1 | //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is the internal per-function state used for llvm translation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
14 | #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H |
15 | |
16 | #include "CGBuilder.h" |
17 | #include "CGDebugInfo.h" |
18 | #include "CGLoopInfo.h" |
19 | #include "CGValue.h" |
20 | #include "CodeGenModule.h" |
21 | #include "CodeGenPGO.h" |
22 | #include "EHScopeStack.h" |
23 | #include "VarBypassDetector.h" |
24 | #include "clang/AST/CharUnits.h" |
25 | #include "clang/AST/CurrentSourceLocExprScope.h" |
26 | #include "clang/AST/ExprCXX.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/ExprOpenMP.h" |
29 | #include "clang/AST/StmtOpenACC.h" |
30 | #include "clang/AST/StmtOpenMP.h" |
31 | #include "clang/AST/Type.h" |
32 | #include "clang/Basic/ABI.h" |
33 | #include "clang/Basic/CapturedStmt.h" |
34 | #include "clang/Basic/CodeGenOptions.h" |
35 | #include "clang/Basic/OpenMPKinds.h" |
36 | #include "clang/Basic/TargetInfo.h" |
37 | #include "llvm/ADT/ArrayRef.h" |
38 | #include "llvm/ADT/DenseMap.h" |
39 | #include "llvm/ADT/MapVector.h" |
40 | #include "llvm/ADT/SmallVector.h" |
41 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
42 | #include "llvm/IR/Instructions.h" |
43 | #include "llvm/IR/ValueHandle.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Transforms/Utils/SanitizerStats.h" |
46 | #include <optional> |
47 | |
48 | namespace llvm { |
49 | class BasicBlock; |
50 | class LLVMContext; |
51 | class MDNode; |
52 | class SwitchInst; |
53 | class Twine; |
54 | class Value; |
55 | class CanonicalLoopInfo; |
56 | } |
57 | |
58 | namespace clang { |
59 | class ASTContext; |
60 | class CXXDestructorDecl; |
61 | class CXXForRangeStmt; |
62 | class CXXTryStmt; |
63 | class Decl; |
64 | class LabelDecl; |
65 | class FunctionDecl; |
66 | class FunctionProtoType; |
67 | class LabelStmt; |
68 | class ObjCContainerDecl; |
69 | class ObjCInterfaceDecl; |
70 | class ObjCIvarDecl; |
71 | class ObjCMethodDecl; |
72 | class ObjCImplementationDecl; |
73 | class ObjCPropertyImplDecl; |
74 | class TargetInfo; |
75 | class VarDecl; |
76 | class ObjCForCollectionStmt; |
77 | class ObjCAtTryStmt; |
78 | class ObjCAtThrowStmt; |
79 | class ObjCAtSynchronizedStmt; |
80 | class ObjCAutoreleasePoolStmt; |
81 | class OMPUseDevicePtrClause; |
82 | class OMPUseDeviceAddrClause; |
83 | class SVETypeFlags; |
84 | class OMPExecutableDirective; |
85 | |
86 | namespace analyze_os_log { |
87 | class OSLogBufferLayout; |
88 | } |
89 | |
90 | namespace CodeGen { |
91 | class CodeGenTypes; |
92 | class CGCallee; |
93 | class CGFunctionInfo; |
94 | class CGBlockInfo; |
95 | class CGCXXABI; |
96 | class BlockByrefHelpers; |
97 | class BlockByrefInfo; |
98 | class BlockFieldFlags; |
99 | class RegionCodeGenTy; |
100 | class TargetCodeGenInfo; |
101 | struct OMPTaskDataTy; |
102 | struct CGCoroData; |
103 | |
104 | /// The kind of evaluation to perform on values of a particular |
105 | /// type. Basically, is the code in CGExprScalar, CGExprComplex, or |
106 | /// CGExprAgg? |
107 | /// |
108 | /// TODO: should vectors maybe be split out into their own thing? |
109 | enum TypeEvaluationKind { |
110 | TEK_Scalar, |
111 | TEK_Complex, |
112 | TEK_Aggregate |
113 | }; |
114 | |
115 | #define LIST_SANITIZER_CHECKS \ |
116 | SANITIZER_CHECK(AddOverflow, add_overflow, 0) \ |
117 | SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0) \ |
118 | SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0) \ |
119 | SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0) \ |
120 | SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0) \ |
121 | SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0) \ |
122 | SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0) \ |
123 | SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0) \ |
124 | SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0) \ |
125 | SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0) \ |
126 | SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0) \ |
127 | SANITIZER_CHECK(MissingReturn, missing_return, 0) \ |
128 | SANITIZER_CHECK(MulOverflow, mul_overflow, 0) \ |
129 | SANITIZER_CHECK(NegateOverflow, negate_overflow, 0) \ |
130 | SANITIZER_CHECK(NullabilityArg, nullability_arg, 0) \ |
131 | SANITIZER_CHECK(NullabilityReturn, nullability_return, 1) \ |
132 | SANITIZER_CHECK(NonnullArg, nonnull_arg, 0) \ |
133 | SANITIZER_CHECK(NonnullReturn, nonnull_return, 1) \ |
134 | SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0) \ |
135 | SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0) \ |
136 | SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0) \ |
137 | SANITIZER_CHECK(SubOverflow, sub_overflow, 0) \ |
138 | SANITIZER_CHECK(TypeMismatch, type_mismatch, 1) \ |
139 | SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0) \ |
140 | SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0) \ |
141 | SANITIZER_CHECK(BoundsSafety, bounds_safety, 0) |
142 | |
143 | enum SanitizerHandler { |
144 | #define SANITIZER_CHECK(Enum, Name, Version) Enum, |
145 | LIST_SANITIZER_CHECKS |
146 | #undef SANITIZER_CHECK |
147 | }; |
148 | |
149 | /// Helper class with most of the code for saving a value for a |
150 | /// conditional expression cleanup. |
151 | struct DominatingLLVMValue { |
152 | typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; |
153 | |
154 | /// Answer whether the given value needs extra work to be saved. |
155 | static bool needsSaving(llvm::Value *value) { |
156 | if (!value) |
157 | return false; |
158 | |
159 | // If it's not an instruction, we don't need to save. |
160 | if (!isa<llvm::Instruction>(Val: value)) return false; |
161 | |
162 | // If it's an instruction in the entry block, we don't need to save. |
163 | llvm::BasicBlock *block = cast<llvm::Instruction>(Val: value)->getParent(); |
164 | return (block != &block->getParent()->getEntryBlock()); |
165 | } |
166 | |
167 | static saved_type save(CodeGenFunction &CGF, llvm::Value *value); |
168 | static llvm::Value *restore(CodeGenFunction &CGF, saved_type value); |
169 | }; |
170 | |
171 | /// A partial specialization of DominatingValue for llvm::Values that |
172 | /// might be llvm::Instructions. |
173 | template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { |
174 | typedef T *type; |
175 | static type restore(CodeGenFunction &CGF, saved_type value) { |
176 | return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); |
177 | } |
178 | }; |
179 | |
180 | /// A specialization of DominatingValue for Address. |
181 | template <> struct DominatingValue<Address> { |
182 | typedef Address type; |
183 | |
184 | struct saved_type { |
185 | DominatingLLVMValue::saved_type BasePtr; |
186 | llvm::Type *ElementType; |
187 | CharUnits Alignment; |
188 | DominatingLLVMValue::saved_type Offset; |
189 | llvm::PointerType *EffectiveType; |
190 | }; |
191 | |
192 | static bool needsSaving(type value) { |
193 | if (DominatingLLVMValue::needsSaving(value: value.getBasePointer()) || |
194 | DominatingLLVMValue::needsSaving(value: value.getOffset())) |
195 | return true; |
196 | return false; |
197 | } |
198 | static saved_type save(CodeGenFunction &CGF, type value) { |
199 | return {.BasePtr: DominatingLLVMValue::save(CGF, value: value.getBasePointer()), |
200 | .ElementType: value.getElementType(), .Alignment: value.getAlignment(), |
201 | .Offset: DominatingLLVMValue::save(CGF, value: value.getOffset()), .EffectiveType: value.getType()}; |
202 | } |
203 | static type restore(CodeGenFunction &CGF, saved_type value) { |
204 | return Address(DominatingLLVMValue::restore(CGF, value: value.BasePtr), |
205 | value.ElementType, value.Alignment, CGPointerAuthInfo(), |
206 | DominatingLLVMValue::restore(CGF, value: value.Offset)); |
207 | } |
208 | }; |
209 | |
210 | /// A specialization of DominatingValue for RValue. |
211 | template <> struct DominatingValue<RValue> { |
212 | typedef RValue type; |
213 | class saved_type { |
214 | enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, |
215 | AggregateAddress, ComplexAddress }; |
216 | union { |
217 | struct { |
218 | DominatingLLVMValue::saved_type first, second; |
219 | } Vals; |
220 | DominatingValue<Address>::saved_type AggregateAddr; |
221 | }; |
222 | LLVM_PREFERRED_TYPE(Kind) |
223 | unsigned K : 3; |
224 | |
225 | saved_type(DominatingLLVMValue::saved_type Val1, unsigned K) |
226 | : Vals{.first: Val1, .second: DominatingLLVMValue::saved_type()}, K(K) {} |
227 | |
228 | saved_type(DominatingLLVMValue::saved_type Val1, |
229 | DominatingLLVMValue::saved_type Val2) |
230 | : Vals{.first: Val1, .second: Val2}, K(ComplexAddress) {} |
231 | |
232 | saved_type(DominatingValue<Address>::saved_type AggregateAddr, unsigned K) |
233 | : AggregateAddr(AggregateAddr), K(K) {} |
234 | |
235 | public: |
236 | static bool needsSaving(RValue value); |
237 | static saved_type save(CodeGenFunction &CGF, RValue value); |
238 | RValue restore(CodeGenFunction &CGF); |
239 | |
240 | // implementations in CGCleanup.cpp |
241 | }; |
242 | |
243 | static bool needsSaving(type value) { |
244 | return saved_type::needsSaving(value); |
245 | } |
246 | static saved_type save(CodeGenFunction &CGF, type value) { |
247 | return saved_type::save(CGF, value); |
248 | } |
249 | static type restore(CodeGenFunction &CGF, saved_type value) { |
250 | return value.restore(CGF); |
251 | } |
252 | }; |
253 | |
254 | /// CodeGenFunction - This class organizes the per-function state that is used |
255 | /// while generating LLVM code. |
256 | class CodeGenFunction : public CodeGenTypeCache { |
257 | CodeGenFunction(const CodeGenFunction &) = delete; |
258 | void operator=(const CodeGenFunction &) = delete; |
259 | |
260 | friend class CGCXXABI; |
261 | public: |
262 | /// A jump destination is an abstract label, branching to which may |
263 | /// require a jump out through normal cleanups. |
264 | struct JumpDest { |
265 | JumpDest() : Block(nullptr), Index(0) {} |
266 | JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth, |
267 | unsigned Index) |
268 | : Block(Block), ScopeDepth(Depth), Index(Index) {} |
269 | |
270 | bool isValid() const { return Block != nullptr; } |
271 | llvm::BasicBlock *getBlock() const { return Block; } |
272 | EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } |
273 | unsigned getDestIndex() const { return Index; } |
274 | |
275 | // This should be used cautiously. |
276 | void setScopeDepth(EHScopeStack::stable_iterator depth) { |
277 | ScopeDepth = depth; |
278 | } |
279 | |
280 | private: |
281 | llvm::BasicBlock *Block; |
282 | EHScopeStack::stable_iterator ScopeDepth; |
283 | unsigned Index; |
284 | }; |
285 | |
286 | CodeGenModule &CGM; // Per-module state. |
287 | const TargetInfo &Target; |
288 | |
289 | // For EH/SEH outlined funclets, this field points to parent's CGF |
290 | CodeGenFunction *ParentCGF = nullptr; |
291 | |
292 | typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; |
293 | LoopInfoStack LoopStack; |
294 | CGBuilderTy Builder; |
295 | |
296 | // Stores variables for which we can't generate correct lifetime markers |
297 | // because of jumps. |
298 | VarBypassDetector Bypasses; |
299 | |
300 | /// List of recently emitted OMPCanonicalLoops. |
301 | /// |
302 | /// Since OMPCanonicalLoops are nested inside other statements (in particular |
303 | /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested |
304 | /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its |
305 | /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any |
306 | /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to |
307 | /// this stack when done. Entering a new loop requires clearing this list; it |
308 | /// either means we start parsing a new loop nest (in which case the previous |
309 | /// loop nest goes out of scope) or a second loop in the same level in which |
310 | /// case it would be ambiguous into which of the two (or more) loops the loop |
311 | /// nest would extend. |
312 | SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack; |
313 | |
314 | /// Stack to track the Logical Operator recursion nest for MC/DC. |
315 | SmallVector<const BinaryOperator *, 16> MCDCLogOpStack; |
316 | |
317 | /// Stack to track the controlled convergence tokens. |
318 | SmallVector<llvm::IntrinsicInst *, 4> ConvergenceTokenStack; |
319 | |
320 | /// Number of nested loop to be consumed by the last surrounding |
321 | /// loop-associated directive. |
322 | int ExpectedOMPLoopDepth = 0; |
323 | |
324 | // CodeGen lambda for loops and support for ordered clause |
325 | typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &, |
326 | JumpDest)> |
327 | CodeGenLoopTy; |
328 | typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation, |
329 | const unsigned, const bool)> |
330 | CodeGenOrderedTy; |
331 | |
332 | // Codegen lambda for loop bounds in worksharing loop constructs |
333 | typedef llvm::function_ref<std::pair<LValue, LValue>( |
334 | CodeGenFunction &, const OMPExecutableDirective &S)> |
335 | CodeGenLoopBoundsTy; |
336 | |
337 | // Codegen lambda for loop bounds in dispatch-based loop implementation |
338 | typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>( |
339 | CodeGenFunction &, const OMPExecutableDirective &S, Address LB, |
340 | Address UB)> |
341 | CodeGenDispatchBoundsTy; |
342 | |
343 | /// CGBuilder insert helper. This function is called after an |
344 | /// instruction is created using Builder. |
345 | void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, |
346 | llvm::BasicBlock::iterator InsertPt) const; |
347 | |
348 | /// CurFuncDecl - Holds the Decl for the current outermost |
349 | /// non-closure context. |
350 | const Decl *CurFuncDecl = nullptr; |
351 | /// CurCodeDecl - This is the inner-most code context, which includes blocks. |
352 | const Decl *CurCodeDecl = nullptr; |
353 | const CGFunctionInfo *CurFnInfo = nullptr; |
354 | QualType FnRetTy; |
355 | llvm::Function *CurFn = nullptr; |
356 | |
357 | /// Save Parameter Decl for coroutine. |
358 | llvm::SmallVector<const ParmVarDecl *, 4> FnArgs; |
359 | |
360 | // Holds coroutine data if the current function is a coroutine. We use a |
361 | // wrapper to manage its lifetime, so that we don't have to define CGCoroData |
362 | // in this header. |
363 | struct CGCoroInfo { |
364 | std::unique_ptr<CGCoroData> Data; |
365 | bool InSuspendBlock = false; |
366 | CGCoroInfo(); |
367 | ~CGCoroInfo(); |
368 | }; |
369 | CGCoroInfo CurCoro; |
370 | |
371 | bool isCoroutine() const { |
372 | return CurCoro.Data != nullptr; |
373 | } |
374 | |
375 | bool inSuspendBlock() const { |
376 | return isCoroutine() && CurCoro.InSuspendBlock; |
377 | } |
378 | |
379 | // Holds FramePtr for await_suspend wrapper generation, |
380 | // so that __builtin_coro_frame call can be lowered |
381 | // directly to value of its second argument |
382 | struct AwaitSuspendWrapperInfo { |
383 | llvm::Value *FramePtr = nullptr; |
384 | }; |
385 | AwaitSuspendWrapperInfo CurAwaitSuspendWrapper; |
386 | |
387 | // Generates wrapper function for `llvm.coro.await.suspend.*` intrinisics. |
388 | // It encapsulates SuspendExpr in a function, to separate it's body |
389 | // from the main coroutine to avoid miscompilations. Intrinisic |
390 | // is lowered to this function call in CoroSplit pass |
391 | // Function signature is: |
392 | // <type> __await_suspend_wrapper_<name>(ptr %awaiter, ptr %hdl) |
393 | // where type is one of (void, i1, ptr) |
394 | llvm::Function *generateAwaitSuspendWrapper(Twine const &CoroName, |
395 | Twine const &SuspendPointName, |
396 | CoroutineSuspendExpr const &S); |
397 | |
398 | /// CurGD - The GlobalDecl for the current function being compiled. |
399 | GlobalDecl CurGD; |
400 | |
401 | /// PrologueCleanupDepth - The cleanup depth enclosing all the |
402 | /// cleanups associated with the parameters. |
403 | EHScopeStack::stable_iterator PrologueCleanupDepth; |
404 | |
405 | /// ReturnBlock - Unified return block. |
406 | JumpDest ReturnBlock; |
407 | |
408 | /// ReturnValue - The temporary alloca to hold the return |
409 | /// value. This is invalid iff the function has no return value. |
410 | Address ReturnValue = Address::invalid(); |
411 | |
412 | /// ReturnValuePointer - The temporary alloca to hold a pointer to sret. |
413 | /// This is invalid if sret is not in use. |
414 | Address ReturnValuePointer = Address::invalid(); |
415 | |
416 | /// If a return statement is being visited, this holds the return statment's |
417 | /// result expression. |
418 | const Expr *RetExpr = nullptr; |
419 | |
420 | /// Return true if a label was seen in the current scope. |
421 | bool hasLabelBeenSeenInCurrentScope() const { |
422 | if (CurLexicalScope) |
423 | return CurLexicalScope->hasLabels(); |
424 | return !LabelMap.empty(); |
425 | } |
426 | |
427 | /// AllocaInsertPoint - This is an instruction in the entry block before which |
428 | /// we prefer to insert allocas. |
429 | llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; |
430 | |
431 | private: |
432 | /// PostAllocaInsertPt - This is a place in the prologue where code can be |
433 | /// inserted that will be dominated by all the static allocas. This helps |
434 | /// achieve two things: |
435 | /// 1. Contiguity of all static allocas (within the prologue) is maintained. |
436 | /// 2. All other prologue code (which are dominated by static allocas) do |
437 | /// appear in the source order immediately after all static allocas. |
438 | /// |
439 | /// PostAllocaInsertPt will be lazily created when it is *really* required. |
440 | llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr; |
441 | |
442 | public: |
443 | /// Return PostAllocaInsertPt. If it is not yet created, then insert it |
444 | /// immediately after AllocaInsertPt. |
445 | llvm::Instruction *getPostAllocaInsertPoint() { |
446 | if (!PostAllocaInsertPt) { |
447 | assert(AllocaInsertPt && |
448 | "Expected static alloca insertion point at function prologue" ); |
449 | assert(AllocaInsertPt->getParent()->isEntryBlock() && |
450 | "EBB should be entry block of the current code gen function" ); |
451 | PostAllocaInsertPt = AllocaInsertPt->clone(); |
452 | PostAllocaInsertPt->setName("postallocapt" ); |
453 | PostAllocaInsertPt->insertAfter(InsertPos: AllocaInsertPt); |
454 | } |
455 | |
456 | return PostAllocaInsertPt; |
457 | } |
458 | |
459 | /// API for captured statement code generation. |
460 | class CGCapturedStmtInfo { |
461 | public: |
462 | explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) |
463 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} |
464 | explicit CGCapturedStmtInfo(const CapturedStmt &S, |
465 | CapturedRegionKind K = CR_Default) |
466 | : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { |
467 | |
468 | RecordDecl::field_iterator Field = |
469 | S.getCapturedRecordDecl()->field_begin(); |
470 | for (CapturedStmt::const_capture_iterator I = S.capture_begin(), |
471 | E = S.capture_end(); |
472 | I != E; ++I, ++Field) { |
473 | if (I->capturesThis()) |
474 | CXXThisFieldDecl = *Field; |
475 | else if (I->capturesVariable()) |
476 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
477 | else if (I->capturesVariableByCopy()) |
478 | CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field; |
479 | } |
480 | } |
481 | |
482 | virtual ~CGCapturedStmtInfo(); |
483 | |
484 | CapturedRegionKind getKind() const { return Kind; } |
485 | |
486 | virtual void setContextValue(llvm::Value *V) { ThisValue = V; } |
487 | // Retrieve the value of the context parameter. |
488 | virtual llvm::Value *getContextValue() const { return ThisValue; } |
489 | |
490 | /// Lookup the captured field decl for a variable. |
491 | virtual const FieldDecl *lookup(const VarDecl *VD) const { |
492 | return CaptureFields.lookup(Val: VD->getCanonicalDecl()); |
493 | } |
494 | |
495 | bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } |
496 | virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } |
497 | |
498 | static bool classof(const CGCapturedStmtInfo *) { |
499 | return true; |
500 | } |
501 | |
502 | /// Emit the captured statement body. |
503 | virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { |
504 | CGF.incrementProfileCounter(S); |
505 | CGF.EmitStmt(S); |
506 | } |
507 | |
508 | /// Get the name of the capture helper. |
509 | virtual StringRef getHelperName() const { return "__captured_stmt" ; } |
510 | |
511 | /// Get the CaptureFields |
512 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() { |
513 | return CaptureFields; |
514 | } |
515 | |
516 | private: |
517 | /// The kind of captured statement being generated. |
518 | CapturedRegionKind Kind; |
519 | |
520 | /// Keep the map between VarDecl and FieldDecl. |
521 | llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; |
522 | |
523 | /// The base address of the captured record, passed in as the first |
524 | /// argument of the parallel region function. |
525 | llvm::Value *ThisValue; |
526 | |
527 | /// Captured 'this' type. |
528 | FieldDecl *CXXThisFieldDecl; |
529 | }; |
530 | CGCapturedStmtInfo *CapturedStmtInfo = nullptr; |
531 | |
532 | /// RAII for correct setting/restoring of CapturedStmtInfo. |
533 | class CGCapturedStmtRAII { |
534 | private: |
535 | CodeGenFunction &CGF; |
536 | CGCapturedStmtInfo *PrevCapturedStmtInfo; |
537 | public: |
538 | CGCapturedStmtRAII(CodeGenFunction &CGF, |
539 | CGCapturedStmtInfo *NewCapturedStmtInfo) |
540 | : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { |
541 | CGF.CapturedStmtInfo = NewCapturedStmtInfo; |
542 | } |
543 | ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } |
544 | }; |
545 | |
546 | /// An abstract representation of regular/ObjC call/message targets. |
547 | class AbstractCallee { |
548 | /// The function declaration of the callee. |
549 | const Decl *CalleeDecl; |
550 | |
551 | public: |
552 | AbstractCallee() : CalleeDecl(nullptr) {} |
553 | AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {} |
554 | AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {} |
555 | bool hasFunctionDecl() const { |
556 | return isa_and_nonnull<FunctionDecl>(Val: CalleeDecl); |
557 | } |
558 | const Decl *getDecl() const { return CalleeDecl; } |
559 | unsigned getNumParams() const { |
560 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
561 | return FD->getNumParams(); |
562 | return cast<ObjCMethodDecl>(Val: CalleeDecl)->param_size(); |
563 | } |
564 | const ParmVarDecl *getParamDecl(unsigned I) const { |
565 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CalleeDecl)) |
566 | return FD->getParamDecl(i: I); |
567 | return *(cast<ObjCMethodDecl>(Val: CalleeDecl)->param_begin() + I); |
568 | } |
569 | }; |
570 | |
571 | /// Sanitizers enabled for this function. |
572 | SanitizerSet SanOpts; |
573 | |
574 | /// True if CodeGen currently emits code implementing sanitizer checks. |
575 | bool IsSanitizerScope = false; |
576 | |
577 | /// RAII object to set/unset CodeGenFunction::IsSanitizerScope. |
578 | class SanitizerScope { |
579 | CodeGenFunction *CGF; |
580 | public: |
581 | SanitizerScope(CodeGenFunction *CGF); |
582 | ~SanitizerScope(); |
583 | }; |
584 | |
585 | /// In C++, whether we are code generating a thunk. This controls whether we |
586 | /// should emit cleanups. |
587 | bool CurFuncIsThunk = false; |
588 | |
589 | /// In ARC, whether we should autorelease the return value. |
590 | bool AutoreleaseResult = false; |
591 | |
592 | /// Whether we processed a Microsoft-style asm block during CodeGen. These can |
593 | /// potentially set the return value. |
594 | bool SawAsmBlock = false; |
595 | |
596 | GlobalDecl CurSEHParent; |
597 | |
598 | /// True if the current function is an outlined SEH helper. This can be a |
599 | /// finally block or filter expression. |
600 | bool IsOutlinedSEHHelper = false; |
601 | |
602 | /// True if CodeGen currently emits code inside presereved access index |
603 | /// region. |
604 | bool IsInPreservedAIRegion = false; |
605 | |
606 | /// True if the current statement has nomerge attribute. |
607 | bool InNoMergeAttributedStmt = false; |
608 | |
609 | /// True if the current statement has noinline attribute. |
610 | bool InNoInlineAttributedStmt = false; |
611 | |
612 | /// True if the current statement has always_inline attribute. |
613 | bool InAlwaysInlineAttributedStmt = false; |
614 | |
615 | // The CallExpr within the current statement that the musttail attribute |
616 | // applies to. nullptr if there is no 'musttail' on the current statement. |
617 | const CallExpr *MustTailCall = nullptr; |
618 | |
619 | /// Returns true if a function must make progress, which means the |
620 | /// mustprogress attribute can be added. |
621 | bool checkIfFunctionMustProgress() { |
622 | if (CGM.getCodeGenOpts().getFiniteLoops() == |
623 | CodeGenOptions::FiniteLoopsKind::Never) |
624 | return false; |
625 | |
626 | // C++11 and later guarantees that a thread eventually will do one of the |
627 | // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1): |
628 | // - terminate, |
629 | // - make a call to a library I/O function, |
630 | // - perform an access through a volatile glvalue, or |
631 | // - perform a synchronization operation or an atomic operation. |
632 | // |
633 | // Hence each function is 'mustprogress' in C++11 or later. |
634 | return getLangOpts().CPlusPlus11; |
635 | } |
636 | |
637 | /// Returns true if a loop must make progress, which means the mustprogress |
638 | /// attribute can be added. \p HasConstantCond indicates whether the branch |
639 | /// condition is a known constant. |
640 | bool checkIfLoopMustProgress(const Expr *, bool HasEmptyBody); |
641 | |
642 | const CodeGen::CGBlockInfo *BlockInfo = nullptr; |
643 | llvm::Value *BlockPointer = nullptr; |
644 | |
645 | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
646 | FieldDecl *LambdaThisCaptureField = nullptr; |
647 | |
648 | /// A mapping from NRVO variables to the flags used to indicate |
649 | /// when the NRVO has been applied to this variable. |
650 | llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; |
651 | |
652 | EHScopeStack EHStack; |
653 | llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; |
654 | |
655 | // A stack of cleanups which were added to EHStack but have to be deactivated |
656 | // later before being popped or emitted. These are usually deactivated on |
657 | // exiting a `CleanupDeactivationScope` scope. For instance, after a |
658 | // full-expr. |
659 | // |
660 | // These are specially useful for correctly emitting cleanups while |
661 | // encountering branches out of expression (through stmt-expr or coroutine |
662 | // suspensions). |
663 | struct DeferredDeactivateCleanup { |
664 | EHScopeStack::stable_iterator Cleanup; |
665 | llvm::Instruction *DominatingIP; |
666 | }; |
667 | llvm::SmallVector<DeferredDeactivateCleanup> DeferredDeactivationCleanupStack; |
668 | |
669 | // Enters a new scope for capturing cleanups which are deferred to be |
670 | // deactivated, all of which will be deactivated once the scope is exited. |
671 | struct CleanupDeactivationScope { |
672 | CodeGenFunction &CGF; |
673 | size_t OldDeactivateCleanupStackSize; |
674 | bool Deactivated; |
675 | CleanupDeactivationScope(CodeGenFunction &CGF) |
676 | : CGF(CGF), OldDeactivateCleanupStackSize( |
677 | CGF.DeferredDeactivationCleanupStack.size()), |
678 | Deactivated(false) {} |
679 | |
680 | void ForceDeactivate() { |
681 | assert(!Deactivated && "Deactivating already deactivated scope" ); |
682 | auto &Stack = CGF.DeferredDeactivationCleanupStack; |
683 | for (size_t I = Stack.size(); I > OldDeactivateCleanupStackSize; I--) { |
684 | CGF.DeactivateCleanupBlock(Cleanup: Stack[I - 1].Cleanup, |
685 | DominatingIP: Stack[I - 1].DominatingIP); |
686 | Stack[I - 1].DominatingIP->eraseFromParent(); |
687 | } |
688 | Stack.resize(N: OldDeactivateCleanupStackSize); |
689 | Deactivated = true; |
690 | } |
691 | |
692 | ~CleanupDeactivationScope() { |
693 | if (Deactivated) |
694 | return; |
695 | ForceDeactivate(); |
696 | } |
697 | }; |
698 | |
699 | llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; |
700 | |
701 | llvm::Instruction *CurrentFuncletPad = nullptr; |
702 | |
703 | class CallLifetimeEnd final : public EHScopeStack::Cleanup { |
704 | bool isRedundantBeforeReturn() override { return true; } |
705 | |
706 | llvm::Value *Addr; |
707 | llvm::Value *Size; |
708 | |
709 | public: |
710 | CallLifetimeEnd(RawAddress addr, llvm::Value *size) |
711 | : Addr(addr.getPointer()), Size(size) {} |
712 | |
713 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
714 | CGF.EmitLifetimeEnd(Size, Addr); |
715 | } |
716 | }; |
717 | |
718 | /// Header for data within LifetimeExtendedCleanupStack. |
719 | struct { |
720 | /// The size of the following cleanup object. |
721 | unsigned ; |
722 | /// The kind of cleanup to push. |
723 | LLVM_PREFERRED_TYPE(CleanupKind) |
724 | unsigned : 31; |
725 | /// Whether this is a conditional cleanup. |
726 | LLVM_PREFERRED_TYPE(bool) |
727 | unsigned : 1; |
728 | |
729 | size_t () const { return Size; } |
730 | CleanupKind () const { return (CleanupKind)Kind; } |
731 | bool () const { return IsConditional; } |
732 | }; |
733 | |
734 | /// i32s containing the indexes of the cleanup destinations. |
735 | RawAddress NormalCleanupDest = RawAddress::invalid(); |
736 | |
737 | unsigned NextCleanupDestIndex = 1; |
738 | |
739 | /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. |
740 | llvm::BasicBlock *EHResumeBlock = nullptr; |
741 | |
742 | /// The exception slot. All landing pads write the current exception pointer |
743 | /// into this alloca. |
744 | llvm::Value *ExceptionSlot = nullptr; |
745 | |
746 | /// The selector slot. Under the MandatoryCleanup model, all landing pads |
747 | /// write the current selector value into this alloca. |
748 | llvm::AllocaInst *EHSelectorSlot = nullptr; |
749 | |
750 | /// A stack of exception code slots. Entering an __except block pushes a slot |
751 | /// on the stack and leaving pops one. The __exception_code() intrinsic loads |
752 | /// a value from the top of the stack. |
753 | SmallVector<Address, 1> SEHCodeSlotStack; |
754 | |
755 | /// Value returned by __exception_info intrinsic. |
756 | llvm::Value *SEHInfo = nullptr; |
757 | |
758 | /// Emits a landing pad for the current EH stack. |
759 | llvm::BasicBlock *EmitLandingPad(); |
760 | |
761 | llvm::BasicBlock *getInvokeDestImpl(); |
762 | |
763 | /// Parent loop-based directive for scan directive. |
764 | const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr; |
