| 1 | //===-- xray_segmented_array.h ---------------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file is a part of XRay, a dynamic runtime instrumentation system. |
| 10 | // |
| 11 | // Defines the implementation of a segmented array, with fixed-size segments |
| 12 | // backing the segments. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | #ifndef XRAY_SEGMENTED_ARRAY_H |
| 16 | #define XRAY_SEGMENTED_ARRAY_H |
| 17 | |
| 18 | #include "sanitizer_common/sanitizer_allocator.h" |
| 19 | #include "xray_allocator.h" |
| 20 | #include "xray_utils.h" |
| 21 | #include <cassert> |
| 22 | #include <type_traits> |
| 23 | #include <utility> |
| 24 | |
| 25 | namespace __xray { |
| 26 | |
| 27 | /// The Array type provides an interface similar to std::vector<...> but does |
| 28 | /// not shrink in size. Once constructed, elements can be appended but cannot be |
| 29 | /// removed. The implementation is heavily dependent on the contract provided by |
| 30 | /// the Allocator type, in that all memory will be released when the Allocator |
| 31 | /// is destroyed. When an Array is destroyed, it will destroy elements in the |
| 32 | /// backing store but will not free the memory. |
| 33 | template <class T> class Array { |
| 34 | struct Segment { |
| 35 | Segment *Prev; |
| 36 | Segment *Next; |
| 37 | char Data[1]; |
| 38 | }; |
| 39 | |
| 40 | public: |
| 41 | // Each segment of the array will be laid out with the following assumptions: |
| 42 | // |
| 43 | // - Each segment will be on a cache-line address boundary (kCacheLineSize |
| 44 | // aligned). |
| 45 | // |
| 46 | // - The elements will be accessed through an aligned pointer, dependent on |
| 47 | // the alignment of T. |
| 48 | // |
| 49 | // - Each element is at least two-pointers worth from the beginning of the |
| 50 | // Segment, aligned properly, and the rest of the elements are accessed |
| 51 | // through appropriate alignment. |
| 52 | // |
| 53 | // We then compute the size of the segment to follow this logic: |
| 54 | // |
| 55 | // - Compute the number of elements that can fit within |
| 56 | // kCacheLineSize-multiple segments, minus the size of two pointers. |
| 57 | // |
| 58 | // - Request cacheline-multiple sized elements from the allocator. |
| 59 | static constexpr uint64_t AlignedElementStorageSize = sizeof(T); |
| 60 | |
| 61 | static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2; |
| 62 | |
| 63 | static constexpr uint64_t SegmentSize = nearest_boundary( |
| 64 | number: SegmentControlBlockSize + next_pow2(number: sizeof(T)), multiple: kCacheLineSize); |
| 65 | |
| 66 | using AllocatorType = Allocator<SegmentSize>; |
| 67 | |
| 68 | static constexpr uint64_t ElementsPerSegment = |
| 69 | (SegmentSize - SegmentControlBlockSize) / next_pow2(number: sizeof(T)); |
| 70 | |
| 71 | static_assert(ElementsPerSegment > 0, |
| 72 | "Must have at least 1 element per segment." ); |
| 73 | |
| 74 | static Segment SentinelSegment; |
| 75 | |
| 76 | using size_type = uint64_t; |
| 77 | |
| 78 | private: |
| 79 | // This Iterator models a BidirectionalIterator. |
| 80 | template <class U> class Iterator { |
| 81 | Segment *S = &SentinelSegment; |
| 82 | uint64_t Offset = 0; |
| 83 | uint64_t Size = 0; |
| 84 | |
| 85 | public: |
| 86 | Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT |
| 87 | : S(IS), |
| 88 | Offset(Off), |
| 89 | Size(S) {} |
| 90 | Iterator(const Iterator &) NOEXCEPT XRAY_NEVER_INSTRUMENT = default; |
