1 | //===- RDFGraph.cpp -------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Target-independent, SSA-based data flow graph for register data flow (RDF). |
10 | // |
11 | #include "llvm/ADT/BitVector.h" |
12 | #include "llvm/ADT/STLExtras.h" |
13 | #include "llvm/ADT/SetVector.h" |
14 | #include "llvm/CodeGen/MachineBasicBlock.h" |
15 | #include "llvm/CodeGen/MachineDominanceFrontier.h" |
16 | #include "llvm/CodeGen/MachineDominators.h" |
17 | #include "llvm/CodeGen/MachineFunction.h" |
18 | #include "llvm/CodeGen/MachineInstr.h" |
19 | #include "llvm/CodeGen/MachineOperand.h" |
20 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
21 | #include "llvm/CodeGen/RDFGraph.h" |
22 | #include "llvm/CodeGen/RDFRegisters.h" |
23 | #include "llvm/CodeGen/TargetInstrInfo.h" |
24 | #include "llvm/CodeGen/TargetLowering.h" |
25 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
27 | #include "llvm/IR/Function.h" |
28 | #include "llvm/MC/LaneBitmask.h" |
29 | #include "llvm/MC/MCInstrDesc.h" |
30 | #include "llvm/Support/ErrorHandling.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <algorithm> |
33 | #include <cassert> |
34 | #include <cstdint> |
35 | #include <cstring> |
36 | #include <iterator> |
37 | #include <set> |
38 | #include <utility> |
39 | #include <vector> |
40 | |
41 | // Printing functions. Have them here first, so that the rest of the code |
42 | // can use them. |
43 | namespace llvm::rdf { |
44 | |
45 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) { |
46 | P.G.getPRI().print(OS, A: P.Obj); |
47 | return OS; |
48 | } |
49 | |
50 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) { |
51 | if (P.Obj == 0) |
52 | return OS << "null" ; |
53 | auto NA = P.G.addr<NodeBase *>(N: P.Obj); |
54 | uint16_t Attrs = NA.Addr->getAttrs(); |
55 | uint16_t Kind = NodeAttrs::kind(T: Attrs); |
56 | uint16_t Flags = NodeAttrs::flags(T: Attrs); |
57 | switch (NodeAttrs::type(T: Attrs)) { |
58 | case NodeAttrs::Code: |
59 | switch (Kind) { |
60 | case NodeAttrs::Func: |
61 | OS << 'f'; |
62 | break; |
63 | case NodeAttrs::Block: |
64 | OS << 'b'; |
65 | break; |
66 | case NodeAttrs::Stmt: |
67 | OS << 's'; |
68 | break; |
69 | case NodeAttrs::Phi: |
70 | OS << 'p'; |
71 | break; |
72 | default: |
73 | OS << "c?" ; |
74 | break; |
75 | } |
76 | break; |
77 | case NodeAttrs::Ref: |
78 | if (Flags & NodeAttrs::Undef) |
79 | OS << '/'; |
80 | if (Flags & NodeAttrs::Dead) |
81 | OS << '\\'; |
82 | if (Flags & NodeAttrs::Preserving) |
83 | OS << '+'; |
84 | if (Flags & NodeAttrs::Clobbering) |
85 | OS << '~'; |
86 | switch (Kind) { |
87 | case NodeAttrs::Use: |
88 | OS << 'u'; |
89 | break; |
90 | case NodeAttrs::Def: |
91 | OS << 'd'; |
92 | break; |
93 | case NodeAttrs::Block: |
94 | OS << 'b'; |
95 | break; |
96 | default: |
97 | OS << "r?" ; |
98 | break; |
99 | } |
100 | break; |
101 | default: |
102 | OS << '?'; |
103 | break; |
104 | } |
105 | OS << P.Obj; |
106 | if (Flags & NodeAttrs::Shadow) |
107 | OS << '"'; |
108 | return OS; |
109 | } |
110 | |
111 | static void (raw_ostream &OS, const Ref RA, |
112 | const DataFlowGraph &G) { |
113 | OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>'; |
114 | if (RA.Addr->getFlags() & NodeAttrs::Fixed) |
115 | OS << '!'; |
116 | } |
117 | |
118 | raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) { |
119 | printRefHeader(OS, RA: P.Obj, G: P.G); |
120 | OS << '('; |
121 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
122 | OS << Print(N, P.G); |
123 | OS << ','; |
124 | if (NodeId N = P.Obj.Addr->getReachedDef()) |
125 | OS << Print(N, P.G); |
126 | OS << ','; |
127 | if (NodeId N = P.Obj.Addr->getReachedUse()) |
128 | OS << Print(N, P.G); |
129 | OS << "):" ; |
130 | if (NodeId N = P.Obj.Addr->getSibling()) |
131 | OS << Print(N, P.G); |
132 | return OS; |
133 | } |
134 | |
135 | raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) { |
136 | printRefHeader(OS, RA: P.Obj, G: P.G); |
137 | OS << '('; |
138 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
139 | OS << Print(N, P.G); |
140 | OS << "):" ; |
141 | if (NodeId N = P.Obj.Addr->getSibling()) |
142 | OS << Print(N, P.G); |
143 | return OS; |
144 | } |
145 | |
146 | raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) { |
147 | printRefHeader(OS, RA: P.Obj, G: P.G); |
148 | OS << '('; |
149 | if (NodeId N = P.Obj.Addr->getReachingDef()) |
150 | OS << Print(N, P.G); |
151 | OS << ','; |
152 | if (NodeId N = P.Obj.Addr->getPredecessor()) |
153 | OS << Print(N, P.G); |
154 | OS << "):" ; |
155 | if (NodeId N = P.Obj.Addr->getSibling()) |
156 | OS << Print(N, P.G); |
157 | return OS; |
158 | } |
159 | |
160 | raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) { |
161 | switch (P.Obj.Addr->getKind()) { |
162 | case NodeAttrs::Def: |
163 | OS << PrintNode<DefNode *>(P.Obj, P.G); |
164 | break; |
165 | case NodeAttrs::Use: |
166 | if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) |
167 | OS << PrintNode<PhiUseNode *>(P.Obj, P.G); |
168 | else |
169 | OS << PrintNode<UseNode *>(P.Obj, P.G); |
170 | break; |
171 | } |
172 | return OS; |
173 | } |
174 | |
175 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) { |
176 | unsigned N = P.Obj.size(); |
177 | for (auto I : P.Obj) { |
178 | OS << Print(I.Id, P.G); |
179 | if (--N) |
180 | OS << ' '; |
181 | } |
182 | return OS; |
183 | } |
184 | |
185 | raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) { |
186 | unsigned N = P.Obj.size(); |
187 | for (auto I : P.Obj) { |
188 | OS << Print(I, P.G); |
189 | if (--N) |
190 | OS << ' '; |
191 | } |
192 | return OS; |
193 | } |
194 | |
195 | namespace { |
196 | |
197 | template <typename T> struct PrintListV { |
198 | PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} |
199 | |
200 | using Type = T; |
201 | const NodeList &List; |
202 | const DataFlowGraph &G; |
203 | }; |
204 | |
205 | template <typename T> |
206 | raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) { |
207 | unsigned N = P.List.size(); |
208 | for (NodeAddr<T> A : P.List) { |
209 | OS << PrintNode<T>(A, P.G); |
210 | if (--N) |
211 | OS << ", " ; |
212 | } |
213 | return OS; |
214 | } |
215 | |
216 | } // end anonymous namespace |
217 | |
218 | raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) { |
219 | OS << Print(P.Obj.Id, P.G) << ": phi [" |
220 | << PrintListV<RefNode *>(P.Obj.Addr->members(G: P.G), P.G) << ']'; |
221 | return OS; |
222 | } |
223 | |
224 | raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) { |
225 | const MachineInstr &MI = *P.Obj.Addr->getCode(); |
226 | unsigned Opc = MI.getOpcode(); |
227 | OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opcode: Opc); |
228 | // Print the target for calls and branches (for readability). |
229 | if (MI.isCall() || MI.isBranch()) { |
230 | MachineInstr::const_mop_iterator T = |
231 | llvm::find_if(Range: MI.operands(), P: [](const MachineOperand &Op) -> bool { |