765 | llvm::BasicBlock *OMPBeforeScanBlock = nullptr; |
766 | llvm::BasicBlock *OMPAfterScanBlock = nullptr; |
767 | llvm::BasicBlock *OMPScanExitBlock = nullptr; |
768 | llvm::BasicBlock *OMPScanDispatch = nullptr; |
769 | bool OMPFirstScanLoop = false; |
770 | |
771 | /// Manages parent directive for scan directives. |
772 | class ParentLoopDirectiveForScanRegion { |
773 | CodeGenFunction &CGF; |
774 | const OMPExecutableDirective *ParentLoopDirectiveForScan; |
775 | |
776 | public: |
777 | ParentLoopDirectiveForScanRegion( |
778 | CodeGenFunction &CGF, |
779 | const OMPExecutableDirective &ParentLoopDirectiveForScan) |
780 | : CGF(CGF), |
781 | ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) { |
782 | CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan; |
783 | } |
784 | ~ParentLoopDirectiveForScanRegion() { |
785 | CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan; |
786 | } |
787 | }; |
788 | |
789 | template <class T> |
790 | typename DominatingValue<T>::saved_type saveValueInCond(T value) { |
791 | return DominatingValue<T>::save(*this, value); |
792 | } |
793 | |
794 | class CGFPOptionsRAII { |
795 | public: |
796 | CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures); |
797 | CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E); |
798 | ~CGFPOptionsRAII(); |
799 | |
800 | private: |
801 | void ConstructorHelper(FPOptions FPFeatures); |
802 | CodeGenFunction &CGF; |
803 | FPOptions OldFPFeatures; |
804 | llvm::fp::ExceptionBehavior OldExcept; |
805 | llvm::RoundingMode OldRounding; |
806 | std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard; |
807 | }; |
808 | FPOptions CurFPFeatures; |
809 | |
810 | public: |
811 | /// ObjCEHValueStack - Stack of Objective-C exception values, used for |
812 | /// rethrows. |
813 | SmallVector<llvm::Value*, 8> ObjCEHValueStack; |
814 | |
815 | /// A class controlling the emission of a finally block. |
816 | class FinallyInfo { |
817 | /// Where the catchall's edge through the cleanup should go. |
818 | JumpDest RethrowDest; |
819 | |
820 | /// A function to call to enter the catch. |
821 | llvm::FunctionCallee BeginCatchFn; |
822 | |
823 | /// An i1 variable indicating whether or not the @finally is |
824 | /// running for an exception. |
825 | llvm::AllocaInst *ForEHVar = nullptr; |
826 | |
827 | /// An i8* variable into which the exception pointer to rethrow |
828 | /// has been saved. |
829 | llvm::AllocaInst *SavedExnVar = nullptr; |
830 | |
831 | public: |
832 | void enter(CodeGenFunction &CGF, const Stmt *Finally, |
833 | llvm::FunctionCallee beginCatchFn, |
834 | llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn); |
835 | void exit(CodeGenFunction &CGF); |
836 | }; |
837 | |
838 | /// Returns true inside SEH __try blocks. |
839 | bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } |
840 | |
841 | /// Returns true while emitting a cleanuppad. |
842 | bool isCleanupPadScope() const { |
843 | return CurrentFuncletPad && isa<llvm::CleanupPadInst>(Val: CurrentFuncletPad); |
844 | } |
845 | |
846 | /// pushFullExprCleanup - Push a cleanup to be run at the end of the |
847 | /// current full-expression. Safe against the possibility that |
848 | /// we're currently inside a conditionally-evaluated expression. |
849 | template <class T, class... As> |
850 | void pushFullExprCleanup(CleanupKind kind, As... A) { |
851 | // If we're not in a conditional branch, or if none of the |
852 | // arguments requires saving, then use the unconditional cleanup. |
853 | if (!isInConditionalBranch()) |
854 | return EHStack.pushCleanup<T>(kind, A...); |
855 | |
856 | // Stash values in a tuple so we can guarantee the order of saves. |
857 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
858 | SavedTuple Saved{saveValueInCond(A)...}; |
859 | |
860 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
861 | EHStack.pushCleanupTuple<CleanupType>(kind, Saved); |
862 | initFullExprCleanup(); |
863 | } |
864 | |
865 | /// Queue a cleanup to be pushed after finishing the current full-expression, |
866 | /// potentially with an active flag. |
867 | template <class T, class... As> |
868 | void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { |
869 | if (!isInConditionalBranch()) |
870 | return pushCleanupAfterFullExprWithActiveFlag<T>( |
871 | Kind, RawAddress::invalid(), A...); |
872 | |
873 | RawAddress ActiveFlag = createCleanupActiveFlag(); |
874 | assert(!DominatingValue<Address>::needsSaving(ActiveFlag) && |
875 | "cleanup active flag should never need saving" ); |
876 | |
877 | typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; |
878 | SavedTuple Saved{saveValueInCond(A)...}; |
879 | |
880 | typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; |
881 | pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved); |
882 | } |
883 | |
884 | template <class T, class... As> |
885 | void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind, |
886 | RawAddress ActiveFlag, As... A) { |
887 | LifetimeExtendedCleanupHeader = {.Size: sizeof(T), .Kind: Kind, |
888 | .IsConditional: ActiveFlag.isValid()}; |
889 | |
890 | size_t OldSize = LifetimeExtendedCleanupStack.size(); |
891 | LifetimeExtendedCleanupStack.resize( |
892 | N: LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size + |
893 | (Header.IsConditional ? sizeof(ActiveFlag) : 0)); |
894 | |
895 | static_assert(sizeof(Header) % alignof(T) == 0, |
896 | "Cleanup will be allocated on misaligned address" ); |
897 | char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; |
898 | new (Buffer) LifetimeExtendedCleanupHeader(Header); |
899 | new (Buffer + sizeof(Header)) T(A...); |
900 | if (Header.IsConditional) |
901 | new (Buffer + sizeof(Header) + sizeof(T)) RawAddress(ActiveFlag); |
902 | } |
903 | |
904 | // Push a cleanup onto EHStack and deactivate it later. It is usually |
905 | // deactivated when exiting a `CleanupDeactivationScope` (for example: after a |
906 | // full expression). |
907 | template <class T, class... As> |
908 | void pushCleanupAndDeferDeactivation(CleanupKind Kind, As... A) { |
909 | // Placeholder dominating IP for this cleanup. |
910 | llvm::Instruction *DominatingIP = |
911 | Builder.CreateFlagLoad(Addr: llvm::Constant::getNullValue(Ty: Int8PtrTy)); |
912 | EHStack.pushCleanup<T>(Kind, A...); |
913 | DeferredDeactivationCleanupStack.push_back( |
914 | Elt: {.Cleanup: EHStack.stable_begin(), .DominatingIP: DominatingIP}); |
915 | } |
916 | |
917 | /// Set up the last cleanup that was pushed as a conditional |
918 | /// full-expression cleanup. |
919 | void initFullExprCleanup() { |
920 | initFullExprCleanupWithFlag(ActiveFlag: createCleanupActiveFlag()); |
921 | } |
922 | |
923 | void initFullExprCleanupWithFlag(RawAddress ActiveFlag); |
924 | RawAddress createCleanupActiveFlag(); |
925 | |
926 | /// PushDestructorCleanup - Push a cleanup to call the |
927 | /// complete-object destructor of an object of the given type at the |
928 | /// given address. Does nothing if T is not a C++ class type with a |
929 | /// non-trivial destructor. |
930 | void PushDestructorCleanup(QualType T, Address Addr); |
931 | |
932 | /// PushDestructorCleanup - Push a cleanup to call the |
933 | /// complete-object variant of the given destructor on the object at |
934 | /// the given address. |
935 | void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T, |
936 | Address Addr); |
937 | |
938 | /// PopCleanupBlock - Will pop the cleanup entry on the stack and |
939 | /// process all branch fixups. |
940 | void PopCleanupBlock(bool FallThroughIsBranchThrough = false, |
941 | bool ForDeactivation = false); |
942 | |
943 | /// DeactivateCleanupBlock - Deactivates the given cleanup block. |
944 | /// The block cannot be reactivated. Pops it if it's the top of the |
945 | /// stack. |
946 | /// |
947 | /// \param DominatingIP - An instruction which is known to |
948 | /// dominate the current IP (if set) and which lies along |
949 | /// all paths of execution between the current IP and the |
950 | /// the point at which the cleanup comes into scope. |
951 | void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
952 | llvm::Instruction *DominatingIP); |
953 | |
954 | /// ActivateCleanupBlock - Activates an initially-inactive cleanup. |
955 | /// Cannot be used to resurrect a deactivated cleanup. |
956 | /// |
957 | /// \param DominatingIP - An instruction which is known to |
958 | /// dominate the current IP (if set) and which lies along |
959 | /// all paths of execution between the current IP and the |
960 | /// the point at which the cleanup comes into scope. |
961 | void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, |
962 | llvm::Instruction *DominatingIP); |
963 | |
964 | /// Enters a new scope for capturing cleanups, all of which |
965 | /// will be executed once the scope is exited. |
966 | class RunCleanupsScope { |
967 | EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth; |
968 | size_t LifetimeExtendedCleanupStackSize; |
969 | CleanupDeactivationScope DeactivateCleanups; |
970 | bool OldDidCallStackSave; |
971 | protected: |
972 | bool PerformCleanup; |
973 | private: |
974 | |
975 | RunCleanupsScope(const RunCleanupsScope &) = delete; |
976 | void operator=(const RunCleanupsScope &) = delete; |
977 | |
978 | protected: |
979 | CodeGenFunction& CGF; |
980 | |
981 | public: |
982 | /// Enter a new cleanup scope. |
983 | explicit RunCleanupsScope(CodeGenFunction &CGF) |
984 | : DeactivateCleanups(CGF), PerformCleanup(true), CGF(CGF) { |
985 | CleanupStackDepth = CGF.EHStack.stable_begin(); |
986 | LifetimeExtendedCleanupStackSize = |
987 | CGF.LifetimeExtendedCleanupStack.size(); |
988 | OldDidCallStackSave = CGF.DidCallStackSave; |
989 | CGF.DidCallStackSave = false; |
990 | OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth; |
991 | CGF.CurrentCleanupScopeDepth = CleanupStackDepth; |
992 | } |
993 | |
994 | /// Exit this cleanup scope, emitting any accumulated cleanups. |
995 | ~RunCleanupsScope() { |
996 | if (PerformCleanup) |
997 | ForceCleanup(); |
998 | } |
999 | |
1000 | /// Determine whether this scope requires any cleanups. |
1001 | bool requiresCleanups() const { |
1002 | return CGF.EHStack.stable_begin() != CleanupStackDepth; |
1003 | } |
1004 | |
1005 | /// Force the emission of cleanups now, instead of waiting |
1006 | /// until this object is destroyed. |
1007 | /// \param ValuesToReload - A list of values that need to be available at |
1008 | /// the insertion point after cleanup emission. If cleanup emission created |
1009 | /// a shared cleanup block, these value pointers will be rewritten. |
1010 | /// Otherwise, they not will be modified. |
1011 | void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) { |
1012 | assert(PerformCleanup && "Already forced cleanup" ); |
1013 | CGF.DidCallStackSave = OldDidCallStackSave; |
1014 | DeactivateCleanups.ForceDeactivate(); |
1015 | CGF.PopCleanupBlocks(OldCleanupStackSize: CleanupStackDepth, OldLifetimeExtendedStackSize: LifetimeExtendedCleanupStackSize, |
1016 | ValuesToReload); |
1017 | PerformCleanup = false; |
1018 | CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth; |
1019 | } |
1020 | }; |
1021 | |
1022 | // Cleanup stack depth of the RunCleanupsScope that was pushed most recently. |
1023 | EHScopeStack::stable_iterator CurrentCleanupScopeDepth = |
1024 | EHScopeStack::stable_end(); |
1025 | |
1026 | class LexicalScope : public RunCleanupsScope { |
1027 | SourceRange Range; |
1028 | SmallVector<const LabelDecl*, 4> Labels; |
1029 | LexicalScope *ParentScope; |
1030 | |
1031 | LexicalScope(const LexicalScope &) = delete; |
1032 | void operator=(const LexicalScope &) = delete; |
1033 | |
1034 | public: |
1035 | /// Enter a new cleanup scope. |
1036 | explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) |
1037 | : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { |
1038 | CGF.CurLexicalScope = this; |
1039 | if (CGDebugInfo *DI = CGF.getDebugInfo()) |
1040 | DI->EmitLexicalBlockStart(Builder&: CGF.Builder, Loc: Range.getBegin()); |
1041 | } |
1042 | |
1043 | void addLabel(const LabelDecl *label) { |
1044 | assert(PerformCleanup && "adding label to dead scope?" ); |
1045 | Labels.push_back(Elt: label); |
1046 | } |
1047 | |
1048 | /// Exit this cleanup scope, emitting any accumulated |
1049 | /// cleanups. |
1050 | ~LexicalScope() { |
1051 | if (CGDebugInfo *DI = CGF.getDebugInfo()) |
1052 | DI->EmitLexicalBlockEnd(Builder&: CGF.Builder, Loc: Range.getEnd()); |
1053 | |
1054 | // If we should perform a cleanup, force them now. Note that |
1055 | // this ends the cleanup scope before rescoping any labels. |
1056 | if (PerformCleanup) { |
1057 | ApplyDebugLocation DL(CGF, Range.getEnd()); |
1058 | ForceCleanup(); |
1059 | } |
1060 | } |
1061 | |
1062 | /// Force the emission of cleanups now, instead of waiting |
1063 | /// until this object is destroyed. |
1064 | void ForceCleanup() { |
1065 | CGF.CurLexicalScope = ParentScope; |
1066 | RunCleanupsScope::ForceCleanup(); |
1067 | |
1068 | if (!Labels.empty()) |
1069 | rescopeLabels(); |
1070 | } |
1071 | |
1072 | bool hasLabels() const { |
1073 | return !Labels.empty(); |
1074 | } |
1075 | |
1076 | void rescopeLabels(); |
1077 | }; |
1078 | |
1079 | typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; |
1080 | |
1081 | /// The class used to assign some variables some temporarily addresses. |
1082 | class OMPMapVars { |
1083 | DeclMapTy SavedLocals; |
1084 | DeclMapTy SavedTempAddresses; |
1085 | OMPMapVars(const OMPMapVars &) = delete; |
1086 | void operator=(const OMPMapVars &) = delete; |
1087 | |
1088 | public: |
1089 | explicit OMPMapVars() = default; |
1090 | ~OMPMapVars() { |
1091 | assert(SavedLocals.empty() && "Did not restored original addresses." ); |
1092 | }; |
1093 | |
1094 | /// Sets the address of the variable \p LocalVD to be \p TempAddr in |
1095 | /// function \p CGF. |
1096 | /// \return true if at least one variable was set already, false otherwise. |
1097 | bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD, |
1098 | Address TempAddr) { |
1099 | LocalVD = LocalVD->getCanonicalDecl(); |
1100 | // Only save it once. |
1101 | if (SavedLocals.count(Val: LocalVD)) return false; |
1102 | |
1103 | // Copy the existing local entry to SavedLocals. |
1104 | auto it = CGF.LocalDeclMap.find(Val: LocalVD); |
1105 | if (it != CGF.LocalDeclMap.end()) |
1106 | SavedLocals.try_emplace(Key: LocalVD, Args&: it->second); |
1107 | else |
1108 | SavedLocals.try_emplace(Key: LocalVD, Args: Address::invalid()); |
1109 | |
1110 | // Generate the private entry. |
1111 | QualType VarTy = LocalVD->getType(); |
1112 | if (VarTy->isReferenceType()) { |
1113 | Address Temp = CGF.CreateMemTemp(T: VarTy); |
1114 | CGF.Builder.CreateStore(Val: TempAddr.emitRawPointer(CGF), Addr: Temp); |
1115 | TempAddr = Temp; |
1116 | } |
1117 | SavedTempAddresses.try_emplace(Key: LocalVD, Args&: TempAddr); |
1118 | |
1119 | return true; |
1120 | } |
1121 | |
1122 | /// Applies new addresses to the list of the variables. |
1123 | /// \return true if at least one variable is using new address, false |
1124 | /// otherwise. |
1125 | bool apply(CodeGenFunction &CGF) { |
1126 | copyInto(Src: SavedTempAddresses, Dest&: CGF.LocalDeclMap); |
1127 | SavedTempAddresses.clear(); |
1128 | return !SavedLocals.empty(); |
1129 | } |
1130 | |
1131 | /// Restores original addresses of the variables. |
1132 | void restore(CodeGenFunction &CGF) { |
1133 | if (!SavedLocals.empty()) { |
1134 | copyInto(Src: SavedLocals, Dest&: CGF.LocalDeclMap); |
1135 | SavedLocals.clear(); |
1136 | } |
1137 | } |
1138 | |
1139 | private: |
1140 | /// Copy all the entries in the source map over the corresponding |
1141 | /// entries in the destination, which must exist. |
1142 | static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) { |
1143 | for (auto &Pair : Src) { |
1144 | if (!Pair.second.isValid()) { |
1145 | Dest.erase(Val: Pair.first); |
1146 | continue; |
1147 | } |
1148 | |
1149 | auto I = Dest.find(Val: Pair.first); |
1150 | if (I != Dest.end()) |
1151 | I->second = Pair.second; |
1152 | else |
1153 | Dest.insert(KV: Pair); |
1154 | } |
1155 | } |
1156 | }; |
1157 | |
1158 | /// The scope used to remap some variables as private in the OpenMP loop body |
1159 | /// (or other captured region emitted without outlining), and to restore old |
1160 | /// vars back on exit. |
1161 | class OMPPrivateScope : public RunCleanupsScope { |
1162 | OMPMapVars MappedVars; |
1163 | OMPPrivateScope(const OMPPrivateScope &) = delete; |
1164 | void operator=(const OMPPrivateScope &) = delete; |
1165 | |
1166 | public: |
1167 | /// Enter a new OpenMP private scope. |
1168 | explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} |
1169 | |
1170 | /// Registers \p LocalVD variable as a private with \p Addr as the address |
1171 | /// of the corresponding private variable. \p |
1172 | /// PrivateGen is the address of the generated private variable. |
1173 | /// \return true if the variable is registered as private, false if it has |
1174 | /// been privatized already. |
1175 | bool addPrivate(const VarDecl *LocalVD, Address Addr) { |
1176 | assert(PerformCleanup && "adding private to dead scope" ); |
1177 | return MappedVars.setVarAddr(CGF, LocalVD, TempAddr: Addr); |
1178 | } |
1179 | |
1180 | /// Privatizes local variables previously registered as private. |
1181 | /// Registration is separate from the actual privatization to allow |
1182 | /// initializers use values of the original variables, not the private one. |
1183 | /// This is important, for example, if the private variable is a class |
1184 | /// variable initialized by a constructor that references other private |
1185 | /// variables. But at initialization original variables must be used, not |
1186 | /// private copies. |
1187 | /// \return true if at least one variable was privatized, false otherwise. |
1188 | bool Privatize() { return MappedVars.apply(CGF); } |
1189 | |
1190 | void ForceCleanup() { |
1191 | RunCleanupsScope::ForceCleanup(); |
1192 | restoreMap(); |
1193 | } |
1194 | |
1195 | /// Exit scope - all the mapped variables are restored. |
1196 | ~OMPPrivateScope() { |
1197 | if (PerformCleanup) |
1198 | ForceCleanup(); |
1199 | } |
1200 | |
1201 | /// Checks if the global variable is captured in current function. |
1202 | bool isGlobalVarCaptured(const VarDecl *VD) const { |
1203 | VD = VD->getCanonicalDecl(); |
1204 | return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(Val: VD) > 0; |
1205 | } |
1206 | |
1207 | /// Restore all mapped variables w/o clean up. This is usefully when we want |
1208 | /// to reference the original variables but don't want the clean up because |
1209 | /// that could emit lifetime end too early, causing backend issue #56913. |
1210 | void restoreMap() { MappedVars.restore(CGF); } |
1211 | }; |
1212 | |
1213 | /// Save/restore original map of previously emitted local vars in case when we |
1214 | /// need to duplicate emission of the same code several times in the same |
1215 | /// function for OpenMP code. |
1216 | class OMPLocalDeclMapRAII { |
1217 | CodeGenFunction &CGF; |
1218 | DeclMapTy SavedMap; |
1219 | |
1220 | public: |
1221 | OMPLocalDeclMapRAII(CodeGenFunction &CGF) |
1222 | : CGF(CGF), SavedMap(CGF.LocalDeclMap) {} |
1223 | ~OMPLocalDeclMapRAII() { SavedMap.swap(RHS&: CGF.LocalDeclMap); } |
1224 | }; |
1225 | |
1226 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1227 | /// that have been added. |
1228 | void |
1229 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1230 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1231 | |
1232 | /// Takes the old cleanup stack size and emits the cleanup blocks |
1233 | /// that have been added, then adds all lifetime-extended cleanups from |
1234 | /// the given position to the stack. |
1235 | void |
1236 | PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, |
1237 | size_t OldLifetimeExtendedStackSize, |
1238 | std::initializer_list<llvm::Value **> ValuesToReload = {}); |
1239 | |
1240 | void ResolveBranchFixups(llvm::BasicBlock *Target); |
1241 | |
1242 | /// The given basic block lies in the current EH scope, but may be a |
1243 | /// target of a potentially scope-crossing jump; get a stable handle |
1244 | /// to which we can perform this jump later. |
1245 | JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { |
1246 | return JumpDest(Target, |
1247 | EHStack.getInnermostNormalCleanup(), |
1248 | NextCleanupDestIndex++); |
1249 | } |
1250 | |
1251 | /// The given basic block lies in the current EH scope, but may be a |
1252 | /// target of a potentially scope-crossing jump; get a stable handle |
1253 | /// to which we can perform this jump later. |
1254 | JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { |
1255 | return getJumpDestInCurrentScope(Target: createBasicBlock(name: Name)); |
1256 | } |
1257 | |
1258 | /// EmitBranchThroughCleanup - Emit a branch from the current insert |
1259 | /// block through the normal cleanup handling code (if any) and then |
1260 | /// on to \arg Dest. |
1261 | void EmitBranchThroughCleanup(JumpDest Dest); |
1262 | |
1263 | /// isObviouslyBranchWithoutCleanups - Return true if a branch to the |
1264 | /// specified destination obviously has no cleanups to run. 'false' is always |
1265 | /// a conservatively correct answer for this method. |
1266 | bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; |
1267 | |
1268 | /// popCatchScope - Pops the catch scope at the top of the EHScope |
1269 | /// stack, emitting any required code (other than the catch handlers |
1270 | /// themselves). |
1271 | void popCatchScope(); |
1272 | |
1273 | llvm::BasicBlock *getEHResumeBlock(bool isCleanup); |
1274 | llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1275 | llvm::BasicBlock * |
1276 | getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope); |
1277 | |
1278 | /// An object to manage conditionally-evaluated expressions. |
1279 | class ConditionalEvaluation { |
1280 | llvm::BasicBlock *StartBB; |
1281 | |
1282 | public: |
1283 | ConditionalEvaluation(CodeGenFunction &CGF) |
1284 | : StartBB(CGF.Builder.GetInsertBlock()) {} |
1285 | |
1286 | void begin(CodeGenFunction &CGF) { |
1287 | assert(CGF.OutermostConditional != this); |
1288 | if (!CGF.OutermostConditional) |
1289 | CGF.OutermostConditional = this; |
1290 | } |
1291 | |
1292 | void end(CodeGenFunction &CGF) { |
1293 | assert(CGF.OutermostConditional != nullptr); |
1294 | if (CGF.OutermostConditional == this) |
1295 | CGF.OutermostConditional = nullptr; |
1296 | } |
1297 | |
1298 | /// Returns a block which will be executed prior to each |
1299 | /// evaluation of the conditional code. |
1300 | llvm::BasicBlock *getStartingBlock() const { |
1301 | return StartBB; |
1302 | } |
1303 | }; |
1304 | |
1305 | /// isInConditionalBranch - Return true if we're currently emitting |
1306 | /// one branch or the other of a conditional expression. |
1307 | bool isInConditionalBranch() const { return OutermostConditional != nullptr; } |
1308 | |
1309 | void setBeforeOutermostConditional(llvm::Value *value, Address addr, |
1310 | CodeGenFunction &CGF) { |
1311 | assert(isInConditionalBranch()); |
1312 | llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); |
1313 | auto store = |
1314 | new llvm::StoreInst(value, addr.emitRawPointer(CGF), &block->back()); |
1315 | store->setAlignment(addr.getAlignment().getAsAlign()); |
1316 | } |
1317 | |
1318 | /// An RAII object to record that we're evaluating a statement |
1319 | /// expression. |
1320 | class StmtExprEvaluation { |
1321 | CodeGenFunction &CGF; |
1322 | |
1323 | /// We have to save the outermost conditional: cleanups in a |
1324 | /// statement expression aren't conditional just because the |
1325 | /// StmtExpr is. |
1326 | ConditionalEvaluation *SavedOutermostConditional; |
1327 | |
1328 | public: |
1329 | StmtExprEvaluation(CodeGenFunction &CGF) |
1330 | : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { |
1331 | CGF.OutermostConditional = nullptr; |
1332 | } |
1333 | |
1334 | ~StmtExprEvaluation() { |
1335 | CGF.OutermostConditional = SavedOutermostConditional; |
1336 | CGF.EnsureInsertPoint(); |
1337 | } |
1338 | }; |
1339 | |
1340 | /// An object which temporarily prevents a value from being |
1341 | /// destroyed by aggressive peephole optimizations that assume that |
1342 | /// all uses of a value have been realized in the IR. |
1343 | class PeepholeProtection { |
1344 | llvm::Instruction *Inst = nullptr; |
1345 | friend class CodeGenFunction; |
1346 | |
1347 | public: |
1348 | PeepholeProtection() = default; |
1349 | }; |
1350 | |
1351 | /// A non-RAII class containing all the information about a bound |
1352 | /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for |
1353 | /// this which makes individual mappings very simple; using this |
1354 | /// class directly is useful when you have a variable number of |
1355 | /// opaque values or don't want the RAII functionality for some |
1356 | /// reason. |
1357 | class OpaqueValueMappingData { |
1358 | const OpaqueValueExpr *OpaqueValue; |
1359 | bool BoundLValue; |
1360 | CodeGenFunction::PeepholeProtection Protection; |
1361 | |
1362 | OpaqueValueMappingData(const OpaqueValueExpr *ov, |
1363 | bool boundLValue) |
1364 | : OpaqueValue(ov), BoundLValue(boundLValue) {} |
1365 | public: |
1366 | OpaqueValueMappingData() : OpaqueValue(nullptr) {} |
1367 | |
1368 | static bool shouldBindAsLValue(const Expr *expr) { |
1369 | // gl-values should be bound as l-values for obvious reasons. |
1370 | // Records should be bound as l-values because IR generation |
1371 | // always keeps them in memory. Expressions of function type |
1372 | // act exactly like l-values but are formally required to be |
1373 | // r-values in C. |
1374 | return expr->isGLValue() || |
1375 | expr->getType()->isFunctionType() || |
1376 | hasAggregateEvaluationKind(T: expr->getType()); |
1377 | } |
1378 | |
1379 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1380 | const OpaqueValueExpr *ov, |
1381 | const Expr *e) { |
1382 | if (shouldBindAsLValue(expr: ov)) |
1383 | return bind(CGF, ov, lv: CGF.EmitLValue(E: e)); |
1384 | return bind(CGF, ov, rv: CGF.EmitAnyExpr(E: e)); |
1385 | } |
1386 | |
1387 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1388 | const OpaqueValueExpr *ov, |
1389 | const LValue &lv) { |
1390 | assert(shouldBindAsLValue(ov)); |
1391 | CGF.OpaqueLValues.insert(KV: std::make_pair(x&: ov, y: lv)); |
1392 | return OpaqueValueMappingData(ov, true); |
1393 | } |
1394 | |
1395 | static OpaqueValueMappingData bind(CodeGenFunction &CGF, |
1396 | const OpaqueValueExpr *ov, |
1397 | const RValue &rv) { |
1398 | assert(!shouldBindAsLValue(ov)); |
1399 | CGF.OpaqueRValues.insert(KV: std::make_pair(x&: ov, y: rv)); |
1400 | |
1401 | OpaqueValueMappingData data(ov, false); |
1402 | |
1403 | // Work around an extremely aggressive peephole optimization in |
1404 | // EmitScalarConversion which assumes that all other uses of a |
1405 | // value are extant. |
1406 | data.Protection = CGF.protectFromPeepholes(rvalue: rv); |
1407 | |
1408 | return data; |
1409 | } |
1410 | |
1411 | bool isValid() const { return OpaqueValue != nullptr; } |
1412 | void clear() { OpaqueValue = nullptr; } |
1413 | |
1414 | void unbind(CodeGenFunction &CGF) { |
1415 | assert(OpaqueValue && "no data to unbind!" ); |
1416 | |
1417 | if (BoundLValue) { |
1418 | CGF.OpaqueLValues.erase(Val: OpaqueValue); |
1419 | } else { |
1420 | CGF.OpaqueRValues.erase(Val: OpaqueValue); |
1421 | CGF.unprotectFromPeepholes(protection: Protection); |
1422 | } |
1423 | } |
1424 | }; |
1425 | |
1426 | /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. |
1427 | class OpaqueValueMapping { |
1428 | CodeGenFunction &CGF; |
1429 | OpaqueValueMappingData Data; |
1430 | |
1431 | public: |
1432 | static bool shouldBindAsLValue(const Expr *expr) { |
1433 | return OpaqueValueMappingData::shouldBindAsLValue(expr); |
1434 | } |
1435 | |
1436 | /// Build the opaque value mapping for the given conditional |
1437 | /// operator if it's the GNU ?: extension. This is a common |
1438 | /// enough pattern that the convenience operator is really |
1439 | /// helpful. |
1440 | /// |
1441 | OpaqueValueMapping(CodeGenFunction &CGF, |
1442 | const AbstractConditionalOperator *op) : CGF(CGF) { |
1443 | if (isa<ConditionalOperator>(Val: op)) |
1444 | // Leave Data empty. |
1445 | return; |
1446 | |
1447 | const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(Val: op); |
1448 | Data = OpaqueValueMappingData::bind(CGF, ov: e->getOpaqueValue(), |
1449 | e: e->getCommon()); |
1450 | } |
1451 | |
1452 | /// Build the opaque value mapping for an OpaqueValueExpr whose source |
1453 | /// expression is set to the expression the OVE represents. |
1454 | OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV) |
1455 | : CGF(CGF) { |
1456 | if (OV) { |
1457 | assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used " |
1458 | "for OVE with no source expression" ); |
1459 | Data = OpaqueValueMappingData::bind(CGF, ov: OV, e: OV->getSourceExpr()); |
1460 | } |
1461 | } |
1462 | |
1463 | OpaqueValueMapping(CodeGenFunction &CGF, |
1464 | const OpaqueValueExpr *opaqueValue, |
1465 | LValue lvalue) |
1466 | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, lv: lvalue)) { |
1467 | } |
1468 | |
1469 | OpaqueValueMapping(CodeGenFunction &CGF, |
1470 | const OpaqueValueExpr *opaqueValue, |
1471 | RValue rvalue) |
1472 | : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, ov: opaqueValue, rv: rvalue)) { |
1473 | } |
1474 | |
1475 | void pop() { |
1476 | Data.unbind(CGF); |
1477 | Data.clear(); |
1478 | } |
1479 | |
1480 | ~OpaqueValueMapping() { |
1481 | if (Data.isValid()) Data.unbind(CGF); |
1482 | } |
1483 | }; |
1484 | |
1485 | private: |
1486 | CGDebugInfo *DebugInfo; |
1487 | /// Used to create unique names for artificial VLA size debug info variables. |
1488 | unsigned VLAExprCounter = 0; |
1489 | bool DisableDebugInfo = false; |
1490 | |
1491 | /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid |
1492 | /// calling llvm.stacksave for multiple VLAs in the same scope. |
1493 | bool DidCallStackSave = false; |
1494 | |
1495 | /// IndirectBranch - The first time an indirect goto is seen we create a block |
1496 | /// with an indirect branch. Every time we see the address of a label taken, |
1497 | /// we add the label to the indirect goto. Every subsequent indirect goto is |
1498 | /// codegen'd as a jump to the IndirectBranch's basic block. |
1499 | llvm::IndirectBrInst *IndirectBranch = nullptr; |
1500 | |
