1 | //===- RDFGraph.h -----------------------------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Target-independent, SSA-based data flow graph for register data flow (RDF) |
10 | // for a non-SSA program representation (e.g. post-RA machine code). |
11 | // |
12 | // |
13 | // *** Introduction |
14 | // |
15 | // The RDF graph is a collection of nodes, each of which denotes some element |
16 | // of the program. There are two main types of such elements: code and refe- |
17 | // rences. Conceptually, "code" is something that represents the structure |
18 | // of the program, e.g. basic block or a statement, while "reference" is an |
19 | // instance of accessing a register, e.g. a definition or a use. Nodes are |
20 | // connected with each other based on the structure of the program (such as |
21 | // blocks, instructions, etc.), and based on the data flow (e.g. reaching |
22 | // definitions, reached uses, etc.). The single-reaching-definition principle |
23 | // of SSA is generally observed, although, due to the non-SSA representation |
24 | // of the program, there are some differences between the graph and a "pure" |
25 | // SSA representation. |
26 | // |
27 | // |
28 | // *** Implementation remarks |
29 | // |
30 | // Since the graph can contain a large number of nodes, memory consumption |
31 | // was one of the major design considerations. As a result, there is a single |
32 | // base class NodeBase which defines all members used by all possible derived |
33 | // classes. The members are arranged in a union, and a derived class cannot |
34 | // add any data members of its own. Each derived class only defines the |
35 | // functional interface, i.e. member functions. NodeBase must be a POD, |
36 | // which implies that all of its members must also be PODs. |
37 | // Since nodes need to be connected with other nodes, pointers have been |
38 | // replaced with 32-bit identifiers: each node has an id of type NodeId. |
39 | // There are mapping functions in the graph that translate between actual |
40 | // memory addresses and the corresponding identifiers. |
41 | // A node id of 0 is equivalent to nullptr. |
42 | // |
43 | // |
44 | // *** Structure of the graph |
45 | // |
46 | // A code node is always a collection of other nodes. For example, a code |
47 | // node corresponding to a basic block will contain code nodes corresponding |
48 | // to instructions. In turn, a code node corresponding to an instruction will |
49 | // contain a list of reference nodes that correspond to the definitions and |
50 | // uses of registers in that instruction. The members are arranged into a |
51 | // circular list, which is yet another consequence of the effort to save |
52 | // memory: for each member node it should be possible to obtain its owner, |
53 | // and it should be possible to access all other members. There are other |
54 | // ways to accomplish that, but the circular list seemed the most natural. |
55 | // |
56 | // +- CodeNode -+ |
57 | // | | <---------------------------------------------------+ |
58 | // +-+--------+-+ | |
59 | // |FirstM |LastM | |
60 | // | +-------------------------------------+ | |
61 | // | | | |
62 | // V V | |
63 | // +----------+ Next +----------+ Next Next +----------+ Next | |
64 | // | |----->| |-----> ... ----->| |----->-+ |
65 | // +- Member -+ +- Member -+ +- Member -+ |
66 | // |
67 | // The order of members is such that related reference nodes (see below) |
68 | // should be contiguous on the member list. |
69 | // |
70 | // A reference node is a node that encapsulates an access to a register, |
71 | // in other words, data flowing into or out of a register. There are two |
72 | // major kinds of reference nodes: defs and uses. A def node will contain |
73 | // the id of the first reached use, and the id of the first reached def. |
74 | // Each def and use will contain the id of the reaching def, and also the |
75 | // id of the next reached def (for def nodes) or use (for use nodes). |
76 | // The "next node sharing the same reaching def" is denoted as "sibling". |
77 | // In summary: |
78 | // - Def node contains: reaching def, sibling, first reached def, and first |
79 | // reached use. |
80 | // - Use node contains: reaching def and sibling. |
81 | // |
82 | // +-- DefNode --+ |
83 | // | R2 = ... | <---+--------------------+ |
84 | // ++---------+--+ | | |
85 | // |Reached |Reached | | |
86 | // |Def |Use | | |
87 | // | | |Reaching |Reaching |
88 | // | V |Def |Def |
89 | // | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib |
90 | // | | ... = R2 |----->| ... = R2 |----> ... ----> 0 |
91 | // | +-------------+ +-------------+ |
92 | // V |
93 | // +-- DefNode --+ Sib |
94 | // | R2 = ... |----> ... |
95 | // ++---------+--+ |
96 | // | | |
97 | // | | |
98 | // ... ... |
