; |
| 102 | |
| 103 | using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| 104 | |
| 105 | #elif defined(__powerpc64__) |
| 106 | const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
| 107 | |
| 108 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 109 | static const uptr kSpaceBeg = 0x300000000000; |
| 110 | static const uptr kSpaceSize = 0x020000000000; // 2T. |
| 111 | static const uptr kMetadataSize = sizeof(Metadata); |
| 112 | using SizeClassMap = DefaultSizeClassMap; |
| 113 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 114 | static const uptr kFlags = 0; |
| 115 | using AddressSpaceView = LocalAddressSpaceView; |
| 116 | }; |
| 117 | |
| 118 | using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| 119 | #elif defined(__s390x__) |
| 120 | const uptr kMaxAllowedMallocSize = 2UL << 30; // 2G |
| 121 | |
| 122 | struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| 123 | static const uptr kSpaceBeg = 0x440000000000; |
| 124 | static const uptr kSpaceSize = 0x020000000000; // 2T. |
| 125 | static const uptr kMetadataSize = sizeof(Metadata); |
| 126 | using SizeClassMap = DefaultSizeClassMap; |
| 127 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 128 | static const uptr kFlags = 0; |
| 129 | using AddressSpaceView = LocalAddressSpaceView; |
| 130 | }; |
| 131 | |
| 132 | using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| 133 | #elif defined(__aarch64__) |
| 134 | const uptr kMaxAllowedMallocSize = 8UL << 30; |
| 135 | |
| 136 | struct AP64 { |
| 137 | static const uptr kSpaceBeg = 0xE00000000000ULL; |
| 138 | static const uptr kSpaceSize = 0x40000000000; // 4T. |
| 139 | static const uptr kMetadataSize = sizeof(Metadata); |
| 140 | using SizeClassMap = DefaultSizeClassMap; |
| 141 | using MapUnmapCallback = MsanMapUnmapCallback; |
| 142 | static const uptr kFlags = 0; |
| 143 | using AddressSpaceView = LocalAddressSpaceView; |
| 144 | }; |
| 145 | using PrimaryAllocator = SizeClassAllocator64<AP64>; |
| 146 | #endif |
| 147 | using Allocator = CombinedAllocator<PrimaryAllocator>; |
| 148 | using AllocatorCache = Allocator::AllocatorCache; |
| 149 | } // namespace __msan |
| 150 | |
| 151 | static Allocator allocator; |
| 152 | static AllocatorCache fallback_allocator_cache; |
| 153 | static StaticSpinMutex fallback_mutex; |
| 154 | |
| 155 | static uptr max_malloc_size; |
| 156 | |
| 157 | void __msan::MsanAllocatorInit() { |
| 158 | SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
| 159 | allocator.Init(release_to_os_interval_ms: common_flags()->allocator_release_to_os_interval_ms); |
| 160 | if (common_flags()->max_allocation_size_mb) |
| 161 | max_malloc_size = Min(a: common_flags()->max_allocation_size_mb << 20, |
| 162 | b: kMaxAllowedMallocSize); |
| 163 | else |
| 164 | max_malloc_size = kMaxAllowedMallocSize; |
| 165 | } |
| 166 | |
| 167 | void __msan::LockAllocator() { allocator.ForceLock(); } |
| 168 | |
| 169 | void __msan::UnlockAllocator() { allocator.ForceUnlock(); } |
| 170 | |
| 171 | AllocatorCache *GetAllocatorCache(MsanThreadLocalMallocStorage *ms) { |
| 172 | CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
| 173 | return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
| 174 | } |
| 175 | |
| 176 | void MsanThreadLocalMallocStorage::Init() { |
| 177 | allocator.InitCache(cache: GetAllocatorCache(ms: this)); |
| 178 | } |
| 179 | |
| 180 | void MsanThreadLocalMallocStorage::CommitBack() { |
| 181 | allocator.SwallowCache(cache: GetAllocatorCache(ms: this)); |
| 182 | allocator.DestroyCache(cache: GetAllocatorCache(ms: this)); |
| 183 | } |
| 184 | |