| 91 | Iterator() NOEXCEPT XRAY_NEVER_INSTRUMENT = default; |
| 92 | Iterator(Iterator &&) NOEXCEPT XRAY_NEVER_INSTRUMENT = default; |
| 93 | Iterator &operator=(const Iterator &) XRAY_NEVER_INSTRUMENT = default; |
| 94 | Iterator &operator=(Iterator &&) XRAY_NEVER_INSTRUMENT = default; |
| 95 | ~Iterator() XRAY_NEVER_INSTRUMENT = default; |
| 96 | |
| 97 | Iterator &operator++() XRAY_NEVER_INSTRUMENT { |
| 98 | if (++Offset % ElementsPerSegment || Offset == Size) |
| 99 | return *this; |
| 100 | |
| 101 | // At this point, we know that Offset % N == 0, so we must advance the |
| 102 | // segment pointer. |
| 103 | DCHECK_EQ(Offset % ElementsPerSegment, 0); |
| 104 | DCHECK_NE(Offset, Size); |
| 105 | DCHECK_NE(S, &SentinelSegment); |
| 106 | DCHECK_NE(S->Next, &SentinelSegment); |
| 107 | S = S->Next; |
| 108 | DCHECK_NE(S, &SentinelSegment); |
| 109 | return *this; |
| 110 | } |
| 111 | |
| 112 | Iterator &operator--() XRAY_NEVER_INSTRUMENT { |
| 113 | DCHECK_NE(S, &SentinelSegment); |
| 114 | DCHECK_GT(Offset, 0); |
| 115 | |
| 116 | auto PreviousOffset = Offset--; |
| 117 | if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) { |
| 118 | DCHECK_NE(S->Prev, &SentinelSegment); |
| 119 | S = S->Prev; |
| 120 | } |
| 121 | |
| 122 | return *this; |
| 123 | } |
| 124 | |
| 125 | Iterator operator++(int) XRAY_NEVER_INSTRUMENT { |
| 126 | Iterator Copy(*this); |
| 127 | ++(*this); |
| 128 | return Copy; |
| 129 | } |
| 130 | |
| 131 | Iterator operator--(int) XRAY_NEVER_INSTRUMENT { |
| 132 | Iterator Copy(*this); |
| 133 | --(*this); |
| 134 | return Copy; |
| 135 | } |
| 136 | |
| 137 | template <class V, class W> |
| 138 | friend bool operator==(const Iterator<V> &L, |
| 139 | const Iterator<W> &R) XRAY_NEVER_INSTRUMENT { |
| 140 | return L.S == R.S && L.Offset == R.Offset; |
| 141 | } |
| 142 | |
| 143 | template <class V, class W> |
| 144 | friend bool operator!=(const Iterator<V> &L, |
| 145 | const Iterator<W> &R) XRAY_NEVER_INSTRUMENT { |
| 146 | return !(L == R); |
| 147 | } |
| 148 | |
| 149 | U &operator*() const XRAY_NEVER_INSTRUMENT { |
| 150 | DCHECK_NE(S, &SentinelSegment); |
| 151 | auto RelOff = Offset % ElementsPerSegment; |
| 152 | |
| 153 | // We need to compute the character-aligned pointer, offset from the |
| 154 | // segment's Data location to get the element in the position of Offset. |
| 155 | auto Base = &S->Data; |
| 156 | auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize); |
| 157 | return *reinterpret_cast<U *>(AlignedOffset); |
| 158 | } |
| 159 | |
| 160 | U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); } |
| 161 | }; |
| 162 | |
| 163 | AllocatorType *Alloc; |
| 164 | Segment *Head; |
| 165 | Segment *Tail; |
| 166 | |
| 167 | // Here we keep track of segments in the freelist, to allow us to re-use |
| 168 | // segments when elements are trimmed off the end. |
| 169 | Segment *Freelist; |
| 170 | uint64_t Size; |
| 171 | |
| 172 | // =============================== |
| 173 | // In the following implementation, we work through the algorithms and the |
| 174 | // list operations using the following notation: |
| 175 | // |
| 176 | // - pred(s) is the predecessor (previous node accessor) and succ(s) is |
| 177 | // the successor (next node accessor). |
| 178 | // |
| 179 | // - S is a sentinel segment, which has the following property: |
| 180 | // |
| 181 | // pred(S) == succ(S) == S |
| 182 | // |
| 183 | // - @ is a loop operator, which can imply pred(s) == s if it appears on |