99 | // |
100 | // To get a full picture, the circular lists connecting blocks within a |
101 | // function, instructions within a block, etc. should be superimposed with |
102 | // the def-def, def-use links shown above. |
103 | // To illustrate this, consider a small example in a pseudo-assembly: |
104 | // foo: |
105 | // add r2, r0, r1 ; r2 = r0+r1 |
106 | // addi r0, r2, 1 ; r0 = r2+1 |
107 | // ret r0 ; return value in r0 |
108 | // |
109 | // The graph (in a format used by the debugging functions) would look like: |
110 | // |
111 | // DFG dump:[ |
112 | // f1: Function foo |
113 | // b2: === %bb.0 === preds(0), succs(0): |
114 | // p3: phi [d4<r0>(,d12,u9):] |
115 | // p5: phi [d6<r1>(,,u10):] |
116 | // s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):] |
117 | // s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):] |
118 | // s14: ret [u15<r0>(d12):] |
119 | // ] |
120 | // |
121 | // The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the |
122 | // kind of the node (i.e. f - function, b - basic block, p - phi, s - state- |
123 | // ment, d - def, u - use). |
124 | // The format of a def node is: |
125 | // dN<R>(rd,d,u):sib, |
126 | // where |
127 | // N - numeric node id, |
128 | // R - register being defined |
129 | // rd - reaching def, |
130 | // d - reached def, |
131 | // u - reached use, |
132 | // sib - sibling. |
133 | // The format of a use node is: |
134 | // uN<R>[!](rd):sib, |
135 | // where |
136 | // N - numeric node id, |
137 | // R - register being used, |
138 | // rd - reaching def, |
139 | // sib - sibling. |
140 | // Possible annotations (usually preceding the node id): |
141 | // + - preserving def, |
142 | // ~ - clobbering def, |
143 | // " - shadow ref (follows the node id), |
144 | // ! - fixed register (appears after register name). |
145 | // |
146 | // The circular lists are not explicit in the dump. |
147 | // |
148 | // |
149 | // *** Node attributes |
150 | // |
151 | // NodeBase has a member "Attrs", which is the primary way of determining |
152 | // the node's characteristics. The fields in this member decide whether |
153 | // the node is a code node or a reference node (i.e. node's "type"), then |
154 | // within each type, the "kind" determines what specifically this node |
155 | // represents. The remaining bits, "flags", contain additional information |
156 | // that is even more detailed than the "kind". |
157 | // CodeNode's kinds are: |
158 | // - Phi: Phi node, members are reference nodes. |
159 | // - Stmt: Statement, members are reference nodes. |
160 | // - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt). |
161 | // - Func: The whole function. The members are basic block nodes. |
162 | // RefNode's kinds are: |
163 | // - Use. |
164 | // - Def. |
165 | // |
166 | // Meaning of flags: |
167 | // - Preserving: applies only to defs. A preserving def is one that can |
168 | // preserve some of the original bits among those that are included in |
169 | // the register associated with that def. For example, if R0 is a 32-bit |
170 | // register, but a def can only change the lower 16 bits, then it will |
171 | // be marked as preserving. |
172 | // - Shadow: a reference that has duplicates holding additional reaching |
173 | // defs (see more below). |
174 | // - Clobbering: applied only to defs, indicates that the value generated |
175 | // by this def is unspecified. A typical example would be volatile registers |
176 | // after function calls. |
177 | // - Fixed: the register in this def/use cannot be replaced with any other |
178 | // register. A typical case would be a parameter register to a call, or |
179 | // the register with the return value from a function. |
180 | // - Undef: the register in this reference the register is assumed to have |
181 | // no pre-existing value, even if it appears to be reached by some def. |
182 | // This is typically used to prevent keeping registers artificially live |
183 | // in cases when they are defined via predicated instructions. For example: |
184 | // r0 = add-if-true cond, r10, r11 (1) |
185 | // r0 = add-if-false cond, r12, r13, implicit r0 (2) |
186 | // ... = r0 (3) |
187 | // Before (1), r0 is not intended to be live, and the use of r0 in (3) is |
188 | // not meant to be reached by any def preceding (1). However, since the |
189 | // defs in (1) and (2) are both preserving, these properties alone would |
190 | // imply that the use in (3) may indeed be reached by some prior def. |
191 | // Adding Undef flag to the def in (1) prevents that. The Undef flag |
192 | // may be applied to both defs and uses. |
193 | // - Dead: applies only to defs. The value coming out of a "dead" def is |
194 | // assumed to be unused, even if the def appears to be reaching other defs |
195 | // or uses. The motivation for this flag comes from dead defs on function |