1501 | /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C |
1502 | /// decls. |
1503 | DeclMapTy LocalDeclMap; |
1504 | |
1505 | // Keep track of the cleanups for callee-destructed parameters pushed to the |
1506 | // cleanup stack so that they can be deactivated later. |
1507 | llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator> |
1508 | CalleeDestructedParamCleanups; |
1509 | |
1510 | /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this |
1511 | /// will contain a mapping from said ParmVarDecl to its implicit "object_size" |
1512 | /// parameter. |
1513 | llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> |
1514 | SizeArguments; |
1515 | |
1516 | /// Track escaped local variables with auto storage. Used during SEH |
1517 | /// outlining to produce a call to llvm.localescape. |
1518 | llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; |
1519 | |
1520 | /// LabelMap - This keeps track of the LLVM basic block for each C label. |
1521 | llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; |
1522 | |
1523 | // BreakContinueStack - This keeps track of where break and continue |
1524 | // statements should jump to. |
1525 | struct BreakContinue { |
1526 | BreakContinue(JumpDest Break, JumpDest Continue) |
1527 | : BreakBlock(Break), ContinueBlock(Continue) {} |
1528 | |
1529 | JumpDest BreakBlock; |
1530 | JumpDest ContinueBlock; |
1531 | }; |
1532 | SmallVector<BreakContinue, 8> BreakContinueStack; |
1533 | |
1534 | /// Handles cancellation exit points in OpenMP-related constructs. |
1535 | class OpenMPCancelExitStack { |
1536 | /// Tracks cancellation exit point and join point for cancel-related exit |
1537 | /// and normal exit. |
1538 | struct CancelExit { |
1539 | CancelExit() = default; |
1540 | CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock, |
1541 | JumpDest ContBlock) |
1542 | : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {} |
1543 | OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown; |
1544 | /// true if the exit block has been emitted already by the special |
1545 | /// emitExit() call, false if the default codegen is used. |
1546 | bool HasBeenEmitted = false; |
1547 | JumpDest ExitBlock; |
1548 | JumpDest ContBlock; |
1549 | }; |
1550 | |
1551 | SmallVector<CancelExit, 8> Stack; |
1552 | |
1553 | public: |
1554 | OpenMPCancelExitStack() : Stack(1) {} |
1555 | ~OpenMPCancelExitStack() = default; |
1556 | /// Fetches the exit block for the current OpenMP construct. |
1557 | JumpDest getExitBlock() const { return Stack.back().ExitBlock; } |
1558 | /// Emits exit block with special codegen procedure specific for the related |
1559 | /// OpenMP construct + emits code for normal construct cleanup. |
1560 | void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
1561 | const llvm::function_ref<void(CodeGenFunction &)> CodeGen) { |
1562 | if (Stack.back().Kind == Kind && getExitBlock().isValid()) { |
1563 | assert(CGF.getOMPCancelDestination(Kind).isValid()); |
1564 | assert(CGF.HaveInsertPoint()); |
1565 | assert(!Stack.back().HasBeenEmitted); |
1566 | auto IP = CGF.Builder.saveAndClearIP(); |
1567 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1568 | CodeGen(CGF); |
1569 | CGF.EmitBranch(Block: Stack.back().ContBlock.getBlock()); |
1570 | CGF.Builder.restoreIP(IP); |
1571 | Stack.back().HasBeenEmitted = true; |
1572 | } |
1573 | CodeGen(CGF); |
1574 | } |
1575 | /// Enter the cancel supporting \a Kind construct. |
1576 | /// \param Kind OpenMP directive that supports cancel constructs. |
1577 | /// \param HasCancel true, if the construct has inner cancel directive, |
1578 | /// false otherwise. |
1579 | void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) { |
1580 | Stack.push_back(Elt: {Kind, |
1581 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.exit" ) |
1582 | : JumpDest(), |
1583 | HasCancel ? CGF.getJumpDestInCurrentScope(Name: "cancel.cont" ) |
1584 | : JumpDest()}); |
1585 | } |
1586 | /// Emits default exit point for the cancel construct (if the special one |
1587 | /// has not be used) + join point for cancel/normal exits. |
1588 | void exit(CodeGenFunction &CGF) { |
1589 | if (getExitBlock().isValid()) { |
1590 | assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid()); |
1591 | bool HaveIP = CGF.HaveInsertPoint(); |
1592 | if (!Stack.back().HasBeenEmitted) { |
1593 | if (HaveIP) |
1594 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1595 | CGF.EmitBlock(BB: Stack.back().ExitBlock.getBlock()); |
1596 | CGF.EmitBranchThroughCleanup(Dest: Stack.back().ContBlock); |
1597 | } |
1598 | CGF.EmitBlock(BB: Stack.back().ContBlock.getBlock()); |
1599 | if (!HaveIP) { |
1600 | CGF.Builder.CreateUnreachable(); |
1601 | CGF.Builder.ClearInsertionPoint(); |
1602 | } |
1603 | } |
1604 | Stack.pop_back(); |
1605 | } |
1606 | }; |
1607 | OpenMPCancelExitStack OMPCancelStack; |
1608 | |
1609 | /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin. |
1610 | llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
1611 | Stmt::Likelihood LH); |
1612 | |
1613 | CodeGenPGO PGO; |
1614 | |
1615 | /// Bitmap used by MC/DC to track condition outcomes of a boolean expression. |
1616 | Address MCDCCondBitmapAddr = Address::invalid(); |
1617 | |
1618 | /// Calculate branch weights appropriate for PGO data |
1619 | llvm::MDNode *createProfileWeights(uint64_t TrueCount, |
1620 | uint64_t FalseCount) const; |
1621 | llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const; |
1622 | llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, |
1623 | uint64_t LoopCount) const; |
1624 | |
1625 | public: |
1626 | /// Increment the profiler's counter for the given statement by \p StepV. |
1627 | /// If \p StepV is null, the default increment is 1. |
1628 | void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) { |
1629 | if (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1630 | !CurFn->hasFnAttribute(Kind: llvm::Attribute::NoProfile) && |
1631 | !CurFn->hasFnAttribute(Kind: llvm::Attribute::SkipProfile)) { |
1632 | auto AL = ApplyDebugLocation::CreateArtificial(CGF&: *this); |
1633 | PGO.emitCounterSetOrIncrement(Builder, S, StepV); |
1634 | } |
1635 | PGO.setCurrentStmt(S); |
1636 | } |
1637 | |
1638 | bool isMCDCCoverageEnabled() const { |
1639 | return (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1640 | CGM.getCodeGenOpts().MCDCCoverage && |
1641 | !CurFn->hasFnAttribute(Kind: llvm::Attribute::NoProfile)); |
1642 | } |
1643 | |
1644 | /// Allocate a temp value on the stack that MCDC can use to track condition |
1645 | /// results. |
1646 | void maybeCreateMCDCCondBitmap() { |
1647 | if (isMCDCCoverageEnabled()) { |
1648 | PGO.emitMCDCParameters(Builder); |
1649 | MCDCCondBitmapAddr = |
1650 | CreateIRTemp(T: getContext().UnsignedIntTy, Name: "mcdc.addr" ); |
1651 | } |
1652 | } |
1653 | |
1654 | bool isBinaryLogicalOp(const Expr *E) const { |
1655 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
1656 | return (BOp && BOp->isLogicalOp()); |
1657 | } |
1658 | |
1659 | /// Zero-init the MCDC temp value. |
1660 | void maybeResetMCDCCondBitmap(const Expr *E) { |
1661 | if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { |
1662 | PGO.emitMCDCCondBitmapReset(Builder, S: E, MCDCCondBitmapAddr); |
1663 | PGO.setCurrentStmt(E); |
1664 | } |
1665 | } |
1666 | |
1667 | /// Increment the profiler's counter for the given expression by \p StepV. |
1668 | /// If \p StepV is null, the default increment is 1. |
1669 | void maybeUpdateMCDCTestVectorBitmap(const Expr *E) { |
1670 | if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) { |
1671 | PGO.emitMCDCTestVectorBitmapUpdate(Builder, S: E, MCDCCondBitmapAddr, CGF&: *this); |
1672 | PGO.setCurrentStmt(E); |
1673 | } |
1674 | } |
1675 | |
1676 | /// Update the MCDC temp value with the condition's evaluated result. |
1677 | void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) { |
1678 | if (isMCDCCoverageEnabled()) { |
1679 | PGO.emitMCDCCondBitmapUpdate(Builder, S: E, MCDCCondBitmapAddr, Val, CGF&: *this); |
1680 | PGO.setCurrentStmt(E); |
1681 | } |
1682 | } |
1683 | |
1684 | /// Get the profiler's count for the given statement. |
1685 | uint64_t getProfileCount(const Stmt *S) { |
1686 | return PGO.getStmtCount(S).value_or(u: 0); |
1687 | } |
1688 | |
1689 | /// Set the profiler's current count. |
1690 | void setCurrentProfileCount(uint64_t Count) { |
1691 | PGO.setCurrentRegionCount(Count); |
1692 | } |
1693 | |
1694 | /// Get the profiler's current count. This is generally the count for the most |
1695 | /// recently incremented counter. |
1696 | uint64_t getCurrentProfileCount() { |
1697 | return PGO.getCurrentRegionCount(); |
1698 | } |
1699 | |
1700 | private: |
1701 | |
1702 | /// SwitchInsn - This is nearest current switch instruction. It is null if |
1703 | /// current context is not in a switch. |
1704 | llvm::SwitchInst *SwitchInsn = nullptr; |
1705 | /// The branch weights of SwitchInsn when doing instrumentation based PGO. |
1706 | SmallVector<uint64_t, 16> *SwitchWeights = nullptr; |
1707 | |
1708 | /// The likelihood attributes of the SwitchCase. |
1709 | SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr; |
1710 | |
1711 | /// CaseRangeBlock - This block holds if condition check for last case |
1712 | /// statement range in current switch instruction. |
1713 | llvm::BasicBlock *CaseRangeBlock = nullptr; |
1714 | |
1715 | /// OpaqueLValues - Keeps track of the current set of opaque value |
1716 | /// expressions. |
1717 | llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; |
1718 | llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; |
1719 | |
1720 | // VLASizeMap - This keeps track of the associated size for each VLA type. |
1721 | // We track this by the size expression rather than the type itself because |
1722 | // in certain situations, like a const qualifier applied to an VLA typedef, |
1723 | // multiple VLA types can share the same size expression. |
1724 | // FIXME: Maybe this could be a stack of maps that is pushed/popped as we |
1725 | // enter/leave scopes. |
1726 | llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; |
1727 | |
1728 | /// A block containing a single 'unreachable' instruction. Created |
1729 | /// lazily by getUnreachableBlock(). |
1730 | llvm::BasicBlock *UnreachableBlock = nullptr; |
1731 | |
1732 | /// Counts of the number return expressions in the function. |
1733 | unsigned NumReturnExprs = 0; |
1734 | |
1735 | /// Count the number of simple (constant) return expressions in the function. |
1736 | unsigned NumSimpleReturnExprs = 0; |
1737 | |
1738 | /// The last regular (non-return) debug location (breakpoint) in the function. |
1739 | SourceLocation LastStopPoint; |
1740 | |
1741 | public: |
1742 | /// Source location information about the default argument or member |
1743 | /// initializer expression we're evaluating, if any. |
1744 | CurrentSourceLocExprScope CurSourceLocExprScope; |
1745 | using SourceLocExprScopeGuard = |
1746 | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
1747 | |
1748 | /// A scope within which we are constructing the fields of an object which |
1749 | /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use |
1750 | /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. |
1751 | class FieldConstructionScope { |
1752 | public: |
1753 | FieldConstructionScope(CodeGenFunction &CGF, Address This) |
1754 | : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { |
1755 | CGF.CXXDefaultInitExprThis = This; |
1756 | } |
1757 | ~FieldConstructionScope() { |
1758 | CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; |
1759 | } |
1760 | |
1761 | private: |
1762 | CodeGenFunction &CGF; |
1763 | Address OldCXXDefaultInitExprThis; |
1764 | }; |
1765 | |
1766 | /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' |
1767 | /// is overridden to be the object under construction. |
1768 | class CXXDefaultInitExprScope { |
1769 | public: |
1770 | CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E) |
1771 | : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), |
1772 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1773 | SourceLocScope(E, CGF.CurSourceLocExprScope) { |
1774 | CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getBasePointer(); |
1775 | CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); |
1776 | } |
1777 | ~CXXDefaultInitExprScope() { |
1778 | CGF.CXXThisValue = OldCXXThisValue; |
1779 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1780 | } |
1781 | |
1782 | public: |
1783 | CodeGenFunction &CGF; |
1784 | llvm::Value *OldCXXThisValue; |
1785 | CharUnits OldCXXThisAlignment; |
1786 | SourceLocExprScopeGuard SourceLocScope; |
1787 | }; |
1788 | |
1789 | struct CXXDefaultArgExprScope : SourceLocExprScopeGuard { |
1790 | CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E) |
1791 | : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {} |
1792 | }; |
1793 | |
1794 | /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the |
1795 | /// current loop index is overridden. |
1796 | class ArrayInitLoopExprScope { |
1797 | public: |
1798 | ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index) |
1799 | : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) { |
1800 | CGF.ArrayInitIndex = Index; |
1801 | } |
1802 | ~ArrayInitLoopExprScope() { |
1803 | CGF.ArrayInitIndex = OldArrayInitIndex; |
1804 | } |
1805 | |
1806 | private: |
1807 | CodeGenFunction &CGF; |
1808 | llvm::Value *OldArrayInitIndex; |
1809 | }; |
1810 | |
1811 | class InlinedInheritingConstructorScope { |
1812 | public: |
1813 | InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD) |
1814 | : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl), |
1815 | OldCurCodeDecl(CGF.CurCodeDecl), |
1816 | OldCXXABIThisDecl(CGF.CXXABIThisDecl), |
1817 | OldCXXABIThisValue(CGF.CXXABIThisValue), |
1818 | OldCXXThisValue(CGF.CXXThisValue), |
1819 | OldCXXABIThisAlignment(CGF.CXXABIThisAlignment), |
1820 | OldCXXThisAlignment(CGF.CXXThisAlignment), |
1821 | OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy), |
1822 | OldCXXInheritedCtorInitExprArgs( |
1823 | std::move(CGF.CXXInheritedCtorInitExprArgs)) { |
1824 | CGF.CurGD = GD; |
1825 | CGF.CurFuncDecl = CGF.CurCodeDecl = |
1826 | cast<CXXConstructorDecl>(Val: GD.getDecl()); |
1827 | CGF.CXXABIThisDecl = nullptr; |
1828 | CGF.CXXABIThisValue = nullptr; |
1829 | CGF.CXXThisValue = nullptr; |
1830 | CGF.CXXABIThisAlignment = CharUnits(); |
1831 | CGF.CXXThisAlignment = CharUnits(); |
1832 | CGF.ReturnValue = Address::invalid(); |
1833 | CGF.FnRetTy = QualType(); |
1834 | CGF.CXXInheritedCtorInitExprArgs.clear(); |
1835 | } |
1836 | ~InlinedInheritingConstructorScope() { |
1837 | CGF.CurGD = OldCurGD; |
1838 | CGF.CurFuncDecl = OldCurFuncDecl; |
1839 | CGF.CurCodeDecl = OldCurCodeDecl; |
1840 | CGF.CXXABIThisDecl = OldCXXABIThisDecl; |
1841 | CGF.CXXABIThisValue = OldCXXABIThisValue; |
1842 | CGF.CXXThisValue = OldCXXThisValue; |
1843 | CGF.CXXABIThisAlignment = OldCXXABIThisAlignment; |
1844 | CGF.CXXThisAlignment = OldCXXThisAlignment; |
1845 | CGF.ReturnValue = OldReturnValue; |
1846 | CGF.FnRetTy = OldFnRetTy; |
1847 | CGF.CXXInheritedCtorInitExprArgs = |
1848 | std::move(OldCXXInheritedCtorInitExprArgs); |
1849 | } |
1850 | |
1851 | private: |
1852 | CodeGenFunction &CGF; |
1853 | GlobalDecl OldCurGD; |
1854 | const Decl *OldCurFuncDecl; |
1855 | const Decl *OldCurCodeDecl; |
1856 | ImplicitParamDecl *OldCXXABIThisDecl; |
1857 | llvm::Value *OldCXXABIThisValue; |
1858 | llvm::Value *OldCXXThisValue; |
1859 | CharUnits OldCXXABIThisAlignment; |
1860 | CharUnits OldCXXThisAlignment; |
1861 | Address OldReturnValue; |
1862 | QualType OldFnRetTy; |
1863 | CallArgList OldCXXInheritedCtorInitExprArgs; |
1864 | }; |
1865 | |
1866 | // Helper class for the OpenMP IR Builder. Allows reusability of code used for |
1867 | // region body, and finalization codegen callbacks. This will class will also |
1868 | // contain privatization functions used by the privatization call backs |
1869 | // |
1870 | // TODO: this is temporary class for things that are being moved out of |
1871 | // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or |
1872 | // utility function for use with the OMPBuilder. Once that move to use the |
1873 | // OMPBuilder is done, everything here will either become part of CodeGenFunc. |
1874 | // directly, or a new helper class that will contain functions used by both |
1875 | // this and the OMPBuilder |
1876 | |
1877 | struct OMPBuilderCBHelpers { |
1878 | |
1879 | OMPBuilderCBHelpers() = delete; |
1880 | OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete; |
1881 | OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete; |
1882 | |
1883 | using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy; |
1884 | |
1885 | /// Cleanup action for allocate support. |
1886 | class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { |
1887 | |
1888 | private: |
1889 | llvm::CallInst *RTLFnCI; |
1890 | |
1891 | public: |
1892 | OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) { |
1893 | RLFnCI->removeFromParent(); |
1894 | } |
1895 | |
1896 | void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { |
1897 | if (!CGF.HaveInsertPoint()) |
1898 | return; |
1899 | CGF.Builder.Insert(I: RTLFnCI); |
1900 | } |
1901 | }; |
1902 | |
1903 | /// Returns address of the threadprivate variable for the current |
1904 | /// thread. This Also create any necessary OMP runtime calls. |
1905 | /// |
1906 | /// \param VD VarDecl for Threadprivate variable. |
1907 | /// \param VDAddr Address of the Vardecl |
1908 | /// \param Loc The location where the barrier directive was encountered |
1909 | static Address getAddrOfThreadPrivate(CodeGenFunction &CGF, |
1910 | const VarDecl *VD, Address VDAddr, |
1911 | SourceLocation Loc); |
1912 | |
1913 | /// Gets the OpenMP-specific address of the local variable /p VD. |
1914 | static Address getAddressOfLocalVariable(CodeGenFunction &CGF, |
1915 | const VarDecl *VD); |
1916 | /// Get the platform-specific name separator. |
1917 | /// \param Parts different parts of the final name that needs separation |
1918 | /// \param FirstSeparator First separator used between the initial two |
1919 | /// parts of the name. |
1920 | /// \param Separator separator used between all of the rest consecutinve |
1921 | /// parts of the name |
1922 | static std::string getNameWithSeparators(ArrayRef<StringRef> Parts, |
1923 | StringRef FirstSeparator = "." , |
1924 | StringRef Separator = "." ); |
1925 | /// Emit the Finalization for an OMP region |
1926 | /// \param CGF The Codegen function this belongs to |
1927 | /// \param IP Insertion point for generating the finalization code. |
1928 | static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) { |
1929 | CGBuilderTy::InsertPointGuard IPG(CGF.Builder); |
1930 | assert(IP.getBlock()->end() != IP.getPoint() && |
1931 | "OpenMP IR Builder should cause terminated block!" ); |
1932 | |
1933 | llvm::BasicBlock *IPBB = IP.getBlock(); |
1934 | llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor(); |
1935 | assert(DestBB && "Finalization block should have one successor!" ); |
1936 | |
1937 | // erase and replace with cleanup branch. |
1938 | IPBB->getTerminator()->eraseFromParent(); |
1939 | CGF.Builder.SetInsertPoint(IPBB); |
1940 | CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(Target: DestBB); |
1941 | CGF.EmitBranchThroughCleanup(Dest); |
1942 | } |
1943 | |
1944 | /// Emit the body of an OMP region |
1945 | /// \param CGF The Codegen function this belongs to |
1946 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1947 | /// generated |
1948 | /// \param AllocaIP Where to insert alloca instructions |
1949 | /// \param CodeGenIP Where to insert the region code |
1950 | /// \param RegionName Name to be used for new blocks |
1951 | static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF, |
1952 | const Stmt *RegionBodyStmt, |
1953 | InsertPointTy AllocaIP, |
1954 | InsertPointTy CodeGenIP, |
1955 | Twine RegionName); |
1956 | |
1957 | static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP, |
1958 | llvm::BasicBlock &FiniBB, llvm::Function *Fn, |
1959 | ArrayRef<llvm::Value *> Args) { |
1960 | llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock(); |
1961 | if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator()) |
1962 | CodeGenIPBBTI->eraseFromParent(); |
1963 | |
1964 | CGF.Builder.SetInsertPoint(CodeGenIPBB); |
1965 | |
1966 | if (Fn->doesNotThrow()) |
1967 | CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args); |
1968 | else |
1969 | CGF.EmitRuntimeCall(callee: Fn, args: Args); |
1970 | |
1971 | if (CGF.Builder.saveIP().isSet()) |
1972 | CGF.Builder.CreateBr(Dest: &FiniBB); |
1973 | } |
1974 | |
1975 | /// Emit the body of an OMP region that will be outlined in |
1976 | /// OpenMPIRBuilder::finalize(). |
1977 | /// \param CGF The Codegen function this belongs to |
1978 | /// \param RegionBodyStmt The body statement for the OpenMP region being |
1979 | /// generated |
1980 | /// \param AllocaIP Where to insert alloca instructions |
1981 | /// \param CodeGenIP Where to insert the region code |
1982 | /// \param RegionName Name to be used for new blocks |
1983 | static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF, |
1984 | const Stmt *RegionBodyStmt, |
1985 | InsertPointTy AllocaIP, |
1986 | InsertPointTy CodeGenIP, |
1987 | Twine RegionName); |
1988 | |
1989 | /// RAII for preserving necessary info during Outlined region body codegen. |
1990 | class OutlinedRegionBodyRAII { |
1991 | |
1992 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
1993 | CodeGenFunction::JumpDest OldReturnBlock; |
1994 | CodeGenFunction &CGF; |
1995 | |
1996 | public: |
1997 | OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
1998 | llvm::BasicBlock &RetBB) |
1999 | : CGF(cgf) { |
2000 | assert(AllocaIP.isSet() && |
2001 | "Must specify Insertion point for allocas of outlined function" ); |
2002 | OldAllocaIP = CGF.AllocaInsertPt; |
2003 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2004 | |
2005 | OldReturnBlock = CGF.ReturnBlock; |
2006 | CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(Target: &RetBB); |
2007 | } |
2008 | |
2009 | ~OutlinedRegionBodyRAII() { |
2010 | CGF.AllocaInsertPt = OldAllocaIP; |
2011 | CGF.ReturnBlock = OldReturnBlock; |
2012 | } |
2013 | }; |
2014 | |
2015 | /// RAII for preserving necessary info during inlined region body codegen. |
2016 | class InlinedRegionBodyRAII { |
2017 | |
2018 | llvm::AssertingVH<llvm::Instruction> OldAllocaIP; |
2019 | CodeGenFunction &CGF; |
2020 | |
2021 | public: |
2022 | InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP, |
2023 | llvm::BasicBlock &FiniBB) |
2024 | : CGF(cgf) { |
2025 | // Alloca insertion block should be in the entry block of the containing |
2026 | // function so it expects an empty AllocaIP in which case will reuse the |
2027 | // old alloca insertion point, or a new AllocaIP in the same block as |
2028 | // the old one |
2029 | assert((!AllocaIP.isSet() || |
2030 | CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) && |
2031 | "Insertion point should be in the entry block of containing " |
2032 | "function!" ); |
2033 | OldAllocaIP = CGF.AllocaInsertPt; |
2034 | if (AllocaIP.isSet()) |
2035 | CGF.AllocaInsertPt = &*AllocaIP.getPoint(); |
2036 | |
2037 | // TODO: Remove the call, after making sure the counter is not used by |
2038 | // the EHStack. |
2039 | // Since this is an inlined region, it should not modify the |
2040 | // ReturnBlock, and should reuse the one for the enclosing outlined |
2041 | // region. So, the JumpDest being return by the function is discarded |
2042 | (void)CGF.getJumpDestInCurrentScope(Target: &FiniBB); |
2043 | } |
2044 | |
2045 | ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; } |
2046 | }; |
2047 | }; |
2048 | |
2049 | private: |
2050 | /// CXXThisDecl - When generating code for a C++ member function, |
2051 | /// this will hold the implicit 'this' declaration. |
2052 | ImplicitParamDecl *CXXABIThisDecl = nullptr; |
2053 | llvm::Value *CXXABIThisValue = nullptr; |
2054 | llvm::Value *CXXThisValue = nullptr; |
2055 | CharUnits CXXABIThisAlignment; |
2056 | CharUnits CXXThisAlignment; |
2057 | |
2058 | /// The value of 'this' to use when evaluating CXXDefaultInitExprs within |
2059 | /// this expression. |
2060 | Address CXXDefaultInitExprThis = Address::invalid(); |
2061 | |
2062 | /// The current array initialization index when evaluating an |
2063 | /// ArrayInitIndexExpr within an ArrayInitLoopExpr. |
2064 | llvm::Value *ArrayInitIndex = nullptr; |
2065 | |
2066 | /// The values of function arguments to use when evaluating |
2067 | /// CXXInheritedCtorInitExprs within this context. |
2068 | CallArgList CXXInheritedCtorInitExprArgs; |
2069 | |
2070 | /// CXXStructorImplicitParamDecl - When generating code for a constructor or |
2071 | /// destructor, this will hold the implicit argument (e.g. VTT). |
2072 | ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr; |
2073 | llvm::Value *CXXStructorImplicitParamValue = nullptr; |
2074 | |
2075 | /// OutermostConditional - Points to the outermost active |
2076 | /// conditional control. This is used so that we know if a |
2077 | /// temporary should be destroyed conditionally. |
2078 | ConditionalEvaluation *OutermostConditional = nullptr; |
2079 | |
2080 | /// The current lexical scope. |
2081 | LexicalScope *CurLexicalScope = nullptr; |
2082 | |
2083 | /// The current source location that should be used for exception |
2084 | /// handling code. |
2085 | SourceLocation CurEHLocation; |
2086 | |
2087 | /// BlockByrefInfos - For each __block variable, contains |
2088 | /// information about the layout of the variable. |
2089 | llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; |
2090 | |
2091 | /// Used by -fsanitize=nullability-return to determine whether the return |
2092 | /// value can be checked. |
2093 | llvm::Value *RetValNullabilityPrecondition = nullptr; |
2094 | |
2095 | /// Check if -fsanitize=nullability-return instrumentation is required for |
2096 | /// this function. |
2097 | bool requiresReturnValueNullabilityCheck() const { |
2098 | return RetValNullabilityPrecondition; |
2099 | } |
2100 | |
2101 | /// Used to store precise source locations for return statements by the |
2102 | /// runtime return value checks. |
2103 | Address ReturnLocation = Address::invalid(); |
2104 | |
2105 | /// Check if the return value of this function requires sanitization. |
2106 | bool requiresReturnValueCheck() const; |
2107 | |
2108 | bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty); |
2109 | bool hasInAllocaArg(const CXXMethodDecl *MD); |
2110 | |
2111 | llvm::BasicBlock *TerminateLandingPad = nullptr; |
2112 | llvm::BasicBlock *TerminateHandler = nullptr; |
2113 | llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs; |
2114 | |
2115 | /// Terminate funclets keyed by parent funclet pad. |
2116 | llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets; |
2117 | |
2118 | /// Largest vector width used in ths function. Will be used to create a |
2119 | /// function attribute. |
2120 | unsigned LargestVectorWidth = 0; |
2121 | |
2122 | /// True if we need emit the life-time markers. This is initially set in |
2123 | /// the constructor, but could be overwritten to true if this is a coroutine. |
2124 | bool ShouldEmitLifetimeMarkers; |
2125 | |
2126 | /// Add OpenCL kernel arg metadata and the kernel attribute metadata to |
2127 | /// the function metadata. |
2128 | void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn); |
2129 | |
2130 | public: |
2131 | CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); |
2132 | ~CodeGenFunction(); |
2133 | |
2134 | CodeGenTypes &getTypes() const { return CGM.getTypes(); } |
2135 | ASTContext &getContext() const { return CGM.getContext(); } |
2136 | CGDebugInfo *getDebugInfo() { |
2137 | if (DisableDebugInfo) |
2138 | return nullptr; |
2139 | return DebugInfo; |
2140 | } |
2141 | void disableDebugInfo() { DisableDebugInfo = true; } |
2142 | void enableDebugInfo() { DisableDebugInfo = false; } |
2143 | |
2144 | bool shouldUseFusedARCCalls() { |
2145 | return CGM.getCodeGenOpts().OptimizationLevel == 0; |
2146 | } |
2147 | |
2148 | const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } |
2149 | |
2150 | /// Returns a pointer to the function's exception object and selector slot, |
2151 | /// which is assigned in every landing pad. |
2152 | Address getExceptionSlot(); |
2153 | Address getEHSelectorSlot(); |
2154 | |
2155 | /// Returns the contents of the function's exception object and selector |
2156 | /// slots. |
2157 | llvm::Value *getExceptionFromSlot(); |
2158 | llvm::Value *getSelectorFromSlot(); |
2159 | |
2160 | RawAddress getNormalCleanupDestSlot(); |
2161 | |
2162 | llvm::BasicBlock *getUnreachableBlock() { |
2163 | if (!UnreachableBlock) { |
2164 | UnreachableBlock = createBasicBlock(name: "unreachable" ); |
2165 | new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); |
2166 | } |
2167 | return UnreachableBlock; |
2168 | } |
2169 | |
2170 | llvm::BasicBlock *getInvokeDest() { |
2171 | if (!EHStack.requiresLandingPad()) return nullptr; |
2172 | return getInvokeDestImpl(); |
2173 | } |
2174 | |
2175 | bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; } |
2176 | |
2177 | const TargetInfo &getTarget() const { return Target; } |
2178 | llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } |
2179 | const TargetCodeGenInfo &getTargetHooks() const { |
2180 | return CGM.getTargetCodeGenInfo(); |
2181 | } |
2182 | |
2183 | //===--------------------------------------------------------------------===// |
2184 | // Cleanups |
2185 | //===--------------------------------------------------------------------===// |
2186 | |
2187 | typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); |
2188 | |
2189 | void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, |
2190 | Address arrayEndPointer, |
2191 | QualType elementType, |
2192 | CharUnits elementAlignment, |
2193 | Destroyer *destroyer); |
2194 | void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, |
2195 | llvm::Value *arrayEnd, |
2196 | QualType elementType, |
2197 | CharUnits elementAlignment, |
2198 | Destroyer *destroyer); |
2199 | |
2200 | void pushDestroy(QualType::DestructionKind dtorKind, |
2201 | Address addr, QualType type); |
2202 | void pushEHDestroy(QualType::DestructionKind dtorKind, |
2203 | Address addr, QualType type); |
2204 | void pushDestroy(CleanupKind kind, Address addr, QualType type, |
2205 | Destroyer *destroyer, bool useEHCleanupForArray); |