| 185 | static void *MsanAllocate(BufferedStackTrace *stack, uptr size, uptr alignment, |
| 186 | bool zero) { |
| 187 | if (UNLIKELY(size > max_malloc_size)) { |
| 188 | if (AllocatorMayReturnNull()) { |
| 189 | Report(format: "WARNING: MemorySanitizer failed to allocate 0x%zx bytes\n" , size); |
| 190 | return nullptr; |
| 191 | } |
| 192 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 193 | ReportAllocationSizeTooBig(user_size: size, max_size: max_malloc_size, stack); |
| 194 | } |
| 195 | if (UNLIKELY(IsRssLimitExceeded())) { |
| 196 | if (AllocatorMayReturnNull()) |
| 197 | return nullptr; |
| 198 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 199 | ReportRssLimitExceeded(stack); |
| 200 | } |
| 201 | MsanThread *t = GetCurrentThread(); |
| 202 | void *allocated; |
| 203 | if (t) { |
| 204 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
| 205 | allocated = allocator.Allocate(cache, size, alignment); |
| 206 | } else { |
| 207 | SpinMutexLock l(&fallback_mutex); |
| 208 | AllocatorCache *cache = &fallback_allocator_cache; |
| 209 | allocated = allocator.Allocate(cache, size, alignment); |
| 210 | } |
| 211 | if (UNLIKELY(!allocated)) { |
| 212 | SetAllocatorOutOfMemory(); |
| 213 | if (AllocatorMayReturnNull()) |
| 214 | return nullptr; |
| 215 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 216 | ReportOutOfMemory(requested_size: size, stack); |
| 217 | } |
| 218 | auto *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p: allocated)); |
| 219 | meta->requested_size = size; |
| 220 | if (zero) { |
| 221 | if (allocator.FromPrimary(p: allocated)) |
| 222 | __msan_clear_and_unpoison(a: allocated, size); |
| 223 | else |
| 224 | __msan_unpoison(a: allocated, size); // Mem is already zeroed. |
| 225 | } else if (flags()->poison_in_malloc) { |
| 226 | __msan_poison(a: allocated, size); |
| 227 | if (__msan_get_track_origins()) { |
| 228 | stack->tag = StackTrace::TAG_ALLOC; |
| 229 | Origin o = Origin::CreateHeapOrigin(stack); |
| 230 | __msan_set_origin(a: allocated, size, origin: o.raw_id()); |
| 231 | } |
| 232 | } |
| 233 | UnpoisonParam(n: 2); |
| 234 | RunMallocHooks(ptr: allocated, size); |
| 235 | return allocated; |
| 236 | } |
| 237 | |
| 238 | void __msan::MsanDeallocate(BufferedStackTrace *stack, void *p) { |
| 239 | DCHECK(p); |
| 240 | UnpoisonParam(n: 1); |
| 241 | RunFreeHooks(ptr: p); |
| 242 | |
| 243 | Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
| 244 | uptr size = meta->requested_size; |
| 245 | meta->requested_size = 0; |
| 246 | // This memory will not be reused by anyone else, so we are free to keep it |
| 247 | // poisoned. The secondary allocator will unmap and unpoison by |
| 248 | // MsanMapUnmapCallback, no need to poison it here. |
| 249 | if (flags()->poison_in_free && allocator.FromPrimary(p)) { |
| 250 | __msan_poison(a: p, size); |
| 251 | if (__msan_get_track_origins()) { |
| 252 | stack->tag = StackTrace::TAG_DEALLOC; |
| 253 | Origin o = Origin::CreateHeapOrigin(stack); |
| 254 | __msan_set_origin(a: p, size, origin: o.raw_id()); |
| 255 | } |
| 256 | } |
| 257 | if (MsanThread *t = GetCurrentThread()) { |
| 258 | AllocatorCache *cache = GetAllocatorCache(ms: &t->malloc_storage()); |
| 259 | allocator.Deallocate(cache, p); |
| 260 | } else { |
| 261 | SpinMutexLock l(&fallback_mutex); |
| 262 | AllocatorCache *cache = &fallback_allocator_cache; |
| 263 | allocator.Deallocate(cache, p); |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | static void *MsanReallocate(BufferedStackTrace *stack, void *old_p, |
| 268 | uptr new_size, uptr alignment) { |
| 269 | Metadata *meta = reinterpret_cast<Metadata*>(allocator.GetMetaData(p: old_p)); |