196 | // calls: there is no way to determine if such a def is dead without |
197 | // analyzing the target's ABI. Hence the graph should contain this info, |
198 | // as it is unavailable otherwise. On the other hand, a def without any |
199 | // uses on a typical instruction is not the intended target for this flag. |
200 | // |
201 | // *** Shadow references |
202 | // |
203 | // It may happen that a super-register can have two (or more) non-overlapping |
204 | // sub-registers. When both of these sub-registers are defined and followed |
205 | // by a use of the super-register, the use of the super-register will not |
206 | // have a unique reaching def: both defs of the sub-registers need to be |
207 | // accounted for. In such cases, a duplicate use of the super-register is |
208 | // added and it points to the extra reaching def. Both uses are marked with |
209 | // a flag "shadow". Example: |
210 | // Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap: |
211 | // set r0, 1 ; r0 = 1 |
212 | // set r1, 1 ; r1 = 1 |
213 | // addi t1, t0, 1 ; t1 = t0+1 |
214 | // |
215 | // The DFG: |
216 | // s1: set [d2<r0>(,,u9):] |
217 | // s3: set [d4<r1>(,,u10):] |
218 | // s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):] |
219 | // |
220 | // The statement s5 has two use nodes for t0: u7" and u9". The quotation |
221 | // mark " indicates that the node is a shadow. |
222 | // |
223 | |
224 | #ifndef LLVM_CODEGEN_RDFGRAPH_H |
225 | #define LLVM_CODEGEN_RDFGRAPH_H |
226 | |
227 | #include "RDFRegisters.h" |
228 | #include "llvm/ADT/ArrayRef.h" |
229 | #include "llvm/ADT/SmallVector.h" |
230 | #include "llvm/MC/LaneBitmask.h" |
231 | #include "llvm/Support/Allocator.h" |
232 | #include "llvm/Support/MathExtras.h" |
233 | #include <cassert> |
234 | #include <cstdint> |
235 | #include <cstring> |
236 | #include <map> |
237 | #include <memory> |
238 | #include <set> |
239 | #include <unordered_map> |
240 | #include <utility> |
241 | #include <vector> |
242 | |
243 | // RDF uses uint32_t to refer to registers. This is to ensure that the type |
244 | // size remains specific. In other places, registers are often stored using |
245 | // unsigned. |
246 | static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal" ); |
247 | |
248 | namespace llvm { |
249 | |
250 | class MachineBasicBlock; |
251 | class MachineDominanceFrontier; |
252 | class MachineDominatorTree; |
253 | class MachineFunction; |
254 | class MachineInstr; |
255 | class MachineOperand; |
256 | class raw_ostream; |
257 | class TargetInstrInfo; |
258 | class TargetRegisterInfo; |
259 | |
260 | namespace rdf { |
261 | |
262 | using NodeId = uint32_t; |
263 | |
264 | struct DataFlowGraph; |
265 | |
266 | struct NodeAttrs { |
267 | // clang-format off |
268 | enum : uint16_t { |
269 | None = 0x0000, // Nothing |
270 | |
271 | // Types: 2 bits |
272 | TypeMask = 0x0003, |
273 | Code = 0x0001, // 01, Container |
274 | Ref = 0x0002, // 10, Reference |
275 | |
276 | // Kind: 3 bits |
277 | KindMask = 0x0007 << 2, |
278 | Def = 0x0001 << 2, // 001 |
279 | Use = 0x0002 << 2, // 010 |
280 | Phi = 0x0003 << 2, // 011 |
281 | Stmt = 0x0004 << 2, // 100 |
282 | Block = 0x0005 << 2, // 101 |
283 | Func = 0x0006 << 2, // 110 |
284 | |
285 | // Flags: 7 bits for now |
286 | FlagMask = 0x007F << 5, |
287 | Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs. |
288 | Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values. |
289 | PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode. |
290 | Preserving = 0x0008 << 5, // 0001000, Def can keep original bits. |
291 | Fixed = 0x0010 << 5, // 0010000, Fixed register. |
292 | Undef = 0x0020 << 5, // 0100000, Has no pre-existing value. |
293 | Dead = 0x0040 << 5, // 1000000, Does not define a value. |
294 | }; |
295 | // clang-format on |
296 | |
297 | static uint16_t type(uint16_t T) { // |
298 | return T & TypeMask; |
299 | } |
300 | static uint16_t kind(uint16_t T) { // |
301 | return T & KindMask; |
302 | } |
303 | static uint16_t flags(uint16_t T) { // |
304 | return T & FlagMask; |
305 | } |
306 | static uint16_t set_type(uint16_t A, uint16_t T) { |
307 | return (A & ~TypeMask) | T; |
308 | } |
309 | |
310 | static uint16_t set_kind(uint16_t A, uint16_t K) { |
311 | return (A & ~KindMask) | K; |
312 | } |
313 | |
314 | static uint16_t set_flags(uint16_t A, uint16_t F) { |
315 | return (A & ~FlagMask) | F; |
316 | } |
317 | |
318 | // Test if A contains B. |
319 | static bool contains(uint16_t A, uint16_t B) { |
320 | if (type(T: A) != Code) |
321 | return false; |
322 | uint16_t KB = kind(T: B); |
323 | switch (kind(T: A)) { |
324 | case Func: |
325 | return KB == Block; |
326 | case Block: |
327 | return KB == Phi || KB == Stmt; |
328 | case Phi: |
329 | case Stmt: |
330 | return type(T: B) == Ref; |
