1 | //===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Instrumentation-based profile-guided optimization |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenPGO.h" |
14 | #include "CodeGenFunction.h" |
15 | #include "CoverageMappingGen.h" |
16 | #include "clang/AST/RecursiveASTVisitor.h" |
17 | #include "clang/AST/StmtVisitor.h" |
18 | #include "llvm/IR/Intrinsics.h" |
19 | #include "llvm/IR/MDBuilder.h" |
20 | #include "llvm/Support/CommandLine.h" |
21 | #include "llvm/Support/Endian.h" |
22 | #include "llvm/Support/FileSystem.h" |
23 | #include "llvm/Support/MD5.h" |
24 | #include <optional> |
25 | |
26 | namespace llvm { |
27 | extern cl::opt<bool> EnableSingleByteCoverage; |
28 | } // namespace llvm |
29 | |
30 | static llvm::cl::opt<bool> |
31 | EnableValueProfiling("enable-value-profiling" , |
32 | llvm::cl::desc("Enable value profiling" ), |
33 | llvm::cl::Hidden, llvm::cl::init(Val: false)); |
34 | |
35 | using namespace clang; |
36 | using namespace CodeGen; |
37 | |
38 | void CodeGenPGO::setFuncName(StringRef Name, |
39 | llvm::GlobalValue::LinkageTypes Linkage) { |
40 | llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); |
41 | FuncName = llvm::getPGOFuncName( |
42 | RawFuncName: Name, Linkage, FileName: CGM.getCodeGenOpts().MainFileName, |
43 | Version: PGOReader ? PGOReader->getVersion() : llvm::IndexedInstrProf::Version); |
44 | |
45 | // If we're generating a profile, create a variable for the name. |
46 | if (CGM.getCodeGenOpts().hasProfileClangInstr()) |
47 | FuncNameVar = llvm::createPGOFuncNameVar(M&: CGM.getModule(), Linkage, PGOFuncName: FuncName); |
48 | } |
49 | |
50 | void CodeGenPGO::setFuncName(llvm::Function *Fn) { |
51 | setFuncName(Name: Fn->getName(), Linkage: Fn->getLinkage()); |
52 | // Create PGOFuncName meta data. |
53 | llvm::createPGOFuncNameMetadata(F&: *Fn, PGOFuncName: FuncName); |
54 | } |
55 | |
56 | /// The version of the PGO hash algorithm. |
57 | enum PGOHashVersion : unsigned { |
58 | PGO_HASH_V1, |
59 | PGO_HASH_V2, |
60 | PGO_HASH_V3, |
61 | |
62 | // Keep this set to the latest hash version. |
63 | PGO_HASH_LATEST = PGO_HASH_V3 |
64 | }; |
65 | |
66 | namespace { |
67 | /// Stable hasher for PGO region counters. |
68 | /// |
69 | /// PGOHash produces a stable hash of a given function's control flow. |
70 | /// |
71 | /// Changing the output of this hash will invalidate all previously generated |
72 | /// profiles -- i.e., don't do it. |
73 | /// |
74 | /// \note When this hash does eventually change (years?), we still need to |
75 | /// support old hashes. We'll need to pull in the version number from the |
76 | /// profile data format and use the matching hash function. |
77 | class PGOHash { |
78 | uint64_t Working; |
79 | unsigned Count; |
80 | PGOHashVersion HashVersion; |
81 | llvm::MD5 MD5; |
82 | |
83 | static const int NumBitsPerType = 6; |
84 | static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType; |
85 | static const unsigned TooBig = 1u << NumBitsPerType; |
86 | |
87 | public: |
88 | /// Hash values for AST nodes. |
89 | /// |
90 | /// Distinct values for AST nodes that have region counters attached. |
91 | /// |
92 | /// These values must be stable. All new members must be added at the end, |
93 | /// and no members should be removed. Changing the enumeration value for an |
94 | /// AST node will affect the hash of every function that contains that node. |
95 | enum HashType : unsigned char { |
96 | None = 0, |
97 | LabelStmt = 1, |
98 | WhileStmt, |
99 | DoStmt, |
100 | ForStmt, |
101 | CXXForRangeStmt, |
102 | ObjCForCollectionStmt, |
103 | SwitchStmt, |
104 | CaseStmt, |
105 | DefaultStmt, |
106 | IfStmt, |
107 | CXXTryStmt, |
108 | CXXCatchStmt, |
109 | ConditionalOperator, |
110 | BinaryOperatorLAnd, |
111 | BinaryOperatorLOr, |
112 | BinaryConditionalOperator, |
113 | // The preceding values are available with PGO_HASH_V1. |
114 | |
115 | EndOfScope, |
116 | IfThenBranch, |
117 | IfElseBranch, |
118 | GotoStmt, |
119 | IndirectGotoStmt, |
120 | BreakStmt, |
121 | ContinueStmt, |
122 | ReturnStmt, |
123 | ThrowExpr, |
124 | UnaryOperatorLNot, |
125 | BinaryOperatorLT, |
126 | BinaryOperatorGT, |
127 | BinaryOperatorLE, |
128 | BinaryOperatorGE, |
129 | BinaryOperatorEQ, |
130 | BinaryOperatorNE, |
131 | // The preceding values are available since PGO_HASH_V2. |
132 | |
133 | // Keep this last. It's for the static assert that follows. |
134 | LastHashType |
135 | }; |
136 | static_assert(LastHashType <= TooBig, "Too many types in HashType" ); |
137 | |
138 | PGOHash(PGOHashVersion HashVersion) |
139 | : Working(0), Count(0), HashVersion(HashVersion) {} |
140 | void combine(HashType Type); |
141 | uint64_t finalize(); |
142 | PGOHashVersion getHashVersion() const { return HashVersion; } |
143 | }; |
144 | const int PGOHash::NumBitsPerType; |
145 | const unsigned PGOHash::NumTypesPerWord; |
146 | const unsigned PGOHash::TooBig; |
147 | |
148 | /// Get the PGO hash version used in the given indexed profile. |
149 | static PGOHashVersion getPGOHashVersion(llvm::IndexedInstrProfReader *PGOReader, |
150 | CodeGenModule &CGM) { |
151 | if (PGOReader->getVersion() <= 4) |
152 | return PGO_HASH_V1; |
153 | if (PGOReader->getVersion() <= 5) |
154 | return PGO_HASH_V2; |
155 | return PGO_HASH_V3; |
156 | } |
157 | |
158 | /// A RecursiveASTVisitor that fills a map of statements to PGO counters. |
159 | struct MapRegionCounters : public RecursiveASTVisitor<MapRegionCounters> { |
160 | using Base = RecursiveASTVisitor<MapRegionCounters>; |
161 | |
162 | /// The next counter value to assign. |
163 | unsigned NextCounter; |
164 | /// The function hash. |
165 | PGOHash Hash; |
166 | /// The map of statements to counters. |
167 | llvm::DenseMap<const Stmt *, unsigned> &CounterMap; |
168 | /// The state of MC/DC Coverage in this function. |
169 | MCDC::State &MCDCState; |
170 | /// Maximum number of supported MC/DC conditions in a boolean expression. |
171 | unsigned MCDCMaxCond; |
172 | /// The profile version. |
173 | uint64_t ProfileVersion; |
174 | /// Diagnostics Engine used to report warnings. |
175 | DiagnosticsEngine &Diag; |
176 | |
177 | MapRegionCounters(PGOHashVersion HashVersion, uint64_t ProfileVersion, |
178 | llvm::DenseMap<const Stmt *, unsigned> &CounterMap, |
179 | MCDC::State &MCDCState, unsigned MCDCMaxCond, |
180 | DiagnosticsEngine &Diag) |
181 | : NextCounter(0), Hash(HashVersion), CounterMap(CounterMap), |
182 | MCDCState(MCDCState), MCDCMaxCond(MCDCMaxCond), |
183 | ProfileVersion(ProfileVersion), Diag(Diag) {} |
184 | |
185 | // Blocks and lambdas are handled as separate functions, so we need not |
186 | // traverse them in the parent context. |
187 | bool TraverseBlockExpr(BlockExpr *BE) { return true; } |
188 | bool TraverseLambdaExpr(LambdaExpr *LE) { |
189 | // Traverse the captures, but not the body. |
190 | for (auto C : zip(t: LE->captures(), u: LE->capture_inits())) |
191 | TraverseLambdaCapture(LE, C: &std::get<0>(t&: C), Init: std::get<1>(t&: C)); |
192 | return true; |
193 | } |
194 | bool TraverseCapturedStmt(CapturedStmt *CS) { return true; } |
195 | |
196 | bool VisitDecl(const Decl *D) { |
197 | switch (D->getKind()) { |
198 | default: |
199 | break; |
200 | case Decl::Function: |
201 | case Decl::CXXMethod: |
202 | case Decl::CXXConstructor: |
203 | case Decl::CXXDestructor: |
204 | case Decl::CXXConversion: |
205 | case Decl::ObjCMethod: |
206 | case Decl::Block: |
207 | case Decl::Captured: |
208 | CounterMap[D->getBody()] = NextCounter++; |
209 | break; |
210 | } |
211 | return true; |
212 | } |
213 | |
