1//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implementation of the abstract lowering for the Swift calling convention.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/CodeGen/SwiftCallingConv.h"
14#include "ABIInfo.h"
15#include "CodeGenModule.h"
16#include "TargetInfo.h"
17#include "clang/Basic/TargetInfo.h"
18#include <optional>
19
20using namespace clang;
21using namespace CodeGen;
22using namespace swiftcall;
23
24static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25 return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
26}
27
28static bool isPowerOf2(unsigned n) {
29 return n == (n & -n);
30}
31
32/// Given two types with the same size, try to find a common type.
33static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34 assert(first != second);
35
36 // Allow pointers to merge with integers, but prefer the integer type.
37 if (first->isIntegerTy()) {
38 if (second->isPointerTy()) return first;
39 } else if (first->isPointerTy()) {
40 if (second->isIntegerTy()) return second;
41 if (second->isPointerTy()) return first;
42
43 // Allow two vectors to be merged (given that they have the same size).
44 // This assumes that we never have two different vector register sets.
45 } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(Val: first)) {
46 if (auto secondVecTy = dyn_cast<llvm::VectorType>(Val: second)) {
47 if (auto commonTy = getCommonType(first: firstVecTy->getElementType(),
48 second: secondVecTy->getElementType())) {
49 return (commonTy == firstVecTy->getElementType() ? first : second);
50 }
51 }
52 }
53
54 return nullptr;
55}
56
57static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58 return CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getTypeStoreSize(Ty: type));
59}
60
61static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62 return CharUnits::fromQuantity(Quantity: CGM.getDataLayout().getTypeAllocSize(Ty: type));
63}
64
65void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
66 // Deal with various aggregate types as special cases:
67
68 // Record types.
69 if (auto recType = type->getAs<RecordType>()) {
70 addTypedData(record: recType->getDecl(), begin);
71
72 // Array types.
73 } else if (type->isArrayType()) {
74 // Incomplete array types (flexible array members?) don't provide
75 // data to lay out, and the other cases shouldn't be possible.
76 auto arrayType = CGM.getContext().getAsConstantArrayType(T: type);
77 if (!arrayType) return;
78
79 QualType eltType = arrayType->getElementType();
80 auto eltSize = CGM.getContext().getTypeSizeInChars(T: eltType);
81 for (uint64_t i = 0, e = arrayType->getZExtSize(); i != e; ++i) {
82 addTypedData(type: eltType, begin: begin + i * eltSize);
83 }
84
85 // Complex types.
86 } else if (auto complexType = type->getAs<ComplexType>()) {
87 auto eltType = complexType->getElementType();
88 auto eltSize = CGM.getContext().getTypeSizeInChars(T: eltType);
89 auto eltLLVMType = CGM.getTypes().ConvertType(T: eltType);
90 addTypedData(type: eltLLVMType, begin, end: begin + eltSize);
91 addTypedData(type: eltLLVMType, begin: begin + eltSize, end: begin + 2 * eltSize);
92
93 // Member pointer types.
94 } else if (type->getAs<MemberPointerType>()) {
95 // Just add it all as opaque.
96 addOpaqueData(begin, end: begin + CGM.getContext().getTypeSizeInChars(T: type));
97
98 // Atomic types.
99 } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100 auto valueType = atomicType->getValueType();
101 auto atomicSize = CGM.getContext().getTypeSizeInChars(T: atomicType);
102 auto valueSize = CGM.getContext().getTypeSizeInChars(T: valueType);
103
104 addTypedData(type: atomicType->getValueType(), begin);
105
106 // Add atomic padding.
107 auto atomicPadding = atomicSize - valueSize;
108 if (atomicPadding > CharUnits::Zero())
109 addOpaqueData(begin: begin + valueSize, end: begin + atomicSize);
110
111 // Everything else is scalar and should not convert as an LLVM aggregate.
112 } else {
113 // We intentionally convert as !ForMem because we want to preserve
114 // that a type was an i1.