| 184 | // the left of s, or succ(s) == S if it appears on the right of s. |
| 185 | // |
| 186 | // - sL <-> sR : means a bidirectional relation between sL and sR, which |
| 187 | // means: |
| 188 | // |
| 189 | // succ(sL) == sR && pred(SR) == sL |
| 190 | // |
| 191 | // - sL -> sR : implies a unidirectional relation between sL and SR, |
| 192 | // with the following properties: |
| 193 | // |
| 194 | // succ(sL) == sR |
| 195 | // |
| 196 | // sL <- sR : implies a unidirectional relation between sR and sL, |
| 197 | // with the following properties: |
| 198 | // |
| 199 | // pred(sR) == sL |
| 200 | // |
| 201 | // =============================== |
| 202 | |
| 203 | Segment *NewSegment() XRAY_NEVER_INSTRUMENT { |
| 204 | // We need to handle the case in which enough elements have been trimmed to |
| 205 | // allow us to re-use segments we've allocated before. For this we look into |
| 206 | // the Freelist, to see whether we need to actually allocate new blocks or |
| 207 | // just re-use blocks we've already seen before. |
| 208 | if (Freelist != &SentinelSegment) { |
| 209 | // The current state of lists resemble something like this at this point: |
| 210 | // |
| 211 | // Freelist: @S@<-f0->...<->fN->@S@ |
| 212 | // ^ Freelist |
| 213 | // |
| 214 | // We want to perform a splice of `f0` from Freelist to a temporary list, |
| 215 | // which looks like: |
| 216 | // |
| 217 | // Templist: @S@<-f0->@S@ |
| 218 | // ^ FreeSegment |
| 219 | // |
| 220 | // Our algorithm preconditions are: |
| 221 | DCHECK_EQ(Freelist->Prev, &SentinelSegment); |
| 222 | |
| 223 | // Then the algorithm we implement is: |
| 224 | // |
| 225 | // SFS = Freelist |
| 226 | // Freelist = succ(Freelist) |
| 227 | // if (Freelist != S) |
| 228 | // pred(Freelist) = S |
| 229 | // succ(SFS) = S |
| 230 | // pred(SFS) = S |
| 231 | // |
| 232 | auto *FreeSegment = Freelist; |
| 233 | Freelist = Freelist->Next; |
| 234 | |
| 235 | // Note that we need to handle the case where Freelist is now pointing to |
| 236 | // S, which we don't want to be overwriting. |
| 237 | // TODO: Determine whether the cost of the branch is higher than the cost |
| 238 | // of the blind assignment. |
| 239 | if (Freelist != &SentinelSegment) |
| 240 | Freelist->Prev = &SentinelSegment; |
| 241 | |
| 242 | FreeSegment->Next = &SentinelSegment; |
| 243 | FreeSegment->Prev = &SentinelSegment; |
| 244 | |
| 245 | // Our postconditions are: |
| 246 | DCHECK_EQ(Freelist->Prev, &SentinelSegment); |
| 247 | DCHECK_NE(FreeSegment, &SentinelSegment); |
| 248 | return FreeSegment; |
| 249 | } |
| 250 | |
| 251 | auto SegmentBlock = Alloc->Allocate(); |
| 252 | if (SegmentBlock.Data == nullptr) |
| 253 | return nullptr; |
| 254 | |
| 255 | // Placement-new the Segment element at the beginning of the SegmentBlock. |
| 256 | new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}}; |
| 257 | auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data); |
| 258 | return SB; |
| 259 | } |
| 260 | |
| 261 | Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT { |
| 262 | DCHECK_EQ(Head, &SentinelSegment); |
| 263 | DCHECK_EQ(Tail, &SentinelSegment); |
| 264 | auto S = NewSegment(); |
| 265 | if (S == nullptr) |
| 266 | return nullptr; |
| 267 | DCHECK_EQ(S->Next, &SentinelSegment); |
| 268 | DCHECK_EQ(S->Prev, &SentinelSegment); |
| 269 | DCHECK_NE(S, &SentinelSegment); |
| 270 | Head = S; |
| 271 | Tail = S; |
| 272 | DCHECK_EQ(Head, Tail); |
| 273 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 274 | DCHECK_EQ(Tail->Prev, &SentinelSegment); |