232 | return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); |
233 | }); |
234 | if (T != MI.operands_end()) { |
235 | OS << ' '; |
236 | if (T->isMBB()) |
237 | OS << printMBBReference(MBB: *T->getMBB()); |
238 | else if (T->isGlobal()) |
239 | OS << T->getGlobal()->getName(); |
240 | else if (T->isSymbol()) |
241 | OS << T->getSymbolName(); |
242 | } |
243 | } |
244 | OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(G: P.G), P.G) << ']'; |
245 | return OS; |
246 | } |
247 | |
248 | raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) { |
249 | switch (P.Obj.Addr->getKind()) { |
250 | case NodeAttrs::Phi: |
251 | OS << PrintNode<PhiNode *>(P.Obj, P.G); |
252 | break; |
253 | case NodeAttrs::Stmt: |
254 | OS << PrintNode<StmtNode *>(P.Obj, P.G); |
255 | break; |
256 | default: |
257 | OS << "instr? " << Print(P.Obj.Id, P.G); |
258 | break; |
259 | } |
260 | return OS; |
261 | } |
262 | |
263 | raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) { |
264 | MachineBasicBlock *BB = P.Obj.Addr->getCode(); |
265 | unsigned NP = BB->pred_size(); |
266 | std::vector<int> Ns; |
267 | auto PrintBBs = [&OS](const std::vector<int> &Ns) -> void { |
268 | unsigned N = Ns.size(); |
269 | for (int I : Ns) { |
270 | OS << "%bb." << I; |
271 | if (--N) |
272 | OS << ", " ; |
273 | } |
274 | }; |
275 | |
276 | OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(MBB: *BB) |
277 | << " --- preds(" << NP << "): " ; |
278 | for (MachineBasicBlock *B : BB->predecessors()) |
279 | Ns.push_back(x: B->getNumber()); |
280 | PrintBBs(Ns); |
281 | |
282 | unsigned NS = BB->succ_size(); |
283 | OS << " succs(" << NS << "): " ; |
284 | Ns.clear(); |
285 | for (MachineBasicBlock *B : BB->successors()) |
286 | Ns.push_back(x: B->getNumber()); |
287 | PrintBBs(Ns); |
288 | OS << '\n'; |
289 | |
290 | for (auto I : P.Obj.Addr->members(G: P.G)) |
291 | OS << PrintNode<InstrNode *>(I, P.G) << '\n'; |
292 | return OS; |
293 | } |
294 | |
295 | raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) { |
296 | OS << "DFG dump:[\n" |
297 | << Print(P.Obj.Id, P.G) |
298 | << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; |
299 | for (auto I : P.Obj.Addr->members(G: P.G)) |
300 | OS << PrintNode<BlockNode *>(I, P.G) << '\n'; |
301 | OS << "]\n" ; |
302 | return OS; |
303 | } |
304 | |
305 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) { |
306 | OS << '{'; |
307 | for (auto I : P.Obj) |
308 | OS << ' ' << Print(I, P.G); |
309 | OS << " }" ; |
310 | return OS; |
311 | } |
312 | |
313 | raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) { |
314 | OS << P.Obj; |
315 | return OS; |
316 | } |
317 | |
318 | raw_ostream &operator<<(raw_ostream &OS, |
319 | const Print<DataFlowGraph::DefStack> &P) { |
320 | for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) { |
321 | OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(G: P.G), P.G) |
322 | << '>'; |
323 | I.down(); |
324 | if (I != E) |
325 | OS << ' '; |
326 | } |
327 | return OS; |
328 | } |
329 | |
330 | // Node allocation functions. |
331 | // |
332 | // Node allocator is like a slab memory allocator: it allocates blocks of |
333 | // memory in sizes that are multiples of the size of a node. Each block has |
334 | // the same size. Nodes are allocated from the currently active block, and |
335 | // when it becomes full, a new one is created. |
336 | // There is a mapping scheme between node id and its location in a block, |
337 | // and within that block is described in the header file. |
338 | // |
339 | void NodeAllocator::startNewBlock() { |
340 | void *T = MemPool.Allocate(Size: NodesPerBlock * NodeMemSize, Alignment: NodeMemSize); |
341 | char *P = static_cast<char *>(T); |
342 | Blocks.push_back(x: P); |
343 | // Check if the block index is still within the allowed range, i.e. less |
344 | // than 2^N, where N is the number of bits in NodeId for the block index. |
345 | // BitsPerIndex is the number of bits per node index. |
346 | assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) && |
347 | "Out of bits for block index" ); |
348 | ActiveEnd = P; |
349 | } |
350 | |
351 | bool NodeAllocator::needNewBlock() { |
352 | if (Blocks.empty()) |
353 | return true; |
354 | |
355 | char *ActiveBegin = Blocks.back(); |
356 | uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize; |
357 | return Index >= NodesPerBlock; |
358 | } |
359 | |
360 | Node NodeAllocator::New() { |
361 | if (needNewBlock()) |
362 | startNewBlock(); |
363 | |
364 | uint32_t ActiveB = Blocks.size() - 1; |
365 | uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize; |
366 | Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(Block: ActiveB, Index)}; |
367 | ActiveEnd += NodeMemSize; |
368 | return NA; |
369 | } |
370 | |
371 | NodeId NodeAllocator::id(const NodeBase *P) const { |
372 | uintptr_t A = reinterpret_cast<uintptr_t>(P); |
373 | for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { |
374 | uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); |
375 | if (A < B || A >= B + NodesPerBlock * NodeMemSize) |
376 | continue; |
377 | uint32_t Idx = (A - B) / NodeMemSize; |
378 | return makeId(Block: i, Index: Idx); |
379 | } |
380 | llvm_unreachable("Invalid node address" ); |
381 | } |
382 | |
383 | void NodeAllocator::clear() { |
384 | MemPool.Reset(); |
385 | Blocks.clear(); |
386 | ActiveEnd = nullptr; |
387 | } |
388 | |
389 | // Insert node NA after "this" in the circular chain. |
390 | void NodeBase::append(Node NA) { |
391 | NodeId Nx = Next; |
392 | // If NA is already "next", do nothing. |
393 | if (Next != NA.Id) { |
394 | Next = NA.Id; |
395 | NA.Addr->Next = Nx; |
396 | } |
397 | } |
398 | |
399 | // Fundamental node manipulator functions. |
400 | |
401 | // Obtain the register reference from a reference node. |
402 | RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { |
403 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
404 | if (NodeAttrs::flags(T: Attrs) & NodeAttrs::PhiRef) |
405 | return G.unpack(PR: RefData.PR); |
406 | assert(RefData.Op != nullptr); |
407 | return G.makeRegRef(Op: *RefData.Op); |
408 | } |
409 | |
410 | // Set the register reference in the reference node directly (for references |
411 | // in phi nodes). |
412 | void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { |
413 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
414 | assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); |
415 | RefData.PR = G.pack(RR); |
416 | } |
417 | |
418 | // Set the register reference in the reference node based on a machine |
419 | // operand (for references in statement nodes). |
420 | void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { |
421 | assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); |
422 | assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); |
423 | (void)G; |
424 | RefData.Op = Op; |
425 | } |