115 auto *llvmType = CGM.getTypes().ConvertType(T: type);
116 addTypedData(type: llvmType, begin);
117 }
118}
119
120void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
121 addTypedData(record, begin, layout: CGM.getContext().getASTRecordLayout(D: record));
122}
123
124void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
125 const ASTRecordLayout &layout) {
126 // Unions are a special case.
127 if (record->isUnion()) {
128 for (auto *field : record->fields()) {
129 if (field->isBitField()) {
130 addBitFieldData(field, begin, bitOffset: 0);
131 } else {
132 addTypedData(type: field->getType(), begin);
133 }
134 }
135 return;
136 }
137
138 // Note that correctness does not rely on us adding things in
139 // their actual order of layout; it's just somewhat more efficient
140 // for the builder.
141
142 // With that in mind, add "early" C++ data.
143 auto cxxRecord = dyn_cast<CXXRecordDecl>(Val: record);
144 if (cxxRecord) {
145 // - a v-table pointer, if the class adds its own
146 if (layout.hasOwnVFPtr()) {
147 addTypedData(type: CGM.Int8PtrTy, begin);
148 }
149
150 // - non-virtual bases
151 for (auto &baseSpecifier : cxxRecord->bases()) {
152 if (baseSpecifier.isVirtual()) continue;
153
154 auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155 addTypedData(record: baseRecord, begin: begin + layout.getBaseClassOffset(Base: baseRecord));
156 }
157
158 // - a vbptr if the class adds its own
159 if (layout.hasOwnVBPtr()) {
160 addTypedData(type: CGM.Int8PtrTy, begin: begin + layout.getVBPtrOffset());
161 }
162 }
163
164 // Add fields.
165 for (auto *field : record->fields()) {
166 auto fieldOffsetInBits = layout.getFieldOffset(FieldNo: field->getFieldIndex());
167 if (field->isBitField()) {
168 addBitFieldData(field, begin, bitOffset: fieldOffsetInBits);
169 } else {
170 addTypedData(type: field->getType(),
171 begin: begin + CGM.getContext().toCharUnitsFromBits(BitSize: fieldOffsetInBits));
172 }
173 }
174
175 // Add "late" C++ data:
176 if (cxxRecord) {
177 // - virtual bases
178 for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179 auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180 addTypedData(record: baseRecord, begin: begin + layout.getVBaseClassOffset(VBase: baseRecord));
181 }
182 }
183}
184
185void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186 CharUnits recordBegin,
187 uint64_t bitfieldBitBegin) {
188 assert(bitfield->isBitField());
189 auto &ctx = CGM.getContext();
190 auto width = bitfield->getBitWidthValue(Ctx: ctx);
191
192 // We can ignore zero-width bit-fields.
193 if (width == 0) return;
194
195 // toCharUnitsFromBits rounds down.
196 CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(BitSize: bitfieldBitBegin);
197
198 // Find the offset of the last byte that is partially occupied by the
199 // bit-field; since we otherwise expect exclusive ends, the end is the
200 // next byte.
201 uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202 CharUnits bitfieldByteEnd =
203 ctx.toCharUnitsFromBits(BitSize: bitfieldBitLast) + CharUnits::One();
204 addOpaqueData(begin: recordBegin + bitfieldByteBegin,
205 end: recordBegin + bitfieldByteEnd);
206}
207
208void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
209 assert(type && "didn't provide type for typed data");
210 addTypedData(type, begin, end: begin + getTypeStoreSize(CGM, type));
211}
212
213void SwiftAggLowering::addTypedData(llvm::Type *type,
214 CharUnits begin, CharUnits end) {
215 assert(type && "didn't provide type for typed data");
216 assert(getTypeStoreSize(CGM, type) == end - begin);
217
218 // Legalize vector types.
219 if (auto vecTy = dyn_cast<llvm::VectorType>(Val: type)) {
220 SmallVector<llvm::Type*, 4> componentTys;
221 legalizeVectorType(CGM, vectorSize: end - begin, vectorTy: vecTy, types&: componentTys);
222 assert(componentTys.size() >= 1);
223
224 // Walk the initial components.