214 | /// If \p S gets a fresh counter, update the counter mappings. Return the |
215 | /// V1 hash of \p S. |
216 | PGOHash::HashType updateCounterMappings(Stmt *S) { |
217 | auto Type = getHashType(HashVersion: PGO_HASH_V1, S); |
218 | if (Type != PGOHash::None) |
219 | CounterMap[S] = NextCounter++; |
220 | return Type; |
221 | } |
222 | |
223 | /// The following stacks are used with dataTraverseStmtPre() and |
224 | /// dataTraverseStmtPost() to track the depth of nested logical operators in a |
225 | /// boolean expression in a function. The ultimate purpose is to keep track |
226 | /// of the number of leaf-level conditions in the boolean expression so that a |
227 | /// profile bitmap can be allocated based on that number. |
228 | /// |
229 | /// The stacks are also used to find error cases and notify the user. A |
230 | /// standard logical operator nest for a boolean expression could be in a form |
231 | /// similar to this: "x = a && b && c && (d || f)" |
232 | unsigned NumCond = 0; |
233 | bool SplitNestedLogicalOp = false; |
234 | SmallVector<const Stmt *, 16> NonLogOpStack; |
235 | SmallVector<const BinaryOperator *, 16> LogOpStack; |
236 | |
237 | // Hook: dataTraverseStmtPre() is invoked prior to visiting an AST Stmt node. |
238 | bool dataTraverseStmtPre(Stmt *S) { |
239 | /// If MC/DC is not enabled, MCDCMaxCond will be set to 0. Do nothing. |
240 | if (MCDCMaxCond == 0) |
241 | return true; |
242 | |
243 | /// At the top of the logical operator nest, reset the number of conditions, |
244 | /// also forget previously seen split nesting cases. |
245 | if (LogOpStack.empty()) { |
246 | NumCond = 0; |
247 | SplitNestedLogicalOp = false; |
248 | } |
249 | |
250 | if (const Expr *E = dyn_cast<Expr>(Val: S)) { |
251 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
252 | if (BinOp && BinOp->isLogicalOp()) { |
253 | /// Check for "split-nested" logical operators. This happens when a new |
254 | /// boolean expression logical-op nest is encountered within an existing |
255 | /// boolean expression, separated by a non-logical operator. For |
256 | /// example, in "x = (a && b && c && foo(d && f))", the "d && f" case |
257 | /// starts a new boolean expression that is separated from the other |
258 | /// conditions by the operator foo(). Split-nested cases are not |
259 | /// supported by MC/DC. |
260 | SplitNestedLogicalOp = SplitNestedLogicalOp || !NonLogOpStack.empty(); |
261 | |
262 | LogOpStack.push_back(Elt: BinOp); |
263 | return true; |
264 | } |
265 | } |
266 | |
267 | /// Keep track of non-logical operators. These are OK as long as we don't |
268 | /// encounter a new logical operator after seeing one. |
269 | if (!LogOpStack.empty()) |
270 | NonLogOpStack.push_back(Elt: S); |
271 | |
272 | return true; |
273 | } |
274 | |
275 | // Hook: dataTraverseStmtPost() is invoked by the AST visitor after visiting |
276 | // an AST Stmt node. MC/DC will use it to to signal when the top of a |
277 | // logical operation (boolean expression) nest is encountered. |
278 | bool dataTraverseStmtPost(Stmt *S) { |
279 | /// If MC/DC is not enabled, MCDCMaxCond will be set to 0. Do nothing. |
280 | if (MCDCMaxCond == 0) |
281 | return true; |
282 | |
283 | if (const Expr *E = dyn_cast<Expr>(Val: S)) { |
284 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E->IgnoreParens()); |
285 | if (BinOp && BinOp->isLogicalOp()) { |
286 | assert(LogOpStack.back() == BinOp); |
287 | LogOpStack.pop_back(); |
288 | |
289 | /// At the top of logical operator nest: |
290 | if (LogOpStack.empty()) { |
291 | /// Was the "split-nested" logical operator case encountered? |
292 | if (SplitNestedLogicalOp) { |
293 | unsigned DiagID = Diag.getCustomDiagID( |
294 | L: DiagnosticsEngine::Warning, |
295 | FormatString: "unsupported MC/DC boolean expression; " |
296 | "contains an operation with a nested boolean expression. " |
297 | "Expression will not be covered" ); |
298 | Diag.Report(Loc: S->getBeginLoc(), DiagID); |
299 | return true; |
300 | } |
301 | |
302 | /// Was the maximum number of conditions encountered? |
303 | if (NumCond > MCDCMaxCond) { |
304 | unsigned DiagID = Diag.getCustomDiagID( |
305 | L: DiagnosticsEngine::Warning, |
306 | FormatString: "unsupported MC/DC boolean expression; " |
307 | "number of conditions (%0) exceeds max (%1). " |
308 | "Expression will not be covered" ); |
309 | Diag.Report(Loc: S->getBeginLoc(), DiagID) << NumCond << MCDCMaxCond; |
310 | return true; |
311 | } |
312 | |
313 | // Otherwise, allocate the Decision. |
314 | MCDCState.DecisionByStmt[BinOp].BitmapIdx = 0; |
315 | } |
316 | return true; |
317 | } |
318 | } |
319 | |
320 | if (!LogOpStack.empty()) |
321 | NonLogOpStack.pop_back(); |
322 | |
323 | return true; |
324 | } |
325 | |
326 | /// The RHS of all logical operators gets a fresh counter in order to count |
327 | /// how many times the RHS evaluates to true or false, depending on the |
328 | /// semantics of the operator. This is only valid for ">= v7" of the profile |
329 | /// version so that we facilitate backward compatibility. In addition, in |
330 | /// order to use MC/DC, count the number of total LHS and RHS conditions. |
331 | bool VisitBinaryOperator(BinaryOperator *S) { |
332 | if (S->isLogicalOp()) { |
333 | if (CodeGenFunction::isInstrumentedCondition(C: S->getLHS())) |
334 | NumCond++; |
335 | |
336 | if (CodeGenFunction::isInstrumentedCondition(C: S->getRHS())) { |
337 | if (ProfileVersion >= llvm::IndexedInstrProf::Version7) |
338 | CounterMap[S->getRHS()] = NextCounter++; |
339 | |
340 | NumCond++; |
341 | } |
342 | } |
343 | return Base::VisitBinaryOperator(S); |
344 | } |
345 | |
346 | bool VisitConditionalOperator(ConditionalOperator *S) { |
347 | if (llvm::EnableSingleByteCoverage && S->getTrueExpr()) |
348 | CounterMap[S->getTrueExpr()] = NextCounter++; |
349 | if (llvm::EnableSingleByteCoverage && S->getFalseExpr()) |
350 | CounterMap[S->getFalseExpr()] = NextCounter++; |
351 | return Base::VisitConditionalOperator(S); |
352 | } |
353 | |
354 | /// Include \p S in the function hash. |
355 | bool VisitStmt(Stmt *S) { |
356 | auto Type = updateCounterMappings(S); |
357 | if (Hash.getHashVersion() != PGO_HASH_V1) |
358 | Type = getHashType(HashVersion: Hash.getHashVersion(), S); |
359 | if (Type != PGOHash::None) |
360 | Hash.combine(Type); |
361 | return true; |
362 | } |
363 | |
364 | bool TraverseIfStmt(IfStmt *If) { |
365 | // If we used the V1 hash, use the default traversal. |
366 | if (Hash.getHashVersion() == PGO_HASH_V1) |
367 | return Base::TraverseIfStmt(S: If); |
368 | |
369 | // When single byte coverage mode is enabled, add a counter to then and |
370 | // else. |
371 | bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; |
372 | for (Stmt *CS : If->children()) { |
373 | if (!CS || NoSingleByteCoverage) |
374 | continue; |
375 | if (CS == If->getThen()) |
376 | CounterMap[If->getThen()] = NextCounter++; |
377 | else if (CS == If->getElse()) |
378 | CounterMap[If->getElse()] = NextCounter++; |
379 | } |
380 | |
381 | // Otherwise, keep track of which branch we're in while traversing. |
382 | VisitStmt(S: If); |
383 | |
384 | for (Stmt *CS : If->children()) { |
385 | if (!CS) |
386 | continue; |
387 | if (CS == If->getThen()) |
388 | Hash.combine(Type: PGOHash::IfThenBranch); |
389 | else if (CS == If->getElse()) |
390 | Hash.combine(Type: PGOHash::IfElseBranch); |
391 | TraverseStmt(S: CS); |
392 | } |
393 | Hash.combine(Type: PGOHash::EndOfScope); |
394 | return true; |
395 | } |
396 | |
397 | bool TraverseWhileStmt(WhileStmt *While) { |
398 | // When single byte coverage mode is enabled, add a counter to condition and |