2206 | void pushDestroyAndDeferDeactivation(QualType::DestructionKind dtorKind, |
2207 | Address addr, QualType type); |
2208 | void pushDestroyAndDeferDeactivation(CleanupKind cleanupKind, Address addr, |
2209 | QualType type, Destroyer *destroyer, |
2210 | bool useEHCleanupForArray); |
2211 | void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, |
2212 | QualType type, Destroyer *destroyer, |
2213 | bool useEHCleanupForArray); |
2214 | void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, |
2215 | llvm::Value *CompletePtr, |
2216 | QualType ElementType); |
2217 | void pushStackRestore(CleanupKind kind, Address SPMem); |
2218 | void pushKmpcAllocFree(CleanupKind Kind, |
2219 | std::pair<llvm::Value *, llvm::Value *> AddrSizePair); |
2220 | void emitDestroy(Address addr, QualType type, Destroyer *destroyer, |
2221 | bool useEHCleanupForArray); |
2222 | llvm::Function *generateDestroyHelper(Address addr, QualType type, |
2223 | Destroyer *destroyer, |
2224 | bool useEHCleanupForArray, |
2225 | const VarDecl *VD); |
2226 | void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, |
2227 | QualType elementType, CharUnits elementAlign, |
2228 | Destroyer *destroyer, |
2229 | bool checkZeroLength, bool useEHCleanup); |
2230 | |
2231 | Destroyer *getDestroyer(QualType::DestructionKind destructionKind); |
2232 | |
2233 | /// Determines whether an EH cleanup is required to destroy a type |
2234 | /// with the given destruction kind. |
2235 | bool needsEHCleanup(QualType::DestructionKind kind) { |
2236 | switch (kind) { |
2237 | case QualType::DK_none: |
2238 | return false; |
2239 | case QualType::DK_cxx_destructor: |
2240 | case QualType::DK_objc_weak_lifetime: |
2241 | case QualType::DK_nontrivial_c_struct: |
2242 | return getLangOpts().Exceptions; |
2243 | case QualType::DK_objc_strong_lifetime: |
2244 | return getLangOpts().Exceptions && |
2245 | CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; |
2246 | } |
2247 | llvm_unreachable("bad destruction kind" ); |
2248 | } |
2249 | |
2250 | CleanupKind getCleanupKind(QualType::DestructionKind kind) { |
2251 | return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); |
2252 | } |
2253 | |
2254 | //===--------------------------------------------------------------------===// |
2255 | // Objective-C |
2256 | //===--------------------------------------------------------------------===// |
2257 | |
2258 | void GenerateObjCMethod(const ObjCMethodDecl *OMD); |
2259 | |
2260 | void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); |
2261 | |
2262 | /// GenerateObjCGetter - Synthesize an Objective-C property getter function. |
2263 | void GenerateObjCGetter(ObjCImplementationDecl *IMP, |
2264 | const ObjCPropertyImplDecl *PID); |
2265 | void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, |
2266 | const ObjCPropertyImplDecl *propImpl, |
2267 | const ObjCMethodDecl *GetterMothodDecl, |
2268 | llvm::Constant *AtomicHelperFn); |
2269 | |
2270 | void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, |
2271 | ObjCMethodDecl *MD, bool ctor); |
2272 | |
2273 | /// GenerateObjCSetter - Synthesize an Objective-C property setter function |
2274 | /// for the given property. |
2275 | void GenerateObjCSetter(ObjCImplementationDecl *IMP, |
2276 | const ObjCPropertyImplDecl *PID); |
2277 | void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, |
2278 | const ObjCPropertyImplDecl *propImpl, |
2279 | llvm::Constant *AtomicHelperFn); |
2280 | |
2281 | //===--------------------------------------------------------------------===// |
2282 | // Block Bits |
2283 | //===--------------------------------------------------------------------===// |
2284 | |
2285 | /// Emit block literal. |
2286 | /// \return an LLVM value which is a pointer to a struct which contains |
2287 | /// information about the block, including the block invoke function, the |
2288 | /// captured variables, etc. |
2289 | llvm::Value *EmitBlockLiteral(const BlockExpr *); |
2290 | |
2291 | llvm::Function *GenerateBlockFunction(GlobalDecl GD, |
2292 | const CGBlockInfo &Info, |
2293 | const DeclMapTy &ldm, |
2294 | bool IsLambdaConversionToBlock, |
2295 | bool BuildGlobalBlock); |
2296 | |
2297 | /// Check if \p T is a C++ class that has a destructor that can throw. |
2298 | static bool cxxDestructorCanThrow(QualType T); |
2299 | |
2300 | llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); |
2301 | llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); |
2302 | llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( |
2303 | const ObjCPropertyImplDecl *PID); |
2304 | llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( |
2305 | const ObjCPropertyImplDecl *PID); |
2306 | llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); |
2307 | |
2308 | void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags, |
2309 | bool CanThrow); |
2310 | |
2311 | class AutoVarEmission; |
2312 | |
2313 | void emitByrefStructureInit(const AutoVarEmission &emission); |
2314 | |
2315 | /// Enter a cleanup to destroy a __block variable. Note that this |
2316 | /// cleanup should be a no-op if the variable hasn't left the stack |
2317 | /// yet; if a cleanup is required for the variable itself, that needs |
2318 | /// to be done externally. |
2319 | /// |
2320 | /// \param Kind Cleanup kind. |
2321 | /// |
2322 | /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block |
2323 | /// structure that will be passed to _Block_object_dispose. When |
2324 | /// \p LoadBlockVarAddr is true, the address of the field of the block |
2325 | /// structure that holds the address of the __block structure. |
2326 | /// |
2327 | /// \param Flags The flag that will be passed to _Block_object_dispose. |
2328 | /// |
2329 | /// \param LoadBlockVarAddr Indicates whether we need to emit a load from |
2330 | /// \p Addr to get the address of the __block structure. |
2331 | void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags, |
2332 | bool LoadBlockVarAddr, bool CanThrow); |
2333 | |
2334 | void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, |
2335 | llvm::Value *ptr); |
2336 | |
2337 | Address LoadBlockStruct(); |
2338 | Address GetAddrOfBlockDecl(const VarDecl *var); |
2339 | |
2340 | /// BuildBlockByrefAddress - Computes the location of the |
2341 | /// data in a variable which is declared as __block. |
2342 | Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, |
2343 | bool followForward = true); |
2344 | Address emitBlockByrefAddress(Address baseAddr, |
2345 | const BlockByrefInfo &info, |
2346 | bool followForward, |
2347 | const llvm::Twine &name); |
2348 | |
2349 | const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); |
2350 | |
2351 | QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args); |
2352 | |
2353 | void GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
2354 | const CGFunctionInfo &FnInfo); |
2355 | |
2356 | /// Annotate the function with an attribute that disables TSan checking at |
2357 | /// runtime. |
2358 | void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn); |
2359 | |
2360 | /// Emit code for the start of a function. |
2361 | /// \param Loc The location to be associated with the function. |
2362 | /// \param StartLoc The location of the function body. |
2363 | void StartFunction(GlobalDecl GD, |
2364 | QualType RetTy, |
2365 | llvm::Function *Fn, |
2366 | const CGFunctionInfo &FnInfo, |
2367 | const FunctionArgList &Args, |
2368 | SourceLocation Loc = SourceLocation(), |
2369 | SourceLocation StartLoc = SourceLocation()); |
2370 | |
2371 | static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor); |
2372 | |
2373 | void EmitConstructorBody(FunctionArgList &Args); |
2374 | void EmitDestructorBody(FunctionArgList &Args); |
2375 | void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); |
2376 | void EmitFunctionBody(const Stmt *Body); |
2377 | void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); |
2378 | |
2379 | void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, |
2380 | CallArgList &CallArgs, |
2381 | const CGFunctionInfo *CallOpFnInfo = nullptr, |
2382 | llvm::Constant *CallOpFn = nullptr); |
2383 | void EmitLambdaBlockInvokeBody(); |
2384 | void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD); |
2385 | void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD, |
2386 | CallArgList &CallArgs); |
2387 | void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp, |
2388 | const CGFunctionInfo **ImplFnInfo, |
2389 | llvm::Function **ImplFn); |
2390 | void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD); |
2391 | void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) { |
2392 | EmitStoreThroughLValue(Src: RValue::get(V: VLASizeMap[VAT->getSizeExpr()]), Dst: LV); |
2393 | } |
2394 | void EmitAsanPrologueOrEpilogue(bool Prologue); |
2395 | |
2396 | /// Emit the unified return block, trying to avoid its emission when |
2397 | /// possible. |
2398 | /// \return The debug location of the user written return statement if the |
2399 | /// return block is avoided. |
2400 | llvm::DebugLoc EmitReturnBlock(); |
2401 | |
2402 | /// FinishFunction - Complete IR generation of the current function. It is |
2403 | /// legal to call this function even if there is no current insertion point. |
2404 | void FinishFunction(SourceLocation EndLoc=SourceLocation()); |
2405 | |
2406 | void StartThunk(llvm::Function *Fn, GlobalDecl GD, |
2407 | const CGFunctionInfo &FnInfo, bool IsUnprototyped); |
2408 | |
2409 | void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee, |
2410 | const ThunkInfo *Thunk, bool IsUnprototyped); |
2411 | |
2412 | void FinishThunk(); |
2413 | |
2414 | /// Emit a musttail call for a thunk with a potentially adjusted this pointer. |
2415 | void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr, |
2416 | llvm::FunctionCallee Callee); |
2417 | |
2418 | /// Generate a thunk for the given method. |
2419 | void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, |
2420 | GlobalDecl GD, const ThunkInfo &Thunk, |
2421 | bool IsUnprototyped); |
2422 | |
2423 | llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, |
2424 | const CGFunctionInfo &FnInfo, |
2425 | GlobalDecl GD, const ThunkInfo &Thunk); |
2426 | |
2427 | void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, |
2428 | FunctionArgList &Args); |
2429 | |
2430 | void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init); |
2431 | |
2432 | /// Struct with all information about dynamic [sub]class needed to set vptr. |
2433 | struct VPtr { |
2434 | BaseSubobject Base; |
2435 | const CXXRecordDecl *NearestVBase; |
2436 | CharUnits OffsetFromNearestVBase; |
2437 | const CXXRecordDecl *VTableClass; |
2438 | }; |
2439 | |
2440 | /// Initialize the vtable pointer of the given subobject. |
2441 | void InitializeVTablePointer(const VPtr &vptr); |
2442 | |
2443 | typedef llvm::SmallVector<VPtr, 4> VPtrsVector; |
2444 | |
2445 | typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; |
2446 | VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); |
2447 | |
2448 | void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, |
2449 | CharUnits OffsetFromNearestVBase, |
2450 | bool BaseIsNonVirtualPrimaryBase, |
2451 | const CXXRecordDecl *VTableClass, |
2452 | VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); |
2453 | |
2454 | void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); |
2455 | |
2456 | // VTableTrapMode - whether we guarantee that loading the |
2457 | // vtable is guaranteed to trap on authentication failure, |
2458 | // even if the resulting vtable pointer is unused. |
2459 | enum class VTableAuthMode { |
2460 | Authenticate, |
2461 | MustTrap, |
2462 | UnsafeUbsanStrip // Should only be used for Vptr UBSan check |
2463 | }; |
2464 | /// GetVTablePtr - Return the Value of the vtable pointer member pointed |
2465 | /// to by This. |
2466 | llvm::Value * |
2467 | GetVTablePtr(Address This, llvm::Type *VTableTy, |
2468 | const CXXRecordDecl *VTableClass, |
2469 | VTableAuthMode AuthMode = VTableAuthMode::Authenticate); |
2470 | |
2471 | enum CFITypeCheckKind { |
2472 | CFITCK_VCall, |
2473 | CFITCK_NVCall, |
2474 | CFITCK_DerivedCast, |
2475 | CFITCK_UnrelatedCast, |
2476 | CFITCK_ICall, |
2477 | CFITCK_NVMFCall, |
2478 | CFITCK_VMFCall, |
2479 | }; |
2480 | |
2481 | /// Derived is the presumed address of an object of type T after a |
2482 | /// cast. If T is a polymorphic class type, emit a check that the virtual |
2483 | /// table for Derived belongs to a class derived from T. |
2484 | void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull, |
2485 | CFITypeCheckKind TCK, SourceLocation Loc); |
2486 | |
2487 | /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. |
2488 | /// If vptr CFI is enabled, emit a check that VTable is valid. |
2489 | void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable, |
2490 | CFITypeCheckKind TCK, SourceLocation Loc); |
2491 | |
2492 | /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for |
2493 | /// RD using llvm.type.test. |
2494 | void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, |
2495 | CFITypeCheckKind TCK, SourceLocation Loc); |
2496 | |
2497 | /// If whole-program virtual table optimization is enabled, emit an assumption |
2498 | /// that VTable is a member of RD's type identifier. Or, if vptr CFI is |
2499 | /// enabled, emit a check that VTable is a member of RD's type identifier. |
2500 | void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD, |
2501 | llvm::Value *VTable, SourceLocation Loc); |
2502 | |
2503 | /// Returns whether we should perform a type checked load when loading a |
2504 | /// virtual function for virtual calls to members of RD. This is generally |
2505 | /// true when both vcall CFI and whole-program-vtables are enabled. |
2506 | bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD); |
2507 | |
2508 | /// Emit a type checked load from the given vtable. |
2509 | llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD, |
2510 | llvm::Value *VTable, |
2511 | llvm::Type *VTableTy, |
2512 | uint64_t VTableByteOffset); |
2513 | |
2514 | /// EnterDtorCleanups - Enter the cleanups necessary to complete the |
2515 | /// given phase of destruction for a destructor. The end result |
2516 | /// should call destructors on members and base classes in reverse |
2517 | /// order of their construction. |
2518 | void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); |
2519 | |
2520 | /// ShouldInstrumentFunction - Return true if the current function should be |
2521 | /// instrumented with __cyg_profile_func_* calls |
2522 | bool ShouldInstrumentFunction(); |
2523 | |
2524 | /// ShouldSkipSanitizerInstrumentation - Return true if the current function |
2525 | /// should not be instrumented with sanitizers. |
2526 | bool ShouldSkipSanitizerInstrumentation(); |
2527 | |
2528 | /// ShouldXRayInstrument - Return true if the current function should be |
2529 | /// instrumented with XRay nop sleds. |
2530 | bool ShouldXRayInstrumentFunction() const; |
2531 | |
2532 | /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit |
2533 | /// XRay custom event handling calls. |
2534 | bool AlwaysEmitXRayCustomEvents() const; |
2535 | |
2536 | /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit |
2537 | /// XRay typed event handling calls. |
2538 | bool AlwaysEmitXRayTypedEvents() const; |
2539 | |
2540 | /// Return a type hash constant for a function instrumented by |
2541 | /// -fsanitize=function. |
2542 | llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const; |
2543 | |
2544 | /// EmitFunctionProlog - Emit the target specific LLVM code to load the |
2545 | /// arguments for the given function. This is also responsible for naming the |
2546 | /// LLVM function arguments. |
2547 | void EmitFunctionProlog(const CGFunctionInfo &FI, |
2548 | llvm::Function *Fn, |
2549 | const FunctionArgList &Args); |
2550 | |
2551 | /// EmitFunctionEpilog - Emit the target specific LLVM code to return the |
2552 | /// given temporary. |
2553 | void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, |
2554 | SourceLocation EndLoc); |
2555 | |
2556 | /// Emit a test that checks if the return value \p RV is nonnull. |
2557 | void EmitReturnValueCheck(llvm::Value *RV); |
2558 | |
2559 | /// EmitStartEHSpec - Emit the start of the exception spec. |
2560 | void EmitStartEHSpec(const Decl *D); |
2561 | |
2562 | /// EmitEndEHSpec - Emit the end of the exception spec. |
2563 | void EmitEndEHSpec(const Decl *D); |
2564 | |
2565 | /// getTerminateLandingPad - Return a landing pad that just calls terminate. |
2566 | llvm::BasicBlock *getTerminateLandingPad(); |
2567 | |
2568 | /// getTerminateLandingPad - Return a cleanup funclet that just calls |
2569 | /// terminate. |
2570 | llvm::BasicBlock *getTerminateFunclet(); |
2571 | |
2572 | /// getTerminateHandler - Return a handler (not a landing pad, just |
2573 | /// a catch handler) that just calls terminate. This is used when |
2574 | /// a terminate scope encloses a try. |
2575 | llvm::BasicBlock *getTerminateHandler(); |
2576 | |
2577 | llvm::Type *ConvertTypeForMem(QualType T); |
2578 | llvm::Type *ConvertType(QualType T); |
2579 | llvm::Type *convertTypeForLoadStore(QualType ASTTy, |
2580 | llvm::Type *LLVMTy = nullptr); |
2581 | llvm::Type *ConvertType(const TypeDecl *T) { |
2582 | return ConvertType(T: getContext().getTypeDeclType(Decl: T)); |
2583 | } |
2584 | |
2585 | /// LoadObjCSelf - Load the value of self. This function is only valid while |
2586 | /// generating code for an Objective-C method. |
2587 | llvm::Value *LoadObjCSelf(); |
2588 | |
2589 | /// TypeOfSelfObject - Return type of object that this self represents. |
2590 | QualType TypeOfSelfObject(); |
2591 | |
2592 | /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T. |
2593 | static TypeEvaluationKind getEvaluationKind(QualType T); |
2594 | |
2595 | static bool hasScalarEvaluationKind(QualType T) { |
2596 | return getEvaluationKind(T) == TEK_Scalar; |
2597 | } |
2598 | |
2599 | static bool hasAggregateEvaluationKind(QualType T) { |
2600 | return getEvaluationKind(T) == TEK_Aggregate; |
2601 | } |
2602 | |
2603 | /// createBasicBlock - Create an LLVM basic block. |
2604 | llvm::BasicBlock *createBasicBlock(const Twine &name = "" , |
2605 | llvm::Function *parent = nullptr, |
2606 | llvm::BasicBlock *before = nullptr) { |
2607 | return llvm::BasicBlock::Create(Context&: getLLVMContext(), Name: name, Parent: parent, InsertBefore: before); |
2608 | } |
2609 | |
2610 | /// getBasicBlockForLabel - Return the LLVM basicblock that the specified |
2611 | /// label maps to. |
2612 | JumpDest getJumpDestForLabel(const LabelDecl *S); |
2613 | |
2614 | /// SimplifyForwardingBlocks - If the given basic block is only a branch to |
2615 | /// another basic block, simplify it. This assumes that no other code could |
2616 | /// potentially reference the basic block. |
2617 | void SimplifyForwardingBlocks(llvm::BasicBlock *BB); |
2618 | |
2619 | /// EmitBlock - Emit the given block \arg BB and set it as the insert point, |
2620 | /// adding a fall-through branch from the current insert block if |
2621 | /// necessary. It is legal to call this function even if there is no current |
2622 | /// insertion point. |
2623 | /// |
2624 | /// IsFinished - If true, indicates that the caller has finished emitting |
2625 | /// branches to the given block and does not expect to emit code into it. This |
2626 | /// means the block can be ignored if it is unreachable. |
2627 | void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); |
2628 | |
2629 | /// EmitBlockAfterUses - Emit the given block somewhere hopefully |
2630 | /// near its uses, and leave the insertion point in it. |
2631 | void EmitBlockAfterUses(llvm::BasicBlock *BB); |
2632 | |
2633 | /// EmitBranch - Emit a branch to the specified basic block from the current |
2634 | /// insert block, taking care to avoid creation of branches from dummy |
2635 | /// blocks. It is legal to call this function even if there is no current |
2636 | /// insertion point. |
2637 | /// |
2638 | /// This function clears the current insertion point. The caller should follow |
2639 | /// calls to this function with calls to Emit*Block prior to generation new |
2640 | /// code. |
2641 | void EmitBranch(llvm::BasicBlock *Block); |
2642 | |
2643 | /// HaveInsertPoint - True if an insertion point is defined. If not, this |
2644 | /// indicates that the current code being emitted is unreachable. |
2645 | bool HaveInsertPoint() const { |
2646 | return Builder.GetInsertBlock() != nullptr; |
2647 | } |
2648 | |
2649 | /// EnsureInsertPoint - Ensure that an insertion point is defined so that |
2650 | /// emitted IR has a place to go. Note that by definition, if this function |
2651 | /// creates a block then that block is unreachable; callers may do better to |
2652 | /// detect when no insertion point is defined and simply skip IR generation. |
2653 | void EnsureInsertPoint() { |
2654 | if (!HaveInsertPoint()) |
2655 | EmitBlock(BB: createBasicBlock()); |
2656 | } |
2657 | |
2658 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2659 | /// specified stmt yet. |
2660 | void ErrorUnsupported(const Stmt *S, const char *Type); |
2661 | |
2662 | //===--------------------------------------------------------------------===// |
2663 | // Helpers |
2664 | //===--------------------------------------------------------------------===// |
2665 | |
2666 | Address mergeAddressesInConditionalExpr(Address LHS, Address RHS, |
2667 | llvm::BasicBlock *LHSBlock, |
2668 | llvm::BasicBlock *RHSBlock, |
2669 | llvm::BasicBlock *MergeBlock, |
2670 | QualType MergedType) { |
2671 | Builder.SetInsertPoint(MergeBlock); |
2672 | llvm::PHINode *PtrPhi = Builder.CreatePHI(Ty: LHS.getType(), NumReservedValues: 2, Name: "cond" ); |
2673 | PtrPhi->addIncoming(V: LHS.getBasePointer(), BB: LHSBlock); |
2674 | PtrPhi->addIncoming(V: RHS.getBasePointer(), BB: RHSBlock); |
2675 | LHS.replaceBasePointer(P: PtrPhi); |
2676 | LHS.setAlignment(std::min(a: LHS.getAlignment(), b: RHS.getAlignment())); |
2677 | return LHS; |
2678 | } |
2679 | |
2680 | /// Construct an address with the natural alignment of T. If a pointer to T |
2681 | /// is expected to be signed, the pointer passed to this function must have |
2682 | /// been signed, and the returned Address will have the pointer authentication |
2683 | /// information needed to authenticate the signed pointer. |
2684 | Address makeNaturalAddressForPointer( |
2685 | llvm::Value *Ptr, QualType T, CharUnits Alignment = CharUnits::Zero(), |
2686 | bool ForPointeeType = false, LValueBaseInfo *BaseInfo = nullptr, |
2687 | TBAAAccessInfo *TBAAInfo = nullptr, |
2688 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull) { |
2689 | if (Alignment.isZero()) |
2690 | Alignment = |
2691 | CGM.getNaturalTypeAlignment(T, BaseInfo, TBAAInfo, forPointeeType: ForPointeeType); |
2692 | return Address(Ptr, ConvertTypeForMem(T), Alignment, |
2693 | CGM.getPointerAuthInfoForPointeeType(type: T), /*Offset=*/nullptr, |
2694 | IsKnownNonNull); |
2695 | } |
2696 | |
2697 | LValue MakeAddrLValue(Address Addr, QualType T, |
2698 | AlignmentSource Source = AlignmentSource::Type) { |
2699 | return MakeAddrLValue(Addr, T, BaseInfo: LValueBaseInfo(Source), |
2700 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2701 | } |
2702 | |
2703 | LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo, |
2704 | TBAAAccessInfo TBAAInfo) { |
2705 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo, TBAAInfo); |
2706 | } |
2707 | |
2708 | LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2709 | AlignmentSource Source = AlignmentSource::Type) { |
2710 | return MakeAddrLValue(Addr: makeNaturalAddressForPointer(Ptr: V, T, Alignment), T, |
2711 | BaseInfo: LValueBaseInfo(Source), TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2712 | } |
2713 | |
2714 | /// Same as MakeAddrLValue above except that the pointer is known to be |
2715 | /// unsigned. |
2716 | LValue MakeRawAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, |
2717 | AlignmentSource Source = AlignmentSource::Type) { |
2718 | Address Addr(V, ConvertTypeForMem(T), Alignment); |
2719 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2720 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: T)); |
2721 | } |
2722 | |
2723 | LValue |
2724 | MakeAddrLValueWithoutTBAA(Address Addr, QualType T, |
2725 | AlignmentSource Source = AlignmentSource::Type) { |
2726 | return LValue::MakeAddr(Addr, type: T, Context&: getContext(), BaseInfo: LValueBaseInfo(Source), |
2727 | TBAAInfo: TBAAAccessInfo()); |
2728 | } |
2729 | |
2730 | /// Given a value of type T* that may not be to a complete object, construct |
2731 | /// an l-value with the natural pointee alignment of T. |
2732 | LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); |
2733 | |
2734 | LValue |
2735 | MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
2736 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
2737 | |
2738 | /// Same as MakeNaturalAlignPointeeAddrLValue except that the pointer is known |
2739 | /// to be unsigned. |
2740 | LValue MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, QualType T); |
2741 | |
2742 | LValue MakeNaturalAlignRawAddrLValue(llvm::Value *V, QualType T); |
2743 | |
2744 | Address EmitLoadOfReference(LValue RefLVal, |
2745 | LValueBaseInfo *PointeeBaseInfo = nullptr, |
2746 | TBAAAccessInfo *PointeeTBAAInfo = nullptr); |
2747 | LValue EmitLoadOfReferenceLValue(LValue RefLVal); |
2748 | LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy, |
2749 | AlignmentSource Source = |
2750 | AlignmentSource::Type) { |
2751 | LValue RefLVal = MakeAddrLValue(Addr: RefAddr, T: RefTy, BaseInfo: LValueBaseInfo(Source), |
2752 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: RefTy)); |
2753 | return EmitLoadOfReferenceLValue(RefLVal); |
2754 | } |
2755 | |
2756 | /// Load a pointer with type \p PtrTy stored at address \p Ptr. |
2757 | /// Note that \p PtrTy is the type of the loaded pointer, not the addresses |
2758 | /// it is loaded from. |
2759 | Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy, |
2760 | LValueBaseInfo *BaseInfo = nullptr, |
2761 | TBAAAccessInfo *TBAAInfo = nullptr); |
2762 | LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy); |
2763 | |
2764 | private: |
2765 | struct AllocaTracker { |
2766 | void Add(llvm::AllocaInst *I) { Allocas.push_back(Elt: I); } |
2767 | llvm::SmallVector<llvm::AllocaInst *> Take() { return std::move(Allocas); } |
2768 | |
2769 | private: |
2770 | llvm::SmallVector<llvm::AllocaInst *> Allocas; |
2771 | }; |
2772 | AllocaTracker *Allocas = nullptr; |
2773 | |
2774 | public: |
2775 | // Captures all the allocas created during the scope of its RAII object. |
2776 | struct AllocaTrackerRAII { |
2777 | AllocaTrackerRAII(CodeGenFunction &CGF) |
2778 | : CGF(CGF), OldTracker(CGF.Allocas) { |
2779 | CGF.Allocas = &Tracker; |
2780 | } |
2781 | ~AllocaTrackerRAII() { CGF.Allocas = OldTracker; } |
2782 | |
2783 | llvm::SmallVector<llvm::AllocaInst *> Take() { return Tracker.Take(); } |
2784 | |
2785 | private: |
2786 | CodeGenFunction &CGF; |
2787 | AllocaTracker *OldTracker; |
2788 | AllocaTracker Tracker; |
2789 | }; |
2790 | |
2791 | /// CreateTempAlloca - This creates an alloca and inserts it into the entry |
2792 | /// block if \p ArraySize is nullptr, otherwise inserts it at the current |
2793 | /// insertion point of the builder. The caller is responsible for setting an |
2794 | /// appropriate alignment on |
2795 | /// the alloca. |
2796 | /// |
2797 | /// \p ArraySize is the number of array elements to be allocated if it |
2798 | /// is not nullptr. |
2799 | /// |
2800 | /// LangAS::Default is the address space of pointers to local variables and |
2801 | /// temporaries, as exposed in the source language. In certain |
2802 | /// configurations, this is not the same as the alloca address space, and a |
2803 | /// cast is needed to lift the pointer from the alloca AS into |
2804 | /// LangAS::Default. This can happen when the target uses a restricted |
2805 | /// address space for the stack but the source language requires |
2806 | /// LangAS::Default to be a generic address space. The latter condition is |
2807 | /// common for most programming languages; OpenCL is an exception in that |
2808 | /// LangAS::Default is the private address space, which naturally maps |
2809 | /// to the stack. |
2810 | /// |
2811 | /// Because the address of a temporary is often exposed to the program in |
2812 | /// various ways, this function will perform the cast. The original alloca |
2813 | /// instruction is returned through \p Alloca if it is not nullptr. |
2814 | /// |
2815 | /// The cast is not performaed in CreateTempAllocaWithoutCast. This is |
2816 | /// more efficient if the caller knows that the address will not be exposed. |
2817 | llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp" , |
2818 | llvm::Value *ArraySize = nullptr); |
2819 | RawAddress CreateTempAlloca(llvm::Type *Ty, CharUnits align, |
2820 | const Twine &Name = "tmp" , |
2821 | llvm::Value *ArraySize = nullptr, |
2822 | RawAddress *Alloca = nullptr); |
2823 | RawAddress CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align, |
2824 | const Twine &Name = "tmp" , |
2825 | llvm::Value *ArraySize = nullptr); |
2826 | |
2827 | /// CreateDefaultAlignedTempAlloca - This creates an alloca with the |
2828 | /// default ABI alignment of the given LLVM type. |
2829 | /// |
2830 | /// IMPORTANT NOTE: This is *not* generally the right alignment for |
2831 | /// any given AST type that happens to have been lowered to the |
2832 | /// given IR type. This should only ever be used for function-local, |
2833 | /// IR-driven manipulations like saving and restoring a value. Do |
2834 | /// not hand this address off to arbitrary IRGen routines, and especially |
2835 | /// do not pass it as an argument to a function that might expect a |
2836 | /// properly ABI-aligned value. |
2837 | RawAddress CreateDefaultAlignTempAlloca(llvm::Type *Ty, |
2838 | const Twine &Name = "tmp" ); |
2839 | |
2840 | /// CreateIRTemp - Create a temporary IR object of the given type, with |
2841 | /// appropriate alignment. This routine should only be used when an temporary |
2842 | /// value needs to be stored into an alloca (for example, to avoid explicit |
2843 | /// PHI construction), but the type is the IR type, not the type appropriate |
2844 | /// for storing in memory. |
2845 | /// |
2846 | /// That is, this is exactly equivalent to CreateMemTemp, but calling |
2847 | /// ConvertType instead of ConvertTypeForMem. |