225 for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226 llvm::Type *componentTy = componentTys[i];
227 auto componentSize = getTypeStoreSize(CGM, type: componentTy);
228 assert(componentSize < end - begin);
229 addLegalTypedData(type: componentTy, begin, end: begin + componentSize);
230 begin += componentSize;
231 }
232
233 return addLegalTypedData(type: componentTys.back(), begin, end);
234 }
235
236 // Legalize integer types.
237 if (auto intTy = dyn_cast<llvm::IntegerType>(Val: type)) {
238 if (!isLegalIntegerType(CGM, type: intTy))
239 return addOpaqueData(begin, end);
240 }
241
242 // All other types should be legal.
243 return addLegalTypedData(type, begin, end);
244}
245
246void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247 CharUnits begin, CharUnits end) {
248 // Require the type to be naturally aligned.
249 if (!begin.isZero() && !begin.isMultipleOf(N: getNaturalAlignment(CGM, type))) {
250
251 // Try splitting vector types.
252 if (auto vecTy = dyn_cast<llvm::VectorType>(Val: type)) {
253 auto split = splitLegalVectorType(CGM, vectorSize: end - begin, vectorTy: vecTy);
254 auto eltTy = split.first;
255 auto numElts = split.second;
256
257 auto eltSize = (end - begin) / numElts;
258 assert(eltSize == getTypeStoreSize(CGM, eltTy));
259 for (size_t i = 0, e = numElts; i != e; ++i) {
260 addLegalTypedData(type: eltTy, begin, end: begin + eltSize);
261 begin += eltSize;
262 }
263 assert(begin == end);
264 return;
265 }
266
267 return addOpaqueData(begin, end);
268 }
269
270 addEntry(type, begin, end);
271}
272
273void SwiftAggLowering::addEntry(llvm::Type *type,
274 CharUnits begin, CharUnits end) {
275 assert((!type ||
276 (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277 "cannot add aggregate-typed data");
278 assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279
280 // Fast path: we can just add entries to the end.
281 if (Entries.empty() || Entries.back().End <= begin) {
282 Entries.push_back(Elt: {.Begin: begin, .End: end, .Type: type});
283 return;
284 }
285
286 // Find the first existing entry that ends after the start of the new data.
287 // TODO: do a binary search if Entries is big enough for it to matter.
288 size_t index = Entries.size() - 1;
289 while (index != 0) {
290 if (Entries[index - 1].End <= begin) break;
291 --index;
292 }
293
294 // The entry ends after the start of the new data.
295 // If the entry starts after the end of the new data, there's no conflict.
296 if (Entries[index].Begin >= end) {
297 // This insertion is potentially O(n), but the way we generally build
298 // these layouts makes that unlikely to matter: we'd need a union of
299 // several very large types.
300 Entries.insert(I: Entries.begin() + index, Elt: {.Begin: begin, .End: end, .Type: type});
301 return;
302 }
303
304 // Otherwise, the ranges overlap. The new range might also overlap
305 // with later ranges.
306restartAfterSplit:
307
308 // Simplest case: an exact overlap.
309 if (Entries[index].Begin == begin && Entries[index].End == end) {
310 // If the types match exactly, great.
311 if (Entries[index].Type == type) return;
312
313 // If either type is opaque, make the entry opaque and return.
314 if (Entries[index].Type == nullptr) {
315 return;
316 } else if (type == nullptr) {
317 Entries[index].Type = nullptr;
318 return;
319 }
320
321 // If they disagree in an ABI-agnostic way, just resolve the conflict
322 // arbitrarily.
323 if (auto entryType = getCommonType(first: Entries[index].Type, second: type)) {
324 Entries[index].Type = entryType;
325 return;
326 }
327
328 // Otherwise, make the entry opaque.
329 Entries[index].Type = nullptr;
330 return;
331 }
332
333 // Okay, we have an overlapping conflict of some sort.
334
335 // If we have a vector type, split it.