399 | // body. |
400 | bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; |
401 | for (Stmt *CS : While->children()) { |
402 | if (!CS || NoSingleByteCoverage) |
403 | continue; |
404 | if (CS == While->getCond()) |
405 | CounterMap[While->getCond()] = NextCounter++; |
406 | else if (CS == While->getBody()) |
407 | CounterMap[While->getBody()] = NextCounter++; |
408 | } |
409 | |
410 | Base::TraverseWhileStmt(S: While); |
411 | if (Hash.getHashVersion() != PGO_HASH_V1) |
412 | Hash.combine(Type: PGOHash::EndOfScope); |
413 | return true; |
414 | } |
415 | |
416 | bool TraverseDoStmt(DoStmt *Do) { |
417 | // When single byte coverage mode is enabled, add a counter to condition and |
418 | // body. |
419 | bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; |
420 | for (Stmt *CS : Do->children()) { |
421 | if (!CS || NoSingleByteCoverage) |
422 | continue; |
423 | if (CS == Do->getCond()) |
424 | CounterMap[Do->getCond()] = NextCounter++; |
425 | else if (CS == Do->getBody()) |
426 | CounterMap[Do->getBody()] = NextCounter++; |
427 | } |
428 | |
429 | Base::TraverseDoStmt(S: Do); |
430 | if (Hash.getHashVersion() != PGO_HASH_V1) |
431 | Hash.combine(Type: PGOHash::EndOfScope); |
432 | return true; |
433 | } |
434 | |
435 | bool TraverseForStmt(ForStmt *For) { |
436 | // When single byte coverage mode is enabled, add a counter to condition, |
437 | // increment and body. |
438 | bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; |
439 | for (Stmt *CS : For->children()) { |
440 | if (!CS || NoSingleByteCoverage) |
441 | continue; |
442 | if (CS == For->getCond()) |
443 | CounterMap[For->getCond()] = NextCounter++; |
444 | else if (CS == For->getInc()) |
445 | CounterMap[For->getInc()] = NextCounter++; |
446 | else if (CS == For->getBody()) |
447 | CounterMap[For->getBody()] = NextCounter++; |
448 | } |
449 | |
450 | Base::TraverseForStmt(S: For); |
451 | if (Hash.getHashVersion() != PGO_HASH_V1) |
452 | Hash.combine(Type: PGOHash::EndOfScope); |
453 | return true; |
454 | } |
455 | |
456 | bool TraverseCXXForRangeStmt(CXXForRangeStmt *ForRange) { |
457 | // When single byte coverage mode is enabled, add a counter to body. |
458 | bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; |
459 | for (Stmt *CS : ForRange->children()) { |
460 | if (!CS || NoSingleByteCoverage) |
461 | continue; |
462 | if (CS == ForRange->getBody()) |
463 | CounterMap[ForRange->getBody()] = NextCounter++; |
464 | } |
465 | |
466 | Base::TraverseCXXForRangeStmt(S: ForRange); |
467 | if (Hash.getHashVersion() != PGO_HASH_V1) |
468 | Hash.combine(Type: PGOHash::EndOfScope); |
469 | return true; |
470 | } |
471 | |
472 | // If the statement type \p N is nestable, and its nesting impacts profile |
473 | // stability, define a custom traversal which tracks the end of the statement |
474 | // in the hash (provided we're not using the V1 hash). |
475 | #define DEFINE_NESTABLE_TRAVERSAL(N) \ |
476 | bool Traverse##N(N *S) { \ |
477 | Base::Traverse##N(S); \ |
478 | if (Hash.getHashVersion() != PGO_HASH_V1) \ |
479 | Hash.combine(PGOHash::EndOfScope); \ |
480 | return true; \ |
481 | } |
482 | |
483 | DEFINE_NESTABLE_TRAVERSAL(ObjCForCollectionStmt) |
484 | DEFINE_NESTABLE_TRAVERSAL(CXXTryStmt) |
485 | DEFINE_NESTABLE_TRAVERSAL(CXXCatchStmt) |
486 | |
487 | /// Get version \p HashVersion of the PGO hash for \p S. |
488 | PGOHash::HashType getHashType(PGOHashVersion HashVersion, const Stmt *S) { |
489 | switch (S->getStmtClass()) { |
490 | default: |
491 | break; |
492 | case Stmt::LabelStmtClass: |
493 | return PGOHash::LabelStmt; |
494 | case Stmt::WhileStmtClass: |
495 | return PGOHash::WhileStmt; |
496 | case Stmt::DoStmtClass: |
497 | return PGOHash::DoStmt; |
498 | case Stmt::ForStmtClass: |
499 | return PGOHash::ForStmt; |
500 | case Stmt::CXXForRangeStmtClass: |
501 | return PGOHash::CXXForRangeStmt; |
502 | case Stmt::ObjCForCollectionStmtClass: |
503 | return PGOHash::ObjCForCollectionStmt; |
504 | case Stmt::SwitchStmtClass: |
505 | return PGOHash::SwitchStmt; |
506 | case Stmt::CaseStmtClass: |
507 | return PGOHash::CaseStmt; |
508 | case Stmt::DefaultStmtClass: |
509 | return PGOHash::DefaultStmt; |
510 | case Stmt::IfStmtClass: |
511 | return PGOHash::IfStmt; |
512 | case Stmt::CXXTryStmtClass: |
513 | return PGOHash::CXXTryStmt; |
514 | case Stmt::CXXCatchStmtClass: |
515 | return PGOHash::CXXCatchStmt; |
516 | case Stmt::ConditionalOperatorClass: |
517 | return PGOHash::ConditionalOperator; |
518 | case Stmt::BinaryConditionalOperatorClass: |
519 | return PGOHash::BinaryConditionalOperator; |
520 | case Stmt::BinaryOperatorClass: { |
521 | const BinaryOperator *BO = cast<BinaryOperator>(Val: S); |
522 | if (BO->getOpcode() == BO_LAnd) |
523 | return PGOHash::BinaryOperatorLAnd; |
524 | if (BO->getOpcode() == BO_LOr) |
525 | return PGOHash::BinaryOperatorLOr; |
526 | if (HashVersion >= PGO_HASH_V2) { |
527 | switch (BO->getOpcode()) { |
528 | default: |
529 | break; |
530 | case BO_LT: |
531 | return PGOHash::BinaryOperatorLT; |
532 | case BO_GT: |
533 | return PGOHash::BinaryOperatorGT; |
534 | case BO_LE: |
535 | return PGOHash::BinaryOperatorLE; |
536 | case BO_GE: |
537 | return PGOHash::BinaryOperatorGE; |
538 | case BO_EQ: |
539 | return PGOHash::BinaryOperatorEQ; |
540 | case BO_NE: |
541 | return PGOHash::BinaryOperatorNE; |
542 | } |
543 | } |
544 | break; |
545 | } |
546 | } |
547 | |
548 | if (HashVersion >= PGO_HASH_V2) { |
549 | switch (S->getStmtClass()) { |
550 | default: |
551 | break; |
552 | case Stmt::GotoStmtClass: |
553 | return PGOHash::GotoStmt; |
554 | case Stmt::IndirectGotoStmtClass: |
555 | return PGOHash::IndirectGotoStmt; |
556 | case Stmt::BreakStmtClass: |
557 | return PGOHash::BreakStmt; |
558 | case Stmt::ContinueStmtClass: |
559 | return PGOHash::ContinueStmt; |
560 | case Stmt::ReturnStmtClass: |
561 | return PGOHash::ReturnStmt; |
562 | case Stmt::CXXThrowExprClass: |
563 | return PGOHash::ThrowExpr; |
564 | case Stmt::UnaryOperatorClass: { |
565 | const UnaryOperator *UO = cast<UnaryOperator>(Val: S); |
566 | if (UO->getOpcode() == UO_LNot) |
567 | return PGOHash::UnaryOperatorLNot; |
568 | break; |
569 | } |
570 | } |
571 | } |
572 | |
573 | return PGOHash::None; |
574 | } |
575 | }; |
576 | |
577 | /// A StmtVisitor that propagates the raw counts through the AST and |
578 | /// records the count at statements where the value may change. |
579 | struct ComputeRegionCounts : public ConstStmtVisitor<ComputeRegionCounts> { |
580 | /// PGO state. |
581 | CodeGenPGO &PGO; |
582 | |
583 | /// A flag that is set when the current count should be recorded on the |
584 | /// next statement, such as at the exit of a loop. |
585 | bool RecordNextStmtCount; |
586 | |
587 | /// The count at the current location in the traversal. |
588 | uint64_t CurrentCount; |
589 | |
590 | /// The map of statements to count values. |
591 | llvm::DenseMap<const Stmt *, uint64_t> &CountMap; |
592 | |
593 | /// BreakContinueStack - Keep counts of breaks and continues inside loops. |
594 | struct BreakContinue { |
595 | uint64_t BreakCount = 0; |
596 | uint64_t ContinueCount = 0; |
597 | BreakContinue() = default; |
598 | }; |
599 | SmallVector<BreakContinue, 8> BreakContinueStack; |
600 | |
601 | ComputeRegionCounts(llvm::DenseMap<const Stmt *, uint64_t> &CountMap, |
602 | CodeGenPGO &PGO) |
603 | : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {} |
604 | |
605 | void RecordStmtCount(const Stmt *S) { |
606 | if (RecordNextStmtCount) { |
607 | CountMap[S] = CurrentCount; |
608 | RecordNextStmtCount = false; |