426 | |
427 | // Get the owner of a given reference node. |
428 | Node RefNode::getOwner(const DataFlowGraph &G) { |
429 | Node NA = G.addr<NodeBase *>(N: getNext()); |
430 | |
431 | while (NA.Addr != this) { |
432 | if (NA.Addr->getType() == NodeAttrs::Code) |
433 | return NA; |
434 | NA = G.addr<NodeBase *>(N: NA.Addr->getNext()); |
435 | } |
436 | llvm_unreachable("No owner in circular list" ); |
437 | } |
438 | |
439 | // Connect the def node to the reaching def node. |
440 | void DefNode::linkToDef(NodeId Self, Def DA) { |
441 | RefData.RD = DA.Id; |
442 | RefData.Sib = DA.Addr->getReachedDef(); |
443 | DA.Addr->setReachedDef(Self); |
444 | } |
445 | |
446 | // Connect the use node to the reaching def node. |
447 | void UseNode::linkToDef(NodeId Self, Def DA) { |
448 | RefData.RD = DA.Id; |
449 | RefData.Sib = DA.Addr->getReachedUse(); |
450 | DA.Addr->setReachedUse(Self); |
451 | } |
452 | |
453 | // Get the first member of the code node. |
454 | Node CodeNode::getFirstMember(const DataFlowGraph &G) const { |
455 | if (CodeData.FirstM == 0) |
456 | return Node(); |
457 | return G.addr<NodeBase *>(N: CodeData.FirstM); |
458 | } |
459 | |
460 | // Get the last member of the code node. |
461 | Node CodeNode::getLastMember(const DataFlowGraph &G) const { |
462 | if (CodeData.LastM == 0) |
463 | return Node(); |
464 | return G.addr<NodeBase *>(N: CodeData.LastM); |
465 | } |
466 | |
467 | // Add node NA at the end of the member list of the given code node. |
468 | void CodeNode::addMember(Node NA, const DataFlowGraph &G) { |
469 | Node ML = getLastMember(G); |
470 | if (ML.Id != 0) { |
471 | ML.Addr->append(NA); |
472 | } else { |
473 | CodeData.FirstM = NA.Id; |
474 | NodeId Self = G.id(P: this); |
475 | NA.Addr->setNext(Self); |
476 | } |
477 | CodeData.LastM = NA.Id; |
478 | } |
479 | |
480 | // Add node NA after member node MA in the given code node. |
481 | void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) { |
482 | MA.Addr->append(NA); |
483 | if (CodeData.LastM == MA.Id) |
484 | CodeData.LastM = NA.Id; |
485 | } |
486 | |
487 | // Remove member node NA from the given code node. |
488 | void CodeNode::removeMember(Node NA, const DataFlowGraph &G) { |
489 | Node MA = getFirstMember(G); |
490 | assert(MA.Id != 0); |
491 | |
492 | // Special handling if the member to remove is the first member. |
493 | if (MA.Id == NA.Id) { |
494 | if (CodeData.LastM == MA.Id) { |
495 | // If it is the only member, set both first and last to 0. |
496 | CodeData.FirstM = CodeData.LastM = 0; |
497 | } else { |
498 | // Otherwise, advance the first member. |
499 | CodeData.FirstM = MA.Addr->getNext(); |
500 | } |
501 | return; |
502 | } |
503 | |
504 | while (MA.Addr != this) { |
505 | NodeId MX = MA.Addr->getNext(); |
506 | if (MX == NA.Id) { |
507 | MA.Addr->setNext(NA.Addr->getNext()); |
508 | // If the member to remove happens to be the last one, update the |
509 | // LastM indicator. |
510 | if (CodeData.LastM == NA.Id) |
511 | CodeData.LastM = MA.Id; |
512 | return; |
513 | } |
514 | MA = G.addr<NodeBase *>(N: MX); |
515 | } |
516 | llvm_unreachable("No such member" ); |
517 | } |
518 | |
519 | // Return the list of all members of the code node. |
520 | NodeList CodeNode::members(const DataFlowGraph &G) const { |
521 | static auto True = [](Node) -> bool { return true; }; |
522 | return members_if(P: True, G); |
523 | } |
524 | |
525 | // Return the owner of the given instr node. |
526 | Node InstrNode::getOwner(const DataFlowGraph &G) { |
527 | Node NA = G.addr<NodeBase *>(N: getNext()); |
528 | |
529 | while (NA.Addr != this) { |
530 | assert(NA.Addr->getType() == NodeAttrs::Code); |
531 | if (NA.Addr->getKind() == NodeAttrs::Block) |
532 | return NA; |
533 | NA = G.addr<NodeBase *>(N: NA.Addr->getNext()); |
534 | } |
535 | llvm_unreachable("No owner in circular list" ); |
536 | } |
537 | |
538 | // Add the phi node PA to the given block node. |
539 | void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) { |
540 | Node M = getFirstMember(G); |
541 | if (M.Id == 0) { |
542 | addMember(NA: PA, G); |
543 | return; |
544 | } |
545 | |
546 | assert(M.Addr->getType() == NodeAttrs::Code); |
547 | if (M.Addr->getKind() == NodeAttrs::Stmt) { |
548 | // If the first member of the block is a statement, insert the phi as |
549 | // the first member. |
550 | CodeData.FirstM = PA.Id; |
551 | PA.Addr->setNext(M.Id); |
552 | } else { |
553 | // If the first member is a phi, find the last phi, and append PA to it. |
554 | assert(M.Addr->getKind() == NodeAttrs::Phi); |
555 | Node MN = M; |
556 | do { |
557 | M = MN; |
558 | MN = G.addr<NodeBase *>(N: M.Addr->getNext()); |
559 | assert(MN.Addr->getType() == NodeAttrs::Code); |
560 | } while (MN.Addr->getKind() == NodeAttrs::Phi); |
561 | |
562 | // M is the last phi. |
563 | addMemberAfter(MA: M, NA: PA, G); |
564 | } |
565 | } |
566 | |
567 | // Find the block node corresponding to the machine basic block BB in the |
568 | // given func node. |
569 | Block FuncNode::findBlock(const MachineBasicBlock *BB, |
570 | const DataFlowGraph &G) const { |
571 | auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; }; |
572 | NodeList Ms = members_if(P: EqBB, G); |
573 | if (!Ms.empty()) |
574 | return Ms[0]; |
575 | return Block(); |
576 | } |
577 | |
578 | // Get the block node for the entry block in the given function. |
579 | Block FuncNode::getEntryBlock(const DataFlowGraph &G) { |
580 | MachineBasicBlock *EntryB = &getCode()->front(); |
581 | return findBlock(BB: EntryB, G); |
582 | } |
583 | |
584 | // Target operand information. |
585 | // |
586 | |
587 | // For a given instruction, check if there are any bits of RR that can remain |
588 | // unchanged across this def. |
589 | bool TargetOperandInfo::isPreserving(const MachineInstr &In, |
590 | unsigned OpNum) const { |
591 | return TII.isPredicated(MI: In); |
592 | } |
593 | |
594 | // Check if the definition of RR produces an unspecified value. |
595 | bool TargetOperandInfo::isClobbering(const MachineInstr &In, |
596 | unsigned OpNum) const { |
597 | const MachineOperand &Op = In.getOperand(i: OpNum); |
598 | if (Op.isRegMask()) |
599 | return true; |
600 | assert(Op.isReg()); |
601 | if (In.isCall()) |
602 | if (Op.isDef() && Op.isDead()) |
603 | return true; |
604 | return false; |
605 | } |
606 | |
607 | // Check if the given instruction specifically requires |
608 | bool TargetOperandInfo::isFixedReg(const MachineInstr &In, |
609 | unsigned OpNum) const { |
610 | if (In.isCall() || In.isReturn() || In.isInlineAsm()) |
611 | return true; |
612 | // Check for a tail call. |
613 | if (In.isBranch()) |
614 | for (const MachineOperand &O : In.operands()) |
615 | if (O.isGlobal() || O.isSymbol()) |
616 | return true; |
617 | |
618 | const MCInstrDesc &D = In.getDesc(); |
619 | if (D.implicit_defs().empty() && D.implicit_uses().empty()) |