331 | } |
332 | return false; |
333 | } |
334 | }; |
335 | |
336 | struct BuildOptions { |
337 | enum : unsigned { |
338 | None = 0x00, |
339 | KeepDeadPhis = 0x01, // Do not remove dead phis during build. |
340 | OmitReserved = 0x02, // Do not track reserved registers. |
341 | }; |
342 | }; |
343 | |
344 | template <typename T> struct NodeAddr { |
345 | NodeAddr() = default; |
346 | NodeAddr(T A, NodeId I) : Addr(A), Id(I) {} |
347 | |
348 | // Type cast (casting constructor). The reason for having this class |
349 | // instead of std::pair. |
350 | template <typename S> |
351 | NodeAddr(const NodeAddr<S> &NA) : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {} |
352 | |
353 | bool operator==(const NodeAddr<T> &NA) const { |
354 | assert((Addr == NA.Addr) == (Id == NA.Id)); |
355 | return Addr == NA.Addr; |
356 | } |
357 | bool operator!=(const NodeAddr<T> &NA) const { // |
358 | return !operator==(NA); |
359 | } |
360 | |
361 | T Addr = nullptr; |
362 | NodeId Id = 0; |
363 | }; |
364 | |
365 | struct NodeBase; |
366 | |
367 | struct RefNode; |
368 | struct DefNode; |
369 | struct UseNode; |
370 | struct PhiUseNode; |
371 | |
372 | struct CodeNode; |
373 | struct InstrNode; |
374 | struct PhiNode; |
375 | struct StmtNode; |
376 | struct BlockNode; |
377 | struct FuncNode; |
378 | |
379 | // Use these short names with rdf:: qualification to avoid conflicts with |
380 | // preexisting names. Do not use 'using namespace rdf'. |
381 | using Node = NodeAddr<NodeBase *>; |
382 | |
383 | using Ref = NodeAddr<RefNode *>; |
384 | using Def = NodeAddr<DefNode *>; |
385 | using Use = NodeAddr<UseNode *>; // This may conflict with llvm::Use. |
386 | using PhiUse = NodeAddr<PhiUseNode *>; |
387 | |
388 | using Code = NodeAddr<CodeNode *>; |
389 | using Instr = NodeAddr<InstrNode *>; |
390 | using Phi = NodeAddr<PhiNode *>; |
391 | using Stmt = NodeAddr<StmtNode *>; |
392 | using Block = NodeAddr<BlockNode *>; |
393 | using Func = NodeAddr<FuncNode *>; |
394 | |
395 | // Fast memory allocation and translation between node id and node address. |
396 | // This is really the same idea as the one underlying the "bump pointer |
397 | // allocator", the difference being in the translation. A node id is |
398 | // composed of two components: the index of the block in which it was |
399 | // allocated, and the index within the block. With the default settings, |
400 | // where the number of nodes per block is 4096, the node id (minus 1) is: |
401 | // |
402 | // bit position: 11 0 |
403 | // +----------------------------+--------------+ |
404 | // | Index of the block |Index in block| |
405 | // +----------------------------+--------------+ |
406 | // |
407 | // The actual node id is the above plus 1, to avoid creating a node id of 0. |
408 | // |
409 | // This method significantly improved the build time, compared to using maps |
410 | // (std::unordered_map or DenseMap) to translate between pointers and ids. |
411 | struct NodeAllocator { |
412 | // Amount of storage for a single node. |
413 | enum { NodeMemSize = 32 }; |
414 | |
415 | NodeAllocator(uint32_t NPB = 4096) |
416 | : NodesPerBlock(NPB), BitsPerIndex(Log2_32(Value: NPB)), |
417 | IndexMask((1 << BitsPerIndex) - 1) { |
418 | assert(isPowerOf2_32(NPB)); |
419 | } |
420 | |
421 | NodeBase *ptr(NodeId N) const { |
422 | uint32_t N1 = N - 1; |
423 | uint32_t BlockN = N1 >> BitsPerIndex; |
424 | uint32_t Offset = (N1 & IndexMask) * NodeMemSize; |
425 | return reinterpret_cast<NodeBase *>(Blocks[BlockN] + Offset); |
426 | } |
427 | |
428 | NodeId id(const NodeBase *P) const; |
429 | Node New(); |
430 | void clear(); |
431 | |
432 | private: |
433 | void startNewBlock(); |
434 | bool needNewBlock(); |
435 | |
436 | uint32_t makeId(uint32_t Block, uint32_t Index) const { |
437 | // Add 1 to the id, to avoid the id of 0, which is treated as "null". |
438 | return ((Block << BitsPerIndex) | Index) + 1; |
439 | } |
440 | |
441 | const uint32_t NodesPerBlock; |
442 | const uint32_t BitsPerIndex; |
443 | const uint32_t IndexMask; |
444 | char *ActiveEnd = nullptr; |
445 | std::vector<char *> Blocks; |
446 | using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>; |
447 | AllocatorTy MemPool; |
448 | }; |
449 | |
450 | using RegisterSet = std::set<RegisterRef>; |
451 | |
452 | struct TargetOperandInfo { |
453 | TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {} |
454 | virtual ~TargetOperandInfo() = default; |
455 | |
456 | virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const; |
457 | virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const; |
458 | virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const; |
459 | |
460 | const TargetInstrInfo &TII; |
461 | }; |
462 | |
463 | // Packed register reference. Only used for storage. |
464 | struct PackedRegisterRef { |