609 | } |
610 | } |
611 | |
612 | /// Set and return the current count. |
613 | uint64_t setCount(uint64_t Count) { |
614 | CurrentCount = Count; |
615 | return Count; |
616 | } |
617 | |
618 | void VisitStmt(const Stmt *S) { |
619 | RecordStmtCount(S); |
620 | for (const Stmt *Child : S->children()) |
621 | if (Child) |
622 | this->Visit(S: Child); |
623 | } |
624 | |
625 | void VisitFunctionDecl(const FunctionDecl *D) { |
626 | // Counter tracks entry to the function body. |
627 | uint64_t BodyCount = setCount(PGO.getRegionCount(S: D->getBody())); |
628 | CountMap[D->getBody()] = BodyCount; |
629 | Visit(S: D->getBody()); |
630 | } |
631 | |
632 | // Skip lambda expressions. We visit these as FunctionDecls when we're |
633 | // generating them and aren't interested in the body when generating a |
634 | // parent context. |
635 | void VisitLambdaExpr(const LambdaExpr *LE) {} |
636 | |
637 | void VisitCapturedDecl(const CapturedDecl *D) { |
638 | // Counter tracks entry to the capture body. |
639 | uint64_t BodyCount = setCount(PGO.getRegionCount(S: D->getBody())); |
640 | CountMap[D->getBody()] = BodyCount; |
641 | Visit(S: D->getBody()); |
642 | } |
643 | |
644 | void VisitObjCMethodDecl(const ObjCMethodDecl *D) { |
645 | // Counter tracks entry to the method body. |
646 | uint64_t BodyCount = setCount(PGO.getRegionCount(S: D->getBody())); |
647 | CountMap[D->getBody()] = BodyCount; |
648 | Visit(S: D->getBody()); |
649 | } |
650 | |
651 | void VisitBlockDecl(const BlockDecl *D) { |
652 | // Counter tracks entry to the block body. |
653 | uint64_t BodyCount = setCount(PGO.getRegionCount(S: D->getBody())); |
654 | CountMap[D->getBody()] = BodyCount; |
655 | Visit(S: D->getBody()); |
656 | } |
657 | |
658 | void VisitReturnStmt(const ReturnStmt *S) { |
659 | RecordStmtCount(S); |
660 | if (S->getRetValue()) |
661 | Visit(S: S->getRetValue()); |
662 | CurrentCount = 0; |
663 | RecordNextStmtCount = true; |
664 | } |
665 | |
666 | void VisitCXXThrowExpr(const CXXThrowExpr *E) { |
667 | RecordStmtCount(S: E); |
668 | if (E->getSubExpr()) |
669 | Visit(S: E->getSubExpr()); |
670 | CurrentCount = 0; |
671 | RecordNextStmtCount = true; |
672 | } |
673 | |
674 | void VisitGotoStmt(const GotoStmt *S) { |
675 | RecordStmtCount(S); |
676 | CurrentCount = 0; |
677 | RecordNextStmtCount = true; |
678 | } |
679 | |
680 | void VisitLabelStmt(const LabelStmt *S) { |
681 | RecordNextStmtCount = false; |
682 | // Counter tracks the block following the label. |
683 | uint64_t BlockCount = setCount(PGO.getRegionCount(S)); |
684 | CountMap[S] = BlockCount; |
685 | Visit(S: S->getSubStmt()); |
686 | } |
687 | |
688 | void VisitBreakStmt(const BreakStmt *S) { |
689 | RecordStmtCount(S); |
690 | assert(!BreakContinueStack.empty() && "break not in a loop or switch!" ); |
691 | BreakContinueStack.back().BreakCount += CurrentCount; |
692 | CurrentCount = 0; |
693 | RecordNextStmtCount = true; |
694 | } |
695 | |
696 | void VisitContinueStmt(const ContinueStmt *S) { |
697 | RecordStmtCount(S); |
698 | assert(!BreakContinueStack.empty() && "continue stmt not in a loop!" ); |
699 | BreakContinueStack.back().ContinueCount += CurrentCount; |
700 | CurrentCount = 0; |
701 | RecordNextStmtCount = true; |
702 | } |
703 | |
704 | void VisitWhileStmt(const WhileStmt *S) { |
705 | RecordStmtCount(S); |
706 | uint64_t ParentCount = CurrentCount; |
707 | |
708 | BreakContinueStack.push_back(Elt: BreakContinue()); |
709 | // Visit the body region first so the break/continue adjustments can be |
710 | // included when visiting the condition. |
711 | uint64_t BodyCount = setCount(PGO.getRegionCount(S)); |
712 | CountMap[S->getBody()] = CurrentCount; |
713 | Visit(S: S->getBody()); |
714 | uint64_t BackedgeCount = CurrentCount; |
715 | |
716 | // ...then go back and propagate counts through the condition. The count |
717 | // at the start of the condition is the sum of the incoming edges, |
718 | // the backedge from the end of the loop body, and the edges from |
719 | // continue statements. |
720 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
721 | uint64_t CondCount = |
722 | setCount(ParentCount + BackedgeCount + BC.ContinueCount); |
723 | CountMap[S->getCond()] = CondCount; |
724 | Visit(S: S->getCond()); |
725 | setCount(BC.BreakCount + CondCount - BodyCount); |
726 | RecordNextStmtCount = true; |
727 | } |
728 | |
729 | void VisitDoStmt(const DoStmt *S) { |
730 | RecordStmtCount(S); |
731 | uint64_t LoopCount = PGO.getRegionCount(S); |
732 | |
733 | BreakContinueStack.push_back(Elt: BreakContinue()); |
734 | // The count doesn't include the fallthrough from the parent scope. Add it. |
735 | uint64_t BodyCount = setCount(LoopCount + CurrentCount); |
736 | CountMap[S->getBody()] = BodyCount; |
737 | Visit(S: S->getBody()); |
738 | uint64_t BackedgeCount = CurrentCount; |
739 | |
740 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
741 | // The count at the start of the condition is equal to the count at the |
742 | // end of the body, plus any continues. |
743 | uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount); |
744 | CountMap[S->getCond()] = CondCount; |
745 | Visit(S: S->getCond()); |
746 | setCount(BC.BreakCount + CondCount - LoopCount); |
747 | RecordNextStmtCount = true; |
748 | } |
749 | |
750 | void VisitForStmt(const ForStmt *S) { |
751 | RecordStmtCount(S); |
752 | if (S->getInit()) |
753 | Visit(S: S->getInit()); |
754 | |
755 | uint64_t ParentCount = CurrentCount; |
756 | |
757 | BreakContinueStack.push_back(Elt: BreakContinue()); |
758 | // Visit the body region first. (This is basically the same as a while |
759 | // loop; see further comments in VisitWhileStmt.) |
760 | uint64_t BodyCount = setCount(PGO.getRegionCount(S)); |
761 | CountMap[S->getBody()] = BodyCount; |
762 | Visit(S: S->getBody()); |
763 | uint64_t BackedgeCount = CurrentCount; |
764 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
765 | |
766 | // The increment is essentially part of the body but it needs to include |
767 | // the count for all the continue statements. |
768 | if (S->getInc()) { |
769 | uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); |
770 | CountMap[S->getInc()] = IncCount; |
771 | Visit(S: S->getInc()); |
772 | } |
773 | |
774 | // ...then go back and propagate counts through the condition. |
775 | uint64_t CondCount = |
776 | setCount(ParentCount + BackedgeCount + BC.ContinueCount); |
777 | if (S->getCond()) { |
778 | CountMap[S->getCond()] = CondCount; |
779 | Visit(S: S->getCond()); |
780 | } |
781 | setCount(BC.BreakCount + CondCount - BodyCount); |
782 | RecordNextStmtCount = true; |
783 | } |
784 | |
785 | void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { |
786 | RecordStmtCount(S); |
787 | if (S->getInit()) |
788 | Visit(S: S->getInit()); |
789 | Visit(S: S->getLoopVarStmt()); |
790 | Visit(S: S->getRangeStmt()); |
791 | Visit(S: S->getBeginStmt()); |
792 | Visit(S: S->getEndStmt()); |
793 | |
794 | uint64_t ParentCount = CurrentCount; |
795 | BreakContinueStack.push_back(Elt: BreakContinue()); |
796 | // Visit the body region first. (This is basically the same as a while |
797 | // loop; see further comments in VisitWhileStmt.) |
798 | uint64_t BodyCount = setCount(PGO.getRegionCount(S)); |
799 | CountMap[S->getBody()] = BodyCount; |
800 | Visit(S: S->getBody()); |
801 | uint64_t BackedgeCount = CurrentCount; |
802 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
803 | |
804 | // The increment is essentially part of the body but it needs to include |
805 | // the count for all the continue statements. |
