| 1 | //===-- xray_profile_collector.cpp -----------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of XRay, a dynamic runtime instrumentation system. |
| 10 | // |
| 11 | // This implements the interface for the profileCollectorService. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | #include "xray_profile_collector.h" |
| 15 | #include "sanitizer_common/sanitizer_common.h" |
| 16 | #include "xray_allocator.h" |
| 17 | #include "xray_defs.h" |
| 18 | #include "xray_profiling_flags.h" |
| 19 | #include "xray_segmented_array.h" |
| 20 | #include <memory> |
| 21 | #include <pthread.h> |
| 22 | #include <utility> |
| 23 | |
| 24 | namespace __xray { |
| 25 | namespace profileCollectorService { |
| 26 | |
| 27 | namespace { |
| 28 | |
| 29 | SpinMutex GlobalMutex; |
| 30 | struct ThreadTrie { |
| 31 | tid_t TId; |
| 32 | alignas(FunctionCallTrie) std::byte TrieStorage[sizeof(FunctionCallTrie)]; |
| 33 | }; |
| 34 | |
| 35 | struct ProfileBuffer { |
| 36 | void *Data; |
| 37 | size_t Size; |
| 38 | }; |
| 39 | |
| 40 | // Current version of the profile format. |
| 41 | constexpr u64 XRayProfilingVersion = 0x20180424; |
| 42 | |
| 43 | // Identifier for XRay profiling files 'xrayprof' in hex. |
| 44 | constexpr u64 XRayMagicBytes = 0x7872617970726f66; |
| 45 | |
| 46 | struct { |
| 47 | const u64 = XRayMagicBytes; |
| 48 | const u64 = XRayProfilingVersion; |
| 49 | u64 = 0; // System time in nanoseconds. |
| 50 | u64 = 0; // Process ID. |
| 51 | }; |
| 52 | |
| 53 | struct { |
| 54 | u32 ; |
| 55 | u32 ; |
| 56 | u64 ; |
| 57 | }; |
| 58 | |
| 59 | struct ThreadData { |
| 60 | BufferQueue *BQ; |
| 61 | FunctionCallTrie::Allocators::Buffers Buffers; |
| 62 | FunctionCallTrie::Allocators Allocators; |
| 63 | FunctionCallTrie FCT; |
| 64 | tid_t TId; |
| 65 | }; |
| 66 | |
| 67 | using ThreadDataArray = Array<ThreadData>; |
| 68 | using ThreadDataAllocator = ThreadDataArray::AllocatorType; |
| 69 | |
| 70 | // We use a separate buffer queue for the backing store for the allocator used |
| 71 | // by the ThreadData array. This lets us host the buffers, allocators, and tries |
| 72 | // associated with a thread by moving the data into the array instead of |
| 73 | // attempting to copy the data to a separately backed set of tries. |
| 74 | alignas(BufferQueue) static std::byte BufferQueueStorage[sizeof(BufferQueue)]; |
| 75 | static BufferQueue *BQ = nullptr; |
| 76 | static BufferQueue::Buffer Buffer; |
| 77 | alignas(ThreadDataAllocator) static std::byte |
| 78 | ThreadDataAllocatorStorage[sizeof(ThreadDataAllocator)]; |
| 79 | alignas(ThreadDataArray) static std::byte |
| 80 | ThreadDataArrayStorage[sizeof(ThreadDataArray)]; |
| 81 | |
| 82 | static ThreadDataAllocator *TDAllocator = nullptr; |
| 83 | static ThreadDataArray *TDArray = nullptr; |
| 84 | |
| 85 | using ProfileBufferArray = Array<ProfileBuffer>; |
| 86 | using ProfileBufferArrayAllocator = typename ProfileBufferArray::AllocatorType; |
| 87 | |
| 88 | // These need to be global aligned storage to avoid dynamic initialization. We |
| 89 | // need these to be aligned to allow us to placement new objects into the |
| 90 | // storage, and have pointers to those objects be appropriately aligned. |
| 91 | alignas(ProfileBufferArray) static std::byte |
| 92 | [sizeof(ProfileBufferArray)]; |
| 93 | alignas(ProfileBufferArrayAllocator) static std::byte |