465 | RegisterId Reg; |
466 | uint32_t MaskId; |
467 | }; |
468 | |
469 | struct LaneMaskIndex : private IndexedSet<LaneBitmask> { |
470 | LaneMaskIndex() = default; |
471 | |
472 | LaneBitmask getLaneMaskForIndex(uint32_t K) const { |
473 | return K == 0 ? LaneBitmask::getAll() : get(Idx: K); |
474 | } |
475 | |
476 | uint32_t getIndexForLaneMask(LaneBitmask LM) { |
477 | assert(LM.any()); |
478 | return LM.all() ? 0 : insert(Val: LM); |
479 | } |
480 | |
481 | uint32_t getIndexForLaneMask(LaneBitmask LM) const { |
482 | assert(LM.any()); |
483 | return LM.all() ? 0 : find(Val: LM); |
484 | } |
485 | }; |
486 | |
487 | struct NodeBase { |
488 | public: |
489 | // Make sure this is a POD. |
490 | NodeBase() = default; |
491 | |
492 | uint16_t getType() const { return NodeAttrs::type(T: Attrs); } |
493 | uint16_t getKind() const { return NodeAttrs::kind(T: Attrs); } |
494 | uint16_t getFlags() const { return NodeAttrs::flags(T: Attrs); } |
495 | NodeId getNext() const { return Next; } |
496 | |
497 | uint16_t getAttrs() const { return Attrs; } |
498 | void setAttrs(uint16_t A) { Attrs = A; } |
499 | void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(A: getAttrs(), F)); } |
500 | |
501 | // Insert node NA after "this" in the circular chain. |
502 | void append(Node NA); |
503 | |
504 | // Initialize all members to 0. |
505 | void init() { memset(s: this, c: 0, n: sizeof *this); } |
506 | |
507 | void setNext(NodeId N) { Next = N; } |
508 | |
509 | protected: |
510 | uint16_t Attrs; |
511 | uint16_t Reserved; |
512 | NodeId Next; // Id of the next node in the circular chain. |
513 | // Definitions of nested types. Using anonymous nested structs would make |
514 | // this class definition clearer, but unnamed structs are not a part of |
515 | // the standard. |
516 | struct Def_struct { |
517 | NodeId DD, DU; // Ids of the first reached def and use. |
518 | }; |
519 | struct PhiU_struct { |
520 | NodeId PredB; // Id of the predecessor block for a phi use. |
521 | }; |
522 | struct Code_struct { |
523 | void *CP; // Pointer to the actual code. |
524 | NodeId FirstM, LastM; // Id of the first member and last. |
525 | }; |
526 | struct Ref_struct { |
527 | NodeId RD, Sib; // Ids of the reaching def and the sibling. |
528 | union { |
529 | Def_struct Def; |
530 | PhiU_struct PhiU; |
531 | }; |
532 | union { |
533 | MachineOperand *Op; // Non-phi refs point to a machine operand. |
534 | PackedRegisterRef PR; // Phi refs store register info directly. |
535 | }; |
536 | }; |
537 | |
538 | // The actual payload. |
539 | union { |
540 | Ref_struct RefData; |
541 | Code_struct CodeData; |
542 | }; |
543 | }; |
544 | // The allocator allocates chunks of 32 bytes for each node. The fact that |
545 | // each node takes 32 bytes in memory is used for fast translation between |
546 | // the node id and the node address. |
547 | static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize, |
548 | "NodeBase must be at most NodeAllocator::NodeMemSize bytes" ); |
549 | |
550 | using NodeList = SmallVector<Node, 4>; |
551 | using NodeSet = std::set<NodeId>; |
552 | |
553 | struct RefNode : public NodeBase { |
554 | RefNode() = default; |
555 | |
556 | RegisterRef getRegRef(const DataFlowGraph &G) const; |
557 | |
558 | MachineOperand &getOp() { |
559 | assert(!(getFlags() & NodeAttrs::PhiRef)); |
560 | return *RefData.Op; |
561 | } |
562 | |
563 | void setRegRef(RegisterRef RR, DataFlowGraph &G); |
564 | void setRegRef(MachineOperand *Op, DataFlowGraph &G); |
565 | |
566 | NodeId getReachingDef() const { return RefData.RD; } |
567 | void setReachingDef(NodeId RD) { RefData.RD = RD; } |
568 | |
569 | NodeId getSibling() const { return RefData.Sib; } |
570 | void setSibling(NodeId Sib) { RefData.Sib = Sib; } |
571 | |
572 | bool isUse() const { |
573 | assert(getType() == NodeAttrs::Ref); |
574 | return getKind() == NodeAttrs::Use; |
575 | } |
576 | |
577 | bool isDef() const { |
578 | assert(getType() == NodeAttrs::Ref); |
579 | return getKind() == NodeAttrs::Def; |
580 | } |
581 | |
582 | template <typename Predicate> |
583 | Ref getNextRef(RegisterRef RR, Predicate P, bool NextOnly, |
584 | const DataFlowGraph &G); |
585 | Node getOwner(const DataFlowGraph &G); |
586 | }; |
587 | |
588 | struct DefNode : public RefNode { |
589 | NodeId getReachedDef() const { return RefData.Def.DD; } |
590 | void setReachedDef(NodeId D) { RefData.Def.DD = D; } |
591 | NodeId getReachedUse() const { return RefData.Def.DU; } |
592 | void setReachedUse(NodeId U) { RefData.Def.DU = U; } |
593 | |
594 | void linkToDef(NodeId Self, Def DA); |
595 | }; |
596 | |
597 | struct UseNode : public RefNode { |
598 | void linkToDef(NodeId Self, Def DA); |
599 | }; |
600 | |
601 | struct PhiUseNode : public UseNode { |
602 | NodeId getPredecessor() const { |