| 275 | return S; |
| 276 | } |
| 277 | |
| 278 | Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT { |
| 279 | auto S = NewSegment(); |
| 280 | if (S == nullptr) |
| 281 | return nullptr; |
| 282 | DCHECK_NE(Tail, &SentinelSegment); |
| 283 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 284 | DCHECK_EQ(S->Prev, &SentinelSegment); |
| 285 | DCHECK_EQ(S->Next, &SentinelSegment); |
| 286 | S->Prev = Tail; |
| 287 | Tail->Next = S; |
| 288 | Tail = S; |
| 289 | DCHECK_EQ(S, S->Prev->Next); |
| 290 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 291 | return S; |
| 292 | } |
| 293 | |
| 294 | public: |
| 295 | explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT |
| 296 | : Alloc(&A), |
| 297 | Head(&SentinelSegment), |
| 298 | Tail(&SentinelSegment), |
| 299 | Freelist(&SentinelSegment), |
| 300 | Size(0) {} |
| 301 | |
| 302 | Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr), |
| 303 | Head(&SentinelSegment), |
| 304 | Tail(&SentinelSegment), |
| 305 | Freelist(&SentinelSegment), |
| 306 | Size(0) {} |
| 307 | |
| 308 | Array(const Array &) = delete; |
| 309 | Array &operator=(const Array &) = delete; |
| 310 | |
| 311 | Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc), |
| 312 | Head(O.Head), |
| 313 | Tail(O.Tail), |
| 314 | Freelist(O.Freelist), |
| 315 | Size(O.Size) { |
| 316 | O.Alloc = nullptr; |
| 317 | O.Head = &SentinelSegment; |
| 318 | O.Tail = &SentinelSegment; |
| 319 | O.Size = 0; |
| 320 | O.Freelist = &SentinelSegment; |
| 321 | } |
| 322 | |
| 323 | Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT { |
| 324 | Alloc = O.Alloc; |
| 325 | O.Alloc = nullptr; |
| 326 | Head = O.Head; |
| 327 | O.Head = &SentinelSegment; |
| 328 | Tail = O.Tail; |
| 329 | O.Tail = &SentinelSegment; |
| 330 | Freelist = O.Freelist; |
| 331 | O.Freelist = &SentinelSegment; |
| 332 | Size = O.Size; |
| 333 | O.Size = 0; |
| 334 | return *this; |
| 335 | } |
| 336 | |
| 337 | ~Array() XRAY_NEVER_INSTRUMENT { |
| 338 | for (auto &E : *this) |
| 339 | (&E)->~T(); |
| 340 | } |
| 341 | |
| 342 | bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; } |
| 343 | |
| 344 | AllocatorType &allocator() const XRAY_NEVER_INSTRUMENT { |
| 345 | DCHECK_NE(Alloc, nullptr); |
| 346 | return *Alloc; |
| 347 | } |
| 348 | |
| 349 | uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; } |
| 350 | |
| 351 | template <class... Args> |
| 352 | T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT { |
| 353 | DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) || |
| 354 | (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment)); |
| 355 | if (UNLIKELY(Head == &SentinelSegment)) { |
| 356 | auto R = InitHeadAndTail(); |
| 357 | if (R == nullptr) |
| 358 | return nullptr; |
| 359 | } |
| 360 | |
| 361 | DCHECK_NE(Head, &SentinelSegment); |
| 362 | DCHECK_NE(Tail, &SentinelSegment); |
| 363 | |
| 364 | auto Offset = Size % ElementsPerSegment; |
| 365 | if (UNLIKELY(Size != 0 && Offset == 0)) |
| 366 | if (AppendNewSegment() == nullptr) |
| 367 | return nullptr; |
| 368 | |
| 369 | DCHECK_NE(Tail, &SentinelSegment); |
| 370 | auto Base = &Tail->Data; |
| 371 | auto AlignedOffset = Base + (Offset * AlignedElementStorageSize); |
| 372 | DCHECK_LE(AlignedOffset + sizeof(T), |
| 373 | reinterpret_cast<unsigned char *>(Base) + SegmentSize); |
| 374 | |
| 375 | // In-place construct at Position. |
| 376 | new (AlignedOffset) T{std::forward<Args>(args)...}; |
| 377 | ++Size; |