| 94 | ProfileBufferArrayAllocatorStorage[sizeof(ProfileBufferArrayAllocator)]; |
| 95 | |
| 96 | static ProfileBufferArrayAllocator *ProfileBuffersAllocator = nullptr; |
| 97 | static ProfileBufferArray *ProfileBuffers = nullptr; |
| 98 | |
| 99 | // Use a global flag to determine whether the collector implementation has been |
| 100 | // initialized. |
| 101 | static atomic_uint8_t CollectorInitialized{.val_dont_use: 0}; |
| 102 | |
| 103 | } // namespace |
| 104 | |
| 105 | void post(BufferQueue *Q, FunctionCallTrie &&T, |
| 106 | FunctionCallTrie::Allocators &&A, |
| 107 | FunctionCallTrie::Allocators::Buffers &&B, |
| 108 | tid_t TId) XRAY_NEVER_INSTRUMENT { |
| 109 | DCHECK_NE(Q, nullptr); |
| 110 | |
| 111 | // Bail out early if the collector has not been initialized. |
| 112 | if (!atomic_load(a: &CollectorInitialized, mo: memory_order_acquire)) { |
| 113 | T.~FunctionCallTrie(); |
| 114 | A.~Allocators(); |
| 115 | Q->releaseBuffer(Buf&: B.NodeBuffer); |
| 116 | Q->releaseBuffer(Buf&: B.RootsBuffer); |
| 117 | Q->releaseBuffer(Buf&: B.ShadowStackBuffer); |
| 118 | Q->releaseBuffer(Buf&: B.NodeIdPairBuffer); |
| 119 | B.~Buffers(); |
| 120 | return; |
| 121 | } |
| 122 | |
| 123 | { |
| 124 | SpinMutexLock Lock(&GlobalMutex); |
| 125 | DCHECK_NE(TDAllocator, nullptr); |
| 126 | DCHECK_NE(TDArray, nullptr); |
| 127 | |
| 128 | if (TDArray->AppendEmplace(args&: Q, args: std::move(t&: B), args: std::move(t&: A), args: std::move(t&: T), |
| 129 | args&: TId) == nullptr) { |
| 130 | // If we fail to add the data to the array, we should destroy the objects |
| 131 | // handed us. |
| 132 | T.~FunctionCallTrie(); |
| 133 | A.~Allocators(); |
| 134 | Q->releaseBuffer(Buf&: B.NodeBuffer); |
| 135 | Q->releaseBuffer(Buf&: B.RootsBuffer); |
| 136 | Q->releaseBuffer(Buf&: B.ShadowStackBuffer); |
| 137 | Q->releaseBuffer(Buf&: B.NodeIdPairBuffer); |
| 138 | B.~Buffers(); |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | // A PathArray represents the function id's representing a stack trace. In this |
| 144 | // context a path is almost always represented from the leaf function in a call |
| 145 | // stack to a root of the call trie. |
| 146 | using PathArray = Array<int32_t>; |
| 147 | |
| 148 | struct ProfileRecord { |
| 149 | using PathAllocator = typename PathArray::AllocatorType; |
| 150 | |
| 151 | // The Path in this record is the function id's from the leaf to the root of |
| 152 | // the function call stack as represented from a FunctionCallTrie. |
| 153 | PathArray Path; |
| 154 | const FunctionCallTrie::Node *Node; |
| 155 | }; |
| 156 | |
| 157 | namespace { |
| 158 | |
| 159 | using ProfileRecordArray = Array<ProfileRecord>; |
| 160 | |
| 161 | // Walk a depth-first traversal of each root of the FunctionCallTrie to generate |
| 162 | // the path(s) and the data associated with the path. |
| 163 | static void |
| 164 | populateRecords(ProfileRecordArray &PRs, ProfileRecord::PathAllocator &PA, |
| 165 | const FunctionCallTrie &Trie) XRAY_NEVER_INSTRUMENT { |
| 166 | using StackArray = Array<const FunctionCallTrie::Node *>; |
| 167 | using StackAllocator = typename StackArray::AllocatorType; |
| 168 | StackAllocator StackAlloc(profilingFlags()->stack_allocator_max); |
| 169 | StackArray DFSStack(StackAlloc); |
| 170 | for (const auto *R : Trie.getRoots()) { |
| 171 | DFSStack.Append(E: R); |
| 172 | while (!DFSStack.empty()) { |