| 270 | uptr old_size = meta->requested_size; |
| 271 | uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(p: old_p); |
| 272 | if (new_size <= actually_allocated_size) { |
| 273 | // We are not reallocating here. |
| 274 | meta->requested_size = new_size; |
| 275 | if (new_size > old_size) { |
| 276 | if (flags()->poison_in_malloc) { |
| 277 | stack->tag = StackTrace::TAG_ALLOC; |
| 278 | PoisonMemory(dst: (char *)old_p + old_size, size: new_size - old_size, stack); |
| 279 | } |
| 280 | } |
| 281 | return old_p; |
| 282 | } |
| 283 | uptr memcpy_size = Min(a: new_size, b: old_size); |
| 284 | void *new_p = MsanAllocate(stack, size: new_size, alignment, zero: false); |
| 285 | if (new_p) { |
| 286 | CopyMemory(dst: new_p, src: old_p, size: memcpy_size, stack); |
| 287 | MsanDeallocate(stack, p: old_p); |
| 288 | } |
| 289 | return new_p; |
| 290 | } |
| 291 | |
| 292 | static void *MsanCalloc(BufferedStackTrace *stack, uptr nmemb, uptr size) { |
| 293 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 294 | if (AllocatorMayReturnNull()) |
| 295 | return nullptr; |
| 296 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 297 | ReportCallocOverflow(count: nmemb, size, stack); |
| 298 | } |
| 299 | return MsanAllocate(stack, size: nmemb * size, alignment: sizeof(u64), zero: true); |
| 300 | } |
| 301 | |
| 302 | static const void *AllocationBegin(const void *p) { |
| 303 | if (!p) |
| 304 | return nullptr; |
| 305 | void *beg = allocator.GetBlockBegin(p); |
| 306 | if (!beg) |
| 307 | return nullptr; |
| 308 | auto *b = reinterpret_cast<Metadata *>(allocator.GetMetaData(p: beg)); |
| 309 | if (!b) |
| 310 | return nullptr; |
| 311 | if (b->requested_size == 0) |
| 312 | return nullptr; |
| 313 | |
| 314 | return beg; |
| 315 | } |
| 316 | |
| 317 | static uptr AllocationSizeFast(const void *p) { |
| 318 | return reinterpret_cast<Metadata *>(allocator.GetMetaData(p))->requested_size; |
| 319 | } |
| 320 | |
| 321 | static uptr AllocationSize(const void *p) { |
| 322 | if (!p) |
| 323 | return 0; |
| 324 | if (allocator.GetBlockBegin(p) != p) |
| 325 | return 0; |
| 326 | return AllocationSizeFast(p); |
| 327 | } |
| 328 | |
| 329 | void *__msan::msan_malloc(uptr size, BufferedStackTrace *stack) { |
| 330 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zero: false)); |
| 331 | } |
| 332 | |
| 333 | void *__msan::msan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { |
| 334 | return SetErrnoOnNull(MsanCalloc(stack, nmemb, size)); |
| 335 | } |
| 336 | |
| 337 | void *__msan::msan_realloc(void *ptr, uptr size, BufferedStackTrace *stack) { |
| 338 | if (!ptr) |
| 339 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: sizeof(u64), zero: false)); |
| 340 | if (size == 0) { |
| 341 | MsanDeallocate(stack, p: ptr); |
| 342 | return nullptr; |
| 343 | } |
| 344 | return SetErrnoOnNull(MsanReallocate(stack, old_p: ptr, new_size: size, alignment: sizeof(u64))); |
| 345 | } |
| 346 | |
| 347 | void *__msan::msan_reallocarray(void *ptr, uptr nmemb, uptr size, |
| 348 | BufferedStackTrace *stack) { |
| 349 | if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| 350 | errno = errno_ENOMEM; |
| 351 | if (AllocatorMayReturnNull()) |
| 352 | return nullptr; |
| 353 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 354 | ReportReallocArrayOverflow(count: nmemb, size, stack); |
| 355 | } |
| 356 | return msan_realloc(ptr, size: nmemb * size, stack); |
| 357 | } |
| 358 | |
| 359 | void *__msan::msan_valloc(uptr size, BufferedStackTrace *stack) { |
| 360 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: GetPageSizeCached(), zero: false)); |
| 361 | } |
| 362 | |