2848 | RawAddress CreateIRTemp(QualType T, const Twine &Name = "tmp" ); |
2849 | |
2850 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2851 | /// appropriate alignmen and cast it to the default address space. Returns |
2852 | /// the original alloca instruction by \p Alloca if it is not nullptr. |
2853 | RawAddress CreateMemTemp(QualType T, const Twine &Name = "tmp" , |
2854 | RawAddress *Alloca = nullptr); |
2855 | RawAddress CreateMemTemp(QualType T, CharUnits Align, |
2856 | const Twine &Name = "tmp" , |
2857 | RawAddress *Alloca = nullptr); |
2858 | |
2859 | /// CreateMemTemp - Create a temporary memory object of the given type, with |
2860 | /// appropriate alignmen without casting it to the default address space. |
2861 | RawAddress CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp" ); |
2862 | RawAddress CreateMemTempWithoutCast(QualType T, CharUnits Align, |
2863 | const Twine &Name = "tmp" ); |
2864 | |
2865 | /// CreateAggTemp - Create a temporary memory object for the given |
2866 | /// aggregate type. |
2867 | AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp" , |
2868 | RawAddress *Alloca = nullptr) { |
2869 | return AggValueSlot::forAddr( |
2870 | addr: CreateMemTemp(T, Name, Alloca), quals: T.getQualifiers(), |
2871 | isDestructed: AggValueSlot::IsNotDestructed, needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2872 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap); |
2873 | } |
2874 | |
2875 | /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
2876 | /// expression and compare the result against zero, returning an Int1Ty value. |
2877 | llvm::Value *EvaluateExprAsBool(const Expr *E); |
2878 | |
2879 | /// Retrieve the implicit cast expression of the rhs in a binary operator |
2880 | /// expression by passing pointers to Value and QualType |
2881 | /// This is used for implicit bitfield conversion checks, which |
2882 | /// must compare with the value before potential truncation. |
2883 | llvm::Value *EmitWithOriginalRHSBitfieldAssignment(const BinaryOperator *E, |
2884 | llvm::Value **Previous, |
2885 | QualType *SrcType); |
2886 | |
2887 | /// Emit a check that an [implicit] conversion of a bitfield. It is not UB, |
2888 | /// so we use the value after conversion. |
2889 | void EmitBitfieldConversionCheck(llvm::Value *Src, QualType SrcType, |
2890 | llvm::Value *Dst, QualType DstType, |
2891 | const CGBitFieldInfo &Info, |
2892 | SourceLocation Loc); |
2893 | |
2894 | /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. |
2895 | void EmitIgnoredExpr(const Expr *E); |
2896 | |
2897 | /// EmitAnyExpr - Emit code to compute the specified expression which can have |
2898 | /// any type. The result is returned as an RValue struct. If this is an |
2899 | /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
2900 | /// the result should be returned. |
2901 | /// |
2902 | /// \param ignoreResult True if the resulting value isn't used. |
2903 | RValue EmitAnyExpr(const Expr *E, |
2904 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
2905 | bool ignoreResult = false); |
2906 | |
2907 | // EmitVAListRef - Emit a "reference" to a va_list; this is either the address |
2908 | // or the value of the expression, depending on how va_list is defined. |
2909 | Address EmitVAListRef(const Expr *E); |
2910 | |
2911 | /// Emit a "reference" to a __builtin_ms_va_list; this is |
2912 | /// always the value of the expression, because a __builtin_ms_va_list is a |
2913 | /// pointer to a char. |
2914 | Address EmitMSVAListRef(const Expr *E); |
2915 | |
2916 | /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will |
2917 | /// always be accessible even if no aggregate location is provided. |
2918 | RValue EmitAnyExprToTemp(const Expr *E); |
2919 | |
2920 | /// EmitAnyExprToMem - Emits the code necessary to evaluate an |
2921 | /// arbitrary expression into the given memory location. |
2922 | void EmitAnyExprToMem(const Expr *E, Address Location, |
2923 | Qualifiers Quals, bool IsInitializer); |
2924 | |
2925 | void EmitAnyExprToExn(const Expr *E, Address Addr); |
2926 | |
2927 | /// EmitExprAsInit - Emits the code necessary to initialize a |
2928 | /// location in memory with the given initializer. |
2929 | void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
2930 | bool capturedByInit); |
2931 | |
2932 | /// hasVolatileMember - returns true if aggregate type has a volatile |
2933 | /// member. |
2934 | bool hasVolatileMember(QualType T) { |
2935 | if (const RecordType *RT = T->getAs<RecordType>()) { |
2936 | const RecordDecl *RD = cast<RecordDecl>(Val: RT->getDecl()); |
2937 | return RD->hasVolatileMember(); |
2938 | } |
2939 | return false; |
2940 | } |
2941 | |
2942 | /// Determine whether a return value slot may overlap some other object. |
2943 | AggValueSlot::Overlap_t getOverlapForReturnValue() { |
2944 | // FIXME: Assuming no overlap here breaks guaranteed copy elision for base |
2945 | // class subobjects. These cases may need to be revisited depending on the |
2946 | // resolution of the relevant core issue. |
2947 | return AggValueSlot::DoesNotOverlap; |
2948 | } |
2949 | |
2950 | /// Determine whether a field initialization may overlap some other object. |
2951 | AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD); |
2952 | |
2953 | /// Determine whether a base class initialization may overlap some other |
2954 | /// object. |
2955 | AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD, |
2956 | const CXXRecordDecl *BaseRD, |
2957 | bool IsVirtual); |
2958 | |
2959 | /// Emit an aggregate assignment. |
2960 | void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) { |
2961 | bool IsVolatile = hasVolatileMember(T: EltTy); |
2962 | EmitAggregateCopy(Dest, Src, EltTy, MayOverlap: AggValueSlot::MayOverlap, isVolatile: IsVolatile); |
2963 | } |
2964 | |
2965 | void EmitAggregateCopyCtor(LValue Dest, LValue Src, |
2966 | AggValueSlot::Overlap_t MayOverlap) { |
2967 | EmitAggregateCopy(Dest, Src, EltTy: Src.getType(), MayOverlap); |
2968 | } |
2969 | |
2970 | /// EmitAggregateCopy - Emit an aggregate copy. |
2971 | /// |
2972 | /// \param isVolatile \c true iff either the source or the destination is |
2973 | /// volatile. |
2974 | /// \param MayOverlap Whether the tail padding of the destination might be |
2975 | /// occupied by some other object. More efficient code can often be |
2976 | /// generated if not. |
2977 | void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy, |
2978 | AggValueSlot::Overlap_t MayOverlap, |
2979 | bool isVolatile = false); |
2980 | |
2981 | /// GetAddrOfLocalVar - Return the address of a local variable. |
2982 | Address GetAddrOfLocalVar(const VarDecl *VD) { |
2983 | auto it = LocalDeclMap.find(Val: VD); |
2984 | assert(it != LocalDeclMap.end() && |
2985 | "Invalid argument to GetAddrOfLocalVar(), no decl!" ); |
2986 | return it->second; |
2987 | } |
2988 | |
2989 | /// Given an opaque value expression, return its LValue mapping if it exists, |
2990 | /// otherwise create one. |
2991 | LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e); |
2992 | |
2993 | /// Given an opaque value expression, return its RValue mapping if it exists, |
2994 | /// otherwise create one. |
2995 | RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e); |
2996 | |
2997 | /// Get the index of the current ArrayInitLoopExpr, if any. |
2998 | llvm::Value *getArrayInitIndex() { return ArrayInitIndex; } |
2999 | |
3000 | /// getAccessedFieldNo - Given an encoded value and a result number, return |
3001 | /// the input field number being accessed. |
3002 | static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); |
3003 | |
3004 | llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); |
3005 | llvm::BasicBlock *GetIndirectGotoBlock(); |
3006 | |
3007 | /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts. |
3008 | static bool IsWrappedCXXThis(const Expr *E); |
3009 | |
3010 | /// EmitNullInitialization - Generate code to set a value of the given type to |
3011 | /// null, If the type contains data member pointers, they will be initialized |
3012 | /// to -1 in accordance with the Itanium C++ ABI. |
3013 | void EmitNullInitialization(Address DestPtr, QualType Ty); |
3014 | |
3015 | /// Emits a call to an LLVM variable-argument intrinsic, either |
3016 | /// \c llvm.va_start or \c llvm.va_end. |
3017 | /// \param ArgValue A reference to the \c va_list as emitted by either |
3018 | /// \c EmitVAListRef or \c EmitMSVAListRef. |
3019 | /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, |
3020 | /// calls \c llvm.va_end. |
3021 | llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); |
3022 | |
3023 | /// Generate code to get an argument from the passed in pointer |
3024 | /// and update it accordingly. |
3025 | /// \param VE The \c VAArgExpr for which to generate code. |
3026 | /// \param VAListAddr Receives a reference to the \c va_list as emitted by |
3027 | /// either \c EmitVAListRef or \c EmitMSVAListRef. |
3028 | /// \returns A pointer to the argument. |
3029 | // FIXME: We should be able to get rid of this method and use the va_arg |
3030 | // instruction in LLVM instead once it works well enough. |
3031 | RValue EmitVAArg(VAArgExpr *VE, Address &VAListAddr, |
3032 | AggValueSlot Slot = AggValueSlot::ignored()); |
3033 | |
3034 | /// emitArrayLength - Compute the length of an array, even if it's a |
3035 | /// VLA, and drill down to the base element type. |
3036 | llvm::Value *emitArrayLength(const ArrayType *arrayType, |
3037 | QualType &baseType, |
3038 | Address &addr); |
3039 | |
3040 | /// EmitVLASize - Capture all the sizes for the VLA expressions in |
3041 | /// the given variably-modified type and store them in the VLASizeMap. |
3042 | /// |
3043 | /// This function can be called with a null (unreachable) insert point. |
3044 | void EmitVariablyModifiedType(QualType Ty); |
3045 | |
3046 | struct VlaSizePair { |
3047 | llvm::Value *NumElts; |
3048 | QualType Type; |
3049 | |
3050 | VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {} |
3051 | }; |
3052 | |
3053 | /// Return the number of elements for a single dimension |
3054 | /// for the given array type. |
3055 | VlaSizePair getVLAElements1D(const VariableArrayType *vla); |
3056 | VlaSizePair getVLAElements1D(QualType vla); |
3057 | |
3058 | /// Returns an LLVM value that corresponds to the size, |
3059 | /// in non-variably-sized elements, of a variable length array type, |
3060 | /// plus that largest non-variably-sized element type. Assumes that |
3061 | /// the type has already been emitted with EmitVariablyModifiedType. |
3062 | VlaSizePair getVLASize(const VariableArrayType *vla); |
3063 | VlaSizePair getVLASize(QualType vla); |
3064 | |
3065 | /// LoadCXXThis - Load the value of 'this'. This function is only valid while |
3066 | /// generating code for an C++ member function. |
3067 | llvm::Value *LoadCXXThis() { |
3068 | assert(CXXThisValue && "no 'this' value for this function" ); |
3069 | return CXXThisValue; |
3070 | } |
3071 | Address LoadCXXThisAddress(); |
3072 | |
3073 | /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have |
3074 | /// virtual bases. |
3075 | // FIXME: Every place that calls LoadCXXVTT is something |
3076 | // that needs to be abstracted properly. |
3077 | llvm::Value *LoadCXXVTT() { |
3078 | assert(CXXStructorImplicitParamValue && "no VTT value for this function" ); |
3079 | return CXXStructorImplicitParamValue; |
3080 | } |
3081 | |
3082 | /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a |
3083 | /// complete class to the given direct base. |
3084 | Address |
3085 | GetAddressOfDirectBaseInCompleteClass(Address Value, |
3086 | const CXXRecordDecl *Derived, |
3087 | const CXXRecordDecl *Base, |
3088 | bool BaseIsVirtual); |
3089 | |
3090 | static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); |
3091 | |
3092 | /// GetAddressOfBaseClass - This function will add the necessary delta to the |
3093 | /// load of 'this' and returns address of the base class. |
3094 | Address GetAddressOfBaseClass(Address Value, |
3095 | const CXXRecordDecl *Derived, |
3096 | CastExpr::path_const_iterator PathBegin, |
3097 | CastExpr::path_const_iterator PathEnd, |
3098 | bool NullCheckValue, SourceLocation Loc); |
3099 | |
3100 | Address GetAddressOfDerivedClass(Address Value, |
3101 | const CXXRecordDecl *Derived, |
3102 | CastExpr::path_const_iterator PathBegin, |
3103 | CastExpr::path_const_iterator PathEnd, |
3104 | bool NullCheckValue); |
3105 | |
3106 | /// GetVTTParameter - Return the VTT parameter that should be passed to a |
3107 | /// base constructor/destructor with virtual bases. |
3108 | /// FIXME: VTTs are Itanium ABI-specific, so the definition should move |
3109 | /// to ItaniumCXXABI.cpp together with all the references to VTT. |
3110 | llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, |
3111 | bool Delegating); |
3112 | |
3113 | void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3114 | CXXCtorType CtorType, |
3115 | const FunctionArgList &Args, |
3116 | SourceLocation Loc); |
3117 | // It's important not to confuse this and the previous function. Delegating |
3118 | // constructors are the C++0x feature. The constructor delegate optimization |
3119 | // is used to reduce duplication in the base and complete consturctors where |
3120 | // they are substantially the same. |
3121 | void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3122 | const FunctionArgList &Args); |
3123 | |
3124 | /// Emit a call to an inheriting constructor (that is, one that invokes a |
3125 | /// constructor inherited from a base class) by inlining its definition. This |
3126 | /// is necessary if the ABI does not support forwarding the arguments to the |
3127 | /// base class constructor (because they're variadic or similar). |
3128 | void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor, |
3129 | CXXCtorType CtorType, |
3130 | bool ForVirtualBase, |
3131 | bool Delegating, |
3132 | CallArgList &Args); |
3133 | |
3134 | /// Emit a call to a constructor inherited from a base class, passing the |
3135 | /// current constructor's arguments along unmodified (without even making |
3136 | /// a copy). |
3137 | void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D, |
3138 | bool ForVirtualBase, Address This, |
3139 | bool InheritedFromVBase, |
3140 | const CXXInheritedCtorInitExpr *E); |
3141 | |
3142 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3143 | bool ForVirtualBase, bool Delegating, |
3144 | AggValueSlot ThisAVS, const CXXConstructExpr *E); |
3145 | |
3146 | void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, |
3147 | bool ForVirtualBase, bool Delegating, |
3148 | Address This, CallArgList &Args, |
3149 | AggValueSlot::Overlap_t Overlap, |
3150 | SourceLocation Loc, bool NewPointerIsChecked); |
3151 | |
3152 | /// Emit assumption load for all bases. Requires to be called only on |
3153 | /// most-derived class and not under construction of the object. |
3154 | void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); |
3155 | |
3156 | /// Emit assumption that vptr load == global vtable. |
3157 | void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); |
3158 | |
3159 | void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, |
3160 | Address This, Address Src, |
3161 | const CXXConstructExpr *E); |
3162 | |
3163 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3164 | const ArrayType *ArrayTy, |
3165 | Address ArrayPtr, |
3166 | const CXXConstructExpr *E, |
3167 | bool NewPointerIsChecked, |
3168 | bool ZeroInitialization = false); |
3169 | |
3170 | void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, |
3171 | llvm::Value *NumElements, |
3172 | Address ArrayPtr, |
3173 | const CXXConstructExpr *E, |
3174 | bool NewPointerIsChecked, |
3175 | bool ZeroInitialization = false); |
3176 | |
3177 | static Destroyer destroyCXXObject; |
3178 | |
3179 | void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, |
3180 | bool ForVirtualBase, bool Delegating, Address This, |
3181 | QualType ThisTy); |
3182 | |
3183 | void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, |
3184 | llvm::Type *ElementTy, Address NewPtr, |
3185 | llvm::Value *NumElements, |
3186 | llvm::Value *AllocSizeWithoutCookie); |
3187 | |
3188 | void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, |
3189 | Address Ptr); |
3190 | |
3191 | void EmitSehCppScopeBegin(); |
3192 | void EmitSehCppScopeEnd(); |
3193 | void EmitSehTryScopeBegin(); |
3194 | void EmitSehTryScopeEnd(); |
3195 | |
3196 | llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr); |
3197 | void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); |
3198 | |
3199 | llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); |
3200 | void EmitCXXDeleteExpr(const CXXDeleteExpr *E); |
3201 | |
3202 | void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, |
3203 | QualType DeleteTy, llvm::Value *NumElements = nullptr, |
3204 | CharUnits CookieSize = CharUnits()); |
3205 | |
3206 | RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, |
3207 | const CallExpr *TheCallExpr, bool IsDelete); |
3208 | |
3209 | llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); |
3210 | llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); |
3211 | Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); |
3212 | |
3213 | /// Situations in which we might emit a check for the suitability of a |
3214 | /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in |
3215 | /// compiler-rt. |
3216 | enum TypeCheckKind { |
3217 | /// Checking the operand of a load. Must be suitably sized and aligned. |
3218 | TCK_Load, |
3219 | /// Checking the destination of a store. Must be suitably sized and aligned. |
3220 | TCK_Store, |
3221 | /// Checking the bound value in a reference binding. Must be suitably sized |
3222 | /// and aligned, but is not required to refer to an object (until the |
3223 | /// reference is used), per core issue 453. |
3224 | TCK_ReferenceBinding, |
3225 | /// Checking the object expression in a non-static data member access. Must |
3226 | /// be an object within its lifetime. |
3227 | TCK_MemberAccess, |
3228 | /// Checking the 'this' pointer for a call to a non-static member function. |
3229 | /// Must be an object within its lifetime. |
3230 | TCK_MemberCall, |
3231 | /// Checking the 'this' pointer for a constructor call. |
3232 | TCK_ConstructorCall, |
3233 | /// Checking the operand of a static_cast to a derived pointer type. Must be |
3234 | /// null or an object within its lifetime. |
3235 | TCK_DowncastPointer, |
3236 | /// Checking the operand of a static_cast to a derived reference type. Must |
3237 | /// be an object within its lifetime. |
3238 | TCK_DowncastReference, |
3239 | /// Checking the operand of a cast to a base object. Must be suitably sized |
3240 | /// and aligned. |
3241 | TCK_Upcast, |
3242 | /// Checking the operand of a cast to a virtual base object. Must be an |
3243 | /// object within its lifetime. |
3244 | TCK_UpcastToVirtualBase, |
3245 | /// Checking the value assigned to a _Nonnull pointer. Must not be null. |
3246 | TCK_NonnullAssign, |
3247 | /// Checking the operand of a dynamic_cast or a typeid expression. Must be |
3248 | /// null or an object within its lifetime. |
3249 | TCK_DynamicOperation |
3250 | }; |
3251 | |
3252 | /// Determine whether the pointer type check \p TCK permits null pointers. |
3253 | static bool isNullPointerAllowed(TypeCheckKind TCK); |
3254 | |
3255 | /// Determine whether the pointer type check \p TCK requires a vptr check. |
3256 | static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty); |
3257 | |
3258 | /// Whether any type-checking sanitizers are enabled. If \c false, |
3259 | /// calls to EmitTypeCheck can be skipped. |
3260 | bool sanitizePerformTypeCheck() const; |
3261 | |
3262 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, LValue LV, |
3263 | QualType Type, SanitizerSet SkippedChecks = SanitizerSet(), |
3264 | llvm::Value *ArraySize = nullptr) { |
3265 | if (!sanitizePerformTypeCheck()) |
3266 | return; |
3267 | EmitTypeCheck(TCK, Loc, V: LV.emitRawPointer(CGF&: *this), Type, Alignment: LV.getAlignment(), |
3268 | SkippedChecks, ArraySize); |
3269 | } |
3270 | |
3271 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, Address Addr, |
3272 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3273 | SanitizerSet SkippedChecks = SanitizerSet(), |
3274 | llvm::Value *ArraySize = nullptr) { |
3275 | if (!sanitizePerformTypeCheck()) |
3276 | return; |
3277 | EmitTypeCheck(TCK, Loc, V: Addr.emitRawPointer(CGF&: *this), Type, Alignment, |
3278 | SkippedChecks, ArraySize); |
3279 | } |
3280 | |
3281 | /// Emit a check that \p V is the address of storage of the |
3282 | /// appropriate size and alignment for an object of type \p Type |
3283 | /// (or if ArraySize is provided, for an array of that bound). |
3284 | void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, |
3285 | QualType Type, CharUnits Alignment = CharUnits::Zero(), |
3286 | SanitizerSet SkippedChecks = SanitizerSet(), |
3287 | llvm::Value *ArraySize = nullptr); |
3288 | |
3289 | /// Emit a check that \p Base points into an array object, which |
3290 | /// we can access at index \p Index. \p Accessed should be \c false if we |
3291 | /// this expression is used as an lvalue, for instance in "&Arr[Idx]". |
3292 | void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, |
3293 | QualType IndexType, bool Accessed); |
3294 | void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound, |
3295 | llvm::Value *Index, QualType IndexType, |
3296 | QualType IndexedType, bool Accessed); |
3297 | |
3298 | // Find a struct's flexible array member and get its offset. It may be |
3299 | // embedded inside multiple sub-structs, but must still be the last field. |
3300 | const FieldDecl * |
3301 | FindFlexibleArrayMemberFieldAndOffset(ASTContext &Ctx, const RecordDecl *RD, |
3302 | const FieldDecl *FAMDecl, |
3303 | uint64_t &Offset); |
3304 | |
3305 | /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns |
3306 | /// \p nullptr if either the attribute or the field doesn't exist. |
3307 | const FieldDecl *FindCountedByField(const FieldDecl *FD); |
3308 | |
3309 | /// Build an expression accessing the "counted_by" field. |
3310 | llvm::Value *EmitCountedByFieldExpr(const Expr *Base, |
3311 | const FieldDecl *FAMDecl, |
3312 | const FieldDecl *CountDecl); |
3313 | |
3314 | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
3315 | bool isInc, bool isPre); |
3316 | ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, |
3317 | bool isInc, bool isPre); |
3318 | |
3319 | /// Converts Location to a DebugLoc, if debug information is enabled. |
3320 | llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location); |
3321 | |
3322 | /// Get the record field index as represented in debug info. |
3323 | unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex); |
3324 | |
3325 | |
3326 | //===--------------------------------------------------------------------===// |
3327 | // Declaration Emission |
3328 | //===--------------------------------------------------------------------===// |
3329 | |
3330 | /// EmitDecl - Emit a declaration. |
3331 | /// |
3332 | /// This function can be called with a null (unreachable) insert point. |
3333 | void EmitDecl(const Decl &D); |
3334 | |
3335 | /// EmitVarDecl - Emit a local variable declaration. |
3336 | /// |
3337 | /// This function can be called with a null (unreachable) insert point. |
3338 | void EmitVarDecl(const VarDecl &D); |
3339 | |
3340 | void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, |
3341 | bool capturedByInit); |
3342 | |
3343 | typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, |
3344 | llvm::Value *Address); |
3345 | |
3346 | /// Determine whether the given initializer is trivial in the sense |
3347 | /// that it requires no code to be generated. |
3348 | bool isTrivialInitializer(const Expr *Init); |
3349 | |
3350 | /// EmitAutoVarDecl - Emit an auto variable declaration. |
3351 | /// |
3352 | /// This function can be called with a null (unreachable) insert point. |
3353 | void EmitAutoVarDecl(const VarDecl &D); |
3354 | |
3355 | class AutoVarEmission { |
3356 | friend class CodeGenFunction; |
3357 | |
3358 | const VarDecl *Variable; |
3359 | |
3360 | /// The address of the alloca for languages with explicit address space |
3361 | /// (e.g. OpenCL) or alloca casted to generic pointer for address space |
3362 | /// agnostic languages (e.g. C++). Invalid if the variable was emitted |
3363 | /// as a global constant. |
3364 | Address Addr; |
3365 | |
3366 | llvm::Value *NRVOFlag; |
3367 | |
3368 | /// True if the variable is a __block variable that is captured by an |
3369 | /// escaping block. |
3370 | bool IsEscapingByRef; |
3371 | |
3372 | /// True if the variable is of aggregate type and has a constant |
3373 | /// initializer. |
3374 | bool IsConstantAggregate; |
3375 | |
3376 | /// Non-null if we should use lifetime annotations. |
3377 | llvm::Value *SizeForLifetimeMarkers; |
3378 | |
3379 | /// Address with original alloca instruction. Invalid if the variable was |
3380 | /// emitted as a global constant. |
3381 | RawAddress AllocaAddr; |
3382 | |
3383 | struct Invalid {}; |
3384 | AutoVarEmission(Invalid) |
3385 | : Variable(nullptr), Addr(Address::invalid()), |
3386 | AllocaAddr(RawAddress::invalid()) {} |
3387 | |
3388 | AutoVarEmission(const VarDecl &variable) |
3389 | : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), |
3390 | IsEscapingByRef(false), IsConstantAggregate(false), |
3391 | SizeForLifetimeMarkers(nullptr), AllocaAddr(RawAddress::invalid()) {} |
3392 | |
3393 | bool wasEmittedAsGlobal() const { return !Addr.isValid(); } |
3394 | |
3395 | public: |
3396 | static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } |
3397 | |
3398 | bool useLifetimeMarkers() const { |
3399 | return SizeForLifetimeMarkers != nullptr; |
3400 | } |
3401 | llvm::Value *getSizeForLifetimeMarkers() const { |
3402 | assert(useLifetimeMarkers()); |
3403 | return SizeForLifetimeMarkers; |
3404 | } |
3405 | |
3406 | /// Returns the raw, allocated address, which is not necessarily |
3407 | /// the address of the object itself. It is casted to default |
3408 | /// address space for address space agnostic languages. |
3409 | Address getAllocatedAddress() const { |
3410 | return Addr; |
3411 | } |
3412 | |
3413 | /// Returns the address for the original alloca instruction. |
3414 | RawAddress getOriginalAllocatedAddress() const { return AllocaAddr; } |
3415 | |
3416 | /// Returns the address of the object within this declaration. |
3417 | /// Note that this does not chase the forwarding pointer for |
3418 | /// __block decls. |
3419 | Address getObjectAddress(CodeGenFunction &CGF) const { |
3420 | if (!IsEscapingByRef) return Addr; |
3421 | |
3422 | return CGF.emitBlockByrefAddress(baseAddr: Addr, V: Variable, /*forward*/ followForward: false); |
3423 | } |
3424 | }; |
3425 | AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); |
3426 | void EmitAutoVarInit(const AutoVarEmission &emission); |
3427 | void EmitAutoVarCleanups(const AutoVarEmission &emission); |
3428 | void emitAutoVarTypeCleanup(const AutoVarEmission &emission, |
3429 | QualType::DestructionKind dtorKind); |
3430 | |
3431 | /// Emits the alloca and debug information for the size expressions for each |
3432 | /// dimension of an array. It registers the association of its (1-dimensional) |
3433 | /// QualTypes and size expression's debug node, so that CGDebugInfo can |
3434 | /// reference this node when creating the DISubrange object to describe the |
3435 | /// array types. |
3436 | void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI, |
3437 | const VarDecl &D, |
3438 | bool EmitDebugInfo); |
3439 | |
3440 | void EmitStaticVarDecl(const VarDecl &D, |
3441 | llvm::GlobalValue::LinkageTypes Linkage); |
3442 | |
3443 | class ParamValue { |
3444 | union { |
3445 | Address Addr; |
3446 | llvm::Value *Value; |
3447 | }; |
3448 | |
3449 | bool IsIndirect; |
3450 | |
3451 | ParamValue(llvm::Value *V) : Value(V), IsIndirect(false) {} |
3452 | ParamValue(Address A) : Addr(A), IsIndirect(true) {} |
3453 | |
3454 | public: |
3455 | static ParamValue forDirect(llvm::Value *value) { |
3456 | return ParamValue(value); |
3457 | } |
3458 | static ParamValue forIndirect(Address addr) { |
3459 | assert(!addr.getAlignment().isZero()); |
3460 | return ParamValue(addr); |
3461 | } |
3462 | |
3463 | bool isIndirect() const { return IsIndirect; } |
3464 | llvm::Value *getAnyValue() const { |
3465 | if (!isIndirect()) |
3466 | return Value; |
3467 | assert(!Addr.hasOffset() && "unexpected offset" ); |
3468 | return Addr.getBasePointer(); |
3469 | } |
3470 | |
3471 | llvm::Value *getDirectValue() const { |
3472 | assert(!isIndirect()); |
3473 | return Value; |
3474 | } |
3475 | |
3476 | Address getIndirectAddress() const { |
3477 | assert(isIndirect()); |
3478 | return Addr; |
3479 | } |
3480 | }; |
3481 | |
3482 | /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. |
3483 | void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); |
3484 | |
3485 | /// protectFromPeepholes - Protect a value that we're intending to |
3486 | /// store to the side, but which will probably be used later, from |
3487 | /// aggressive peepholing optimizations that might delete it. |
3488 | /// |
3489 | /// Pass the result to unprotectFromPeepholes to declare that |
3490 | /// protection is no longer required. |
3491 | /// |
3492 | /// There's no particular reason why this shouldn't apply to |
3493 | /// l-values, it's just that no existing peepholes work on pointers. |
3494 | PeepholeProtection protectFromPeepholes(RValue rvalue); |
3495 | void unprotectFromPeepholes(PeepholeProtection protection); |
3496 | |
3497 | void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty, |
3498 | SourceLocation Loc, |
3499 | SourceLocation AssumptionLoc, |
3500 | llvm::Value *Alignment, |
3501 | llvm::Value *OffsetValue, |
3502 | llvm::Value *TheCheck, |
3503 | llvm::Instruction *Assumption); |
3504 | |
3505 | void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, |
3506 | SourceLocation Loc, SourceLocation AssumptionLoc, |
3507 | llvm::Value *Alignment, |
3508 | llvm::Value *OffsetValue = nullptr); |
3509 | |
3510 | void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, |
3511 | SourceLocation AssumptionLoc, |
3512 | llvm::Value *Alignment, |
3513 | llvm::Value *OffsetValue = nullptr); |
3514 | |
3515 | //===--------------------------------------------------------------------===// |