620 | return false; |
621 | const MachineOperand &Op = In.getOperand(i: OpNum); |
622 | // If there is a sub-register, treat the operand as non-fixed. Currently, |
623 | // fixed registers are those that are listed in the descriptor as implicit |
624 | // uses or defs, and those lists do not allow sub-registers. |
625 | if (Op.getSubReg() != 0) |
626 | return false; |
627 | Register Reg = Op.getReg(); |
628 | ArrayRef<MCPhysReg> ImpOps = |
629 | Op.isDef() ? D.implicit_defs() : D.implicit_uses(); |
630 | return is_contained(Range&: ImpOps, Element: Reg); |
631 | } |
632 | |
633 | // |
634 | // The data flow graph construction. |
635 | // |
636 | |
637 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
638 | const TargetRegisterInfo &tri, |
639 | const MachineDominatorTree &mdt, |
640 | const MachineDominanceFrontier &mdf) |
641 | : DefaultTOI(std::make_unique<TargetOperandInfo>(args: tii)), MF(mf), TII(tii), |
642 | TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), |
643 | LiveIns(PRI) {} |
644 | |
645 | DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, |
646 | const TargetRegisterInfo &tri, |
647 | const MachineDominatorTree &mdt, |
648 | const MachineDominanceFrontier &mdf, |
649 | const TargetOperandInfo &toi) |
650 | : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), |
651 | LiveIns(PRI) {} |
652 | |
653 | // The implementation of the definition stack. |
654 | // Each register reference has its own definition stack. In particular, |
655 | // for a register references "Reg" and "Reg:subreg" will each have their |
656 | // own definition stacks. |
657 | |
658 | // Construct a stack iterator. |
659 | DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, |
660 | bool Top) |
661 | : DS(S) { |
662 | if (!Top) { |
663 | // Initialize to bottom. |
664 | Pos = 0; |
665 | return; |
666 | } |
667 | // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). |
668 | Pos = DS.Stack.size(); |
669 | while (Pos > 0 && DS.isDelimiter(P: DS.Stack[Pos - 1])) |
670 | Pos--; |
671 | } |
672 | |
673 | // Return the size of the stack, including block delimiters. |
674 | unsigned DataFlowGraph::DefStack::size() const { |
675 | unsigned S = 0; |
676 | for (auto I = top(), E = bottom(); I != E; I.down()) |
677 | S++; |
678 | return S; |
679 | } |
680 | |
681 | // Remove the top entry from the stack. Remove all intervening delimiters |
682 | // so that after this, the stack is either empty, or the top of the stack |
683 | // is a non-delimiter. |
684 | void DataFlowGraph::DefStack::pop() { |
685 | assert(!empty()); |
686 | unsigned P = nextDown(P: Stack.size()); |
687 | Stack.resize(new_size: P); |
688 | } |
689 | |
690 | // Push a delimiter for block node N on the stack. |
691 | void DataFlowGraph::DefStack::start_block(NodeId N) { |
692 | assert(N != 0); |
693 | Stack.push_back(x: Def(nullptr, N)); |
694 | } |
695 | |
696 | // Remove all nodes from the top of the stack, until the delimited for |
697 | // block node N is encountered. Remove the delimiter as well. In effect, |
698 | // this will remove from the stack all definitions from block N. |
699 | void DataFlowGraph::DefStack::clear_block(NodeId N) { |
700 | assert(N != 0); |
701 | unsigned P = Stack.size(); |
702 | while (P > 0) { |
703 | bool Found = isDelimiter(P: Stack[P - 1], N); |
704 | P--; |
705 | if (Found) |
706 | break; |
707 | } |
708 | // This will also remove the delimiter, if found. |
709 | Stack.resize(new_size: P); |
710 | } |
711 | |
712 | // Move the stack iterator up by one. |
713 | unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { |
714 | // Get the next valid position after P (skipping all delimiters). |
715 | // The input position P does not have to point to a non-delimiter. |
716 | unsigned SS = Stack.size(); |
717 | bool IsDelim; |
718 | assert(P < SS); |
719 | do { |
720 | P++; |
721 | IsDelim = isDelimiter(P: Stack[P - 1]); |
722 | } while (P < SS && IsDelim); |
723 | assert(!IsDelim); |
724 | return P; |
725 | } |
726 | |
727 | // Move the stack iterator down by one. |
728 | unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { |
729 | // Get the preceding valid position before P (skipping all delimiters). |
730 | // The input position P does not have to point to a non-delimiter. |
731 | assert(P > 0 && P <= Stack.size()); |
732 | bool IsDelim = isDelimiter(P: Stack[P - 1]); |
733 | do { |
734 | if (--P == 0) |
735 | break; |
736 | IsDelim = isDelimiter(P: Stack[P - 1]); |
737 | } while (P > 0 && IsDelim); |
738 | assert(!IsDelim); |
739 | return P; |
740 | } |
741 | |
742 | // Register information. |
743 | |
744 | RegisterAggr DataFlowGraph::getLandingPadLiveIns() const { |
745 | RegisterAggr LR(getPRI()); |
746 | const Function &F = MF.getFunction(); |
747 | const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr; |
748 | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); |
749 | if (RegisterId R = TLI.getExceptionPointerRegister(PersonalityFn: PF)) |
750 | LR.insert(RR: RegisterRef(R)); |
751 | if (!isFuncletEHPersonality(Pers: classifyEHPersonality(Pers: PF))) { |
752 | if (RegisterId R = TLI.getExceptionSelectorRegister(PersonalityFn: PF)) |
753 | LR.insert(RR: RegisterRef(R)); |
754 | } |
755 | return LR; |
756 | } |
757 | |
758 | // Node management functions. |
759 | |
760 | // Get the pointer to the node with the id N. |
761 | NodeBase *DataFlowGraph::ptr(NodeId N) const { |
762 | if (N == 0) |
763 | return nullptr; |
764 | return Memory.ptr(N); |
765 | } |
766 | |
767 | // Get the id of the node at the address P. |
768 | NodeId DataFlowGraph::id(const NodeBase *P) const { |
769 | if (P == nullptr) |
770 | return 0; |
771 | return Memory.id(P); |
772 | } |
773 | |
774 | // Allocate a new node and set the attributes to Attrs. |
775 | Node DataFlowGraph::newNode(uint16_t Attrs) { |
776 | Node P = Memory.New(); |
777 | P.Addr->init(); |
778 | P.Addr->setAttrs(Attrs); |
779 | return P; |
780 | } |
781 | |
782 | // Make a copy of the given node B, except for the data-flow links, which |
783 | // are set to 0. |
784 | Node DataFlowGraph::cloneNode(const Node B) { |
785 | Node NA = newNode(Attrs: 0); |
786 | memcpy(dest: NA.Addr, src: B.Addr, n: sizeof(NodeBase)); |
787 | // Ref nodes need to have the data-flow links reset. |
788 | if (NA.Addr->getType() == NodeAttrs::Ref) { |
789 | Ref RA = NA; |
790 | RA.Addr->setReachingDef(0); |
791 | RA.Addr->setSibling(0); |
792 | if (NA.Addr->getKind() == NodeAttrs::Def) { |
793 | Def DA = NA; |
794 | DA.Addr->setReachedDef(0); |
795 | DA.Addr->setReachedUse(0); |
796 | } |
797 | } |
798 | return NA; |
799 | } |
800 | |
801 | // Allocation routines for specific node types/kinds. |
802 | |
803 | Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) { |
804 | Use UA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Use | Flags); |
805 | UA.Addr->setRegRef(Op: &Op, G&: *this); |
806 | return UA; |