| 363 | void *__msan::msan_pvalloc(uptr size, BufferedStackTrace *stack) { |
| 364 | uptr PageSize = GetPageSizeCached(); |
| 365 | if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
| 366 | errno = errno_ENOMEM; |
| 367 | if (AllocatorMayReturnNull()) |
| 368 | return nullptr; |
| 369 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 370 | ReportPvallocOverflow(size, stack); |
| 371 | } |
| 372 | // pvalloc(0) should allocate one page. |
| 373 | size = size ? RoundUpTo(size, boundary: PageSize) : PageSize; |
| 374 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment: PageSize, zero: false)); |
| 375 | } |
| 376 | |
| 377 | void *__msan::msan_aligned_alloc(uptr alignment, uptr size, |
| 378 | BufferedStackTrace *stack) { |
| 379 | if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
| 380 | errno = errno_EINVAL; |
| 381 | if (AllocatorMayReturnNull()) |
| 382 | return nullptr; |
| 383 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 384 | ReportInvalidAlignedAllocAlignment(size, alignment, stack); |
| 385 | } |
| 386 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zero: false)); |
| 387 | } |
| 388 | |
| 389 | void *__msan::msan_memalign(uptr alignment, uptr size, |
| 390 | BufferedStackTrace *stack) { |
| 391 | if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
| 392 | errno = errno_EINVAL; |
| 393 | if (AllocatorMayReturnNull()) |
| 394 | return nullptr; |
| 395 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 396 | ReportInvalidAllocationAlignment(alignment, stack); |
| 397 | } |
| 398 | return SetErrnoOnNull(MsanAllocate(stack, size, alignment, zero: false)); |
| 399 | } |
| 400 | |
| 401 | int __msan::msan_posix_memalign(void **memptr, uptr alignment, uptr size, |
| 402 | BufferedStackTrace *stack) { |
| 403 | if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
| 404 | if (AllocatorMayReturnNull()) |
| 405 | return errno_EINVAL; |
| 406 | GET_FATAL_STACK_TRACE_IF_EMPTY(stack); |
| 407 | ReportInvalidPosixMemalignAlignment(alignment, stack); |
| 408 | } |
| 409 | void *ptr = MsanAllocate(stack, size, alignment, zero: false); |
| 410 | if (UNLIKELY(!ptr)) |
| 411 | // OOM error is already taken care of by MsanAllocate. |
| 412 | return errno_ENOMEM; |
| 413 | CHECK(IsAligned((uptr)ptr, alignment)); |
| 414 | *memptr = ptr; |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | extern "C" { |
| 419 | uptr __sanitizer_get_current_allocated_bytes() { |
| 420 | uptr stats[AllocatorStatCount]; |
| 421 | allocator.GetStats(s: stats); |
| 422 | return stats[AllocatorStatAllocated]; |
| 423 | } |
| 424 | |
| 425 | uptr __sanitizer_get_heap_size() { |
| 426 | uptr stats[AllocatorStatCount]; |
| 427 | allocator.GetStats(s: stats); |
| 428 | return stats[AllocatorStatMapped]; |
| 429 | } |
| 430 | |
| 431 | uptr __sanitizer_get_free_bytes() { return 1; } |
| 432 | |
| 433 | uptr __sanitizer_get_unmapped_bytes() { return 1; } |
| 434 | |
| 435 | uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
| 436 | |
| 437 | int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
| 438 | |
| 439 | const void *__sanitizer_get_allocated_begin(const void *p) { |
| 440 | return AllocationBegin(p); |
| 441 | } |
| 442 | |
| 443 | uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |
| 444 | |
| 445 | uptr __sanitizer_get_allocated_size_fast(const void *p) { |
| 446 | DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); |
| 447 | uptr ret = AllocationSizeFast(p); |
| 448 | DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); |
| 449 | return ret; |
| 450 | } |
| 451 | |
| 452 | void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); } |
| 453 | } |
| 454 | |