603 | assert(getFlags() & NodeAttrs::PhiRef); |
604 | return RefData.PhiU.PredB; |
605 | } |
606 | void setPredecessor(NodeId B) { |
607 | assert(getFlags() & NodeAttrs::PhiRef); |
608 | RefData.PhiU.PredB = B; |
609 | } |
610 | }; |
611 | |
612 | struct CodeNode : public NodeBase { |
613 | template <typename T> T getCode() const { // |
614 | return static_cast<T>(CodeData.CP); |
615 | } |
616 | void setCode(void *C) { CodeData.CP = C; } |
617 | |
618 | Node getFirstMember(const DataFlowGraph &G) const; |
619 | Node getLastMember(const DataFlowGraph &G) const; |
620 | void addMember(Node NA, const DataFlowGraph &G); |
621 | void addMemberAfter(Node MA, Node NA, const DataFlowGraph &G); |
622 | void removeMember(Node NA, const DataFlowGraph &G); |
623 | |
624 | NodeList members(const DataFlowGraph &G) const; |
625 | template <typename Predicate> |
626 | NodeList members_if(Predicate P, const DataFlowGraph &G) const; |
627 | }; |
628 | |
629 | struct InstrNode : public CodeNode { |
630 | Node getOwner(const DataFlowGraph &G); |
631 | }; |
632 | |
633 | struct PhiNode : public InstrNode { |
634 | MachineInstr *getCode() const { return nullptr; } |
635 | }; |
636 | |
637 | struct StmtNode : public InstrNode { |
638 | MachineInstr *getCode() const { // |
639 | return CodeNode::getCode<MachineInstr *>(); |
640 | } |
641 | }; |
642 | |
643 | struct BlockNode : public CodeNode { |
644 | MachineBasicBlock *getCode() const { |
645 | return CodeNode::getCode<MachineBasicBlock *>(); |
646 | } |
647 | |
648 | void addPhi(Phi PA, const DataFlowGraph &G); |
649 | }; |
650 | |
651 | struct FuncNode : public CodeNode { |
652 | MachineFunction *getCode() const { |
653 | return CodeNode::getCode<MachineFunction *>(); |
654 | } |
655 | |
656 | Block findBlock(const MachineBasicBlock *BB, const DataFlowGraph &G) const; |
657 | Block getEntryBlock(const DataFlowGraph &G); |
658 | }; |
659 | |
660 | struct DataFlowGraph { |
661 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
662 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
663 | const MachineDominanceFrontier &mdf); |
664 | DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
665 | const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, |
666 | const MachineDominanceFrontier &mdf, |
667 | const TargetOperandInfo &toi); |
668 | |
669 | struct Config { |
670 | Config() = default; |
671 | Config(unsigned Opts) : Options(Opts) {} |
672 | Config(ArrayRef<const TargetRegisterClass *> RCs) : Classes(RCs) {} |
673 | Config(ArrayRef<MCPhysReg> Track) : TrackRegs(Track.begin(), Track.end()) {} |
674 | Config(ArrayRef<RegisterId> Track) |
675 | : TrackRegs(Track.begin(), Track.end()) {} |
676 | |
677 | unsigned Options = BuildOptions::None; |
678 | SmallVector<const TargetRegisterClass *> Classes; |
679 | std::set<RegisterId> TrackRegs; |
680 | }; |
681 | |
682 | NodeBase *ptr(NodeId N) const; |
683 | template <typename T> T ptr(NodeId N) const { // |
684 | return static_cast<T>(ptr(N)); |
685 | } |
686 | |
687 | NodeId id(const NodeBase *P) const; |
688 | |
689 | template <typename T> NodeAddr<T> addr(NodeId N) const { |
690 | return {ptr<T>(N), N}; |
691 | } |
692 | |
693 | Func getFunc() const { return TheFunc; } |
694 | MachineFunction &getMF() const { return MF; } |
695 | const TargetInstrInfo &getTII() const { return TII; } |
696 | const TargetRegisterInfo &getTRI() const { return TRI; } |
697 | const PhysicalRegisterInfo &getPRI() const { return PRI; } |
698 | const MachineDominatorTree &getDT() const { return MDT; } |
699 | const MachineDominanceFrontier &getDF() const { return MDF; } |
700 | const RegisterAggr &getLiveIns() const { return LiveIns; } |
701 | |
702 | struct DefStack { |
703 | DefStack() = default; |
704 | |
705 | bool empty() const { return Stack.empty() || top() == bottom(); } |
706 | |
707 | private: |
708 | using value_type = Def; |
709 | struct Iterator { |
710 | using value_type = DefStack::value_type; |
711 | |
712 | Iterator &up() { |
713 | Pos = DS.nextUp(P: Pos); |
714 | return *this; |
715 | } |
716 | Iterator &down() { |
717 | Pos = DS.nextDown(P: Pos); |
718 | return *this; |
719 | } |
720 | |
721 | value_type operator*() const { |
722 | assert(Pos >= 1); |
723 | return DS.Stack[Pos - 1]; |
724 | } |
725 | const value_type *operator->() const { |
726 | assert(Pos >= 1); |
727 | return &DS.Stack[Pos - 1]; |
728 | } |
729 | bool operator==(const Iterator &It) const { return Pos == It.Pos; } |
730 | bool operator!=(const Iterator &It) const { return Pos != It.Pos; } |
731 | |
732 | private: |
733 | friend struct DefStack; |
734 | |
735 | Iterator(const DefStack &S, bool Top); |
736 | |
737 | // Pos-1 is the index in the StorageType object that corresponds to |
738 | // the top of the DefStack. |
739 | const DefStack &DS; |
740 | unsigned Pos; |
741 | }; |
742 | |
743 | public: |