807 | } |
808 | |
809 | PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB, |
810 | uint16_t Flags) { |
811 | PhiUse PUA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Use | Flags); |
812 | assert(Flags & NodeAttrs::PhiRef); |
813 | PUA.Addr->setRegRef(RR, G&: *this); |
814 | PUA.Addr->setPredecessor(PredB.Id); |
815 | return PUA; |
816 | } |
817 | |
818 | Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) { |
819 | Def DA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Def | Flags); |
820 | DA.Addr->setRegRef(Op: &Op, G&: *this); |
821 | return DA; |
822 | } |
823 | |
824 | Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) { |
825 | Def DA = newNode(Attrs: NodeAttrs::Ref | NodeAttrs::Def | Flags); |
826 | assert(Flags & NodeAttrs::PhiRef); |
827 | DA.Addr->setRegRef(RR, G&: *this); |
828 | return DA; |
829 | } |
830 | |
831 | Phi DataFlowGraph::newPhi(Block Owner) { |
832 | Phi PA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Phi); |
833 | Owner.Addr->addPhi(PA, G: *this); |
834 | return PA; |
835 | } |
836 | |
837 | Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) { |
838 | Stmt SA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Stmt); |
839 | SA.Addr->setCode(MI); |
840 | Owner.Addr->addMember(NA: SA, G: *this); |
841 | return SA; |
842 | } |
843 | |
844 | Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) { |
845 | Block BA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Block); |
846 | BA.Addr->setCode(BB); |
847 | Owner.Addr->addMember(NA: BA, G: *this); |
848 | return BA; |
849 | } |
850 | |
851 | Func DataFlowGraph::newFunc(MachineFunction *MF) { |
852 | Func FA = newNode(Attrs: NodeAttrs::Code | NodeAttrs::Func); |
853 | FA.Addr->setCode(MF); |
854 | return FA; |
855 | } |
856 | |
857 | // Build the data flow graph. |
858 | void DataFlowGraph::build(const Config &config) { |
859 | reset(); |
860 | BuildCfg = config; |
861 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
862 | ReservedRegs = MRI.getReservedRegs(); |
863 | bool SkipReserved = BuildCfg.Options & BuildOptions::OmitReserved; |
864 | |
865 | auto Insert = [](auto &Set, auto &&Range) { |
866 | Set.insert(Range.begin(), Range.end()); |
867 | }; |
868 | |
869 | if (BuildCfg.TrackRegs.empty()) { |
870 | std::set<RegisterId> BaseSet; |
871 | if (BuildCfg.Classes.empty()) { |
872 | // Insert every register. |
873 | for (unsigned R = 1, E = getPRI().getTRI().getNumRegs(); R != E; ++R) |
874 | BaseSet.insert(x: R); |
875 | } else { |
876 | for (const TargetRegisterClass *RC : BuildCfg.Classes) { |
877 | for (MCPhysReg R : *RC) |
878 | BaseSet.insert(x: R); |
879 | } |
880 | } |
881 | for (RegisterId R : BaseSet) { |
882 | if (SkipReserved && ReservedRegs[R]) |
883 | continue; |
884 | Insert(TrackedUnits, getPRI().getUnits(RR: RegisterRef(R))); |
885 | } |
886 | } else { |
887 | // Track set in Config overrides everything. |
888 | for (unsigned R : BuildCfg.TrackRegs) { |
889 | if (SkipReserved && ReservedRegs[R]) |
890 | continue; |
891 | Insert(TrackedUnits, getPRI().getUnits(RR: RegisterRef(R))); |
892 | } |
893 | } |
894 | |
895 | TheFunc = newFunc(MF: &MF); |
896 | |
897 | if (MF.empty()) |
898 | return; |
899 | |
900 | for (MachineBasicBlock &B : MF) { |
901 | Block BA = newBlock(Owner: TheFunc, BB: &B); |
902 | BlockNodes.insert(x: std::make_pair(x: &B, y&: BA)); |
903 | for (MachineInstr &I : B) { |
904 | if (I.isDebugInstr()) |
905 | continue; |
906 | buildStmt(BA, In&: I); |
907 | } |
908 | } |
909 | |
910 | Block EA = TheFunc.Addr->getEntryBlock(G: *this); |
911 | NodeList Blocks = TheFunc.Addr->members(G: *this); |
912 | |
913 | // Collect function live-ins and entry block live-ins. |
914 | MachineBasicBlock &EntryB = *EA.Addr->getCode(); |
915 | assert(EntryB.pred_empty() && "Function entry block has predecessors" ); |
916 | for (std::pair<unsigned, unsigned> P : MRI.liveins()) |
917 | LiveIns.insert(RR: RegisterRef(P.first)); |
918 | if (MRI.tracksLiveness()) { |
919 | for (auto I : EntryB.liveins()) |
920 | LiveIns.insert(RR: RegisterRef(I.PhysReg, I.LaneMask)); |
921 | } |
922 | |
923 | // Add function-entry phi nodes for the live-in registers. |
924 | for (RegisterRef RR : LiveIns.refs()) { |
925 | if (RR.isReg() && !isTracked(RR)) // isReg is likely guaranteed |
926 | continue; |
927 | Phi PA = newPhi(Owner: EA); |
928 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
929 | Def DA = newDef(Owner: PA, RR, Flags: PhiFlags); |
930 | PA.Addr->addMember(NA: DA, G: *this); |
931 | } |
932 | |
933 | // Add phis for landing pads. |
934 | // Landing pads, unlike usual backs blocks, are not entered through |
935 | // branches in the program, or fall-throughs from other blocks. They |
936 | // are entered from the exception handling runtime and target's ABI |
937 | // may define certain registers as defined on entry to such a block. |
938 | RegisterAggr EHRegs = getLandingPadLiveIns(); |
939 | if (!EHRegs.empty()) { |
940 | for (Block BA : Blocks) { |
941 | const MachineBasicBlock &B = *BA.Addr->getCode(); |
942 | if (!B.isEHPad()) |
943 | continue; |
944 | |
945 | // Prepare a list of NodeIds of the block's predecessors. |
946 | NodeList Preds; |
947 | for (MachineBasicBlock *PB : B.predecessors()) |
948 | Preds.push_back(Elt: findBlock(BB: PB)); |
949 | |
950 | // Build phi nodes for each live-in. |
951 | for (RegisterRef RR : EHRegs.refs()) { |
952 | if (RR.isReg() && !isTracked(RR)) |
953 | continue; |
954 | Phi PA = newPhi(Owner: BA); |
955 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
956 | // Add def: |
957 | Def DA = newDef(Owner: PA, RR, Flags: PhiFlags); |
958 | PA.Addr->addMember(NA: DA, G: *this); |
959 | // Add uses (no reaching defs for phi uses): |
960 | for (Block PBA : Preds) { |
961 | PhiUse PUA = newPhiUse(Owner: PA, RR, PredB: PBA); |
962 | PA.Addr->addMember(NA: PUA, G: *this); |
963 | } |
964 | } |
965 | } |
966 | } |
967 | |
968 | // Build a map "PhiM" which will contain, for each block, the set |
969 | // of references that will require phi definitions in that block. |
970 | BlockRefsMap PhiM(getPRI()); |
971 | for (Block BA : Blocks) |
972 | recordDefsForDF(PhiM, BA); |
973 | for (Block BA : Blocks) |
974 | buildPhis(PhiM, BA); |
975 | |
976 | // Link all the refs. This will recursively traverse the dominator tree. |
977 | DefStackMap DM; |
978 | linkBlockRefs(DefM&: DM, BA: EA); |
979 | |
980 | // Finally, remove all unused phi nodes. |
981 | if (!(BuildCfg.Options & BuildOptions::KeepDeadPhis)) |
982 | removeUnusedPhis(); |
983 | } |
984 | |
985 | RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { |
986 | assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg)); |
987 | assert(Reg != 0); |
988 | if (Sub != 0) |
989 | Reg = TRI.getSubReg(Reg, Idx: Sub); |
990 | return RegisterRef(Reg); |
991 | } |
992 | |
993 | RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { |
994 | assert(Op.isReg() || Op.isRegMask()); |
995 | if (Op.isReg()) |
996 | return makeRegRef(Reg: Op.getReg(), Sub: Op.getSubReg()); |
997 | return RegisterRef(getPRI().getRegMaskId(RM: Op.getRegMask()), |
998 | LaneBitmask::getAll()); |
999 | } |
1000 | |
1001 | // For each stack in the map DefM, push the delimiter for block B on it. |
1002 | void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { |
1003 | // Push block delimiters. |
1004 | for (auto &P : DefM) |
1005 | P.second.start_block(N: B); |
1006 | } |
1007 | |
1008 | // Remove all definitions coming from block B from each stack in DefM. |
1009 | void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { |
1010 | // Pop all defs from this block from the definition stack. Defs that were |
1011 | // added to the map during the traversal of instructions will not have a |
1012 | // delimiter, but for those, the whole stack will be emptied. |
1013 | for (auto &P : DefM) |
1014 | P.second.clear_block(N: B); |
1015 | |
1016 | // Finally, remove empty stacks from the map. |
1017 | for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { |
1018 | NextI = std::next(x: I); |
1019 | // This preserves the validity of iterators other than I. |
1020 | if (I->second.empty()) |
1021 | DefM.erase(position: I); |
1022 | } |
1023 | } |
1024 | |
1025 | // Push all definitions from the instruction node IA to an appropriate |
1026 | // stack in DefM. |
1027 | void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) { |
1028 | pushClobbers(IA, DM&: DefM); |
1029 | pushDefs(IA, DM&: DefM); |
1030 | } |
1031 | |
1032 | // Push all definitions from the instruction node IA to an appropriate |
1033 | // stack in DefM. |
1034 | void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) { |
1035 | NodeSet Visited; |
1036 | std::set<RegisterId> Defined; |
1037 | |
1038 | // The important objectives of this function are: |
1039 | // - to be able to handle instructions both while the graph is being |
1040 | // constructed, and after the graph has been constructed, and |
1041 | // - maintain proper ordering of definitions on the stack for each |
1042 | // register reference: |
1043 | // - if there are two or more related defs in IA (i.e. coming from |
1044 | // the same machine operand), then only push one def on the stack, |
1045 | // - if there are multiple unrelated defs of non-overlapping |
1046 | // subregisters of S, then the stack for S will have both (in an |
1047 | // unspecified order), but the order does not matter from the data- |
1048 | // -flow perspective. |
1049 | |
1050 | for (Def DA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1051 | if (Visited.count(x: DA.Id)) |
1052 | continue; |
1053 | if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) |
1054 | continue; |
1055 | |
1056 | NodeList Rel = getRelatedRefs(IA, RA: DA); |
1057 | Def PDA = Rel.front(); |
1058 | RegisterRef RR = PDA.Addr->getRegRef(G: *this); |
1059 | |
1060 | // Push the definition on the stack for the register and all aliases. |
1061 | // The def stack traversal in linkNodeUp will check the exact aliasing. |
1062 | DefM[RR.Reg].push(DA); |
1063 | Defined.insert(x: RR.Reg); |
1064 | for (RegisterId A : getPRI().getAliasSet(Reg: RR.Reg)) { |
1065 | if (RegisterRef::isRegId(Id: A) && !isTracked(RR: RegisterRef(A))) |
1066 | continue; |
1067 | // Check that we don't push the same def twice. |
1068 | assert(A != RR.Reg); |
1069 | if (!Defined.count(x: A)) |
1070 | DefM[A].push(DA); |
1071 | } |
1072 | // Mark all the related defs as visited. |
1073 | for (Node T : Rel) |
1074 | Visited.insert(x: T.Id); |
1075 | } |
1076 | } |
1077 | |
1078 | // Push all definitions from the instruction node IA to an appropriate |
1079 | // stack in DefM. |
1080 | void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) { |
1081 | NodeSet Visited; |
1082 | #ifndef NDEBUG |
1083 | std::set<RegisterId> Defined; |
1084 | #endif |
1085 | |
1086 | // The important objectives of this function are: |
1087 | // - to be able to handle instructions both while the graph is being |
1088 | // constructed, and after the graph has been constructed, and |
1089 | // - maintain proper ordering of definitions on the stack for each |
1090 | // register reference: |
1091 | // - if there are two or more related defs in IA (i.e. coming from |
1092 | // the same machine operand), then only push one def on the stack, |
1093 | // - if there are multiple unrelated defs of non-overlapping |
1094 | // subregisters of S, then the stack for S will have both (in an |
1095 | // unspecified order), but the order does not matter from the data- |
1096 | // -flow perspective. |
1097 | |
1098 | for (Def DA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1099 | if (Visited.count(x: DA.Id)) |
1100 | continue; |
1101 | if (DA.Addr->getFlags() & NodeAttrs::Clobbering) |
1102 | continue; |
1103 | |
1104 | NodeList Rel = getRelatedRefs(IA, RA: DA); |
1105 | Def PDA = Rel.front(); |
1106 | RegisterRef RR = PDA.Addr->getRegRef(G: *this); |
1107 | #ifndef NDEBUG |
1108 | // Assert if the register is defined in two or more unrelated defs. |
1109 | // This could happen if there are two or more def operands defining it. |
1110 | if (!Defined.insert(RR.Reg).second) { |
1111 | MachineInstr *MI = Stmt(IA).Addr->getCode(); |
1112 | dbgs() << "Multiple definitions of register: " << Print(RR, *this) |
1113 | << " in\n " << *MI << "in " << printMBBReference(*MI->getParent()) |
1114 | << '\n'; |
1115 | llvm_unreachable(nullptr); |
1116 | } |
1117 | #endif |
1118 | // Push the definition on the stack for the register and all aliases. |
1119 | // The def stack traversal in linkNodeUp will check the exact aliasing. |
1120 | DefM[RR.Reg].push(DA); |
1121 | for (RegisterId A : getPRI().getAliasSet(Reg: RR.Reg)) { |
1122 | if (RegisterRef::isRegId(Id: A) && !isTracked(RR: RegisterRef(A))) |
1123 | continue; |
1124 | // Check that we don't push the same def twice. |
1125 | assert(A != RR.Reg); |
1126 | DefM[A].push(DA); |
1127 | } |
1128 | // Mark all the related defs as visited. |
1129 | for (Node T : Rel) |
1130 | Visited.insert(x: T.Id); |
1131 | } |
1132 | } |
1133 | |
1134 | // Return the list of all reference nodes related to RA, including RA itself. |
1135 | // See "getNextRelated" for the meaning of a "related reference". |
1136 | NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const { |
1137 | assert(IA.Id != 0 && RA.Id != 0); |
1138 | |
1139 | NodeList Refs; |
1140 | NodeId Start = RA.Id; |
1141 | do { |
1142 | Refs.push_back(Elt: RA); |
1143 | RA = getNextRelated(IA, RA); |
1144 | } while (RA.Id != 0 && RA.Id != Start); |
1145 | return Refs; |
1146 | } |
1147 | |
1148 | // Clear all information in the graph. |
1149 | void DataFlowGraph::reset() { |
1150 | Memory.clear(); |
1151 | BlockNodes.clear(); |
1152 | TrackedUnits.clear(); |
1153 | ReservedRegs.clear(); |
1154 | TheFunc = Func(); |