336 if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(Val: type)) {
337 auto eltTy = vecTy->getElementType();
338 CharUnits eltSize =
339 (end - begin) / cast<llvm::FixedVectorType>(Val: vecTy)->getNumElements();
340 assert(eltSize == getTypeStoreSize(CGM, eltTy));
341 for (unsigned i = 0,
342 e = cast<llvm::FixedVectorType>(Val: vecTy)->getNumElements();
343 i != e; ++i) {
344 addEntry(type: eltTy, begin, end: begin + eltSize);
345 begin += eltSize;
346 }
347 assert(begin == end);
348 return;
349 }
350
351 // If the entry is a vector type, split it and try again.
352 if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353 splitVectorEntry(index);
354 goto restartAfterSplit;
355 }
356
357 // Okay, we have no choice but to make the existing entry opaque.
358
359 Entries[index].Type = nullptr;
360
361 // Stretch the start of the entry to the beginning of the range.
362 if (begin < Entries[index].Begin) {
363 Entries[index].Begin = begin;
364 assert(index == 0 || begin >= Entries[index - 1].End);
365 }
366
367 // Stretch the end of the entry to the end of the range; but if we run
368 // into the start of the next entry, just leave the range there and repeat.
369 while (end > Entries[index].End) {
370 assert(Entries[index].Type == nullptr);
371
372 // If the range doesn't overlap the next entry, we're done.
373 if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374 Entries[index].End = end;
375 break;
376 }
377
378 // Otherwise, stretch to the start of the next entry.
379 Entries[index].End = Entries[index + 1].Begin;
380
381 // Continue with the next entry.
382 index++;
383
384 // This entry needs to be made opaque if it is not already.
385 if (Entries[index].Type == nullptr)
386 continue;
387
388 // Split vector entries unless we completely subsume them.
389 if (Entries[index].Type->isVectorTy() &&
390 end < Entries[index].End) {
391 splitVectorEntry(index);
392 }
393
394 // Make the entry opaque.
395 Entries[index].Type = nullptr;
396 }
397}
398
399/// Replace the entry of vector type at offset 'index' with a sequence
400/// of its component vectors.
401void SwiftAggLowering::splitVectorEntry(unsigned index) {
402 auto vecTy = cast<llvm::VectorType>(Val: Entries[index].Type);
403 auto split = splitLegalVectorType(CGM, vectorSize: Entries[index].getWidth(), vectorTy: vecTy);
404
405 auto eltTy = split.first;
406 CharUnits eltSize = getTypeStoreSize(CGM, type: eltTy);
407 auto numElts = split.second;
408 Entries.insert(I: Entries.begin() + index + 1, NumToInsert: numElts - 1, Elt: StorageEntry());
409
410 CharUnits begin = Entries[index].Begin;
411 for (unsigned i = 0; i != numElts; ++i) {
412 unsigned idx = index + i;
413 Entries[idx].Type = eltTy;
414 Entries[idx].Begin = begin;
415 Entries[idx].End = begin + eltSize;
416 begin += eltSize;
417 }
418}
419
420/// Given a power-of-two unit size, return the offset of the aligned unit
421/// of that size which contains the given offset.
422///
423/// In other words, round down to the nearest multiple of the unit size.
424static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
425 assert(isPowerOf2(unitSize.getQuantity()));
426 auto unitMask = ~(unitSize.getQuantity() - 1);
427 return CharUnits::fromQuantity(Quantity: offset.getQuantity() & unitMask);
428}
429
430static bool areBytesInSameUnit(CharUnits first, CharUnits second,
431 CharUnits chunkSize) {
432 return getOffsetAtStartOfUnit(offset: first, unitSize: chunkSize)
433 == getOffsetAtStartOfUnit(offset: second, unitSize: chunkSize);
434}
435
436static bool isMergeableEntryType(llvm::Type *type) {
437 // Opaquely-typed memory is always mergeable.
438 if (type == nullptr) return true;
439
440 // Pointers and integers are always mergeable. In theory we should not
441 // merge pointers, but (1) it doesn't currently matter in practice because
442 // the chunk size is never greater than the size of a pointer and (2)
443 // Swift IRGen uses integer types for a lot of things that are "really"
444 // just storing pointers (like std::optional<SomePointer>). If we ever have a
445 // target that would otherwise combine pointers, we should put some effort
446 // into fixing those cases in Swift IRGen and then call out pointer types
447 // here.