744 | using iterator = Iterator; |
745 | |
746 | iterator top() const { return Iterator(*this, true); } |
747 | iterator bottom() const { return Iterator(*this, false); } |
748 | unsigned size() const; |
749 | |
750 | void push(Def DA) { Stack.push_back(x: DA); } |
751 | void pop(); |
752 | void start_block(NodeId N); |
753 | void clear_block(NodeId N); |
754 | |
755 | private: |
756 | friend struct Iterator; |
757 | |
758 | using StorageType = std::vector<value_type>; |
759 | |
760 | bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const { |
761 | return (P.Addr == nullptr) && (N == 0 || P.Id == N); |
762 | } |
763 | |
764 | unsigned nextUp(unsigned P) const; |
765 | unsigned nextDown(unsigned P) const; |
766 | |
767 | StorageType Stack; |
768 | }; |
769 | |
770 | // Make this std::unordered_map for speed of accessing elements. |
771 | // Map: Register (physical or virtual) -> DefStack |
772 | using DefStackMap = std::unordered_map<RegisterId, DefStack>; |
773 | |
774 | void build(const Config &config); |
775 | void build() { build(config: Config()); } |
776 | |
777 | void pushAllDefs(Instr IA, DefStackMap &DM); |
778 | void markBlock(NodeId B, DefStackMap &DefM); |
779 | void releaseBlock(NodeId B, DefStackMap &DefM); |
780 | |
781 | PackedRegisterRef pack(RegisterRef RR) { |
782 | return {.Reg: RR.Reg, .MaskId: LMI.getIndexForLaneMask(LM: RR.Mask)}; |
783 | } |
784 | PackedRegisterRef pack(RegisterRef RR) const { |
785 | return {.Reg: RR.Reg, .MaskId: LMI.getIndexForLaneMask(LM: RR.Mask)}; |
786 | } |
787 | RegisterRef unpack(PackedRegisterRef PR) const { |
788 | return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(K: PR.MaskId)); |
789 | } |
790 | |
791 | RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const; |
792 | RegisterRef makeRegRef(const MachineOperand &Op) const; |
793 | |
794 | Ref getNextRelated(Instr IA, Ref RA) const; |
795 | Ref getNextShadow(Instr IA, Ref RA, bool Create); |
796 | |
797 | NodeList getRelatedRefs(Instr IA, Ref RA) const; |
798 | |
799 | Block findBlock(MachineBasicBlock *BB) const { return BlockNodes.at(k: BB); } |
800 | |
801 | void unlinkUse(Use UA, bool RemoveFromOwner) { |
802 | unlinkUseDF(UA); |
803 | if (RemoveFromOwner) |
804 | removeFromOwner(RA: UA); |
805 | } |
806 | |
807 | void unlinkDef(Def DA, bool RemoveFromOwner) { |
808 | unlinkDefDF(DA); |
809 | if (RemoveFromOwner) |
810 | removeFromOwner(RA: DA); |
811 | } |
812 | |
813 | bool isTracked(RegisterRef RR) const; |
814 | bool hasUntrackedRef(Stmt S, bool IgnoreReserved = true) const; |
815 | |
816 | // Some useful filters. |
817 | template <uint16_t Kind> static bool IsRef(const Node BA) { |
818 | return BA.Addr->getType() == NodeAttrs::Ref && BA.Addr->getKind() == Kind; |
819 | } |
820 | |
821 | template <uint16_t Kind> static bool IsCode(const Node BA) { |
822 | return BA.Addr->getType() == NodeAttrs::Code && BA.Addr->getKind() == Kind; |
823 | } |
824 | |
825 | static bool IsDef(const Node BA) { |
826 | return BA.Addr->getType() == NodeAttrs::Ref && |
827 | BA.Addr->getKind() == NodeAttrs::Def; |
828 | } |
829 | |
830 | static bool IsUse(const Node BA) { |
831 | return BA.Addr->getType() == NodeAttrs::Ref && |
832 | BA.Addr->getKind() == NodeAttrs::Use; |
833 | } |
834 | |
835 | static bool IsPhi(const Node BA) { |
836 | return BA.Addr->getType() == NodeAttrs::Code && |
837 | BA.Addr->getKind() == NodeAttrs::Phi; |
838 | } |
839 | |
840 | static bool IsPreservingDef(const Def DA) { |
841 | uint16_t Flags = DA.Addr->getFlags(); |
842 | return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef); |
843 | } |
844 | |
845 | private: |
846 | void reset(); |
847 | |
848 | RegisterAggr getLandingPadLiveIns() const; |
849 | |
850 | Node newNode(uint16_t Attrs); |
851 | Node cloneNode(const Node B); |
852 | Use newUse(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None); |
853 | PhiUse newPhiUse(Phi Owner, RegisterRef RR, Block PredB, |
854 | uint16_t Flags = NodeAttrs::PhiRef); |
855 | Def newDef(Instr Owner, MachineOperand &Op, uint16_t Flags = NodeAttrs::None); |
856 | Def newDef(Instr Owner, RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef); |
857 | Phi newPhi(Block Owner); |
858 | Stmt newStmt(Block Owner, MachineInstr *MI); |
859 | Block newBlock(Func Owner, MachineBasicBlock *BB); |
860 | Func newFunc(MachineFunction *MF); |
861 | |
862 | template <typename Predicate> |
863 | std::pair<Ref, Ref> locateNextRef(Instr IA, Ref RA, Predicate P) const; |
864 | |
865 | using BlockRefsMap = RegisterAggrMap<NodeId>; |
866 | |
867 | void buildStmt(Block BA, MachineInstr &In); |
868 | void recordDefsForDF(BlockRefsMap &PhiM, Block BA); |
869 | void buildPhis(BlockRefsMap &PhiM, Block BA); |
870 | void removeUnusedPhis(); |
871 | |
872 | void pushClobbers(Instr IA, DefStackMap &DM); |