1155 | } |
1156 | |
1157 | // Return the next reference node in the instruction node IA that is related |
1158 | // to RA. Conceptually, two reference nodes are related if they refer to the |
1159 | // same instance of a register access, but differ in flags or other minor |
1160 | // characteristics. Specific examples of related nodes are shadow reference |
1161 | // nodes. |
1162 | // Return the equivalent of nullptr if there are no more related references. |
1163 | Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const { |
1164 | assert(IA.Id != 0 && RA.Id != 0); |
1165 | |
1166 | auto IsRelated = [this, RA](Ref TA) -> bool { |
1167 | if (TA.Addr->getKind() != RA.Addr->getKind()) |
1168 | return false; |
1169 | if (!getPRI().equal_to(A: TA.Addr->getRegRef(G: *this), |
1170 | B: RA.Addr->getRegRef(G: *this))) { |
1171 | return false; |
1172 | } |
1173 | return true; |
1174 | }; |
1175 | |
1176 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1177 | if (IA.Addr->getKind() == NodeAttrs::Stmt) { |
1178 | auto Cond = [&IsRelated, RA](Ref TA) -> bool { |
1179 | return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); |
1180 | }; |
1181 | return RA.Addr->getNextRef(RR, P: Cond, NextOnly: true, G: *this); |
1182 | } |
1183 | |
1184 | assert(IA.Addr->getKind() == NodeAttrs::Phi); |
1185 | auto Cond = [&IsRelated, RA](Ref TA) -> bool { |
1186 | if (!IsRelated(TA)) |
1187 | return false; |
1188 | if (TA.Addr->getKind() != NodeAttrs::Use) |
1189 | return true; |
1190 | // For phi uses, compare predecessor blocks. |
1191 | return PhiUse(TA).Addr->getPredecessor() == |
1192 | PhiUse(RA).Addr->getPredecessor(); |
1193 | }; |
1194 | return RA.Addr->getNextRef(RR, P: Cond, NextOnly: true, G: *this); |
1195 | } |
1196 | |
1197 | // Find the next node related to RA in IA that satisfies condition P. |
1198 | // If such a node was found, return a pair where the second element is the |
1199 | // located node. If such a node does not exist, return a pair where the |
1200 | // first element is the element after which such a node should be inserted, |
1201 | // and the second element is a null-address. |
1202 | template <typename Predicate> |
1203 | std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA, |
1204 | Predicate P) const { |
1205 | assert(IA.Id != 0 && RA.Id != 0); |
1206 | |
1207 | Ref NA; |
1208 | NodeId Start = RA.Id; |
1209 | while (true) { |
1210 | NA = getNextRelated(IA, RA); |
1211 | if (NA.Id == 0 || NA.Id == Start) |
1212 | break; |
1213 | if (P(NA)) |
1214 | break; |
1215 | RA = NA; |
1216 | } |
1217 | |
1218 | if (NA.Id != 0 && NA.Id != Start) |
1219 | return std::make_pair(x&: RA, y&: NA); |
1220 | return std::make_pair(x&: RA, y: Ref()); |
1221 | } |
1222 | |
1223 | // Get the next shadow node in IA corresponding to RA, and optionally create |
1224 | // such a node if it does not exist. |
1225 | Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) { |
1226 | assert(IA.Id != 0 && RA.Id != 0); |
1227 | |
1228 | uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; |
1229 | auto IsShadow = [Flags](Ref TA) -> bool { |
1230 | return TA.Addr->getFlags() == Flags; |
1231 | }; |
1232 | auto Loc = locateNextRef(IA, RA, P: IsShadow); |
1233 | if (Loc.second.Id != 0 || !Create) |
1234 | return Loc.second; |
1235 | |
1236 | // Create a copy of RA and mark is as shadow. |
1237 | Ref NA = cloneNode(B: RA); |
1238 | NA.Addr->setFlags(Flags | NodeAttrs::Shadow); |
1239 | IA.Addr->addMemberAfter(MA: Loc.first, NA, G: *this); |
1240 | return NA; |
1241 | } |
1242 | |
1243 | // Create a new statement node in the block node BA that corresponds to |
1244 | // the machine instruction MI. |
1245 | void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) { |
1246 | Stmt SA = newStmt(Owner: BA, MI: &In); |
1247 | |
1248 | auto isCall = [](const MachineInstr &In) -> bool { |
1249 | if (In.isCall()) |
1250 | return true; |
1251 | // Is tail call? |
1252 | if (In.isBranch()) { |
1253 | for (const MachineOperand &Op : In.operands()) |
1254 | if (Op.isGlobal() || Op.isSymbol()) |
1255 | return true; |
1256 | // Assume indirect branches are calls. This is for the purpose of |
1257 | // keeping implicit operands, and so it won't hurt on intra-function |
1258 | // indirect branches. |
1259 | if (In.isIndirectBranch()) |
1260 | return true; |
1261 | } |
1262 | return false; |
1263 | }; |
1264 | |
1265 | auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool { |
1266 | // This instruction defines DR. Check if there is a use operand that |
1267 | // would make DR live on entry to the instruction. |
1268 | for (const MachineOperand &Op : In.all_uses()) { |
1269 | if (Op.getReg() == 0 || Op.isUndef()) |
1270 | continue; |
1271 | RegisterRef UR = makeRegRef(Op); |
1272 | if (getPRI().alias(RA: DR, RB: UR)) |
1273 | return false; |
1274 | } |
1275 | return true; |
1276 | }; |
1277 | |
1278 | bool IsCall = isCall(In); |
1279 | unsigned NumOps = In.getNumOperands(); |
1280 | |
1281 | // Avoid duplicate implicit defs. This will not detect cases of implicit |
1282 | // defs that define registers that overlap, but it is not clear how to |
1283 | // interpret that in the absence of explicit defs. Overlapping explicit |
1284 | // defs are likely illegal already. |
1285 | BitVector DoneDefs(TRI.getNumRegs()); |
1286 | // Process explicit defs first. |
1287 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1288 | MachineOperand &Op = In.getOperand(i: OpN); |
1289 | if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) |
1290 | continue; |
1291 | Register R = Op.getReg(); |
1292 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R))) |
1293 | continue; |
1294 | uint16_t Flags = NodeAttrs::None; |
1295 | if (TOI.isPreserving(In, OpNum: OpN)) { |
1296 | Flags |= NodeAttrs::Preserving; |
1297 | // If the def is preserving, check if it is also undefined. |
1298 | if (isDefUndef(In, makeRegRef(Op))) |
1299 | Flags |= NodeAttrs::Undef; |
1300 | } |
1301 | if (TOI.isClobbering(In, OpNum: OpN)) |
1302 | Flags |= NodeAttrs::Clobbering; |
1303 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1304 | Flags |= NodeAttrs::Fixed; |
1305 | if (IsCall && Op.isDead()) |
1306 | Flags |= NodeAttrs::Dead; |
1307 | Def DA = newDef(Owner: SA, Op, Flags); |
1308 | SA.Addr->addMember(NA: DA, G: *this); |
1309 | assert(!DoneDefs.test(R)); |
1310 | DoneDefs.set(R); |
1311 | } |
1312 | |
1313 | // Process reg-masks (as clobbers). |
1314 | BitVector DoneClobbers(TRI.getNumRegs()); |
1315 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1316 | MachineOperand &Op = In.getOperand(i: OpN); |
1317 | if (!Op.isRegMask()) |
1318 | continue; |
1319 | uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead; |
1320 | Def DA = newDef(Owner: SA, Op, Flags); |
1321 | SA.Addr->addMember(NA: DA, G: *this); |
1322 | // Record all clobbered registers in DoneDefs. |