| 173 | auto *Node = DFSStack.back(); |
| 174 | DFSStack.trim(Elements: 1); |
| 175 | if (Node == nullptr) |
| 176 | continue; |
| 177 | auto Record = PRs.AppendEmplace(args: PathArray{PA}, args&: Node); |
| 178 | if (Record == nullptr) |
| 179 | return; |
| 180 | DCHECK_NE(Record, nullptr); |
| 181 | |
| 182 | // Traverse the Node's parents and as we're doing so, get the FIds in |
| 183 | // the order they appear. |
| 184 | for (auto N = Node; N != nullptr; N = N->Parent) |
| 185 | Record->Path.Append(E: N->FId); |
| 186 | DCHECK(!Record->Path.empty()); |
| 187 | |
| 188 | for (const auto C : Node->Callees) |
| 189 | DFSStack.Append(E: C.NodePtr); |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | static void serializeRecords(ProfileBuffer *Buffer, const BlockHeader &, |
| 195 | const ProfileRecordArray &ProfileRecords) |
| 196 | XRAY_NEVER_INSTRUMENT { |
| 197 | auto NextPtr = static_cast<uint8_t *>( |
| 198 | internal_memcpy(dest: Buffer->Data, src: &Header, n: sizeof(Header))) + |
| 199 | sizeof(Header); |
| 200 | for (const auto &Record : ProfileRecords) { |
| 201 | // List of IDs follow: |
| 202 | for (const auto FId : Record.Path) |
| 203 | NextPtr = |
| 204 | static_cast<uint8_t *>(internal_memcpy(dest: NextPtr, src: &FId, n: sizeof(FId))) + |
| 205 | sizeof(FId); |
| 206 | |
| 207 | // Add the sentinel here. |
| 208 | constexpr int32_t SentinelFId = 0; |
| 209 | NextPtr = static_cast<uint8_t *>( |
| 210 | internal_memset(s: NextPtr, c: SentinelFId, n: sizeof(SentinelFId))) + |
| 211 | sizeof(SentinelFId); |
| 212 | |
| 213 | // Add the node data here. |
| 214 | NextPtr = |
| 215 | static_cast<uint8_t *>(internal_memcpy( |
| 216 | dest: NextPtr, src: &Record.Node->CallCount, n: sizeof(Record.Node->CallCount))) + |
| 217 | sizeof(Record.Node->CallCount); |
| 218 | NextPtr = static_cast<uint8_t *>( |
| 219 | internal_memcpy(dest: NextPtr, src: &Record.Node->CumulativeLocalTime, |
| 220 | n: sizeof(Record.Node->CumulativeLocalTime))) + |
| 221 | sizeof(Record.Node->CumulativeLocalTime); |
| 222 | } |
| 223 | |
| 224 | DCHECK_EQ(NextPtr - static_cast<uint8_t *>(Buffer->Data), Buffer->Size); |
| 225 | } |
| 226 | |
| 227 | } // namespace |
| 228 | |
| 229 | void serialize() XRAY_NEVER_INSTRUMENT { |
| 230 | if (!atomic_load(a: &CollectorInitialized, mo: memory_order_acquire)) |
| 231 | return; |
| 232 | |
| 233 | SpinMutexLock Lock(&GlobalMutex); |
| 234 | |
| 235 | // Clear out the global ProfileBuffers, if it's not empty. |
| 236 | for (auto &B : *ProfileBuffers) |
| 237 | deallocateBuffer(B: reinterpret_cast<unsigned char *>(B.Data), S: B.Size); |
| 238 | ProfileBuffers->trim(Elements: ProfileBuffers->size()); |
| 239 | |
| 240 | DCHECK_NE(TDArray, nullptr); |
| 241 | if (TDArray->empty()) |
| 242 | return; |
| 243 | |
| 244 | // Then repopulate the global ProfileBuffers. |
| 245 | u32 I = 0; |
| 246 | auto MaxSize = profilingFlags()->global_allocator_max; |
| 247 | auto ProfileArena = allocateBuffer(S: MaxSize); |
| 248 | if (ProfileArena == nullptr) |
| 249 | return; |
| 250 | |
| 251 | auto ProfileArenaCleanup = at_scope_exit( |
| 252 | fn: [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(B: ProfileArena, S: MaxSize); }); |
| 253 | |
| 254 | auto PathArena = allocateBuffer(S: profilingFlags()->global_allocator_max); |
| 255 | if (PathArena == nullptr) |
| 256 | return; |
| 257 | |
| 258 | auto PathArenaCleanup = at_scope_exit( |