3516 | // Statement Emission |
3517 | //===--------------------------------------------------------------------===// |
3518 | |
3519 | /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. |
3520 | void EmitStopPoint(const Stmt *S); |
3521 | |
3522 | /// EmitStmt - Emit the code for the statement \arg S. It is legal to call |
3523 | /// this function even if there is no current insertion point. |
3524 | /// |
3525 | /// This function may clear the current insertion point; callers should use |
3526 | /// EnsureInsertPoint if they wish to subsequently generate code without first |
3527 | /// calling EmitBlock, EmitBranch, or EmitStmt. |
3528 | void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt); |
3529 | |
3530 | /// EmitSimpleStmt - Try to emit a "simple" statement which does not |
3531 | /// necessarily require an insertion point or debug information; typically |
3532 | /// because the statement amounts to a jump or a container of other |
3533 | /// statements. |
3534 | /// |
3535 | /// \return True if the statement was handled. |
3536 | bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs); |
3537 | |
3538 | Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, |
3539 | AggValueSlot AVS = AggValueSlot::ignored()); |
3540 | Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, |
3541 | bool GetLast = false, |
3542 | AggValueSlot AVS = |
3543 | AggValueSlot::ignored()); |
3544 | |
3545 | /// EmitLabel - Emit the block for the given label. It is legal to call this |
3546 | /// function even if there is no current insertion point. |
3547 | void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. |
3548 | |
3549 | void EmitLabelStmt(const LabelStmt &S); |
3550 | void EmitAttributedStmt(const AttributedStmt &S); |
3551 | void EmitGotoStmt(const GotoStmt &S); |
3552 | void EmitIndirectGotoStmt(const IndirectGotoStmt &S); |
3553 | void EmitIfStmt(const IfStmt &S); |
3554 | |
3555 | void EmitWhileStmt(const WhileStmt &S, |
3556 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3557 | void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt); |
3558 | void EmitForStmt(const ForStmt &S, |
3559 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3560 | void EmitReturnStmt(const ReturnStmt &S); |
3561 | void EmitDeclStmt(const DeclStmt &S); |
3562 | void EmitBreakStmt(const BreakStmt &S); |
3563 | void EmitContinueStmt(const ContinueStmt &S); |
3564 | void EmitSwitchStmt(const SwitchStmt &S); |
3565 | void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs); |
3566 | void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3567 | void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs); |
3568 | void EmitAsmStmt(const AsmStmt &S); |
3569 | |
3570 | void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); |
3571 | void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); |
3572 | void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); |
3573 | void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); |
3574 | void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); |
3575 | |
3576 | void EmitCoroutineBody(const CoroutineBodyStmt &S); |
3577 | void EmitCoreturnStmt(const CoreturnStmt &S); |
3578 | RValue EmitCoawaitExpr(const CoawaitExpr &E, |
3579 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3580 | bool ignoreResult = false); |
3581 | LValue EmitCoawaitLValue(const CoawaitExpr *E); |
3582 | RValue EmitCoyieldExpr(const CoyieldExpr &E, |
3583 | AggValueSlot aggSlot = AggValueSlot::ignored(), |
3584 | bool ignoreResult = false); |
3585 | LValue EmitCoyieldLValue(const CoyieldExpr *E); |
3586 | RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID); |
3587 | |
3588 | void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3589 | void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); |
3590 | |
3591 | void EmitCXXTryStmt(const CXXTryStmt &S); |
3592 | void EmitSEHTryStmt(const SEHTryStmt &S); |
3593 | void EmitSEHLeaveStmt(const SEHLeaveStmt &S); |
3594 | void EnterSEHTryStmt(const SEHTryStmt &S); |
3595 | void ExitSEHTryStmt(const SEHTryStmt &S); |
3596 | void VolatilizeTryBlocks(llvm::BasicBlock *BB, |
3597 | llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V); |
3598 | |
3599 | void pushSEHCleanup(CleanupKind kind, |
3600 | llvm::Function *FinallyFunc); |
3601 | void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, |
3602 | const Stmt *OutlinedStmt); |
3603 | |
3604 | llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, |
3605 | const SEHExceptStmt &Except); |
3606 | |
3607 | llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, |
3608 | const SEHFinallyStmt &Finally); |
3609 | |
3610 | void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, |
3611 | llvm::Value *ParentFP, |
3612 | llvm::Value *EntryEBP); |
3613 | llvm::Value *EmitSEHExceptionCode(); |
3614 | llvm::Value *EmitSEHExceptionInfo(); |
3615 | llvm::Value *EmitSEHAbnormalTermination(); |
3616 | |
3617 | /// Emit simple code for OpenMP directives in Simd-only mode. |
3618 | void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D); |
3619 | |
3620 | /// Scan the outlined statement for captures from the parent function. For |
3621 | /// each capture, mark the capture as escaped and emit a call to |
3622 | /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. |
3623 | void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, |
3624 | bool IsFilter); |
3625 | |
3626 | /// Recovers the address of a local in a parent function. ParentVar is the |
3627 | /// address of the variable used in the immediate parent function. It can |
3628 | /// either be an alloca or a call to llvm.localrecover if there are nested |
3629 | /// outlined functions. ParentFP is the frame pointer of the outermost parent |
3630 | /// frame. |
3631 | Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, |
3632 | Address ParentVar, |
3633 | llvm::Value *ParentFP); |
3634 | |
3635 | void EmitCXXForRangeStmt(const CXXForRangeStmt &S, |
3636 | ArrayRef<const Attr *> Attrs = std::nullopt); |
3637 | |
3638 | /// Controls insertion of cancellation exit blocks in worksharing constructs. |
3639 | class OMPCancelStackRAII { |
3640 | CodeGenFunction &CGF; |
3641 | |
3642 | public: |
3643 | OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, |
3644 | bool HasCancel) |
3645 | : CGF(CGF) { |
3646 | CGF.OMPCancelStack.enter(CGF, Kind, HasCancel); |
3647 | } |
3648 | ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); } |
3649 | }; |
3650 | |
3651 | /// Returns calculated size of the specified type. |
3652 | llvm::Value *getTypeSize(QualType Ty); |
3653 | LValue InitCapturedStruct(const CapturedStmt &S); |
3654 | llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); |
3655 | llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); |
3656 | Address GenerateCapturedStmtArgument(const CapturedStmt &S); |
3657 | llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S, |
3658 | SourceLocation Loc); |
3659 | void GenerateOpenMPCapturedVars(const CapturedStmt &S, |
3660 | SmallVectorImpl<llvm::Value *> &CapturedVars); |
3661 | void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy, |
3662 | SourceLocation Loc); |
3663 | /// Perform element by element copying of arrays with type \a |
3664 | /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure |
3665 | /// generated by \a CopyGen. |
3666 | /// |
3667 | /// \param DestAddr Address of the destination array. |
3668 | /// \param SrcAddr Address of the source array. |
3669 | /// \param OriginalType Type of destination and source arrays. |
3670 | /// \param CopyGen Copying procedure that copies value of single array element |
3671 | /// to another single array element. |
3672 | void EmitOMPAggregateAssign( |
3673 | Address DestAddr, Address SrcAddr, QualType OriginalType, |
3674 | const llvm::function_ref<void(Address, Address)> CopyGen); |
3675 | /// Emit proper copying of data from one variable to another. |
3676 | /// |
3677 | /// \param OriginalType Original type of the copied variables. |
3678 | /// \param DestAddr Destination address. |
3679 | /// \param SrcAddr Source address. |
3680 | /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has |
3681 | /// type of the base array element). |
3682 | /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of |
3683 | /// the base array element). |
3684 | /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a |
3685 | /// DestVD. |
3686 | void EmitOMPCopy(QualType OriginalType, |
3687 | Address DestAddr, Address SrcAddr, |
3688 | const VarDecl *DestVD, const VarDecl *SrcVD, |
3689 | const Expr *Copy); |
3690 | /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or |
3691 | /// \a X = \a E \a BO \a E. |
3692 | /// |
3693 | /// \param X Value to be updated. |
3694 | /// \param E Update value. |
3695 | /// \param BO Binary operation for update operation. |
3696 | /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update |
3697 | /// expression, false otherwise. |
3698 | /// \param AO Atomic ordering of the generated atomic instructions. |
3699 | /// \param CommonGen Code generator for complex expressions that cannot be |
3700 | /// expressed through atomicrmw instruction. |
3701 | /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was |
3702 | /// generated, <false, RValue::get(nullptr)> otherwise. |
3703 | std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( |
3704 | LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, |
3705 | llvm::AtomicOrdering AO, SourceLocation Loc, |
3706 | const llvm::function_ref<RValue(RValue)> CommonGen); |
3707 | bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, |
3708 | OMPPrivateScope &PrivateScope); |
3709 | void EmitOMPPrivateClause(const OMPExecutableDirective &D, |
3710 | OMPPrivateScope &PrivateScope); |
3711 | void EmitOMPUseDevicePtrClause( |
3712 | const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope, |
3713 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3714 | CaptureDeviceAddrMap); |
3715 | void EmitOMPUseDeviceAddrClause( |
3716 | const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope, |
3717 | const llvm::DenseMap<const ValueDecl *, llvm::Value *> |
3718 | CaptureDeviceAddrMap); |
3719 | /// Emit code for copyin clause in \a D directive. The next code is |
3720 | /// generated at the start of outlined functions for directives: |
3721 | /// \code |
3722 | /// threadprivate_var1 = master_threadprivate_var1; |
3723 | /// operator=(threadprivate_var2, master_threadprivate_var2); |
3724 | /// ... |
3725 | /// __kmpc_barrier(&loc, global_tid); |
3726 | /// \endcode |
3727 | /// |
3728 | /// \param D OpenMP directive possibly with 'copyin' clause(s). |
3729 | /// \returns true if at least one copyin variable is found, false otherwise. |
3730 | bool EmitOMPCopyinClause(const OMPExecutableDirective &D); |
3731 | /// Emit initial code for lastprivate variables. If some variable is |
3732 | /// not also firstprivate, then the default initialization is used. Otherwise |
3733 | /// initialization of this variable is performed by EmitOMPFirstprivateClause |
3734 | /// method. |
3735 | /// |
3736 | /// \param D Directive that may have 'lastprivate' directives. |
3737 | /// \param PrivateScope Private scope for capturing lastprivate variables for |
3738 | /// proper codegen in internal captured statement. |
3739 | /// |
3740 | /// \returns true if there is at least one lastprivate variable, false |
3741 | /// otherwise. |
3742 | bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, |
3743 | OMPPrivateScope &PrivateScope); |
3744 | /// Emit final copying of lastprivate values to original variables at |
3745 | /// the end of the worksharing or simd directive. |
3746 | /// |
3747 | /// \param D Directive that has at least one 'lastprivate' directives. |
3748 | /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if |
3749 | /// it is the last iteration of the loop code in associated directive, or to |
3750 | /// 'i1 false' otherwise. If this item is nullptr, no final check is required. |
3751 | void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, |
3752 | bool NoFinals, |
3753 | llvm::Value *IsLastIterCond = nullptr); |
3754 | /// Emit initial code for linear clauses. |
3755 | void EmitOMPLinearClause(const OMPLoopDirective &D, |
3756 | CodeGenFunction::OMPPrivateScope &PrivateScope); |
3757 | /// Emit final code for linear clauses. |
3758 | /// \param CondGen Optional conditional code for final part of codegen for |
3759 | /// linear clause. |
3760 | void EmitOMPLinearClauseFinal( |
3761 | const OMPLoopDirective &D, |
3762 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
3763 | /// Emit initial code for reduction variables. Creates reduction copies |
3764 | /// and initializes them with the values according to OpenMP standard. |
3765 | /// |
3766 | /// \param D Directive (possibly) with the 'reduction' clause. |
3767 | /// \param PrivateScope Private scope for capturing reduction variables for |
3768 | /// proper codegen in internal captured statement. |
3769 | /// |
3770 | void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, |
3771 | OMPPrivateScope &PrivateScope, |
3772 | bool ForInscan = false); |
3773 | /// Emit final update of reduction values to original variables at |
3774 | /// the end of the directive. |
3775 | /// |
3776 | /// \param D Directive that has at least one 'reduction' directives. |
3777 | /// \param ReductionKind The kind of reduction to perform. |
3778 | void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D, |
3779 | const OpenMPDirectiveKind ReductionKind); |
3780 | /// Emit initial code for linear variables. Creates private copies |
3781 | /// and initializes them with the values according to OpenMP standard. |
3782 | /// |
3783 | /// \param D Directive (possibly) with the 'linear' clause. |
3784 | /// \return true if at least one linear variable is found that should be |
3785 | /// initialized with the value of the original variable, false otherwise. |
3786 | bool EmitOMPLinearClauseInit(const OMPLoopDirective &D); |
3787 | |
3788 | typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/, |
3789 | llvm::Function * /*OutlinedFn*/, |
3790 | const OMPTaskDataTy & /*Data*/)> |
3791 | TaskGenTy; |
3792 | void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S, |
3793 | const OpenMPDirectiveKind CapturedRegion, |
3794 | const RegionCodeGenTy &BodyGen, |
3795 | const TaskGenTy &TaskGen, OMPTaskDataTy &Data); |
3796 | struct OMPTargetDataInfo { |
3797 | Address BasePointersArray = Address::invalid(); |
3798 | Address PointersArray = Address::invalid(); |
3799 | Address SizesArray = Address::invalid(); |
3800 | Address MappersArray = Address::invalid(); |
3801 | unsigned NumberOfTargetItems = 0; |
3802 | explicit OMPTargetDataInfo() = default; |
3803 | OMPTargetDataInfo(Address BasePointersArray, Address PointersArray, |
3804 | Address SizesArray, Address MappersArray, |
3805 | unsigned NumberOfTargetItems) |
3806 | : BasePointersArray(BasePointersArray), PointersArray(PointersArray), |
3807 | SizesArray(SizesArray), MappersArray(MappersArray), |
3808 | NumberOfTargetItems(NumberOfTargetItems) {} |
3809 | }; |
3810 | void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S, |
3811 | const RegionCodeGenTy &BodyGen, |
3812 | OMPTargetDataInfo &InputInfo); |
3813 | void processInReduction(const OMPExecutableDirective &S, |
3814 | OMPTaskDataTy &Data, |
3815 | CodeGenFunction &CGF, |
3816 | const CapturedStmt *CS, |
3817 | OMPPrivateScope &Scope); |
3818 | void EmitOMPMetaDirective(const OMPMetaDirective &S); |
3819 | void EmitOMPParallelDirective(const OMPParallelDirective &S); |
3820 | void EmitOMPSimdDirective(const OMPSimdDirective &S); |
3821 | void EmitOMPTileDirective(const OMPTileDirective &S); |
3822 | void EmitOMPUnrollDirective(const OMPUnrollDirective &S); |
3823 | void EmitOMPReverseDirective(const OMPReverseDirective &S); |
3824 | void EmitOMPInterchangeDirective(const OMPInterchangeDirective &S); |
3825 | void EmitOMPForDirective(const OMPForDirective &S); |
3826 | void EmitOMPForSimdDirective(const OMPForSimdDirective &S); |
3827 | void EmitOMPSectionsDirective(const OMPSectionsDirective &S); |
3828 | void EmitOMPSectionDirective(const OMPSectionDirective &S); |
3829 | void EmitOMPSingleDirective(const OMPSingleDirective &S); |
3830 | void EmitOMPMasterDirective(const OMPMasterDirective &S); |
3831 | void EmitOMPMaskedDirective(const OMPMaskedDirective &S); |
3832 | void EmitOMPCriticalDirective(const OMPCriticalDirective &S); |
3833 | void EmitOMPParallelForDirective(const OMPParallelForDirective &S); |
3834 | void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); |
3835 | void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); |
3836 | void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S); |
3837 | void EmitOMPTaskDirective(const OMPTaskDirective &S); |
3838 | void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); |
3839 | void EmitOMPErrorDirective(const OMPErrorDirective &S); |
3840 | void EmitOMPBarrierDirective(const OMPBarrierDirective &S); |
3841 | void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); |
3842 | void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); |
3843 | void EmitOMPFlushDirective(const OMPFlushDirective &S); |
3844 | void EmitOMPDepobjDirective(const OMPDepobjDirective &S); |
3845 | void EmitOMPScanDirective(const OMPScanDirective &S); |
3846 | void EmitOMPOrderedDirective(const OMPOrderedDirective &S); |
3847 | void EmitOMPAtomicDirective(const OMPAtomicDirective &S); |
3848 | void EmitOMPTargetDirective(const OMPTargetDirective &S); |
3849 | void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); |
3850 | void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S); |
3851 | void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S); |
3852 | void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S); |
3853 | void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S); |
3854 | void |
3855 | EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S); |
3856 | void EmitOMPTeamsDirective(const OMPTeamsDirective &S); |
3857 | void |
3858 | EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); |
3859 | void EmitOMPCancelDirective(const OMPCancelDirective &S); |
3860 | void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S); |
3861 | void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); |
3862 | void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); |
3863 | void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S); |
3864 | void |
3865 | EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S); |
3866 | void EmitOMPParallelMasterTaskLoopDirective( |
3867 | const OMPParallelMasterTaskLoopDirective &S); |
3868 | void EmitOMPParallelMasterTaskLoopSimdDirective( |
3869 | const OMPParallelMasterTaskLoopSimdDirective &S); |
3870 | void EmitOMPDistributeDirective(const OMPDistributeDirective &S); |
3871 | void EmitOMPDistributeParallelForDirective( |
3872 | const OMPDistributeParallelForDirective &S); |
3873 | void EmitOMPDistributeParallelForSimdDirective( |
3874 | const OMPDistributeParallelForSimdDirective &S); |
3875 | void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S); |
3876 | void EmitOMPTargetParallelForSimdDirective( |
3877 | const OMPTargetParallelForSimdDirective &S); |
3878 | void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S); |
3879 | void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S); |
3880 | void |
3881 | EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S); |
3882 | void EmitOMPTeamsDistributeParallelForSimdDirective( |
3883 | const OMPTeamsDistributeParallelForSimdDirective &S); |
3884 | void EmitOMPTeamsDistributeParallelForDirective( |
3885 | const OMPTeamsDistributeParallelForDirective &S); |
3886 | void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S); |
3887 | void EmitOMPTargetTeamsDistributeDirective( |
3888 | const OMPTargetTeamsDistributeDirective &S); |
3889 | void EmitOMPTargetTeamsDistributeParallelForDirective( |
3890 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3891 | void EmitOMPTargetTeamsDistributeParallelForSimdDirective( |
3892 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3893 | void EmitOMPTargetTeamsDistributeSimdDirective( |
3894 | const OMPTargetTeamsDistributeSimdDirective &S); |
3895 | void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S); |
3896 | void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S); |
3897 | void EmitOMPTargetParallelGenericLoopDirective( |
3898 | const OMPTargetParallelGenericLoopDirective &S); |
3899 | void EmitOMPTargetTeamsGenericLoopDirective( |
3900 | const OMPTargetTeamsGenericLoopDirective &S); |
3901 | void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S); |
3902 | void EmitOMPInteropDirective(const OMPInteropDirective &S); |
3903 | void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S); |
3904 | |
3905 | /// Emit device code for the target directive. |
3906 | static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM, |
3907 | StringRef ParentName, |
3908 | const OMPTargetDirective &S); |
3909 | static void |
3910 | EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3911 | const OMPTargetParallelDirective &S); |
3912 | /// Emit device code for the target parallel for directive. |
3913 | static void EmitOMPTargetParallelForDeviceFunction( |
3914 | CodeGenModule &CGM, StringRef ParentName, |
3915 | const OMPTargetParallelForDirective &S); |
3916 | /// Emit device code for the target parallel for simd directive. |
3917 | static void EmitOMPTargetParallelForSimdDeviceFunction( |
3918 | CodeGenModule &CGM, StringRef ParentName, |
3919 | const OMPTargetParallelForSimdDirective &S); |
3920 | /// Emit device code for the target teams directive. |
3921 | static void |
3922 | EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName, |
3923 | const OMPTargetTeamsDirective &S); |
3924 | /// Emit device code for the target teams distribute directive. |
3925 | static void EmitOMPTargetTeamsDistributeDeviceFunction( |
3926 | CodeGenModule &CGM, StringRef ParentName, |
3927 | const OMPTargetTeamsDistributeDirective &S); |
3928 | /// Emit device code for the target teams distribute simd directive. |
3929 | static void EmitOMPTargetTeamsDistributeSimdDeviceFunction( |
3930 | CodeGenModule &CGM, StringRef ParentName, |
3931 | const OMPTargetTeamsDistributeSimdDirective &S); |
3932 | /// Emit device code for the target simd directive. |
3933 | static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM, |
3934 | StringRef ParentName, |
3935 | const OMPTargetSimdDirective &S); |
3936 | /// Emit device code for the target teams distribute parallel for simd |
3937 | /// directive. |
3938 | static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( |
3939 | CodeGenModule &CGM, StringRef ParentName, |
3940 | const OMPTargetTeamsDistributeParallelForSimdDirective &S); |
3941 | |
3942 | /// Emit device code for the target teams loop directive. |
3943 | static void EmitOMPTargetTeamsGenericLoopDeviceFunction( |
3944 | CodeGenModule &CGM, StringRef ParentName, |
3945 | const OMPTargetTeamsGenericLoopDirective &S); |
3946 | |
3947 | /// Emit device code for the target parallel loop directive. |
3948 | static void EmitOMPTargetParallelGenericLoopDeviceFunction( |
3949 | CodeGenModule &CGM, StringRef ParentName, |
3950 | const OMPTargetParallelGenericLoopDirective &S); |
3951 | |
3952 | static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction( |
3953 | CodeGenModule &CGM, StringRef ParentName, |
3954 | const OMPTargetTeamsDistributeParallelForDirective &S); |
3955 | |
3956 | /// Emit the Stmt \p S and return its topmost canonical loop, if any. |
3957 | /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the |
3958 | /// future it is meant to be the number of loops expected in the loop nests |
3959 | /// (usually specified by the "collapse" clause) that are collapsed to a |
3960 | /// single loop by this function. |
3961 | llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S, |
3962 | int Depth); |
3963 | |
3964 | /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder. |
3965 | void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S); |
3966 | |
3967 | /// Emit inner loop of the worksharing/simd construct. |
3968 | /// |
3969 | /// \param S Directive, for which the inner loop must be emitted. |
3970 | /// \param RequiresCleanup true, if directive has some associated private |
3971 | /// variables. |
3972 | /// \param LoopCond Bollean condition for loop continuation. |
3973 | /// \param IncExpr Increment expression for loop control variable. |
3974 | /// \param BodyGen Generator for the inner body of the inner loop. |
3975 | /// \param PostIncGen Genrator for post-increment code (required for ordered |
3976 | /// loop directvies). |
3977 | void EmitOMPInnerLoop( |
3978 | const OMPExecutableDirective &S, bool RequiresCleanup, |
3979 | const Expr *LoopCond, const Expr *IncExpr, |
3980 | const llvm::function_ref<void(CodeGenFunction &)> BodyGen, |
3981 | const llvm::function_ref<void(CodeGenFunction &)> PostIncGen); |
3982 | |
3983 | JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); |
3984 | /// Emit initial code for loop counters of loop-based directives. |
3985 | void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S, |
3986 | OMPPrivateScope &LoopScope); |
3987 | |
3988 | /// Helper for the OpenMP loop directives. |
3989 | void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); |
3990 | |
3991 | /// Emit code for the worksharing loop-based directive. |
3992 | /// \return true, if this construct has any lastprivate clause, false - |
3993 | /// otherwise. |
3994 | bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB, |
3995 | const CodeGenLoopBoundsTy &CodeGenLoopBounds, |
3996 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
3997 | |
3998 | /// Emit code for the distribute loop-based directive. |
3999 | void EmitOMPDistributeLoop(const OMPLoopDirective &S, |
4000 | const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr); |
4001 | |
4002 | /// Helpers for the OpenMP loop directives. |
4003 | void EmitOMPSimdInit(const OMPLoopDirective &D); |
4004 | void EmitOMPSimdFinal( |
4005 | const OMPLoopDirective &D, |
4006 | const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen); |
4007 | |
4008 | /// Emits the lvalue for the expression with possibly captured variable. |
4009 | LValue EmitOMPSharedLValue(const Expr *E); |
4010 | |
4011 | private: |
4012 | /// Helpers for blocks. |
4013 | llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); |
4014 | |
4015 | /// struct with the values to be passed to the OpenMP loop-related functions |
4016 | struct OMPLoopArguments { |
4017 | /// loop lower bound |
4018 | Address LB = Address::invalid(); |
4019 | /// loop upper bound |
4020 | Address UB = Address::invalid(); |
4021 | /// loop stride |
4022 | Address ST = Address::invalid(); |
4023 | /// isLastIteration argument for runtime functions |
4024 | Address IL = Address::invalid(); |
4025 | /// Chunk value generated by sema |
4026 | llvm::Value *Chunk = nullptr; |
4027 | /// EnsureUpperBound |
4028 | Expr *EUB = nullptr; |
4029 | /// IncrementExpression |
4030 | Expr *IncExpr = nullptr; |
4031 | /// Loop initialization |
4032 | Expr *Init = nullptr; |
4033 | /// Loop exit condition |
4034 | Expr *Cond = nullptr; |
4035 | /// Update of LB after a whole chunk has been executed |
4036 | Expr *NextLB = nullptr; |
4037 | /// Update of UB after a whole chunk has been executed |
4038 | Expr *NextUB = nullptr; |
4039 | /// Distinguish between the for distribute and sections |
4040 | OpenMPDirectiveKind DKind = llvm::omp::OMPD_unknown; |
4041 | OMPLoopArguments() = default; |
4042 | OMPLoopArguments(Address LB, Address UB, Address ST, Address IL, |
4043 | llvm::Value *Chunk = nullptr, Expr *EUB = nullptr, |
4044 | Expr *IncExpr = nullptr, Expr *Init = nullptr, |
4045 | Expr *Cond = nullptr, Expr *NextLB = nullptr, |
4046 | Expr *NextUB = nullptr) |
4047 | : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB), |
4048 | IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB), |
4049 | NextUB(NextUB) {} |
4050 | }; |
4051 | void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic, |
4052 | const OMPLoopDirective &S, OMPPrivateScope &LoopScope, |
4053 | const OMPLoopArguments &LoopArgs, |
4054 | const CodeGenLoopTy &CodeGenLoop, |
4055 | const CodeGenOrderedTy &CodeGenOrdered); |
4056 | void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind, |
4057 | bool IsMonotonic, const OMPLoopDirective &S, |
4058 | OMPPrivateScope &LoopScope, bool Ordered, |
4059 | const OMPLoopArguments &LoopArgs, |
4060 | const CodeGenDispatchBoundsTy &CGDispatchBounds); |
4061 | void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind, |
4062 | const OMPLoopDirective &S, |
4063 | OMPPrivateScope &LoopScope, |
4064 | const OMPLoopArguments &LoopArgs, |
4065 | const CodeGenLoopTy &CodeGenLoopContent); |
4066 | /// Emit code for sections directive. |
4067 | void EmitSections(const OMPExecutableDirective &S); |
4068 | |
4069 | public: |
4070 | //===--------------------------------------------------------------------===// |
4071 | // OpenACC Emission |
4072 | //===--------------------------------------------------------------------===// |
4073 | void EmitOpenACCComputeConstruct(const OpenACCComputeConstruct &S) { |
4074 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4075 | // simply emitting its structured block, but in the future we will implement |
4076 | // some sort of IR. |
4077 | EmitStmt(S: S.getStructuredBlock()); |
4078 | } |
4079 | |
4080 | void EmitOpenACCLoopConstruct(const OpenACCLoopConstruct &S) { |
4081 | // TODO OpenACC: Implement this. It is currently implemented as a 'no-op', |
4082 | // simply emitting its loop, but in the future we will implement |
4083 | // some sort of IR. |
4084 | EmitStmt(S: S.getLoop()); |
4085 | } |
4086 | |
4087 | //===--------------------------------------------------------------------===// |
4088 | // LValue Expression Emission |
4089 | //===--------------------------------------------------------------------===// |
4090 | |
4091 | /// Create a check that a scalar RValue is non-null. |
4092 | llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T); |
4093 | |
4094 | /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. |
4095 | RValue GetUndefRValue(QualType Ty); |
4096 | |
4097 | /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E |
4098 | /// and issue an ErrorUnsupported style diagnostic (using the |
4099 | /// provided Name). |
4100 | RValue EmitUnsupportedRValue(const Expr *E, |
4101 | const char *Name); |