| 378 | return reinterpret_cast<T *>(AlignedOffset); |
| 379 | } |
| 380 | |
| 381 | T *Append(const T &E) XRAY_NEVER_INSTRUMENT { |
| 382 | // FIXME: This is a duplication of AppenEmplace with the copy semantics |
| 383 | // explicitly used, as a work-around to GCC 4.8 not invoking the copy |
| 384 | // constructor with the placement new with braced-init syntax. |
| 385 | DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) || |
| 386 | (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment)); |
| 387 | if (UNLIKELY(Head == &SentinelSegment)) { |
| 388 | auto R = InitHeadAndTail(); |
| 389 | if (R == nullptr) |
| 390 | return nullptr; |
| 391 | } |
| 392 | |
| 393 | DCHECK_NE(Head, &SentinelSegment); |
| 394 | DCHECK_NE(Tail, &SentinelSegment); |
| 395 | |
| 396 | auto Offset = Size % ElementsPerSegment; |
| 397 | if (UNLIKELY(Size != 0 && Offset == 0)) |
| 398 | if (AppendNewSegment() == nullptr) |
| 399 | return nullptr; |
| 400 | |
| 401 | DCHECK_NE(Tail, &SentinelSegment); |
| 402 | auto Base = &Tail->Data; |
| 403 | auto AlignedOffset = Base + (Offset * AlignedElementStorageSize); |
| 404 | DCHECK_LE(AlignedOffset + sizeof(T), |
| 405 | reinterpret_cast<unsigned char *>(Tail) + SegmentSize); |
| 406 | |
| 407 | // In-place construct at Position. |
| 408 | new (AlignedOffset) T(E); |
| 409 | ++Size; |
| 410 | return reinterpret_cast<T *>(AlignedOffset); |
| 411 | } |
| 412 | |
| 413 | T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT { |
| 414 | DCHECK_LE(Offset, Size); |
| 415 | // We need to traverse the array enough times to find the element at Offset. |
| 416 | auto S = Head; |
| 417 | while (Offset >= ElementsPerSegment) { |
| 418 | S = S->Next; |
| 419 | Offset -= ElementsPerSegment; |
| 420 | DCHECK_NE(S, &SentinelSegment); |
| 421 | } |
| 422 | auto Base = &S->Data; |
| 423 | auto AlignedOffset = Base + (Offset * AlignedElementStorageSize); |
| 424 | auto Position = reinterpret_cast<T *>(AlignedOffset); |
| 425 | return *reinterpret_cast<T *>(Position); |
| 426 | } |
| 427 | |
| 428 | T &front() const XRAY_NEVER_INSTRUMENT { |
| 429 | DCHECK_NE(Head, &SentinelSegment); |
| 430 | DCHECK_NE(Size, 0u); |
| 431 | return *begin(); |
| 432 | } |
| 433 | |
| 434 | T &back() const XRAY_NEVER_INSTRUMENT { |
| 435 | DCHECK_NE(Tail, &SentinelSegment); |
| 436 | DCHECK_NE(Size, 0u); |
| 437 | auto It = end(); |
| 438 | --It; |
| 439 | return *It; |
| 440 | } |
| 441 | |
| 442 | template <class Predicate> |
| 443 | T *find_element(Predicate P) const XRAY_NEVER_INSTRUMENT { |
| 444 | if (empty()) |
| 445 | return nullptr; |
| 446 | |
| 447 | auto E = end(); |
| 448 | for (auto I = begin(); I != E; ++I) |
| 449 | if (P(*I)) |
| 450 | return &(*I); |
| 451 | |
| 452 | return nullptr; |
| 453 | } |
| 454 | |
| 455 | /// Remove N Elements from the end. This leaves the blocks behind, and not |
| 456 | /// require allocation of new blocks for new elements added after trimming. |
| 457 | void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT { |
| 458 | auto OldSize = Size; |
| 459 | Elements = Elements > Size ? Size : Elements; |
| 460 | Size -= Elements; |
| 461 | |
| 462 | // We compute the number of segments we're going to return from the tail by |
| 463 | // counting how many elements have been trimmed. Given the following: |
| 464 | // |
| 465 | // - Each segment has N valid positions, where N > 0 |
| 466 | // - The previous size > current size |
| 467 | // |
| 468 | // To compute the number of segments to return, we need to perform the |