448
449 // Floating-point and vector types should never be merged.
450 // Most such types are too large and highly-aligned to ever trigger merging
451 // in practice, but it's important for the rule to cover at least 'half'
452 // and 'float', as well as things like small vectors of 'i1' or 'i8'.
453 return (!type->isFloatingPointTy() && !type->isVectorTy());
454}
455
456bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
457 const StorageEntry &second,
458 CharUnits chunkSize) {
459 // Only merge entries that overlap the same chunk. We test this first
460 // despite being a bit more expensive because this is the condition that
461 // tends to prevent merging.
462 if (!areBytesInSameUnit(first: first.End - CharUnits::One(), second: second.Begin,
463 chunkSize))
464 return false;
465
466 return (isMergeableEntryType(type: first.Type) &&
467 isMergeableEntryType(type: second.Type));
468}
469
470void SwiftAggLowering::finish() {
471 if (Entries.empty()) {
472 Finished = true;
473 return;
474 }
475
476 // We logically split the layout down into a series of chunks of this size,
477 // which is generally the size of a pointer.
478 const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
479
480 // First pass: if two entries should be merged, make them both opaque
481 // and stretch one to meet the next.
482 // Also, remember if there are any opaque entries.
483 bool hasOpaqueEntries = (Entries[0].Type == nullptr);
484 for (size_t i = 1, e = Entries.size(); i != e; ++i) {
485 if (shouldMergeEntries(first: Entries[i - 1], second: Entries[i], chunkSize)) {
486 Entries[i - 1].Type = nullptr;
487 Entries[i].Type = nullptr;
488 Entries[i - 1].End = Entries[i].Begin;
489 hasOpaqueEntries = true;
490
491 } else if (Entries[i].Type == nullptr) {
492 hasOpaqueEntries = true;
493 }
494 }
495
496 // The rest of the algorithm leaves non-opaque entries alone, so if we
497 // have no opaque entries, we're done.
498 if (!hasOpaqueEntries) {
499 Finished = true;
500 return;
501 }
502
503 // Okay, move the entries to a temporary and rebuild Entries.
504 auto orig = std::move(Entries);
505 assert(Entries.empty());
506
507 for (size_t i = 0, e = orig.size(); i != e; ++i) {
508 // Just copy over non-opaque entries.
509 if (orig[i].Type != nullptr) {
510 Entries.push_back(Elt: orig[i]);
511 continue;
512 }
513
514 // Scan forward to determine the full extent of the next opaque range.
515 // We know from the first pass that only contiguous ranges will overlap
516 // the same aligned chunk.
517 auto begin = orig[i].Begin;
518 auto end = orig[i].End;
519 while (i + 1 != e &&
520 orig[i + 1].Type == nullptr &&
521 end == orig[i + 1].Begin) {
522 end = orig[i + 1].End;
523 i++;
524 }
525
526 // Add an entry per intersected chunk.
527 do {
528 // Find the smallest aligned storage unit in the maximal aligned
529 // storage unit containing 'begin' that contains all the bytes in
530 // the intersection between the range and this chunk.
531 CharUnits localBegin = begin;
532 CharUnits chunkBegin = getOffsetAtStartOfUnit(offset: localBegin, unitSize: chunkSize);
533 CharUnits chunkEnd = chunkBegin + chunkSize;
534 CharUnits localEnd = std::min(a: end, b: chunkEnd);
535
536 // Just do a simple loop over ever-increasing unit sizes.
537 CharUnits unitSize = CharUnits::One();
538 CharUnits unitBegin, unitEnd;
539 for (; ; unitSize *= 2) {
540 assert(unitSize <= chunkSize);
541 unitBegin = getOffsetAtStartOfUnit(offset: localBegin, unitSize);
542 unitEnd = unitBegin + unitSize;
543 if (unitEnd >= localEnd) break;
544 }
545
546 // Add an entry for this unit.
547 auto entryTy =
548 llvm::IntegerType::get(C&: CGM.getLLVMContext(),
549 NumBits: CGM.getContext().toBits(CharSize: unitSize));
550 Entries.push_back(Elt: {.Begin: unitBegin, .End: unitEnd, .Type: entryTy});
551
552 // The next chunk starts where this chunk left off.