806 | uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); |
807 | CountMap[S->getInc()] = IncCount; |
808 | Visit(S: S->getInc()); |
809 | |
810 | // ...then go back and propagate counts through the condition. |
811 | uint64_t CondCount = |
812 | setCount(ParentCount + BackedgeCount + BC.ContinueCount); |
813 | CountMap[S->getCond()] = CondCount; |
814 | Visit(S: S->getCond()); |
815 | setCount(BC.BreakCount + CondCount - BodyCount); |
816 | RecordNextStmtCount = true; |
817 | } |
818 | |
819 | void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { |
820 | RecordStmtCount(S); |
821 | Visit(S: S->getElement()); |
822 | uint64_t ParentCount = CurrentCount; |
823 | BreakContinueStack.push_back(Elt: BreakContinue()); |
824 | // Counter tracks the body of the loop. |
825 | uint64_t BodyCount = setCount(PGO.getRegionCount(S)); |
826 | CountMap[S->getBody()] = BodyCount; |
827 | Visit(S: S->getBody()); |
828 | uint64_t BackedgeCount = CurrentCount; |
829 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
830 | |
831 | setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount - |
832 | BodyCount); |
833 | RecordNextStmtCount = true; |
834 | } |
835 | |
836 | void VisitSwitchStmt(const SwitchStmt *S) { |
837 | RecordStmtCount(S); |
838 | if (S->getInit()) |
839 | Visit(S: S->getInit()); |
840 | Visit(S: S->getCond()); |
841 | CurrentCount = 0; |
842 | BreakContinueStack.push_back(Elt: BreakContinue()); |
843 | Visit(S: S->getBody()); |
844 | // If the switch is inside a loop, add the continue counts. |
845 | BreakContinue BC = BreakContinueStack.pop_back_val(); |
846 | if (!BreakContinueStack.empty()) |
847 | BreakContinueStack.back().ContinueCount += BC.ContinueCount; |
848 | // Counter tracks the exit block of the switch. |
849 | setCount(PGO.getRegionCount(S)); |
850 | RecordNextStmtCount = true; |
851 | } |
852 | |
853 | void VisitSwitchCase(const SwitchCase *S) { |
854 | RecordNextStmtCount = false; |
855 | // Counter for this particular case. This counts only jumps from the |
856 | // switch header and does not include fallthrough from the case before |
857 | // this one. |
858 | uint64_t CaseCount = PGO.getRegionCount(S); |
859 | setCount(CurrentCount + CaseCount); |
860 | // We need the count without fallthrough in the mapping, so it's more useful |
861 | // for branch probabilities. |
862 | CountMap[S] = CaseCount; |
863 | RecordNextStmtCount = true; |
864 | Visit(S: S->getSubStmt()); |
865 | } |
866 | |
867 | void VisitIfStmt(const IfStmt *S) { |
868 | RecordStmtCount(S); |
869 | |
870 | if (S->isConsteval()) { |
871 | const Stmt *Stm = S->isNegatedConsteval() ? S->getThen() : S->getElse(); |
872 | if (Stm) |
873 | Visit(S: Stm); |
874 | return; |
875 | } |
876 | |
877 | uint64_t ParentCount = CurrentCount; |
878 | if (S->getInit()) |
879 | Visit(S: S->getInit()); |
880 | Visit(S: S->getCond()); |
881 | |
882 | // Counter tracks the "then" part of an if statement. The count for |
883 | // the "else" part, if it exists, will be calculated from this counter. |
884 | uint64_t ThenCount = setCount(PGO.getRegionCount(S)); |
885 | CountMap[S->getThen()] = ThenCount; |
886 | Visit(S: S->getThen()); |
887 | uint64_t OutCount = CurrentCount; |
888 | |
889 | uint64_t ElseCount = ParentCount - ThenCount; |
890 | if (S->getElse()) { |
891 | setCount(ElseCount); |
892 | CountMap[S->getElse()] = ElseCount; |
893 | Visit(S: S->getElse()); |
894 | OutCount += CurrentCount; |
895 | } else |
896 | OutCount += ElseCount; |
897 | setCount(OutCount); |
898 | RecordNextStmtCount = true; |
899 | } |
900 | |
901 | void VisitCXXTryStmt(const CXXTryStmt *S) { |
902 | RecordStmtCount(S); |
903 | Visit(S: S->getTryBlock()); |
904 | for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) |
905 | Visit(S: S->getHandler(i: I)); |
906 | // Counter tracks the continuation block of the try statement. |
907 | setCount(PGO.getRegionCount(S)); |
908 | RecordNextStmtCount = true; |
909 | } |
910 | |
911 | void VisitCXXCatchStmt(const CXXCatchStmt *S) { |
912 | RecordNextStmtCount = false; |
913 | // Counter tracks the catch statement's handler block. |
914 | uint64_t CatchCount = setCount(PGO.getRegionCount(S)); |
915 | CountMap[S] = CatchCount; |
916 | Visit(S: S->getHandlerBlock()); |
917 | } |
918 | |
919 | void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
920 | RecordStmtCount(S: E); |
921 | uint64_t ParentCount = CurrentCount; |
922 | Visit(S: E->getCond()); |
923 | |
924 | // Counter tracks the "true" part of a conditional operator. The |
925 | // count in the "false" part will be calculated from this counter. |
926 | uint64_t TrueCount = setCount(PGO.getRegionCount(S: E)); |
927 | CountMap[E->getTrueExpr()] = TrueCount; |
928 | Visit(S: E->getTrueExpr()); |
929 | uint64_t OutCount = CurrentCount; |
930 | |
931 | uint64_t FalseCount = setCount(ParentCount - TrueCount); |
932 | CountMap[E->getFalseExpr()] = FalseCount; |
933 | Visit(S: E->getFalseExpr()); |
934 | OutCount += CurrentCount; |
935 | |
936 | setCount(OutCount); |
937 | RecordNextStmtCount = true; |
938 | } |
939 | |
940 | void VisitBinLAnd(const BinaryOperator *E) { |
941 | RecordStmtCount(S: E); |
942 | uint64_t ParentCount = CurrentCount; |
943 | Visit(S: E->getLHS()); |
944 | // Counter tracks the right hand side of a logical and operator. |
945 | uint64_t RHSCount = setCount(PGO.getRegionCount(S: E)); |
946 | CountMap[E->getRHS()] = RHSCount; |
947 | Visit(S: E->getRHS()); |
948 | setCount(ParentCount + RHSCount - CurrentCount); |
949 | RecordNextStmtCount = true; |
950 | } |
951 | |
952 | void VisitBinLOr(const BinaryOperator *E) { |
953 | RecordStmtCount(S: E); |
954 | uint64_t ParentCount = CurrentCount; |
955 | Visit(S: E->getLHS()); |
956 | // Counter tracks the right hand side of a logical or operator. |
957 | uint64_t RHSCount = setCount(PGO.getRegionCount(S: E)); |
958 | CountMap[E->getRHS()] = RHSCount; |
959 | Visit(S: E->getRHS()); |
960 | setCount(ParentCount + RHSCount - CurrentCount); |
961 | RecordNextStmtCount = true; |
962 | } |
963 | }; |
964 | } // end anonymous namespace |
965 | |
966 | void PGOHash::combine(HashType Type) { |
967 | // Check that we never combine 0 and only have six bits. |
968 | assert(Type && "Hash is invalid: unexpected type 0" ); |
969 | assert(unsigned(Type) < TooBig && "Hash is invalid: too many types" ); |
970 | |
971 | // Pass through MD5 if enough work has built up. |
972 | if (Count && Count % NumTypesPerWord == 0) { |
973 | using namespace llvm::support; |
974 | uint64_t Swapped = |
975 | endian::byte_swap<uint64_t, llvm::endianness::little>(value: Working); |
976 | MD5.update(Data: llvm::ArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); |
977 | Working = 0; |
978 | } |
979 | |
980 | // Accumulate the current type. |
981 | ++Count; |
982 | Working = Working << NumBitsPerType | Type; |
983 | } |
984 | |
985 | uint64_t PGOHash::finalize() { |
986 | // Use Working as the hash directly if we never used MD5. |
987 | if (Count <= NumTypesPerWord) |
988 | // No need to byte swap here, since none of the math was endian-dependent. |
989 | // This number will be byte-swapped as required on endianness transitions, |
990 | // so we will see the same value on the other side. |
991 | return Working; |
992 | |
993 | // Check for remaining work in Working. |
994 | if (Working) { |
995 | // Keep the buggy behavior from v1 and v2 for backward-compatibility. This |
996 | // is buggy because it converts a uint64_t into an array of uint8_t. |
997 | if (HashVersion < PGO_HASH_V3) { |
998 | MD5.update(Data: {(uint8_t)Working}); |
999 | } else { |