| 469 | // following calculations for the number of segments required given 'x' |
| 470 | // elements: |
| 471 | // |
| 472 | // f(x) = { |
| 473 | // x == 0 : 0 |
| 474 | // , 0 < x <= N : 1 |
| 475 | // , N < x <= max : x / N + (x % N ? 1 : 0) |
| 476 | // } |
| 477 | // |
| 478 | // We can simplify this down to: |
| 479 | // |
| 480 | // f(x) = { |
| 481 | // x == 0 : 0, |
| 482 | // , 0 < x <= max : x / N + (x < N || x % N ? 1 : 0) |
| 483 | // } |
| 484 | // |
| 485 | // And further down to: |
| 486 | // |
| 487 | // f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0 |
| 488 | // |
| 489 | // We can then perform the following calculation `s` which counts the number |
| 490 | // of segments we need to remove from the end of the data structure: |
| 491 | // |
| 492 | // s(p, c) = f(p) - f(c) |
| 493 | // |
| 494 | // If we treat p = previous size, and c = current size, and given the |
| 495 | // properties above, the possible range for s(...) is [0..max(typeof(p))/N] |
| 496 | // given that typeof(p) == typeof(c). |
| 497 | auto F = [](uint64_t X) { |
| 498 | return X ? (X / ElementsPerSegment) + |
| 499 | (X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0) |
| 500 | : 0; |
| 501 | }; |
| 502 | auto PS = F(OldSize); |
| 503 | auto CS = F(Size); |
| 504 | DCHECK_GE(PS, CS); |
| 505 | auto SegmentsToTrim = PS - CS; |
| 506 | for (auto I = 0uL; I < SegmentsToTrim; ++I) { |
| 507 | // Here we place the current tail segment to the freelist. To do this |
| 508 | // appropriately, we need to perform a splice operation on two |
| 509 | // bidirectional linked-lists. In particular, we have the current state of |
| 510 | // the doubly-linked list of segments: |
| 511 | // |
| 512 | // @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@ |
| 513 | // |
| 514 | DCHECK_NE(Head, &SentinelSegment); |
| 515 | DCHECK_NE(Tail, &SentinelSegment); |
| 516 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 517 | |
| 518 | if (Freelist == &SentinelSegment) { |
| 519 | // Our two lists at this point are in this configuration: |
| 520 | // |
| 521 | // Freelist: (potentially) @S@ |
| 522 | // Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@ |
| 523 | // ^ Head ^ Tail |
| 524 | // |
| 525 | // The end state for us will be this configuration: |
| 526 | // |
| 527 | // Freelist: @S@<-sT->@S@ |
| 528 | // Mainlist: @S@<-s0<->s1<->...<->sPT->@S@ |
| 529 | // ^ Head ^ Tail |
| 530 | // |
| 531 | // The first step for us is to hold a reference to the tail of Mainlist, |
| 532 | // which in our notation is represented by sT. We call this our "free |
| 533 | // segment" which is the segment we are placing on the Freelist. |
| 534 | // |
| 535 | // sF = sT |
| 536 | // |
| 537 | // Then, we also hold a reference to the "pre-tail" element, which we |
| 538 | // call sPT: |
| 539 | // |
| 540 | // sPT = pred(sT) |
| 541 | // |
| 542 | // We want to splice sT into the beginning of the Freelist, which in |
| 543 | // an empty Freelist means placing a segment whose predecessor and |
| 544 | // successor is the sentinel segment. |
| 545 | // |
| 546 | // The splice operation then can be performed in the following |
| 547 | // algorithm: |
| 548 | // |
| 549 | // succ(sPT) = S |
| 550 | // pred(sT) = S |
| 551 | // succ(sT) = Freelist |
| 552 | // Freelist = sT |
| 553 | // Tail = sPT |
| 554 | // |
| 555 | auto SPT = Tail->Prev; |
| 556 | SPT->Next = &SentinelSegment; |
| 557 | Tail->Prev = &SentinelSegment; |