553 begin = localEnd;
554 } while (begin != end);
555 }
556
557 // Okay, finally finished.
558 Finished = true;
559}
560
561void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
562 assert(Finished && "haven't yet finished lowering");
563
564 for (auto &entry : Entries) {
565 callback(entry.Begin, entry.End, entry.Type);
566 }
567}
568
569std::pair<llvm::StructType*, llvm::Type*>
570SwiftAggLowering::getCoerceAndExpandTypes() const {
571 assert(Finished && "haven't yet finished lowering");
572
573 auto &ctx = CGM.getLLVMContext();
574
575 if (Entries.empty()) {
576 auto type = llvm::StructType::get(Context&: ctx);
577 return { type, type };
578 }
579
580 SmallVector<llvm::Type*, 8> elts;
581 CharUnits lastEnd = CharUnits::Zero();
582 bool hasPadding = false;
583 bool packed = false;
584 for (auto &entry : Entries) {
585 if (entry.Begin != lastEnd) {
586 auto paddingSize = entry.Begin - lastEnd;
587 assert(!paddingSize.isNegative());
588
589 auto padding = llvm::ArrayType::get(ElementType: llvm::Type::getInt8Ty(C&: ctx),
590 NumElements: paddingSize.getQuantity());
591 elts.push_back(Elt: padding);
592 hasPadding = true;
593 }
594
595 if (!packed && !entry.Begin.isMultipleOf(N: CharUnits::fromQuantity(
596 Quantity: CGM.getDataLayout().getABITypeAlign(Ty: entry.Type))))
597 packed = true;
598
599 elts.push_back(Elt: entry.Type);
600
601 lastEnd = entry.Begin + getTypeAllocSize(CGM, type: entry.Type);
602 assert(entry.End <= lastEnd);
603 }
604
605 // We don't need to adjust 'packed' to deal with possible tail padding
606 // because we never do that kind of access through the coercion type.
607 auto coercionType = llvm::StructType::get(Context&: ctx, Elements: elts, isPacked: packed);
608
609 llvm::Type *unpaddedType = coercionType;
610 if (hasPadding) {
611 elts.clear();
612 for (auto &entry : Entries) {
613 elts.push_back(Elt: entry.Type);
614 }
615 if (elts.size() == 1) {
616 unpaddedType = elts[0];
617 } else {
618 unpaddedType = llvm::StructType::get(Context&: ctx, Elements: elts, /*packed*/ isPacked: false);
619 }
620 } else if (Entries.size() == 1) {
621 unpaddedType = Entries[0].Type;
622 }
623
624 return { coercionType, unpaddedType };
625}
626
627bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
628 assert(Finished && "haven't yet finished lowering");
629
630 // Empty types don't need to be passed indirectly.
631 if (Entries.empty()) return false;
632
633 // Avoid copying the array of types when there's just a single element.
634 if (Entries.size() == 1) {
635 return getSwiftABIInfo(CGM).shouldPassIndirectly(ComponentTys: Entries.back().Type,
636 AsReturnValue: asReturnValue);
637 }
638
639 SmallVector<llvm::Type*, 8> componentTys;
640 componentTys.reserve(N: Entries.size());
641 for (auto &entry : Entries) {
642 componentTys.push_back(Elt: entry.Type);
643 }
644 return getSwiftABIInfo(CGM).shouldPassIndirectly(ComponentTys: componentTys, AsReturnValue: asReturnValue);
645}
646
647bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648 ArrayRef<llvm::Type*> componentTys,
649 bool asReturnValue) {
650 return getSwiftABIInfo(CGM).shouldPassIndirectly(ComponentTys: componentTys, AsReturnValue: asReturnValue);
651}
652
653CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
654 // Currently always the size of an ordinary pointer.
655 return CGM.getContext().toCharUnitsFromBits(
656 BitSize: CGM.getContext().getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default));
657}
658
659CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
660 // For Swift's purposes, this is always just the store size of the type
661 // rounded up to a power of 2.