| 259 | fn: [&]() XRAY_NEVER_INSTRUMENT { deallocateBuffer(B: PathArena, S: MaxSize); }); |
| 260 | |
| 261 | for (const auto &ThreadTrie : *TDArray) { |
| 262 | using ProfileRecordAllocator = typename ProfileRecordArray::AllocatorType; |
| 263 | ProfileRecordAllocator PRAlloc(ProfileArena, |
| 264 | profilingFlags()->global_allocator_max); |
| 265 | ProfileRecord::PathAllocator PathAlloc( |
| 266 | PathArena, profilingFlags()->global_allocator_max); |
| 267 | ProfileRecordArray ProfileRecords(PRAlloc); |
| 268 | |
| 269 | // First, we want to compute the amount of space we're going to need. We'll |
| 270 | // use a local allocator and an __xray::Array<...> to store the intermediary |
| 271 | // data, then compute the size as we're going along. Then we'll allocate the |
| 272 | // contiguous space to contain the thread buffer data. |
| 273 | if (ThreadTrie.FCT.getRoots().empty()) |
| 274 | continue; |
| 275 | |
| 276 | populateRecords(PRs&: ProfileRecords, PA&: PathAlloc, Trie: ThreadTrie.FCT); |
| 277 | DCHECK(!ThreadTrie.FCT.getRoots().empty()); |
| 278 | DCHECK(!ProfileRecords.empty()); |
| 279 | |
| 280 | // Go through each record, to compute the sizes. |
| 281 | // |
| 282 | // header size = block size (4 bytes) |
| 283 | // + block number (4 bytes) |
| 284 | // + thread id (8 bytes) |
| 285 | // record size = path ids (4 bytes * number of ids + sentinel 4 bytes) |
| 286 | // + call count (8 bytes) |
| 287 | // + local time (8 bytes) |
| 288 | // + end of record (8 bytes) |
| 289 | u32 CumulativeSizes = 0; |
| 290 | for (const auto &Record : ProfileRecords) |
| 291 | CumulativeSizes += 20 + (4 * Record.Path.size()); |
| 292 | |
| 293 | BlockHeader {.BlockSize: 16 + CumulativeSizes, .BlockNum: I++, .ThreadId: ThreadTrie.TId}; |
| 294 | auto B = ProfileBuffers->Append(E: {}); |
| 295 | B->Size = sizeof(Header) + CumulativeSizes; |
| 296 | B->Data = allocateBuffer(S: B->Size); |
| 297 | DCHECK_NE(B->Data, nullptr); |
| 298 | serializeRecords(Buffer: B, Header, ProfileRecords); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | void reset() XRAY_NEVER_INSTRUMENT { |
| 303 | atomic_store(a: &CollectorInitialized, v: 0, mo: memory_order_release); |
| 304 | SpinMutexLock Lock(&GlobalMutex); |
| 305 | |
| 306 | if (ProfileBuffers != nullptr) { |
| 307 | // Clear out the profile buffers that have been serialized. |
| 308 | for (auto &B : *ProfileBuffers) |
| 309 | deallocateBuffer(B: reinterpret_cast<uint8_t *>(B.Data), S: B.Size); |
| 310 | ProfileBuffers->trim(Elements: ProfileBuffers->size()); |
| 311 | ProfileBuffers = nullptr; |
| 312 | } |
| 313 | |
| 314 | if (TDArray != nullptr) { |
| 315 | // Release the resources as required. |
| 316 | for (auto &TD : *TDArray) { |
| 317 | TD.BQ->releaseBuffer(Buf&: TD.Buffers.NodeBuffer); |
| 318 | TD.BQ->releaseBuffer(Buf&: TD.Buffers.RootsBuffer); |
| 319 | TD.BQ->releaseBuffer(Buf&: TD.Buffers.ShadowStackBuffer); |
| 320 | TD.BQ->releaseBuffer(Buf&: TD.Buffers.NodeIdPairBuffer); |
| 321 | } |
| 322 | // We don't bother destroying the array here because we've already |
| 323 | // potentially freed the backing store for the array. Instead we're going to |
| 324 | // reset the pointer to nullptr, and re-use the storage later instead |
| 325 | // (placement-new'ing into the storage as-is). |
| 326 | TDArray = nullptr; |
| 327 | } |
| 328 | |
| 329 | if (TDAllocator != nullptr) { |