1000 | using namespace llvm::support; |
1001 | uint64_t Swapped = |
1002 | endian::byte_swap<uint64_t, llvm::endianness::little>(value: Working); |
1003 | MD5.update(Data: llvm::ArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); |
1004 | } |
1005 | } |
1006 | |
1007 | // Finalize the MD5 and return the hash. |
1008 | llvm::MD5::MD5Result Result; |
1009 | MD5.final(Result); |
1010 | return Result.low(); |
1011 | } |
1012 | |
1013 | void CodeGenPGO::assignRegionCounters(GlobalDecl GD, llvm::Function *Fn) { |
1014 | const Decl *D = GD.getDecl(); |
1015 | if (!D->hasBody()) |
1016 | return; |
1017 | |
1018 | // Skip CUDA/HIP kernel launch stub functions. |
1019 | if (CGM.getLangOpts().CUDA && !CGM.getLangOpts().CUDAIsDevice && |
1020 | D->hasAttr<CUDAGlobalAttr>()) |
1021 | return; |
1022 | |
1023 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1024 | llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); |
1025 | if (!InstrumentRegions && !PGOReader) |
1026 | return; |
1027 | if (D->isImplicit()) |
1028 | return; |
1029 | // Constructors and destructors may be represented by several functions in IR. |
1030 | // If so, instrument only base variant, others are implemented by delegation |
1031 | // to the base one, it would be counted twice otherwise. |
1032 | if (CGM.getTarget().getCXXABI().hasConstructorVariants()) { |
1033 | if (const auto *CCD = dyn_cast<CXXConstructorDecl>(Val: D)) |
1034 | if (GD.getCtorType() != Ctor_Base && |
1035 | CodeGenFunction::IsConstructorDelegationValid(Ctor: CCD)) |
1036 | return; |
1037 | } |
1038 | if (isa<CXXDestructorDecl>(Val: D) && GD.getDtorType() != Dtor_Base) |
1039 | return; |
1040 | |
1041 | CGM.ClearUnusedCoverageMapping(D); |
1042 | if (Fn->hasFnAttribute(Kind: llvm::Attribute::NoProfile)) |
1043 | return; |
1044 | if (Fn->hasFnAttribute(Kind: llvm::Attribute::SkipProfile)) |
1045 | return; |
1046 | |
1047 | SourceManager &SM = CGM.getContext().getSourceManager(); |
1048 | if (!llvm::coverage::SystemHeadersCoverage && |
1049 | SM.isInSystemHeader(Loc: D->getLocation())) |
1050 | return; |
1051 | |
1052 | setFuncName(Fn); |
1053 | |
1054 | mapRegionCounters(D); |
1055 | if (CGM.getCodeGenOpts().CoverageMapping) |
1056 | emitCounterRegionMapping(D); |
1057 | if (PGOReader) { |
1058 | loadRegionCounts(PGOReader, IsInMainFile: SM.isInMainFile(Loc: D->getLocation())); |
1059 | computeRegionCounts(D); |
1060 | applyFunctionAttributes(PGOReader, Fn); |
1061 | } |
1062 | } |
1063 | |
1064 | void CodeGenPGO::mapRegionCounters(const Decl *D) { |
1065 | // Use the latest hash version when inserting instrumentation, but use the |
1066 | // version in the indexed profile if we're reading PGO data. |
1067 | PGOHashVersion HashVersion = PGO_HASH_LATEST; |
1068 | uint64_t ProfileVersion = llvm::IndexedInstrProf::Version; |
1069 | if (auto *PGOReader = CGM.getPGOReader()) { |
1070 | HashVersion = getPGOHashVersion(PGOReader, CGM); |
1071 | ProfileVersion = PGOReader->getVersion(); |
1072 | } |
1073 | |
1074 | // If MC/DC is enabled, set the MaxConditions to a preset value. Otherwise, |
1075 | // set it to zero. This value impacts the number of conditions accepted in a |
1076 | // given boolean expression, which impacts the size of the bitmap used to |
1077 | // track test vector execution for that boolean expression. Because the |
1078 | // bitmap scales exponentially (2^n) based on the number of conditions seen, |
1079 | // the maximum value is hard-coded at 6 conditions, which is more than enough |
1080 | // for most embedded applications. Setting a maximum value prevents the |
1081 | // bitmap footprint from growing too large without the user's knowledge. In |
1082 | // the future, this value could be adjusted with a command-line option. |
1083 | unsigned MCDCMaxConditions = |
1084 | (CGM.getCodeGenOpts().MCDCCoverage ? CGM.getCodeGenOpts().MCDCMaxConds |
1085 | : 0); |
1086 | |
1087 | RegionCounterMap.reset(p: new llvm::DenseMap<const Stmt *, unsigned>); |
1088 | RegionMCDCState.reset(p: new MCDC::State); |
1089 | MapRegionCounters Walker(HashVersion, ProfileVersion, *RegionCounterMap, |
1090 | *RegionMCDCState, MCDCMaxConditions, CGM.getDiags()); |
1091 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D)) |
1092 | Walker.TraverseDecl(D: const_cast<FunctionDecl *>(FD)); |
1093 | else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Val: D)) |
1094 | Walker.TraverseDecl(D: const_cast<ObjCMethodDecl *>(MD)); |
1095 | else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(Val: D)) |
1096 | Walker.TraverseDecl(D: const_cast<BlockDecl *>(BD)); |
1097 | else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(Val: D)) |
1098 | Walker.TraverseDecl(D: const_cast<CapturedDecl *>(CD)); |
1099 | assert(Walker.NextCounter > 0 && "no entry counter mapped for decl" ); |
1100 | NumRegionCounters = Walker.NextCounter; |
1101 | FunctionHash = Walker.Hash.finalize(); |
1102 | } |
1103 | |
1104 | bool CodeGenPGO::skipRegionMappingForDecl(const Decl *D) { |
1105 | if (!D->getBody()) |
1106 | return true; |
1107 | |
1108 | // Skip host-only functions in the CUDA device compilation and device-only |
1109 | // functions in the host compilation. Just roughly filter them out based on |
1110 | // the function attributes. If there are effectively host-only or device-only |
1111 | // ones, their coverage mapping may still be generated. |
1112 | if (CGM.getLangOpts().CUDA && |
1113 | ((CGM.getLangOpts().CUDAIsDevice && !D->hasAttr<CUDADeviceAttr>() && |
1114 | !D->hasAttr<CUDAGlobalAttr>()) || |
1115 | (!CGM.getLangOpts().CUDAIsDevice && |
1116 | (D->hasAttr<CUDAGlobalAttr>() || |
1117 | (!D->hasAttr<CUDAHostAttr>() && D->hasAttr<CUDADeviceAttr>()))))) |
1118 | return true; |
1119 | |
1120 | // Don't map the functions in system headers. |
1121 | const auto &SM = CGM.getContext().getSourceManager(); |
1122 | auto Loc = D->getBody()->getBeginLoc(); |
1123 | return !llvm::coverage::SystemHeadersCoverage && SM.isInSystemHeader(Loc); |
1124 | } |
1125 | |
1126 | void CodeGenPGO::emitCounterRegionMapping(const Decl *D) { |
1127 | if (skipRegionMappingForDecl(D)) |
1128 | return; |
1129 | |
1130 | std::string CoverageMapping; |
1131 | llvm::raw_string_ostream OS(CoverageMapping); |
1132 | RegionMCDCState->BranchByStmt.clear(); |
1133 | CoverageMappingGen MappingGen( |
1134 | *CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), |
1135 | CGM.getLangOpts(), RegionCounterMap.get(), RegionMCDCState.get()); |
1136 | MappingGen.emitCounterMapping(D, OS); |
1137 | OS.flush(); |
1138 | |
1139 | if (CoverageMapping.empty()) |
1140 | return; |
1141 | |
1142 | CGM.getCoverageMapping()->addFunctionMappingRecord( |
1143 | FunctionName: FuncNameVar, FunctionNameValue: FuncName, FunctionHash, CoverageMapping); |
1144 | } |
1145 | |
1146 | void |
1147 | CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name, |
1148 | llvm::GlobalValue::LinkageTypes Linkage) { |
1149 | if (skipRegionMappingForDecl(D)) |
1150 | return; |
1151 | |
1152 | std::string CoverageMapping; |
1153 | llvm::raw_string_ostream OS(CoverageMapping); |
1154 | CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), |
1155 | CGM.getContext().getSourceManager(), |
1156 | CGM.getLangOpts()); |
1157 | MappingGen.emitEmptyMapping(D, OS); |
1158 | OS.flush(); |
1159 | |
1160 | if (CoverageMapping.empty()) |
1161 | return; |
1162 | |
1163 | setFuncName(Name, Linkage); |
1164 | CGM.getCoverageMapping()->addFunctionMappingRecord( |
1165 | FunctionName: FuncNameVar, FunctionNameValue: FuncName, FunctionHash, CoverageMapping, IsUsed: false); |
1166 | } |
1167 | |