662 auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663 size = llvm::bit_ceil(Value: size);
664 assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
665 return CharUnits::fromQuantity(Quantity: size);
666}
667
668bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
669 llvm::IntegerType *intTy) {
670 auto size = intTy->getBitWidth();
671 switch (size) {
672 case 1:
673 case 8:
674 case 16:
675 case 32:
676 case 64:
677 // Just assume that the above are always legal.
678 return true;
679
680 case 128:
681 return CGM.getContext().getTargetInfo().hasInt128Type();
682
683 default:
684 return false;
685 }
686}
687
688bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
689 llvm::VectorType *vectorTy) {
690 return isLegalVectorType(
691 CGM, vectorSize, eltTy: vectorTy->getElementType(),
692 numElts: cast<llvm::FixedVectorType>(Val: vectorTy)->getNumElements());
693}
694
695bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
696 llvm::Type *eltTy, unsigned numElts) {
697 assert(numElts > 1 && "illegal vector length");
698 return getSwiftABIInfo(CGM).isLegalVectorType(VectorSize: vectorSize, EltTy: eltTy, NumElts: numElts);
699}
700
701std::pair<llvm::Type*, unsigned>
702swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
703 llvm::VectorType *vectorTy) {
704 auto numElts = cast<llvm::FixedVectorType>(Val: vectorTy)->getNumElements();
705 auto eltTy = vectorTy->getElementType();
706
707 // Try to split the vector type in half.
708 if (numElts >= 4 && isPowerOf2(n: numElts)) {
709 if (isLegalVectorType(CGM, vectorSize: vectorSize / 2, eltTy, numElts: numElts / 2))
710 return {llvm::FixedVectorType::get(ElementType: eltTy, NumElts: numElts / 2), 2};
711 }
712
713 return {eltTy, numElts};
714}
715
716void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
717 llvm::VectorType *origVectorTy,
718 llvm::SmallVectorImpl<llvm::Type*> &components) {
719 // If it's already a legal vector type, use it.
720 if (isLegalVectorType(CGM, vectorSize: origVectorSize, vectorTy: origVectorTy)) {
721 components.push_back(Elt: origVectorTy);
722 return;
723 }
724
725 // Try to split the vector into legal subvectors.
726 auto numElts = cast<llvm::FixedVectorType>(Val: origVectorTy)->getNumElements();
727 auto eltTy = origVectorTy->getElementType();
728 assert(numElts != 1);
729
730 // The largest size that we're still considering making subvectors of.
731 // Always a power of 2.
732 unsigned logCandidateNumElts = llvm::Log2_32(Value: numElts);
733 unsigned candidateNumElts = 1U << logCandidateNumElts;
734 assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
735
736 // Minor optimization: don't check the legality of this exact size twice.
737 if (candidateNumElts == numElts) {
738 logCandidateNumElts--;
739 candidateNumElts >>= 1;
740 }
741
742 CharUnits eltSize = (origVectorSize / numElts);
743 CharUnits candidateSize = eltSize * candidateNumElts;
744
745 // The sensibility of this algorithm relies on the fact that we never
746 // have a legal non-power-of-2 vector size without having the power of 2
747 // also be legal.
748 while (logCandidateNumElts > 0) {
749 assert(candidateNumElts == 1U << logCandidateNumElts);
750 assert(candidateNumElts <= numElts);
751 assert(candidateSize == eltSize * candidateNumElts);
752
753 // Skip illegal vector sizes.
754 if (!isLegalVectorType(CGM, vectorSize: candidateSize, eltTy, numElts: candidateNumElts)) {
755 logCandidateNumElts--;
756 candidateNumElts /= 2;
757 candidateSize /= 2;
758 continue;
759 }
760
761 // Add the right number of vectors of this size.
762 auto numVecs = numElts >> logCandidateNumElts;
763 components.append(NumInputs: numVecs,
764 Elt: llvm::FixedVectorType::get(ElementType: eltTy, NumElts: candidateNumElts));
765 numElts -= (numVecs << logCandidateNumElts);
766
767 if (numElts == 0) return;
768
769 // It's possible that the number of elements remaining will be legal.