4102 | |
4103 | /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue |
4104 | /// an ErrorUnsupported style diagnostic (using the provided Name). |
4105 | LValue EmitUnsupportedLValue(const Expr *E, |
4106 | const char *Name); |
4107 | |
4108 | /// EmitLValue - Emit code to compute a designator that specifies the location |
4109 | /// of the expression. |
4110 | /// |
4111 | /// This can return one of two things: a simple address or a bitfield |
4112 | /// reference. In either case, the LLVM Value* in the LValue structure is |
4113 | /// guaranteed to be an LLVM pointer type. |
4114 | /// |
4115 | /// If this returns a bitfield reference, nothing about the pointee type of |
4116 | /// the LLVM value is known: For example, it may not be a pointer to an |
4117 | /// integer. |
4118 | /// |
4119 | /// If this returns a normal address, and if the lvalue's C type is fixed |
4120 | /// size, this method guarantees that the returned pointer type will point to |
4121 | /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
4122 | /// variable length type, this is not possible. |
4123 | /// |
4124 | LValue EmitLValue(const Expr *E, |
4125 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
4126 | |
4127 | private: |
4128 | LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull); |
4129 | |
4130 | public: |
4131 | /// Same as EmitLValue but additionally we generate checking code to |
4132 | /// guard against undefined behavior. This is only suitable when we know |
4133 | /// that the address will be used to access the object. |
4134 | LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); |
4135 | |
4136 | RValue convertTempToRValue(Address addr, QualType type, |
4137 | SourceLocation Loc); |
4138 | |
4139 | void EmitAtomicInit(Expr *E, LValue lvalue); |
4140 | |
4141 | bool LValueIsSuitableForInlineAtomic(LValue Src); |
4142 | |
4143 | RValue EmitAtomicLoad(LValue LV, SourceLocation SL, |
4144 | AggValueSlot Slot = AggValueSlot::ignored()); |
4145 | |
4146 | RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, |
4147 | llvm::AtomicOrdering AO, bool IsVolatile = false, |
4148 | AggValueSlot slot = AggValueSlot::ignored()); |
4149 | |
4150 | void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); |
4151 | |
4152 | void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, |
4153 | bool IsVolatile, bool isInit); |
4154 | |
4155 | std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( |
4156 | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
4157 | llvm::AtomicOrdering Success = |
4158 | llvm::AtomicOrdering::SequentiallyConsistent, |
4159 | llvm::AtomicOrdering Failure = |
4160 | llvm::AtomicOrdering::SequentiallyConsistent, |
4161 | bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); |
4162 | |
4163 | void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, |
4164 | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
4165 | bool IsVolatile); |
4166 | |
4167 | /// EmitToMemory - Change a scalar value from its value |
4168 | /// representation to its in-memory representation. |
4169 | llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); |
4170 | |
4171 | /// EmitFromMemory - Change a scalar value from its memory |
4172 | /// representation to its value representation. |
4173 | llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); |
4174 | |
4175 | /// Check if the scalar \p Value is within the valid range for the given |
4176 | /// type \p Ty. |
4177 | /// |
4178 | /// Returns true if a check is needed (even if the range is unknown). |
4179 | bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty, |
4180 | SourceLocation Loc); |
4181 | |
4182 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4183 | /// care to appropriately convert from the memory representation to |
4184 | /// the LLVM value representation. |
4185 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4186 | SourceLocation Loc, |
4187 | AlignmentSource Source = AlignmentSource::Type, |
4188 | bool isNontemporal = false) { |
4189 | return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, BaseInfo: LValueBaseInfo(Source), |
4190 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isNontemporal); |
4191 | } |
4192 | |
4193 | llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, |
4194 | SourceLocation Loc, LValueBaseInfo BaseInfo, |
4195 | TBAAAccessInfo TBAAInfo, |
4196 | bool isNontemporal = false); |
4197 | |
4198 | /// EmitLoadOfScalar - Load a scalar value from an address, taking |
4199 | /// care to appropriately convert from the memory representation to |
4200 | /// the LLVM value representation. The l-value must be a simple |
4201 | /// l-value. |
4202 | llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); |
4203 | |
4204 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4205 | /// care to appropriately convert from the memory representation to |
4206 | /// the LLVM value representation. |
4207 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
4208 | bool Volatile, QualType Ty, |
4209 | AlignmentSource Source = AlignmentSource::Type, |
4210 | bool isInit = false, bool isNontemporal = false) { |
4211 | EmitStoreOfScalar(Value, Addr, Volatile, Ty, BaseInfo: LValueBaseInfo(Source), |
4212 | TBAAInfo: CGM.getTBAAAccessInfo(AccessType: Ty), isInit, isNontemporal); |
4213 | } |
4214 | |
4215 | void EmitStoreOfScalar(llvm::Value *Value, Address Addr, |
4216 | bool Volatile, QualType Ty, |
4217 | LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo, |
4218 | bool isInit = false, bool isNontemporal = false); |
4219 | |
4220 | /// EmitStoreOfScalar - Store a scalar value to an address, taking |
4221 | /// care to appropriately convert from the memory representation to |
4222 | /// the LLVM value representation. The l-value must be a simple |
4223 | /// l-value. The isInit flag indicates whether this is an initialization. |
4224 | /// If so, atomic qualifiers are ignored and the store is always non-atomic. |
4225 | void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); |
4226 | |
4227 | /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
4228 | /// this method emits the address of the lvalue, then loads the result as an |
4229 | /// rvalue, returning the rvalue. |
4230 | RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); |
4231 | RValue EmitLoadOfExtVectorElementLValue(LValue V); |
4232 | RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc); |
4233 | RValue EmitLoadOfGlobalRegLValue(LValue LV); |
4234 | |
4235 | /// Like EmitLoadOfLValue but also handles complex and aggregate types. |
4236 | RValue EmitLoadOfAnyValue(LValue V, |
4237 | AggValueSlot Slot = AggValueSlot::ignored(), |
4238 | SourceLocation Loc = {}); |
4239 | |
4240 | /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
4241 | /// lvalue, where both are guaranteed to the have the same type, and that type |
4242 | /// is 'Ty'. |
4243 | void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); |
4244 | void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); |
4245 | void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); |
4246 | |
4247 | /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints |
4248 | /// as EmitStoreThroughLValue. |
4249 | /// |
4250 | /// \param Result [out] - If non-null, this will be set to a Value* for the |
4251 | /// bit-field contents after the store, appropriate for use as the result of |
4252 | /// an assignment to the bit-field. |
4253 | void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
4254 | llvm::Value **Result=nullptr); |
4255 | |
4256 | /// Emit an l-value for an assignment (simple or compound) of complex type. |
4257 | LValue EmitComplexAssignmentLValue(const BinaryOperator *E); |
4258 | LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4259 | LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, |
4260 | llvm::Value *&Result); |
4261 | |
4262 | // Note: only available for agg return types |
4263 | LValue EmitBinaryOperatorLValue(const BinaryOperator *E); |
4264 | LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); |
4265 | // Note: only available for agg return types |
4266 | LValue EmitCallExprLValue(const CallExpr *E); |
4267 | // Note: only available for agg return types |
4268 | LValue EmitVAArgExprLValue(const VAArgExpr *E); |
4269 | LValue EmitDeclRefLValue(const DeclRefExpr *E); |
4270 | LValue EmitStringLiteralLValue(const StringLiteral *E); |
4271 | LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); |
4272 | LValue EmitPredefinedLValue(const PredefinedExpr *E); |
4273 | LValue EmitUnaryOpLValue(const UnaryOperator *E); |
4274 | LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, |
4275 | bool Accessed = false); |
4276 | LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E); |
4277 | LValue EmitArraySectionExpr(const ArraySectionExpr *E, |
4278 | bool IsLowerBound = true); |
4279 | LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); |
4280 | LValue EmitMemberExpr(const MemberExpr *E); |
4281 | LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); |
4282 | LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); |
4283 | LValue EmitInitListLValue(const InitListExpr *E); |
4284 | void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E); |
4285 | LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); |
4286 | LValue EmitCastLValue(const CastExpr *E); |
4287 | LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
4288 | LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); |
4289 | |
4290 | Address EmitExtVectorElementLValue(LValue V); |
4291 | |
4292 | RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); |
4293 | |
4294 | Address EmitArrayToPointerDecay(const Expr *Array, |
4295 | LValueBaseInfo *BaseInfo = nullptr, |
4296 | TBAAAccessInfo *TBAAInfo = nullptr); |
4297 | |
4298 | class ConstantEmission { |
4299 | llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; |
4300 | ConstantEmission(llvm::Constant *C, bool isReference) |
4301 | : ValueAndIsReference(C, isReference) {} |
4302 | public: |
4303 | ConstantEmission() {} |
4304 | static ConstantEmission forReference(llvm::Constant *C) { |
4305 | return ConstantEmission(C, true); |
4306 | } |
4307 | static ConstantEmission forValue(llvm::Constant *C) { |
4308 | return ConstantEmission(C, false); |
4309 | } |
4310 | |
4311 | explicit operator bool() const { |
4312 | return ValueAndIsReference.getOpaqueValue() != nullptr; |
4313 | } |
4314 | |
4315 | bool isReference() const { return ValueAndIsReference.getInt(); } |
4316 | LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { |
4317 | assert(isReference()); |
4318 | return CGF.MakeNaturalAlignAddrLValue(V: ValueAndIsReference.getPointer(), |
4319 | T: refExpr->getType()); |
4320 | } |
4321 | |
4322 | llvm::Constant *getValue() const { |
4323 | assert(!isReference()); |
4324 | return ValueAndIsReference.getPointer(); |
4325 | } |
4326 | }; |
4327 | |
4328 | ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); |
4329 | ConstantEmission tryEmitAsConstant(const MemberExpr *ME); |
4330 | llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E); |
4331 | |
4332 | RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, |
4333 | AggValueSlot slot = AggValueSlot::ignored()); |
4334 | LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); |
4335 | |
4336 | llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, |
4337 | const ObjCIvarDecl *Ivar); |
4338 | llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface, |
4339 | const ObjCIvarDecl *Ivar); |
4340 | LValue EmitLValueForField(LValue Base, const FieldDecl* Field); |
4341 | LValue EmitLValueForLambdaField(const FieldDecl *Field); |
4342 | LValue EmitLValueForLambdaField(const FieldDecl *Field, |
4343 | llvm::Value *ThisValue); |
4344 | |
4345 | /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that |
4346 | /// if the Field is a reference, this will return the address of the reference |
4347 | /// and not the address of the value stored in the reference. |
4348 | LValue EmitLValueForFieldInitialization(LValue Base, |
4349 | const FieldDecl* Field); |
4350 | |
4351 | LValue EmitLValueForIvar(QualType ObjectTy, |
4352 | llvm::Value* Base, const ObjCIvarDecl *Ivar, |
4353 | unsigned CVRQualifiers); |
4354 | |
4355 | LValue EmitCXXConstructLValue(const CXXConstructExpr *E); |
4356 | LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); |
4357 | LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); |
4358 | LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); |
4359 | |
4360 | LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); |
4361 | LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); |
4362 | LValue EmitStmtExprLValue(const StmtExpr *E); |
4363 | LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); |
4364 | LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); |
4365 | void EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init); |
4366 | |
4367 | //===--------------------------------------------------------------------===// |
4368 | // Scalar Expression Emission |
4369 | //===--------------------------------------------------------------------===// |
4370 | |
4371 | /// EmitCall - Generate a call of the given function, expecting the given |
4372 | /// result type, and using the given argument list which specifies both the |
4373 | /// LLVM arguments and the types they were derived from. |
4374 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4375 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4376 | llvm::CallBase **callOrInvoke, bool IsMustTail, |
4377 | SourceLocation Loc, |
4378 | bool IsVirtualFunctionPointerThunk = false); |
4379 | RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, |
4380 | ReturnValueSlot ReturnValue, const CallArgList &Args, |
4381 | llvm::CallBase **callOrInvoke = nullptr, |
4382 | bool IsMustTail = false) { |
4383 | return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke, |
4384 | IsMustTail, Loc: SourceLocation()); |
4385 | } |
4386 | RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E, |
4387 | ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr); |
4388 | RValue EmitCallExpr(const CallExpr *E, |
4389 | ReturnValueSlot ReturnValue = ReturnValueSlot()); |
4390 | RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
4391 | CGCallee EmitCallee(const Expr *E); |
4392 | |
4393 | void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); |
4394 | void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl); |
4395 | |
4396 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4397 | const Twine &name = "" ); |
4398 | llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee, |
4399 | ArrayRef<llvm::Value *> args, |
4400 | const Twine &name = "" ); |
4401 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4402 | const Twine &name = "" ); |
4403 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4404 | ArrayRef<Address> args, |
4405 | const Twine &name = "" ); |
4406 | llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee, |
4407 | ArrayRef<llvm::Value *> args, |
4408 | const Twine &name = "" ); |
4409 | |
4410 | SmallVector<llvm::OperandBundleDef, 1> |
4411 | getBundlesForFunclet(llvm::Value *Callee); |
4412 | |
4413 | llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee, |
4414 | ArrayRef<llvm::Value *> Args, |
4415 | const Twine &Name = "" ); |
4416 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4417 | ArrayRef<llvm::Value *> args, |
4418 | const Twine &name = "" ); |
4419 | llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4420 | const Twine &name = "" ); |
4421 | void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee, |
4422 | ArrayRef<llvm::Value *> args); |
4423 | |
4424 | CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD, |
4425 | NestedNameSpecifier *Qual, |
4426 | llvm::Type *Ty); |
4427 | |
4428 | CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, |
4429 | CXXDtorType Type, |
4430 | const CXXRecordDecl *RD); |
4431 | |
4432 | bool isPointerKnownNonNull(const Expr *E); |
4433 | |
4434 | /// Create the discriminator from the storage address and the entity hash. |
4435 | llvm::Value *EmitPointerAuthBlendDiscriminator(llvm::Value *StorageAddress, |
4436 | llvm::Value *Discriminator); |
4437 | CGPointerAuthInfo EmitPointerAuthInfo(const PointerAuthSchema &Schema, |
4438 | llvm::Value *StorageAddress, |
4439 | GlobalDecl SchemaDecl, |
4440 | QualType SchemaType); |
4441 | |
4442 | llvm::Value *EmitPointerAuthSign(const CGPointerAuthInfo &Info, |
4443 | llvm::Value *Pointer); |
4444 | |
4445 | llvm::Value *EmitPointerAuthAuth(const CGPointerAuthInfo &Info, |
4446 | llvm::Value *Pointer); |
4447 | |
4448 | llvm::Value *emitPointerAuthResign(llvm::Value *Pointer, QualType PointerType, |
4449 | const CGPointerAuthInfo &CurAuthInfo, |
4450 | const CGPointerAuthInfo &NewAuthInfo, |
4451 | bool IsKnownNonNull); |
4452 | llvm::Value *emitPointerAuthResignCall(llvm::Value *Pointer, |
4453 | const CGPointerAuthInfo &CurInfo, |
4454 | const CGPointerAuthInfo &NewInfo); |
4455 | |
4456 | void EmitPointerAuthOperandBundle( |
4457 | const CGPointerAuthInfo &Info, |
4458 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
4459 | |
4460 | llvm::Value *authPointerToPointerCast(llvm::Value *ResultPtr, |
4461 | QualType SourceType, QualType DestType); |
4462 | Address authPointerToPointerCast(Address Ptr, QualType SourceType, |
4463 | QualType DestType); |
4464 | |
4465 | Address getAsNaturalAddressOf(Address Addr, QualType PointeeTy); |
4466 | |
4467 | llvm::Value *getAsNaturalPointerTo(Address Addr, QualType PointeeType) { |
4468 | return getAsNaturalAddressOf(Addr, PointeeTy: PointeeType).getBasePointer(); |
4469 | } |
4470 | |
4471 | // Return the copy constructor name with the prefix "__copy_constructor_" |
4472 | // removed. |
4473 | static std::string getNonTrivialCopyConstructorStr(QualType QT, |
4474 | CharUnits Alignment, |
4475 | bool IsVolatile, |
4476 | ASTContext &Ctx); |
4477 | |
4478 | // Return the destructor name with the prefix "__destructor_" removed. |
4479 | static std::string getNonTrivialDestructorStr(QualType QT, |
4480 | CharUnits Alignment, |
4481 | bool IsVolatile, |
4482 | ASTContext &Ctx); |
4483 | |
4484 | // These functions emit calls to the special functions of non-trivial C |
4485 | // structs. |
4486 | void defaultInitNonTrivialCStructVar(LValue Dst); |
4487 | void callCStructDefaultConstructor(LValue Dst); |
4488 | void callCStructDestructor(LValue Dst); |
4489 | void callCStructCopyConstructor(LValue Dst, LValue Src); |
4490 | void callCStructMoveConstructor(LValue Dst, LValue Src); |
4491 | void callCStructCopyAssignmentOperator(LValue Dst, LValue Src); |
4492 | void callCStructMoveAssignmentOperator(LValue Dst, LValue Src); |
4493 | |
4494 | RValue |
4495 | EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method, |
4496 | const CGCallee &Callee, |
4497 | ReturnValueSlot ReturnValue, llvm::Value *This, |
4498 | llvm::Value *ImplicitParam, |
4499 | QualType ImplicitParamTy, const CallExpr *E, |
4500 | CallArgList *RtlArgs); |
4501 | RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee, |
4502 | llvm::Value *This, QualType ThisTy, |
4503 | llvm::Value *ImplicitParam, |
4504 | QualType ImplicitParamTy, const CallExpr *E); |
4505 | RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, |
4506 | ReturnValueSlot ReturnValue); |
4507 | RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, |
4508 | const CXXMethodDecl *MD, |
4509 | ReturnValueSlot ReturnValue, |
4510 | bool HasQualifier, |
4511 | NestedNameSpecifier *Qualifier, |
4512 | bool IsArrow, const Expr *Base); |
4513 | // Compute the object pointer. |
4514 | Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, |
4515 | llvm::Value *memberPtr, |
4516 | const MemberPointerType *memberPtrType, |
4517 | LValueBaseInfo *BaseInfo = nullptr, |
4518 | TBAAAccessInfo *TBAAInfo = nullptr); |
4519 | RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, |
4520 | ReturnValueSlot ReturnValue); |
4521 | |
4522 | RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, |
4523 | const CXXMethodDecl *MD, |
4524 | ReturnValueSlot ReturnValue); |
4525 | RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E); |
4526 | |
4527 | RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, |
4528 | ReturnValueSlot ReturnValue); |
4529 | |
4530 | RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E); |
4531 | RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E); |
4532 | RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E); |
4533 | |
4534 | RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, |
4535 | const CallExpr *E, ReturnValueSlot ReturnValue); |
4536 | |
4537 | RValue emitRotate(const CallExpr *E, bool IsRotateRight); |
4538 | |
4539 | /// Emit IR for __builtin_os_log_format. |
4540 | RValue emitBuiltinOSLogFormat(const CallExpr &E); |
4541 | |
4542 | /// Emit IR for __builtin_is_aligned. |
4543 | RValue EmitBuiltinIsAligned(const CallExpr *E); |
4544 | /// Emit IR for __builtin_align_up/__builtin_align_down. |
4545 | RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp); |
4546 | |
4547 | llvm::Function *generateBuiltinOSLogHelperFunction( |
4548 | const analyze_os_log::OSLogBufferLayout &Layout, |
4549 | CharUnits BufferAlignment); |
4550 | |
4551 | RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); |
4552 | |
4553 | /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call |
4554 | /// is unhandled by the current target. |
4555 | llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4556 | ReturnValueSlot ReturnValue); |
4557 | |
4558 | llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, |
4559 | const llvm::CmpInst::Predicate Fp, |
4560 | const llvm::CmpInst::Predicate Ip, |
4561 | const llvm::Twine &Name = "" ); |
4562 | llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4563 | ReturnValueSlot ReturnValue, |
4564 | llvm::Triple::ArchType Arch); |
4565 | llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4566 | ReturnValueSlot ReturnValue, |
4567 | llvm::Triple::ArchType Arch); |
4568 | llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4569 | ReturnValueSlot ReturnValue, |
4570 | llvm::Triple::ArchType Arch); |
4571 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy, |
4572 | QualType RTy); |
4573 | llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy, |
4574 | QualType RTy); |
4575 | |
4576 | llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, |
4577 | unsigned LLVMIntrinsic, |
4578 | unsigned AltLLVMIntrinsic, |
4579 | const char *NameHint, |
4580 | unsigned Modifier, |
4581 | const CallExpr *E, |
4582 | SmallVectorImpl<llvm::Value *> &Ops, |
4583 | Address PtrOp0, Address PtrOp1, |
4584 | llvm::Triple::ArchType Arch); |
4585 | |
4586 | llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, |
4587 | unsigned Modifier, llvm::Type *ArgTy, |
4588 | const CallExpr *E); |
4589 | llvm::Value *EmitNeonCall(llvm::Function *F, |
4590 | SmallVectorImpl<llvm::Value*> &O, |
4591 | const char *name, |
4592 | unsigned shift = 0, bool rightshift = false); |
4593 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx, |
4594 | const llvm::ElementCount &Count); |
4595 | llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); |
4596 | llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, |
4597 | bool negateForRightShift); |
4598 | llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, |
4599 | llvm::Type *Ty, bool usgn, const char *name); |
4600 | llvm::Value *vectorWrapScalar16(llvm::Value *Op); |
4601 | /// SVEBuiltinMemEltTy - Returns the memory element type for this memory |
4602 | /// access builtin. Only required if it can't be inferred from the base |
4603 | /// pointer operand. |
4604 | llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags); |
4605 | |
4606 | SmallVector<llvm::Type *, 2> |
4607 | getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType, |
4608 | ArrayRef<llvm::Value *> Ops); |
4609 | llvm::Type *getEltType(const SVETypeFlags &TypeFlags); |
4610 | llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags); |
4611 | llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags); |
4612 | llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags, |
4613 | llvm::Type *ReturnType, |
4614 | ArrayRef<llvm::Value *> Ops); |
4615 | llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags, |
4616 | llvm::Type *ReturnType, |
4617 | ArrayRef<llvm::Value *> Ops); |
4618 | llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags); |
4619 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar); |
4620 | llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty); |
4621 | llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty); |
4622 | llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags, |
4623 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4624 | unsigned BuiltinID); |
4625 | llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags, |
4626 | llvm::ArrayRef<llvm::Value *> Ops, |
4627 | unsigned BuiltinID); |
4628 | llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred, |
4629 | llvm::ScalableVectorType *VTy); |
4630 | llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, |
4631 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4632 | unsigned IntID); |
4633 | llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags, |
4634 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4635 | unsigned IntID); |
4636 | llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy, |
4637 | SmallVectorImpl<llvm::Value *> &Ops, |
4638 | unsigned BuiltinID, bool IsZExtReturn); |
4639 | llvm::Value *EmitSVEMaskedStore(const CallExpr *, |
4640 | SmallVectorImpl<llvm::Value *> &Ops, |
4641 | unsigned BuiltinID); |
4642 | llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, |
4643 | SmallVectorImpl<llvm::Value *> &Ops, |
4644 | unsigned BuiltinID); |
4645 | llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, |
4646 | SmallVectorImpl<llvm::Value *> &Ops, |
4647 | unsigned IntID); |
4648 | llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags, |
4649 | SmallVectorImpl<llvm::Value *> &Ops, |
4650 | unsigned IntID); |
4651 | llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags, |
4652 | SmallVectorImpl<llvm::Value *> &Ops, |
4653 | unsigned IntID); |
4654 | /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider |
4655 | /// vector. It extracts the scalable vector from the struct and inserts into |
4656 | /// the wider vector. This avoids the error when allocating space in llvm |
4657 | /// for struct of scalable vectors if a function returns struct. |
4658 | llvm::Value *FormSVEBuiltinResult(llvm::Value *Call); |
4659 | |
4660 | llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4661 | |
4662 | llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags, |
4663 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4664 | unsigned IntID); |
4665 | llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags, |
4666 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4667 | unsigned IntID); |
4668 | llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags, |
4669 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4670 | unsigned IntID); |
4671 | llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags, |
4672 | llvm::SmallVectorImpl<llvm::Value *> &Ops, |
4673 | unsigned IntID); |
4674 | |
4675 | void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E, |
4676 | SmallVectorImpl<llvm::Value *> &Ops, |
4677 | SVETypeFlags TypeFlags); |
4678 | |
4679 | llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4680 | |
4681 | llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4682 | llvm::Triple::ArchType Arch); |
4683 | llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4684 | |
4685 | llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); |
4686 | llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4687 | llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4688 | llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4689 | llvm::Value *EmitHLSLBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4690 | llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx, |
4691 | const CallExpr *E); |
4692 | llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4693 | llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4694 | llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, |
4695 | const CallExpr *E); |
4696 | llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E); |
4697 | llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E, |
4698 | ReturnValueSlot ReturnValue); |
4699 | |
4700 | void AddAMDGPUFenceAddressSpaceMMRA(llvm::Instruction *Inst, |
4701 | const CallExpr *E); |
4702 | void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope, |
4703 | llvm::AtomicOrdering &AO, |
4704 | llvm::SyncScope::ID &SSID); |
4705 | |
4706 | enum class MSVCIntrin; |
4707 | llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E); |
4708 | |
4709 | llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version); |
4710 | |
4711 | llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); |
4712 | llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); |
4713 | llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); |
4714 | llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); |
4715 | llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); |
4716 | llvm::Value *EmitObjCCollectionLiteral(const Expr *E, |
4717 | const ObjCMethodDecl *MethodWithObjects); |
4718 | llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); |
4719 | RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, |
4720 | ReturnValueSlot Return = ReturnValueSlot()); |
4721 | |
4722 | /// Retrieves the default cleanup kind for an ARC cleanup. |
4723 | /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. |
4724 | CleanupKind getARCCleanupKind() { |
4725 | return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions |
4726 | ? NormalAndEHCleanup : NormalCleanup; |
4727 | } |
4728 | |
4729 | // ARC primitives. |
4730 | void EmitARCInitWeak(Address addr, llvm::Value *value); |
4731 | void EmitARCDestroyWeak(Address addr); |
4732 | llvm::Value *EmitARCLoadWeak(Address addr); |
4733 | llvm::Value *EmitARCLoadWeakRetained(Address addr); |
4734 | llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); |
4735 | void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4736 | void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr); |
4737 | void EmitARCCopyWeak(Address dst, Address src); |
4738 | void EmitARCMoveWeak(Address dst, Address src); |
4739 | llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); |