1168 | void CodeGenPGO::computeRegionCounts(const Decl *D) { |
1169 | StmtCountMap.reset(p: new llvm::DenseMap<const Stmt *, uint64_t>); |
1170 | ComputeRegionCounts Walker(*StmtCountMap, *this); |
1171 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D)) |
1172 | Walker.VisitFunctionDecl(D: FD); |
1173 | else if (const ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Val: D)) |
1174 | Walker.VisitObjCMethodDecl(D: MD); |
1175 | else if (const BlockDecl *BD = dyn_cast_or_null<BlockDecl>(Val: D)) |
1176 | Walker.VisitBlockDecl(D: BD); |
1177 | else if (const CapturedDecl *CD = dyn_cast_or_null<CapturedDecl>(Val: D)) |
1178 | Walker.VisitCapturedDecl(D: const_cast<CapturedDecl *>(CD)); |
1179 | } |
1180 | |
1181 | void |
1182 | CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader, |
1183 | llvm::Function *Fn) { |
1184 | if (!haveRegionCounts()) |
1185 | return; |
1186 | |
1187 | uint64_t FunctionCount = getRegionCount(S: nullptr); |
1188 | Fn->setEntryCount(Count: FunctionCount); |
1189 | } |
1190 | |
1191 | void CodeGenPGO::emitCounterSetOrIncrement(CGBuilderTy &Builder, const Stmt *S, |
1192 | llvm::Value *StepV) { |
1193 | if (!RegionCounterMap || !Builder.GetInsertBlock()) |
1194 | return; |
1195 | |
1196 | unsigned Counter = (*RegionCounterMap)[S]; |
1197 | |
1198 | llvm::Value *Args[] = {FuncNameVar, |
1199 | Builder.getInt64(C: FunctionHash), |
1200 | Builder.getInt32(C: NumRegionCounters), |
1201 | Builder.getInt32(C: Counter), StepV}; |
1202 | |
1203 | if (llvm::EnableSingleByteCoverage) |
1204 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_cover), |
1205 | Args: ArrayRef(Args, 4)); |
1206 | else { |
1207 | if (!StepV) |
1208 | Builder.CreateCall(Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_increment), |
1209 | Args: ArrayRef(Args, 4)); |
1210 | else |
1211 | Builder.CreateCall( |
1212 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_increment_step), Args); |
1213 | } |
1214 | } |
1215 | |
1216 | bool CodeGenPGO::canEmitMCDCCoverage(const CGBuilderTy &Builder) { |
1217 | return (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1218 | CGM.getCodeGenOpts().MCDCCoverage && Builder.GetInsertBlock()); |
1219 | } |
1220 | |
1221 | void CodeGenPGO::emitMCDCParameters(CGBuilderTy &Builder) { |
1222 | if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) |
1223 | return; |
1224 | |
1225 | auto *I8PtrTy = llvm::PointerType::getUnqual(C&: CGM.getLLVMContext()); |
1226 | |
1227 | // Emit intrinsic representing MCDC bitmap parameters at function entry. |
1228 | // This is used by the instrumentation pass, but it isn't actually lowered to |
1229 | // anything. |
1230 | llvm::Value *Args[3] = {llvm::ConstantExpr::getBitCast(C: FuncNameVar, Ty: I8PtrTy), |
1231 | Builder.getInt64(C: FunctionHash), |
1232 | Builder.getInt32(C: RegionMCDCState->BitmapBits)}; |
1233 | Builder.CreateCall( |
1234 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_mcdc_parameters), Args); |
1235 | } |
1236 | |
1237 | void CodeGenPGO::emitMCDCTestVectorBitmapUpdate(CGBuilderTy &Builder, |
1238 | const Expr *S, |
1239 | Address MCDCCondBitmapAddr, |
1240 | CodeGenFunction &CGF) { |
1241 | if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) |
1242 | return; |
1243 | |
1244 | S = S->IgnoreParens(); |
1245 | |
1246 | auto DecisionStateIter = RegionMCDCState->DecisionByStmt.find(Val: S); |
1247 | if (DecisionStateIter == RegionMCDCState->DecisionByStmt.end()) |
1248 | return; |
1249 | |
1250 | // Don't create tvbitmap_update if the record is allocated but excluded. |
1251 | // Or `bitmap |= (1 << 0)` would be wrongly executed to the next bitmap. |
1252 | if (DecisionStateIter->second.Indices.size() == 0) |
1253 | return; |
1254 | |
1255 | // Extract the offset of the global bitmap associated with this expression. |
1256 | unsigned MCDCTestVectorBitmapOffset = DecisionStateIter->second.BitmapIdx; |
1257 | auto *I8PtrTy = llvm::PointerType::getUnqual(C&: CGM.getLLVMContext()); |
1258 | |
1259 | // Emit intrinsic responsible for updating the global bitmap corresponding to |
1260 | // a boolean expression. The index being set is based on the value loaded |
1261 | // from a pointer to a dedicated temporary value on the stack that is itself |
1262 | // updated via emitMCDCCondBitmapReset() and emitMCDCCondBitmapUpdate(). The |
1263 | // index represents an executed test vector. |
1264 | llvm::Value *Args[4] = {llvm::ConstantExpr::getBitCast(C: FuncNameVar, Ty: I8PtrTy), |
1265 | Builder.getInt64(C: FunctionHash), |
1266 | Builder.getInt32(C: MCDCTestVectorBitmapOffset), |
1267 | MCDCCondBitmapAddr.emitRawPointer(CGF)}; |
1268 | Builder.CreateCall( |
1269 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_mcdc_tvbitmap_update), Args); |
1270 | } |
1271 | |
1272 | void CodeGenPGO::emitMCDCCondBitmapReset(CGBuilderTy &Builder, const Expr *S, |
1273 | Address MCDCCondBitmapAddr) { |
1274 | if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) |
1275 | return; |
1276 | |
1277 | S = S->IgnoreParens(); |
1278 | |
1279 | if (!RegionMCDCState->DecisionByStmt.contains(Val: S)) |
1280 | return; |
1281 | |
1282 | // Emit intrinsic that resets a dedicated temporary value on the stack to 0. |
1283 | Builder.CreateStore(Val: Builder.getInt32(C: 0), Addr: MCDCCondBitmapAddr); |
1284 | } |
1285 | |
1286 | void CodeGenPGO::emitMCDCCondBitmapUpdate(CGBuilderTy &Builder, const Expr *S, |
1287 | Address MCDCCondBitmapAddr, |
1288 | llvm::Value *Val, |
1289 | CodeGenFunction &CGF) { |
1290 | if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) |
1291 | return; |
1292 | |
1293 | // Even though, for simplicity, parentheses and unary logical-NOT operators |
1294 | // are considered part of their underlying condition for both MC/DC and |
1295 | // branch coverage, the condition IDs themselves are assigned and tracked |
1296 | // using the underlying condition itself. This is done solely for |
1297 | // consistency since parentheses and logical-NOTs are ignored when checking |
1298 | // whether the condition is actually an instrumentable condition. This can |
1299 | // also make debugging a bit easier. |
1300 | S = CodeGenFunction::stripCond(C: S); |
1301 | |
1302 | auto BranchStateIter = RegionMCDCState->BranchByStmt.find(Val: S); |
1303 | if (BranchStateIter == RegionMCDCState->BranchByStmt.end()) |
1304 | return; |
1305 | |
1306 | // Extract the ID of the condition we are setting in the bitmap. |
1307 | const auto &Branch = BranchStateIter->second; |
1308 | assert(Branch.ID >= 0 && "Condition has no ID!" ); |
1309 | assert(Branch.DecisionStmt); |
1310 | |
1311 | // Cancel the emission if the Decision is erased after the allocation. |
1312 | const auto DecisionIter = |
1313 | RegionMCDCState->DecisionByStmt.find(Val: Branch.DecisionStmt); |
1314 | if (DecisionIter == RegionMCDCState->DecisionByStmt.end()) |
1315 | return; |
1316 | |
1317 | const auto &TVIdxs = DecisionIter->second.Indices[Branch.ID]; |
1318 | |
1319 | auto *CurTV = Builder.CreateLoad(Addr: MCDCCondBitmapAddr, |
1320 | Name: "mcdc." + Twine(Branch.ID + 1) + ".cur" ); |
1321 | auto *NewTV = Builder.CreateAdd(LHS: CurTV, RHS: Builder.getInt32(C: TVIdxs[true])); |
1322 | NewTV = Builder.CreateSelect( |
1323 | C: Val, True: NewTV, False: Builder.CreateAdd(LHS: CurTV, RHS: Builder.getInt32(C: TVIdxs[false]))); |
1324 | Builder.CreateStore(Val: NewTV, Addr: MCDCCondBitmapAddr); |
1325 | } |
1326 | |
1327 | void CodeGenPGO::setValueProfilingFlag(llvm::Module &M) { |
1328 | if (CGM.getCodeGenOpts().hasProfileClangInstr()) |
1329 | M.addModuleFlag(Behavior: llvm::Module::Warning, Key: "EnableValueProfiling" , |