| 558 | Tail->Next = Freelist; |
| 559 | Freelist = Tail; |
| 560 | Tail = SPT; |
| 561 | |
| 562 | // Our post-conditions here are: |
| 563 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 564 | DCHECK_EQ(Freelist->Prev, &SentinelSegment); |
| 565 | } else { |
| 566 | // In the other case, where the Freelist is not empty, we perform the |
| 567 | // following transformation instead: |
| 568 | // |
| 569 | // This transforms the current state: |
| 570 | // |
| 571 | // Freelist: @S@<-f0->@S@ |
| 572 | // ^ Freelist |
| 573 | // Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@ |
| 574 | // ^ Head ^ Tail |
| 575 | // |
| 576 | // Into the following: |
| 577 | // |
| 578 | // Freelist: @S@<-sT<->f0->@S@ |
| 579 | // ^ Freelist |
| 580 | // Mainlist: @S@<-s0<->s1<->...<->sPT->@S@ |
| 581 | // ^ Head ^ Tail |
| 582 | // |
| 583 | // The algorithm is: |
| 584 | // |
| 585 | // sFH = Freelist |
| 586 | // sPT = pred(sT) |
| 587 | // pred(SFH) = sT |
| 588 | // succ(sT) = Freelist |
| 589 | // pred(sT) = S |
| 590 | // succ(sPT) = S |
| 591 | // Tail = sPT |
| 592 | // Freelist = sT |
| 593 | // |
| 594 | auto SFH = Freelist; |
| 595 | auto SPT = Tail->Prev; |
| 596 | auto ST = Tail; |
| 597 | SFH->Prev = ST; |
| 598 | ST->Next = Freelist; |
| 599 | ST->Prev = &SentinelSegment; |
| 600 | SPT->Next = &SentinelSegment; |
| 601 | Tail = SPT; |
| 602 | Freelist = ST; |
| 603 | |
| 604 | // Our post-conditions here are: |
| 605 | DCHECK_EQ(Tail->Next, &SentinelSegment); |
| 606 | DCHECK_EQ(Freelist->Prev, &SentinelSegment); |
| 607 | DCHECK_EQ(Freelist->Next->Prev, Freelist); |
| 608 | } |
| 609 | } |
| 610 | |
| 611 | // Now in case we've spliced all the segments in the end, we ensure that the |
| 612 | // main list is "empty", or both the head and tail pointing to the sentinel |
| 613 | // segment. |
| 614 | if (Tail == &SentinelSegment) |
| 615 | Head = Tail; |
| 616 | |
| 617 | DCHECK( |
| 618 | (Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) || |
| 619 | (Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment)); |
| 620 | DCHECK( |
| 621 | (Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) || |
| 622 | (Freelist == &SentinelSegment && Tail->Next == &SentinelSegment)); |
| 623 | } |
| 624 | |
| 625 | // Provide iterators. |
| 626 | Iterator<T> begin() const XRAY_NEVER_INSTRUMENT { |
| 627 | return Iterator<T>(Head, 0, Size); |
| 628 | } |
| 629 | Iterator<T> end() const XRAY_NEVER_INSTRUMENT { |
| 630 | return Iterator<T>(Tail, Size, Size); |
| 631 | } |
| 632 | Iterator<const T> cbegin() const XRAY_NEVER_INSTRUMENT { |
| 633 | return Iterator<const T>(Head, 0, Size); |
| 634 | } |
| 635 | Iterator<const T> cend() const XRAY_NEVER_INSTRUMENT { |
| 636 | return Iterator<const T>(Tail, Size, Size); |
| 637 | } |
| 638 | }; |
| 639 | |
| 640 | // We need to have this storage definition out-of-line so that the compiler can |
| 641 | // ensure that storage for the SentinelSegment is defined and has a single |
| 642 | // address. |
| 643 | template <class T> |
| 644 | typename Array<T>::Segment Array<T>::SentinelSegment{ |
| 645 | .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: .Prev: &Array<T>::SentinelSegment, .Next: .Next: .Next: .Next: .Next: .Next: .Next: .Next: .Next: .Next: .Next: &Array<T>::SentinelSegment, .Data: .Data: .Data: .Data: .Data: .Data: .Data: .Data: .Data: .Data: .Data: {'\0'}}; |
| 646 | |
| 647 | } // namespace __xray |
| 648 | |
| 649 | #endif // XRAY_SEGMENTED_ARRAY_H |
| 650 | |