873 | void pushDefs(Instr IA, DefStackMap &DM); |
874 | template <typename T> void linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS); |
875 | template <typename Predicate> |
876 | void linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P); |
877 | void linkBlockRefs(DefStackMap &DefM, Block BA); |
878 | |
879 | void unlinkUseDF(Use UA); |
880 | void unlinkDefDF(Def DA); |
881 | |
882 | void removeFromOwner(Ref RA) { |
883 | Instr IA = RA.Addr->getOwner(G: *this); |
884 | IA.Addr->removeMember(NA: RA, G: *this); |
885 | } |
886 | |
887 | // Default TOI object, if not given in the constructor. |
888 | std::unique_ptr<TargetOperandInfo> DefaultTOI; |
889 | |
890 | MachineFunction &MF; |
891 | const TargetInstrInfo &TII; |
892 | const TargetRegisterInfo &TRI; |
893 | const PhysicalRegisterInfo PRI; |
894 | const MachineDominatorTree &MDT; |
895 | const MachineDominanceFrontier &MDF; |
896 | const TargetOperandInfo &TOI; |
897 | |
898 | RegisterAggr LiveIns; |
899 | Func TheFunc; |
900 | NodeAllocator Memory; |
901 | // Local map: MachineBasicBlock -> NodeAddr<BlockNode*> |
902 | std::map<MachineBasicBlock *, Block> BlockNodes; |
903 | // Lane mask map. |
904 | LaneMaskIndex LMI; |
905 | |
906 | Config BuildCfg; |
907 | std::set<unsigned> TrackedUnits; |
908 | BitVector ReservedRegs; |
909 | }; // struct DataFlowGraph |
910 | |
911 | template <typename Predicate> |
912 | Ref RefNode::getNextRef(RegisterRef RR, Predicate P, bool NextOnly, |
913 | const DataFlowGraph &G) { |
914 | // Get the "Next" reference in the circular list that references RR and |
915 | // satisfies predicate "Pred". |
916 | auto NA = G.addr<NodeBase *>(N: getNext()); |
917 | |
918 | while (NA.Addr != this) { |
919 | if (NA.Addr->getType() == NodeAttrs::Ref) { |
920 | Ref RA = NA; |
921 | if (G.getPRI().equal_to(A: RA.Addr->getRegRef(G), B: RR) && P(NA)) |
922 | return NA; |
923 | if (NextOnly) |
924 | break; |
925 | NA = G.addr<NodeBase *>(N: NA.Addr->getNext()); |
926 | } else { |
927 | // We've hit the beginning of the chain. |
928 | assert(NA.Addr->getType() == NodeAttrs::Code); |
929 | // Make sure we stop here with NextOnly. Otherwise we can return the |
930 | // wrong ref. Consider the following while creating/linking shadow uses: |
931 | // -> code -> sr1 -> sr2 -> [back to code] |
932 | // Say that shadow refs sr1, and sr2 have been linked, but we need to |
933 | // create and link another one. Starting from sr2, we'd hit the code |
934 | // node and return sr1 if the iteration didn't stop here. |
935 | if (NextOnly) |
936 | break; |
937 | Code CA = NA; |
938 | NA = CA.Addr->getFirstMember(G); |
939 | } |
940 | } |
941 | // Return the equivalent of "nullptr" if such a node was not found. |
942 | return Ref(); |
943 | } |
944 | |
945 | template <typename Predicate> |
946 | NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const { |
947 | NodeList MM; |
948 | auto M = getFirstMember(G); |
949 | if (M.Id == 0) |
950 | return MM; |
951 | |
952 | while (M.Addr != this) { |
953 | if (P(M)) |
954 | MM.push_back(Elt: M); |
955 | M = G.addr<NodeBase *>(N: M.Addr->getNext()); |
956 | } |
957 | return MM; |
958 | } |
959 | |
960 | template <typename T> struct Print { |
961 | Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {} |
962 | |
963 | const T &Obj; |
964 | const DataFlowGraph &G; |
965 | }; |
966 | |
967 | template <typename T> Print(const T &, const DataFlowGraph &) -> Print<T>; |
968 | |
969 | template <typename T> struct PrintNode : Print<NodeAddr<T>> { |
970 | PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g) |
971 | : Print<NodeAddr<T>>(x, g) {} |
972 | }; |
973 | |
974 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P); |
975 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P); |
976 | raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P); |
977 | raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P); |
978 | raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P); |
979 | raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P); |
980 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P); |
981 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P); |
982 | raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P); |
983 | raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P); |
984 | raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P); |
985 | raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P); |
986 | raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P); |
987 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P); |
988 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P); |
989 | raw_ostream &operator<<(raw_ostream &OS, |
990 | const Print<DataFlowGraph::DefStack> &P); |
991 | |
992 | } // end namespace rdf |
993 | } // end namespace llvm |
994 | |
995 | #endif // LLVM_CODEGEN_RDFGRAPH_H |
996 | |