770 // This can happen with e.g. <7 x float> when <3 x float> is legal.
771 // This only needs to be separately checked if it's not a power of 2.
772 if (numElts > 2 && !isPowerOf2(n: numElts) &&
773 isLegalVectorType(CGM, vectorSize: eltSize * numElts, eltTy, numElts)) {
774 components.push_back(Elt: llvm::FixedVectorType::get(ElementType: eltTy, NumElts: numElts));
775 return;
776 }
777
778 // Bring vecSize down to something no larger than numElts.
779 do {
780 logCandidateNumElts--;
781 candidateNumElts /= 2;
782 candidateSize /= 2;
783 } while (candidateNumElts > numElts);
784 }
785
786 // Otherwise, just append a bunch of individual elements.
787 components.append(NumInputs: numElts, Elt: eltTy);
788}
789
790bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
791 const RecordDecl *record) {
792 // FIXME: should we not rely on the standard computation in Sema, just in
793 // case we want to diverge from the platform ABI (e.g. on targets where
794 // that uses the MSVC rule)?
795 return !record->canPassInRegisters();
796}
797
798static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
799 bool forReturn,
800 CharUnits alignmentForIndirect) {
801 if (lowering.empty()) {
802 return ABIArgInfo::getIgnore();
803 } else if (lowering.shouldPassIndirectly(asReturnValue: forReturn)) {
804 return ABIArgInfo::getIndirect(Alignment: alignmentForIndirect, /*byval*/ ByVal: false);
805 } else {
806 auto types = lowering.getCoerceAndExpandTypes();
807 return ABIArgInfo::getCoerceAndExpand(coerceToType: types.first, unpaddedCoerceToType: types.second);
808 }
809}
810
811static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
812 bool forReturn) {
813 if (auto recordType = dyn_cast<RecordType>(Val&: type)) {
814 auto record = recordType->getDecl();
815 auto &layout = CGM.getContext().getASTRecordLayout(D: record);
816
817 if (mustPassRecordIndirectly(CGM, record))
818 return ABIArgInfo::getIndirect(Alignment: layout.getAlignment(), /*byval*/ ByVal: false);
819
820 SwiftAggLowering lowering(CGM);
821 lowering.addTypedData(record: recordType->getDecl(), begin: CharUnits::Zero(), layout);
822 lowering.finish();
823
824 return classifyExpandedType(lowering, forReturn, alignmentForIndirect: layout.getAlignment());
825 }
826
827 // Just assume that all of our target ABIs can support returning at least
828 // two integer or floating-point values.
829 if (isa<ComplexType>(Val: type)) {
830 return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
831 }
832
833 // Vector types may need to be legalized.
834 if (isa<VectorType>(Val: type)) {
835 SwiftAggLowering lowering(CGM);
836 lowering.addTypedData(type, begin: CharUnits::Zero());
837 lowering.finish();
838
839 CharUnits alignment = CGM.getContext().getTypeAlignInChars(T: type);
840 return classifyExpandedType(lowering, forReturn, alignmentForIndirect: alignment);
841 }
842
843 // Member pointer types need to be expanded, but it's a simple form of
844 // expansion that 'Direct' can handle. Note that CanBeFlattened should be
845 // true for this to work.
846
847 // 'void' needs to be ignored.
848 if (type->isVoidType()) {
849 return ABIArgInfo::getIgnore();
850 }
851
852 // Everything else can be passed directly.
853 return ABIArgInfo::getDirect();
854}
855
856ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
857 return classifyType(CGM, type, /*forReturn*/ true);
858}
859
860ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
861 CanQualType type) {
862 return classifyType(CGM, type, /*forReturn*/ false);
863}
864
865void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
866 auto &retInfo = FI.getReturnInfo();
867 retInfo = classifyReturnType(CGM, type: FI.getReturnType());
868
869 for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
870 auto &argInfo = FI.arg_begin()[i];
871 argInfo.info = classifyArgumentType(CGM, type: argInfo.type);
872 }
873}
874
875// Is swifterror lowered to a register by the target ABI.
876bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
877 return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
878}
879