1330 | Val: uint32_t(EnableValueProfiling)); |
1331 | } |
1332 | |
1333 | void CodeGenPGO::setProfileVersion(llvm::Module &M) { |
1334 | if (CGM.getCodeGenOpts().hasProfileClangInstr() && |
1335 | llvm::EnableSingleByteCoverage) { |
1336 | const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); |
1337 | llvm::Type *IntTy64 = llvm::Type::getInt64Ty(C&: M.getContext()); |
1338 | uint64_t ProfileVersion = |
1339 | (INSTR_PROF_RAW_VERSION | VARIANT_MASK_BYTE_COVERAGE); |
1340 | |
1341 | auto IRLevelVersionVariable = new llvm::GlobalVariable( |
1342 | M, IntTy64, true, llvm::GlobalValue::WeakAnyLinkage, |
1343 | llvm::Constant::getIntegerValue(Ty: IntTy64, |
1344 | V: llvm::APInt(64, ProfileVersion)), |
1345 | VarName); |
1346 | |
1347 | IRLevelVersionVariable->setVisibility(llvm::GlobalValue::HiddenVisibility); |
1348 | llvm::Triple TT(M.getTargetTriple()); |
1349 | if (TT.supportsCOMDAT()) { |
1350 | IRLevelVersionVariable->setLinkage(llvm::GlobalValue::ExternalLinkage); |
1351 | IRLevelVersionVariable->setComdat(M.getOrInsertComdat(Name: VarName)); |
1352 | } |
1353 | IRLevelVersionVariable->setDSOLocal(true); |
1354 | } |
1355 | } |
1356 | |
1357 | // This method either inserts a call to the profile run-time during |
1358 | // instrumentation or puts profile data into metadata for PGO use. |
1359 | void CodeGenPGO::valueProfile(CGBuilderTy &Builder, uint32_t ValueKind, |
1360 | llvm::Instruction *ValueSite, llvm::Value *ValuePtr) { |
1361 | |
1362 | if (!EnableValueProfiling) |
1363 | return; |
1364 | |
1365 | if (!ValuePtr || !ValueSite || !Builder.GetInsertBlock()) |
1366 | return; |
1367 | |
1368 | if (isa<llvm::Constant>(Val: ValuePtr)) |
1369 | return; |
1370 | |
1371 | bool InstrumentValueSites = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1372 | if (InstrumentValueSites && RegionCounterMap) { |
1373 | auto BuilderInsertPoint = Builder.saveIP(); |
1374 | Builder.SetInsertPoint(ValueSite); |
1375 | llvm::Value *Args[5] = { |
1376 | FuncNameVar, |
1377 | Builder.getInt64(C: FunctionHash), |
1378 | Builder.CreatePtrToInt(V: ValuePtr, DestTy: Builder.getInt64Ty()), |
1379 | Builder.getInt32(C: ValueKind), |
1380 | Builder.getInt32(C: NumValueSites[ValueKind]++) |
1381 | }; |
1382 | Builder.CreateCall( |
1383 | Callee: CGM.getIntrinsic(IID: llvm::Intrinsic::instrprof_value_profile), Args); |
1384 | Builder.restoreIP(IP: BuilderInsertPoint); |
1385 | return; |
1386 | } |
1387 | |
1388 | llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); |
1389 | if (PGOReader && haveRegionCounts()) { |
1390 | // We record the top most called three functions at each call site. |
1391 | // Profile metadata contains "VP" string identifying this metadata |
1392 | // as value profiling data, then a uint32_t value for the value profiling |
1393 | // kind, a uint64_t value for the total number of times the call is |
1394 | // executed, followed by the function hash and execution count (uint64_t) |
1395 | // pairs for each function. |
1396 | if (NumValueSites[ValueKind] >= ProfRecord->getNumValueSites(ValueKind)) |
1397 | return; |
1398 | |
1399 | llvm::annotateValueSite(M&: CGM.getModule(), Inst&: *ValueSite, InstrProfR: *ProfRecord, |
1400 | ValueKind: (llvm::InstrProfValueKind)ValueKind, |
1401 | SiteIndx: NumValueSites[ValueKind]); |
1402 | |
1403 | NumValueSites[ValueKind]++; |
1404 | } |
1405 | } |
1406 | |
1407 | void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader, |
1408 | bool IsInMainFile) { |
1409 | CGM.getPGOStats().addVisited(MainFile: IsInMainFile); |
1410 | RegionCounts.clear(); |
1411 | llvm::Expected<llvm::InstrProfRecord> RecordExpected = |
1412 | PGOReader->getInstrProfRecord(FuncName, FuncHash: FunctionHash); |
1413 | if (auto E = RecordExpected.takeError()) { |
1414 | auto IPE = std::get<0>(in: llvm::InstrProfError::take(E: std::move(E))); |
1415 | if (IPE == llvm::instrprof_error::unknown_function) |
1416 | CGM.getPGOStats().addMissing(MainFile: IsInMainFile); |
1417 | else if (IPE == llvm::instrprof_error::hash_mismatch) |
1418 | CGM.getPGOStats().addMismatched(MainFile: IsInMainFile); |
1419 | else if (IPE == llvm::instrprof_error::malformed) |
1420 | // TODO: Consider a more specific warning for this case. |
1421 | CGM.getPGOStats().addMismatched(MainFile: IsInMainFile); |
1422 | return; |
1423 | } |
1424 | ProfRecord = |
1425 | std::make_unique<llvm::InstrProfRecord>(args: std::move(RecordExpected.get())); |
1426 | RegionCounts = ProfRecord->Counts; |
1427 | } |
1428 | |
1429 | /// Calculate what to divide by to scale weights. |
1430 | /// |
1431 | /// Given the maximum weight, calculate a divisor that will scale all the |
1432 | /// weights to strictly less than UINT32_MAX. |
1433 | static uint64_t calculateWeightScale(uint64_t MaxWeight) { |
1434 | return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1; |
1435 | } |
1436 | |
1437 | /// Scale an individual branch weight (and add 1). |
1438 | /// |
1439 | /// Scale a 64-bit weight down to 32-bits using \c Scale. |
1440 | /// |
1441 | /// According to Laplace's Rule of Succession, it is better to compute the |
1442 | /// weight based on the count plus 1, so universally add 1 to the value. |
1443 | /// |
1444 | /// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no |
1445 | /// greater than \c Weight. |
1446 | static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) { |
1447 | assert(Scale && "scale by 0?" ); |
1448 | uint64_t Scaled = Weight / Scale + 1; |
1449 | assert(Scaled <= UINT32_MAX && "overflow 32-bits" ); |
1450 | return Scaled; |
1451 | } |
1452 | |
1453 | llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount, |
1454 | uint64_t FalseCount) const { |
1455 | // Check for empty weights. |
1456 | if (!TrueCount && !FalseCount) |
1457 | return nullptr; |
1458 | |
1459 | // Calculate how to scale down to 32-bits. |
1460 | uint64_t Scale = calculateWeightScale(MaxWeight: std::max(a: TrueCount, b: FalseCount)); |
1461 | |
1462 | llvm::MDBuilder MDHelper(CGM.getLLVMContext()); |
1463 | return MDHelper.createBranchWeights(TrueWeight: scaleBranchWeight(Weight: TrueCount, Scale), |
1464 | FalseWeight: scaleBranchWeight(Weight: FalseCount, Scale)); |
1465 | } |
1466 | |
1467 | llvm::MDNode * |
1468 | CodeGenFunction::createProfileWeights(ArrayRef<uint64_t> Weights) const { |
1469 | // We need at least two elements to create meaningful weights. |
1470 | if (Weights.size() < 2) |
1471 | return nullptr; |
1472 | |
1473 | // Check for empty weights. |
1474 | uint64_t MaxWeight = *std::max_element(first: Weights.begin(), last: Weights.end()); |
1475 | if (MaxWeight == 0) |
1476 | return nullptr; |
1477 | |
1478 | // Calculate how to scale down to 32-bits. |
1479 | uint64_t Scale = calculateWeightScale(MaxWeight); |
1480 | |
1481 | SmallVector<uint32_t, 16> ScaledWeights; |
1482 | ScaledWeights.reserve(N: Weights.size()); |
1483 | for (uint64_t W : Weights) |
1484 | ScaledWeights.push_back(Elt: scaleBranchWeight(Weight: W, Scale)); |
1485 | |
1486 | llvm::MDBuilder MDHelper(CGM.getLLVMContext()); |
1487 | return MDHelper.createBranchWeights(Weights: ScaledWeights); |
1488 | } |
1489 | |
1490 | llvm::MDNode * |
1491 | CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond, |
1492 | uint64_t LoopCount) const { |
1493 | if (!PGO.haveRegionCounts()) |
1494 | return nullptr; |
1495 | std::optional<uint64_t> CondCount = PGO.getStmtCount(S: Cond); |
1496 | if (!CondCount || *CondCount == 0) |
1497 | return nullptr; |
1498 | return createProfileWeights(TrueCount: LoopCount, |
1499 | FalseCount: std::max(a: *CondCount, b: LoopCount) - LoopCount); |
1500 | } |
1501 | |