| 330 | TDAllocator->~Allocator(); |
| 331 | TDAllocator = nullptr; |
| 332 | } |
| 333 | |
| 334 | if (Buffer.Data != nullptr) { |
| 335 | BQ->releaseBuffer(Buf&: Buffer); |
| 336 | } |
| 337 | |
| 338 | if (BQ == nullptr) { |
| 339 | bool Success = false; |
| 340 | new (&BufferQueueStorage) |
| 341 | BufferQueue(profilingFlags()->global_allocator_max, 1, Success); |
| 342 | if (!Success) |
| 343 | return; |
| 344 | BQ = reinterpret_cast<BufferQueue *>(&BufferQueueStorage); |
| 345 | } else { |
| 346 | BQ->finalize(); |
| 347 | |
| 348 | if (BQ->init(BS: profilingFlags()->global_allocator_max, BC: 1) != |
| 349 | BufferQueue::ErrorCode::Ok) |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | if (BQ->getBuffer(Buf&: Buffer) != BufferQueue::ErrorCode::Ok) |
| 354 | return; |
| 355 | |
| 356 | new (&ProfileBufferArrayAllocatorStorage) |
| 357 | ProfileBufferArrayAllocator(profilingFlags()->global_allocator_max); |
| 358 | ProfileBuffersAllocator = reinterpret_cast<ProfileBufferArrayAllocator *>( |
| 359 | &ProfileBufferArrayAllocatorStorage); |
| 360 | |
| 361 | new (&ProfileBuffersStorage) ProfileBufferArray(*ProfileBuffersAllocator); |
| 362 | ProfileBuffers = |
| 363 | reinterpret_cast<ProfileBufferArray *>(&ProfileBuffersStorage); |
| 364 | |
| 365 | new (&ThreadDataAllocatorStorage) |
| 366 | ThreadDataAllocator(Buffer.Data, Buffer.Size); |
| 367 | TDAllocator = |
| 368 | reinterpret_cast<ThreadDataAllocator *>(&ThreadDataAllocatorStorage); |
| 369 | new (&ThreadDataArrayStorage) ThreadDataArray(*TDAllocator); |
| 370 | TDArray = reinterpret_cast<ThreadDataArray *>(&ThreadDataArrayStorage); |
| 371 | |
| 372 | atomic_store(a: &CollectorInitialized, v: 1, mo: memory_order_release); |
| 373 | } |
| 374 | |
| 375 | XRayBuffer nextBuffer(XRayBuffer B) XRAY_NEVER_INSTRUMENT { |
| 376 | SpinMutexLock Lock(&GlobalMutex); |
| 377 | |
| 378 | if (ProfileBuffers == nullptr || ProfileBuffers->size() == 0) |
| 379 | return {.Data: nullptr, .Size: 0}; |
| 380 | |
| 381 | static pthread_once_t Once = PTHREAD_ONCE_INIT; |
| 382 | alignas(XRayProfilingFileHeader) static std::byte |
| 383 | [sizeof(XRayProfilingFileHeader)]; |
| 384 | pthread_once( |
| 385 | once_control: &Once, init_routine: +[]() XRAY_NEVER_INSTRUMENT { |
| 386 | new (&FileHeaderStorage) XRayProfilingFileHeader{}; |
| 387 | }); |
| 388 | |
| 389 | if (UNLIKELY(B.Data == nullptr)) { |
| 390 | // The first buffer should always contain the file header information. |
| 391 | auto & = |
| 392 | *reinterpret_cast<XRayProfilingFileHeader *>(&FileHeaderStorage); |
| 393 | FileHeader.Timestamp = NanoTime(); |
| 394 | FileHeader.PID = internal_getpid(); |
| 395 | return {.Data: &FileHeaderStorage, .Size: sizeof(XRayProfilingFileHeader)}; |
| 396 | } |
| 397 | |
| 398 | if (UNLIKELY(B.Data == &FileHeaderStorage)) |
| 399 | return {.Data: (*ProfileBuffers)[0].Data, .Size: (*ProfileBuffers)[0].Size}; |
| 400 | |
| 401 | BlockHeader ; |
| 402 | internal_memcpy(dest: &Header, src: B.Data, n: sizeof(BlockHeader)); |
| 403 | auto NextBlock = Header.BlockNum + 1; |
| 404 | if (NextBlock < ProfileBuffers->size()) |
| 405 | return {.Data: (*ProfileBuffers)[NextBlock].Data, |
| 406 | .Size: (*ProfileBuffers)[NextBlock].Size}; |
| 407 | return {.Data: nullptr, .Size: 0}; |
| 408 | } |
| 409 | |
| 410 | } // namespace profileCollectorService |
| 411 | } // namespace __xray |
| 412 | |