4740 | llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); |
4741 | llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, |
4742 | bool resultIgnored); |
4743 | llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, |
4744 | bool resultIgnored); |
4745 | llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); |
4746 | llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); |
4747 | llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); |
4748 | void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); |
4749 | void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4750 | llvm::Value *EmitARCAutorelease(llvm::Value *value); |
4751 | llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); |
4752 | llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); |
4753 | llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); |
4754 | llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value); |
4755 | |
4756 | llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType); |
4757 | llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value, |
4758 | llvm::Type *returnType); |
4759 | void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); |
4760 | |
4761 | std::pair<LValue,llvm::Value*> |
4762 | EmitARCStoreAutoreleasing(const BinaryOperator *e); |
4763 | std::pair<LValue,llvm::Value*> |
4764 | EmitARCStoreStrong(const BinaryOperator *e, bool ignored); |
4765 | std::pair<LValue,llvm::Value*> |
4766 | EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored); |
4767 | |
4768 | llvm::Value *EmitObjCAlloc(llvm::Value *value, |
4769 | llvm::Type *returnType); |
4770 | llvm::Value *EmitObjCAllocWithZone(llvm::Value *value, |
4771 | llvm::Type *returnType); |
4772 | llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType); |
4773 | |
4774 | llvm::Value *EmitObjCThrowOperand(const Expr *expr); |
4775 | llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); |
4776 | llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); |
4777 | |
4778 | llvm::Value *EmitARCExtendBlockObject(const Expr *expr); |
4779 | llvm::Value *EmitARCReclaimReturnedObject(const Expr *e, |
4780 | bool allowUnsafeClaim); |
4781 | llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); |
4782 | llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); |
4783 | llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr); |
4784 | |
4785 | void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); |
4786 | |
4787 | void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values); |
4788 | |
4789 | static Destroyer destroyARCStrongImprecise; |
4790 | static Destroyer destroyARCStrongPrecise; |
4791 | static Destroyer destroyARCWeak; |
4792 | static Destroyer emitARCIntrinsicUse; |
4793 | static Destroyer destroyNonTrivialCStruct; |
4794 | |
4795 | void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); |
4796 | llvm::Value *EmitObjCAutoreleasePoolPush(); |
4797 | llvm::Value *EmitObjCMRRAutoreleasePoolPush(); |
4798 | void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); |
4799 | void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); |
4800 | |
4801 | /// Emits a reference binding to the passed in expression. |
4802 | RValue EmitReferenceBindingToExpr(const Expr *E); |
4803 | |
4804 | //===--------------------------------------------------------------------===// |
4805 | // Expression Emission |
4806 | //===--------------------------------------------------------------------===// |
4807 | |
4808 | // Expressions are broken into three classes: scalar, complex, aggregate. |
4809 | |
4810 | /// EmitScalarExpr - Emit the computation of the specified expression of LLVM |
4811 | /// scalar type, returning the result. |
4812 | llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); |
4813 | |
4814 | /// Emit a conversion from the specified type to the specified destination |
4815 | /// type, both of which are LLVM scalar types. |
4816 | llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, |
4817 | QualType DstTy, SourceLocation Loc); |
4818 | |
4819 | /// Emit a conversion from the specified complex type to the specified |
4820 | /// destination type, where the destination type is an LLVM scalar type. |
4821 | llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, |
4822 | QualType DstTy, |
4823 | SourceLocation Loc); |
4824 | |
4825 | /// EmitAggExpr - Emit the computation of the specified expression |
4826 | /// of aggregate type. The result is computed into the given slot, |
4827 | /// which may be null to indicate that the value is not needed. |
4828 | void EmitAggExpr(const Expr *E, AggValueSlot AS); |
4829 | |
4830 | /// EmitAggExprToLValue - Emit the computation of the specified expression of |
4831 | /// aggregate type into a temporary LValue. |
4832 | LValue EmitAggExprToLValue(const Expr *E); |
4833 | |
4834 | enum ExprValueKind { EVK_RValue, EVK_NonRValue }; |
4835 | |
4836 | /// EmitAggFinalDestCopy - Emit copy of the specified aggregate into |
4837 | /// destination address. |
4838 | void EmitAggFinalDestCopy(QualType Type, AggValueSlot Dest, const LValue &Src, |
4839 | ExprValueKind SrcKind); |
4840 | |
4841 | /// Create a store to \arg DstPtr from \arg Src, truncating the stored value |
4842 | /// to at most \arg DstSize bytes. |
4843 | void CreateCoercedStore(llvm::Value *Src, Address Dst, llvm::TypeSize DstSize, |
4844 | bool DstIsVolatile); |
4845 | |
4846 | /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, |
4847 | /// make sure it survives garbage collection until this point. |
4848 | void EmitExtendGCLifetime(llvm::Value *object); |
4849 | |
4850 | /// EmitComplexExpr - Emit the computation of the specified expression of |
4851 | /// complex type, returning the result. |
4852 | ComplexPairTy EmitComplexExpr(const Expr *E, |
4853 | bool IgnoreReal = false, |
4854 | bool IgnoreImag = false); |
4855 | |
4856 | /// EmitComplexExprIntoLValue - Emit the given expression of complex |
4857 | /// type and place its result into the specified l-value. |
4858 | void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); |
4859 | |
4860 | /// EmitStoreOfComplex - Store a complex number into the specified l-value. |
4861 | void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); |
4862 | |
4863 | /// EmitLoadOfComplex - Load a complex number from the specified l-value. |
4864 | ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); |
4865 | |
4866 | ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType); |
4867 | llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType); |
4868 | ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType); |
4869 | ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType); |
4870 | |
4871 | Address emitAddrOfRealComponent(Address complex, QualType complexType); |
4872 | Address emitAddrOfImagComponent(Address complex, QualType complexType); |
4873 | |
4874 | /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the |
4875 | /// global variable that has already been created for it. If the initializer |
4876 | /// has a different type than GV does, this may free GV and return a different |
4877 | /// one. Otherwise it just returns GV. |
4878 | llvm::GlobalVariable * |
4879 | AddInitializerToStaticVarDecl(const VarDecl &D, |
4880 | llvm::GlobalVariable *GV); |
4881 | |
4882 | // Emit an @llvm.invariant.start call for the given memory region. |
4883 | void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size); |
4884 | |
4885 | /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ |
4886 | /// variable with global storage. |
4887 | void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV, |
4888 | bool PerformInit); |
4889 | |
4890 | llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor, |
4891 | llvm::Constant *Addr); |
4892 | |
4893 | llvm::Function *createTLSAtExitStub(const VarDecl &VD, |
4894 | llvm::FunctionCallee Dtor, |
4895 | llvm::Constant *Addr, |
4896 | llvm::FunctionCallee &AtExit); |
4897 | |
4898 | /// Call atexit() with a function that passes the given argument to |
4899 | /// the given function. |
4900 | void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn, |
4901 | llvm::Constant *addr); |
4902 | |
4903 | /// Registers the dtor using 'llvm.global_dtors' for platforms that do not |
4904 | /// support an 'atexit()' function. |
4905 | void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn, |
4906 | llvm::Constant *addr); |
4907 | |
4908 | /// Call atexit() with function dtorStub. |
4909 | void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub); |
4910 | |
4911 | /// Call unatexit() with function dtorStub. |
4912 | llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub); |
4913 | |
4914 | /// Emit code in this function to perform a guarded variable |
4915 | /// initialization. Guarded initializations are used when it's not |
4916 | /// possible to prove that an initialization will be done exactly |
4917 | /// once, e.g. with a static local variable or a static data member |
4918 | /// of a class template. |
4919 | void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, |
4920 | bool PerformInit); |
4921 | |
4922 | enum class GuardKind { VariableGuard, TlsGuard }; |
4923 | |
4924 | /// Emit a branch to select whether or not to perform guarded initialization. |
4925 | void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, |
4926 | llvm::BasicBlock *InitBlock, |
4927 | llvm::BasicBlock *NoInitBlock, |
4928 | GuardKind Kind, const VarDecl *D); |
4929 | |
4930 | /// GenerateCXXGlobalInitFunc - Generates code for initializing global |
4931 | /// variables. |
4932 | void |
4933 | GenerateCXXGlobalInitFunc(llvm::Function *Fn, |
4934 | ArrayRef<llvm::Function *> CXXThreadLocals, |
4935 | ConstantAddress Guard = ConstantAddress::invalid()); |
4936 | |
4937 | /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global |
4938 | /// variables. |
4939 | void GenerateCXXGlobalCleanUpFunc( |
4940 | llvm::Function *Fn, |
4941 | ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH, |
4942 | llvm::Constant *>> |
4943 | DtorsOrStermFinalizers); |
4944 | |
4945 | void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, |
4946 | const VarDecl *D, |
4947 | llvm::GlobalVariable *Addr, |
4948 | bool PerformInit); |
4949 | |
4950 | void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); |
4951 | |
4952 | void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); |
4953 | |
4954 | void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); |
4955 | |
4956 | RValue EmitAtomicExpr(AtomicExpr *E); |
4957 | |
4958 | //===--------------------------------------------------------------------===// |
4959 | // Annotations Emission |
4960 | //===--------------------------------------------------------------------===// |
4961 | |
4962 | /// Emit an annotation call (intrinsic). |
4963 | llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn, |
4964 | llvm::Value *AnnotatedVal, |
4965 | StringRef AnnotationStr, |
4966 | SourceLocation Location, |
4967 | const AnnotateAttr *Attr); |
4968 | |
4969 | /// Emit local annotations for the local variable V, declared by D. |
4970 | void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); |
4971 | |
4972 | /// Emit field annotations for the given field & value. Returns the |
4973 | /// annotation result. |
4974 | Address EmitFieldAnnotations(const FieldDecl *D, Address V); |
4975 | |
4976 | //===--------------------------------------------------------------------===// |
4977 | // Internal Helpers |
4978 | //===--------------------------------------------------------------------===// |
4979 | |
4980 | /// ContainsLabel - Return true if the statement contains a label in it. If |
4981 | /// this statement is not executed normally, it not containing a label means |
4982 | /// that we can just remove the code. |
4983 | static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); |
4984 | |
4985 | /// containsBreak - Return true if the statement contains a break out of it. |
4986 | /// If the statement (recursively) contains a switch or loop with a break |
4987 | /// inside of it, this is fine. |
4988 | static bool containsBreak(const Stmt *S); |
4989 | |
4990 | /// Determine if the given statement might introduce a declaration into the |
4991 | /// current scope, by being a (possibly-labelled) DeclStmt. |
4992 | static bool mightAddDeclToScope(const Stmt *S); |
4993 | |
4994 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
4995 | /// to a constant, or if it does but contains a label, return false. If it |
4996 | /// constant folds return true and set the boolean result in Result. |
4997 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result, |
4998 | bool AllowLabels = false); |
4999 | |
5000 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
5001 | /// to a constant, or if it does but contains a label, return false. If it |
5002 | /// constant folds return true and set the folded value. |
5003 | bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result, |
5004 | bool AllowLabels = false); |
5005 | |
5006 | /// Ignore parentheses and logical-NOT to track conditions consistently. |
5007 | static const Expr *stripCond(const Expr *C); |
5008 | |
5009 | /// isInstrumentedCondition - Determine whether the given condition is an |
5010 | /// instrumentable condition (i.e. no "&&" or "||"). |
5011 | static bool isInstrumentedCondition(const Expr *C); |
5012 | |
5013 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
5014 | /// increments a profile counter based on the semantics of the given logical |
5015 | /// operator opcode. This is used to instrument branch condition coverage |
5016 | /// for logical operators. |
5017 | void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp, |
5018 | llvm::BasicBlock *TrueBlock, |
5019 | llvm::BasicBlock *FalseBlock, |
5020 | uint64_t TrueCount = 0, |
5021 | Stmt::Likelihood LH = Stmt::LH_None, |
5022 | const Expr *CntrIdx = nullptr); |
5023 | |
5024 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an |
5025 | /// if statement) to the specified blocks. Based on the condition, this might |
5026 | /// try to simplify the codegen of the conditional based on the branch. |
5027 | /// TrueCount should be the number of times we expect the condition to |
5028 | /// evaluate to true based on PGO data. |
5029 | void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, |
5030 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount, |
5031 | Stmt::Likelihood LH = Stmt::LH_None, |
5032 | const Expr *ConditionalOp = nullptr); |
5033 | |
5034 | /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is |
5035 | /// nonnull, if \p LHS is marked _Nonnull. |
5036 | void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc); |
5037 | |
5038 | /// An enumeration which makes it easier to specify whether or not an |
5039 | /// operation is a subtraction. |
5040 | enum { NotSubtraction = false, IsSubtraction = true }; |
5041 | |
5042 | /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to |
5043 | /// detect undefined behavior when the pointer overflow sanitizer is enabled. |
5044 | /// \p SignedIndices indicates whether any of the GEP indices are signed. |
5045 | /// \p IsSubtraction indicates whether the expression used to form the GEP |
5046 | /// is a subtraction. |
5047 | llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr, |
5048 | ArrayRef<llvm::Value *> IdxList, |
5049 | bool SignedIndices, |
5050 | bool IsSubtraction, |
5051 | SourceLocation Loc, |
5052 | const Twine &Name = "" ); |
5053 | |
5054 | Address EmitCheckedInBoundsGEP(Address Addr, ArrayRef<llvm::Value *> IdxList, |
5055 | llvm::Type *elementType, bool SignedIndices, |
5056 | bool IsSubtraction, SourceLocation Loc, |
5057 | CharUnits Align, const Twine &Name = "" ); |
5058 | |
5059 | /// Specifies which type of sanitizer check to apply when handling a |
5060 | /// particular builtin. |
5061 | enum BuiltinCheckKind { |
5062 | BCK_CTZPassedZero, |
5063 | BCK_CLZPassedZero, |
5064 | }; |
5065 | |
5066 | /// Emits an argument for a call to a builtin. If the builtin sanitizer is |
5067 | /// enabled, a runtime check specified by \p Kind is also emitted. |
5068 | llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind); |
5069 | |
5070 | /// Emit a description of a type in a format suitable for passing to |
5071 | /// a runtime sanitizer handler. |
5072 | llvm::Constant *EmitCheckTypeDescriptor(QualType T); |
5073 | |
5074 | /// Convert a value into a format suitable for passing to a runtime |
5075 | /// sanitizer handler. |
5076 | llvm::Value *EmitCheckValue(llvm::Value *V); |
5077 | |
5078 | /// Emit a description of a source location in a format suitable for |
5079 | /// passing to a runtime sanitizer handler. |
5080 | llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); |
5081 | |
5082 | void EmitKCFIOperandBundle(const CGCallee &Callee, |
5083 | SmallVectorImpl<llvm::OperandBundleDef> &Bundles); |
5084 | |
5085 | /// Create a basic block that will either trap or call a handler function in |
5086 | /// the UBSan runtime with the provided arguments, and create a conditional |
5087 | /// branch to it. |
5088 | void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, |
5089 | SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs, |
5090 | ArrayRef<llvm::Value *> DynamicArgs); |
5091 | |
5092 | /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath |
5093 | /// if Cond if false. |
5094 | void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond, |
5095 | llvm::ConstantInt *TypeId, llvm::Value *Ptr, |
5096 | ArrayRef<llvm::Constant *> StaticArgs); |
5097 | |
5098 | /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime |
5099 | /// checking is enabled. Otherwise, just emit an unreachable instruction. |
5100 | void EmitUnreachable(SourceLocation Loc); |
5101 | |
5102 | /// Create a basic block that will call the trap intrinsic, and emit a |
5103 | /// conditional branch to it, for the -ftrapv checks. |
5104 | void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID); |
5105 | |
5106 | /// Emit a call to trap or debugtrap and attach function attribute |
5107 | /// "trap-func-name" if specified. |
5108 | llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); |
5109 | |
5110 | /// Emit a stub for the cross-DSO CFI check function. |
5111 | void EmitCfiCheckStub(); |
5112 | |
5113 | /// Emit a cross-DSO CFI failure handling function. |
5114 | void EmitCfiCheckFail(); |
5115 | |
5116 | /// Create a check for a function parameter that may potentially be |
5117 | /// declared as non-null. |
5118 | void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, |
5119 | AbstractCallee AC, unsigned ParmNum); |
5120 | |
5121 | void EmitNonNullArgCheck(Address Addr, QualType ArgType, |
5122 | SourceLocation ArgLoc, AbstractCallee AC, |
5123 | unsigned ParmNum); |
5124 | |
5125 | /// EmitCallArg - Emit a single call argument. |
5126 | void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); |
5127 | |
5128 | /// EmitDelegateCallArg - We are performing a delegate call; that |
5129 | /// is, the current function is delegating to another one. Produce |
5130 | /// a r-value suitable for passing the given parameter. |
5131 | void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, |
5132 | SourceLocation loc); |
5133 | |
5134 | /// SetFPAccuracy - Set the minimum required accuracy of the given floating |
5135 | /// point operation, expressed as the maximum relative error in ulp. |
5136 | void SetFPAccuracy(llvm::Value *Val, float Accuracy); |
5137 | |
5138 | /// Set the minimum required accuracy of the given sqrt operation |
5139 | /// based on CodeGenOpts. |
5140 | void SetSqrtFPAccuracy(llvm::Value *Val); |
5141 | |
5142 | /// Set the minimum required accuracy of the given sqrt operation based on |
5143 | /// CodeGenOpts. |
5144 | void SetDivFPAccuracy(llvm::Value *Val); |
5145 | |
5146 | /// Set the codegen fast-math flags. |
5147 | void SetFastMathFlags(FPOptions FPFeatures); |
5148 | |
5149 | // Truncate or extend a boolean vector to the requested number of elements. |
5150 | llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec, |
5151 | unsigned NumElementsDst, |
5152 | const llvm::Twine &Name = "" ); |
5153 | // Adds a convergence_ctrl token to |Input| and emits the required parent |
5154 | // convergence instructions. |
5155 | template <typename CallType> |
5156 | CallType *addControlledConvergenceToken(CallType *Input) { |
5157 | return cast<CallType>( |
5158 | addConvergenceControlToken(Input, ParentToken: ConvergenceTokenStack.back())); |
5159 | } |
5160 | |
5161 | private: |
5162 | // Emits a convergence_loop instruction for the given |BB|, with |ParentToken| |
5163 | // as it's parent convergence instr. |
5164 | llvm::IntrinsicInst *emitConvergenceLoopToken(llvm::BasicBlock *BB, |
5165 | llvm::Value *ParentToken); |
5166 | // Adds a convergence_ctrl token with |ParentToken| as parent convergence |
5167 | // instr to the call |Input|. |
5168 | llvm::CallBase *addConvergenceControlToken(llvm::CallBase *Input, |
5169 | llvm::Value *ParentToken); |
5170 | // Find the convergence_entry instruction |F|, or emits ones if none exists. |
5171 | // Returns the convergence instruction. |
5172 | llvm::IntrinsicInst *getOrEmitConvergenceEntryToken(llvm::Function *F); |
5173 | // Find the convergence_loop instruction for the loop defined by |LI|, or |
5174 | // emits one if none exists. Returns the convergence instruction. |
5175 | llvm::IntrinsicInst *getOrEmitConvergenceLoopToken(const LoopInfo *LI); |
5176 | |
5177 | private: |
5178 | llvm::MDNode *getRangeForLoadFromType(QualType Ty); |
5179 | void EmitReturnOfRValue(RValue RV, QualType Ty); |
5180 | |
5181 | void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); |
5182 | |
5183 | llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4> |
5184 | DeferredReplacements; |
5185 | |
5186 | /// Set the address of a local variable. |
5187 | void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { |
5188 | assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!" ); |
5189 | LocalDeclMap.insert(KV: {VD, Addr}); |
5190 | } |
5191 | |
5192 | /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty |
5193 | /// from function arguments into \arg Dst. See ABIArgInfo::Expand. |
5194 | /// |
5195 | /// \param AI - The first function argument of the expansion. |
5196 | void ExpandTypeFromArgs(QualType Ty, LValue Dst, |
5197 | llvm::Function::arg_iterator &AI); |
5198 | |
5199 | /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg |
5200 | /// Ty, into individual arguments on the provided vector \arg IRCallArgs, |
5201 | /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. |
5202 | void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, |
5203 | SmallVectorImpl<llvm::Value *> &IRCallArgs, |
5204 | unsigned &IRCallArgPos); |
5205 | |
5206 | std::pair<llvm::Value *, llvm::Type *> |
5207 | EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr, |
5208 | std::string &ConstraintStr); |
5209 | |
5210 | std::pair<llvm::Value *, llvm::Type *> |
5211 | EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue, |
5212 | QualType InputType, std::string &ConstraintStr, |
5213 | SourceLocation Loc); |
5214 | |
5215 | /// Attempts to statically evaluate the object size of E. If that |
5216 | /// fails, emits code to figure the size of E out for us. This is |
5217 | /// pass_object_size aware. |
5218 | /// |
5219 | /// If EmittedExpr is non-null, this will use that instead of re-emitting E. |
5220 | llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, |
5221 | llvm::IntegerType *ResType, |
5222 | llvm::Value *EmittedE, |
5223 | bool IsDynamic); |
5224 | |
5225 | /// Emits the size of E, as required by __builtin_object_size. This |
5226 | /// function is aware of pass_object_size parameters, and will act accordingly |
5227 | /// if E is a parameter with the pass_object_size attribute. |
5228 | llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, |
5229 | llvm::IntegerType *ResType, |
5230 | llvm::Value *EmittedE, |
5231 | bool IsDynamic); |
5232 | |
5233 | llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type, |
5234 | llvm::IntegerType *ResType); |
5235 | |
5236 | void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D, |
5237 | Address Loc); |
5238 | |
5239 | public: |
5240 | enum class EvaluationOrder { |
5241 | ///! No language constraints on evaluation order. |
5242 | Default, |
5243 | ///! Language semantics require left-to-right evaluation. |
5244 | ForceLeftToRight, |
5245 | ///! Language semantics require right-to-left evaluation. |
5246 | ForceRightToLeft |
5247 | }; |
5248 | |
5249 | // Wrapper for function prototype sources. Wraps either a FunctionProtoType or |
5250 | // an ObjCMethodDecl. |
5251 | struct PrototypeWrapper { |
5252 | llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P; |
5253 | |
5254 | PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {} |
5255 | PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {} |
5256 | }; |
5257 | |
5258 | void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype, |
5259 | llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, |
5260 | AbstractCallee AC = AbstractCallee(), |
5261 | unsigned ParamsToSkip = 0, |
5262 | EvaluationOrder Order = EvaluationOrder::Default); |
5263 | |
5264 | /// EmitPointerWithAlignment - Given an expression with a pointer type, |
5265 | /// emit the value and compute our best estimate of the alignment of the |
5266 | /// pointee. |
5267 | /// |
5268 | /// \param BaseInfo - If non-null, this will be initialized with |
5269 | /// information about the source of the alignment and the may-alias |
5270 | /// attribute. Note that this function will conservatively fall back on |
5271 | /// the type when it doesn't recognize the expression and may-alias will |
5272 | /// be set to false. |
5273 | /// |
5274 | /// One reasonable way to use this information is when there's a language |
5275 | /// guarantee that the pointer must be aligned to some stricter value, and |
5276 | /// we're simply trying to ensure that sufficiently obvious uses of under- |
5277 | /// aligned objects don't get miscompiled; for example, a placement new |
5278 | /// into the address of a local variable. In such a case, it's quite |
5279 | /// reasonable to just ignore the returned alignment when it isn't from an |
5280 | /// explicit source. |
5281 | Address |
5282 | EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr, |
5283 | TBAAAccessInfo *TBAAInfo = nullptr, |
5284 | KnownNonNull_t IsKnownNonNull = NotKnownNonNull); |
5285 | |
5286 | /// If \p E references a parameter with pass_object_size info or a constant |
5287 | /// array size modifier, emit the object size divided by the size of \p EltTy. |
5288 | /// Otherwise return null. |
5289 | llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy); |
5290 | |
5291 | void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK); |
5292 | |
5293 | struct MultiVersionResolverOption { |
5294 | llvm::Function *Function; |
5295 | struct Conds { |
5296 | StringRef Architecture; |
5297 | llvm::SmallVector<StringRef, 8> Features; |
5298 | |
5299 | Conds(StringRef Arch, ArrayRef<StringRef> Feats) |
5300 | : Architecture(Arch), Features(Feats.begin(), Feats.end()) {} |
5301 | } Conditions; |
5302 | |
5303 | MultiVersionResolverOption(llvm::Function *F, StringRef Arch, |
5304 | ArrayRef<StringRef> Feats) |
5305 | : Function(F), Conditions(Arch, Feats) {} |
5306 | }; |
5307 | |
5308 | // Emits the body of a multiversion function's resolver. Assumes that the |
5309 | // options are already sorted in the proper order, with the 'default' option |
5310 | // last (if it exists). |
5311 | void EmitMultiVersionResolver(llvm::Function *Resolver, |
5312 | ArrayRef<MultiVersionResolverOption> Options); |
5313 | void |
5314 | EmitX86MultiVersionResolver(llvm::Function *Resolver, |
5315 | ArrayRef<MultiVersionResolverOption> Options); |
5316 | void |
5317 | EmitAArch64MultiVersionResolver(llvm::Function *Resolver, |
5318 | ArrayRef<MultiVersionResolverOption> Options); |
5319 | |
5320 | private: |
5321 | QualType getVarArgType(const Expr *Arg); |
5322 | |
5323 | void EmitDeclMetadata(); |
5324 | |
5325 | BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, |
5326 | const AutoVarEmission &emission); |
5327 | |
5328 | void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); |
5329 | |
5330 | llvm::Value *GetValueForARMHint(unsigned BuiltinID); |
5331 | llvm::Value *EmitX86CpuIs(const CallExpr *E); |
5332 | llvm::Value *EmitX86CpuIs(StringRef CPUStr); |
5333 | llvm::Value *EmitX86CpuSupports(const CallExpr *E); |
5334 | llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5335 | llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask); |
5336 | llvm::Value *EmitX86CpuInit(); |
5337 | llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO); |
5338 | llvm::Value *EmitAArch64CpuInit(); |
5339 | llvm::Value * |
5340 | FormAArch64ResolverCondition(const MultiVersionResolverOption &RO); |
5341 | llvm::Value *EmitAArch64CpuSupports(const CallExpr *E); |
5342 | llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs); |
5343 | }; |
5344 | |
5345 | inline DominatingLLVMValue::saved_type |
5346 | DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) { |
5347 | if (!needsSaving(value)) return saved_type(value, false); |
5348 | |
5349 | // Otherwise, we need an alloca. |
5350 | auto align = CharUnits::fromQuantity( |
5351 | Quantity: CGF.CGM.getDataLayout().getPrefTypeAlign(Ty: value->getType())); |
5352 | Address alloca = |
5353 | CGF.CreateTempAlloca(Ty: value->getType(), align, Name: "cond-cleanup.save" ); |
5354 | CGF.Builder.CreateStore(Val: value, Addr: alloca); |
5355 | |
5356 | return saved_type(alloca.emitRawPointer(CGF), true); |
5357 | } |
5358 | |
5359 | inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF, |
5360 | saved_type value) { |
5361 | // If the value says it wasn't saved, trust that it's still dominating. |
5362 | if (!value.getInt()) return value.getPointer(); |
5363 | |
5364 | // Otherwise, it should be an alloca instruction, as set up in save(). |
5365 | auto alloca = cast<llvm::AllocaInst>(Val: value.getPointer()); |
5366 | return CGF.Builder.CreateAlignedLoad(Ty: alloca->getAllocatedType(), Ptr: alloca, |
5367 | Align: alloca->getAlign()); |
5368 | } |
5369 | |
5370 | } // end namespace CodeGen |
5371 | |
5372 | // Map the LangOption for floating point exception behavior into |
5373 | // the corresponding enum in the IR. |
5374 | llvm::fp::ExceptionBehavior |
5375 | ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind); |
5376 | } // end namespace clang |
5377 | |
5378 | #endif |
5379 | |