1323 | const uint32_t *RM = Op.getRegMask(); |
1324 | for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) { |
1325 | if (!isTracked(RR: RegisterRef(i))) |
1326 | continue; |
1327 | if (!(RM[i / 32] & (1u << (i % 32)))) |
1328 | DoneClobbers.set(i); |
1329 | } |
1330 | } |
1331 | |
1332 | // Process implicit defs, skipping those that have already been added |
1333 | // as explicit. |
1334 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1335 | MachineOperand &Op = In.getOperand(i: OpN); |
1336 | if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) |
1337 | continue; |
1338 | Register R = Op.getReg(); |
1339 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R)) || DoneDefs.test(Idx: R)) |
1340 | continue; |
1341 | RegisterRef RR = makeRegRef(Op); |
1342 | uint16_t Flags = NodeAttrs::None; |
1343 | if (TOI.isPreserving(In, OpNum: OpN)) { |
1344 | Flags |= NodeAttrs::Preserving; |
1345 | // If the def is preserving, check if it is also undefined. |
1346 | if (isDefUndef(In, RR)) |
1347 | Flags |= NodeAttrs::Undef; |
1348 | } |
1349 | if (TOI.isClobbering(In, OpNum: OpN)) |
1350 | Flags |= NodeAttrs::Clobbering; |
1351 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1352 | Flags |= NodeAttrs::Fixed; |
1353 | if (IsCall && Op.isDead()) { |
1354 | if (DoneClobbers.test(Idx: R)) |
1355 | continue; |
1356 | Flags |= NodeAttrs::Dead; |
1357 | } |
1358 | Def DA = newDef(Owner: SA, Op, Flags); |
1359 | SA.Addr->addMember(NA: DA, G: *this); |
1360 | DoneDefs.set(R); |
1361 | } |
1362 | |
1363 | for (unsigned OpN = 0; OpN < NumOps; ++OpN) { |
1364 | MachineOperand &Op = In.getOperand(i: OpN); |
1365 | if (!Op.isReg() || !Op.isUse()) |
1366 | continue; |
1367 | Register R = Op.getReg(); |
1368 | if (!R || !R.isPhysical() || !isTracked(RR: RegisterRef(R))) |
1369 | continue; |
1370 | uint16_t Flags = NodeAttrs::None; |
1371 | if (Op.isUndef()) |
1372 | Flags |= NodeAttrs::Undef; |
1373 | if (TOI.isFixedReg(In, OpNum: OpN)) |
1374 | Flags |= NodeAttrs::Fixed; |
1375 | Use UA = newUse(Owner: SA, Op, Flags); |
1376 | SA.Addr->addMember(NA: UA, G: *this); |
1377 | } |
1378 | } |
1379 | |
1380 | // Scan all defs in the block node BA and record in PhiM the locations of |
1381 | // phi nodes corresponding to these defs. |
1382 | void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) { |
1383 | // Check all defs from block BA and record them in each block in BA's |
1384 | // iterated dominance frontier. This information will later be used to |
1385 | // create phi nodes. |
1386 | MachineBasicBlock *BB = BA.Addr->getCode(); |
1387 | assert(BB); |
1388 | auto DFLoc = MDF.find(B: BB); |
1389 | if (DFLoc == MDF.end() || DFLoc->second.empty()) |
1390 | return; |
1391 | |
1392 | // Traverse all instructions in the block and collect the set of all |
1393 | // defined references. For each reference there will be a phi created |
1394 | // in the block's iterated dominance frontier. |
1395 | // This is done to make sure that each defined reference gets only one |
1396 | // phi node, even if it is defined multiple times. |
1397 | RegisterAggr Defs(getPRI()); |
1398 | for (Instr IA : BA.Addr->members(G: *this)) { |
1399 | for (Ref RA : IA.Addr->members_if(P: IsDef, G: *this)) { |
1400 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1401 | if (RR.isReg() && isTracked(RR)) |
1402 | Defs.insert(RR); |
1403 | } |
1404 | } |
1405 | |
1406 | // Calculate the iterated dominance frontier of BB. |
1407 | const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; |
1408 | SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end()); |
1409 | for (unsigned i = 0; i < IDF.size(); ++i) { |
1410 | auto F = MDF.find(B: IDF[i]); |
1411 | if (F != MDF.end()) |
1412 | IDF.insert(Start: F->second.begin(), End: F->second.end()); |
1413 | } |
1414 | |
1415 | // Finally, add the set of defs to each block in the iterated dominance |
1416 | // frontier. |
1417 | for (auto *DB : IDF) { |
1418 | Block DBA = findBlock(BB: DB); |
1419 | PhiM[DBA.Id].insert(RG: Defs); |
1420 | } |
1421 | } |
1422 | |
1423 | // Given the locations of phi nodes in the map PhiM, create the phi nodes |
1424 | // that are located in the block node BA. |
1425 | void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA) { |
1426 | // Check if this blocks has any DF defs, i.e. if there are any defs |
1427 | // that this block is in the iterated dominance frontier of. |
1428 | auto HasDF = PhiM.find(Key: BA.Id); |
1429 | if (HasDF == PhiM.end() || HasDF->second.empty()) |
1430 | return; |
1431 | |
1432 | // Prepare a list of NodeIds of the block's predecessors. |
1433 | NodeList Preds; |
1434 | const MachineBasicBlock *MBB = BA.Addr->getCode(); |
1435 | for (MachineBasicBlock *PB : MBB->predecessors()) |
1436 | Preds.push_back(Elt: findBlock(BB: PB)); |
1437 | |
1438 | const RegisterAggr &Defs = PhiM[BA.Id]; |
1439 | uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; |
1440 | |
1441 | for (RegisterRef RR : Defs.refs()) { |
1442 | Phi PA = newPhi(Owner: BA); |
1443 | PA.Addr->addMember(NA: newDef(Owner: PA, RR, Flags: PhiFlags), G: *this); |
1444 | |
1445 | // Add phi uses. |
1446 | for (Block PBA : Preds) { |
1447 | PA.Addr->addMember(NA: newPhiUse(Owner: PA, RR, PredB: PBA), G: *this); |
1448 | } |
1449 | } |
1450 | } |
1451 | |
1452 | // Remove any unneeded phi nodes that were created during the build process. |
1453 | void DataFlowGraph::removeUnusedPhis() { |
1454 | // This will remove unused phis, i.e. phis where each def does not reach |
1455 | // any uses or other defs. This will not detect or remove circular phi |
1456 | // chains that are otherwise dead. Unused/dead phis are created during |
1457 | // the build process and this function is intended to remove these cases |
1458 | // that are easily determinable to be unnecessary. |
1459 | |
1460 | SetVector<NodeId> PhiQ; |
1461 | for (Block BA : TheFunc.Addr->members(G: *this)) { |
1462 | for (auto P : BA.Addr->members_if(P: IsPhi, G: *this)) |
1463 | PhiQ.insert(X: P.Id); |
1464 | } |
1465 | |
1466 | static auto HasUsedDef = [](NodeList &Ms) -> bool { |
1467 | for (Node M : Ms) { |
1468 | if (M.Addr->getKind() != NodeAttrs::Def) |
1469 | continue; |
1470 | Def DA = M; |
1471 | if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) |
1472 | return true; |
1473 | } |
1474 | return false; |
1475 | }; |
1476 | |
1477 | // Any phi, if it is removed, may affect other phis (make them dead). |
1478 | // For each removed phi, collect the potentially affected phis and add |
1479 | // them back to the queue. |
1480 | while (!PhiQ.empty()) { |
1481 | auto PA = addr<PhiNode *>(N: PhiQ[0]); |
1482 | PhiQ.remove(X: PA.Id); |
1483 | NodeList Refs = PA.Addr->members(G: *this); |
1484 | if (HasUsedDef(Refs)) |
1485 | continue; |
1486 | for (Ref RA : Refs) { |
1487 | if (NodeId RD = RA.Addr->getReachingDef()) { |
1488 | auto RDA = addr<DefNode *>(N: RD); |
1489 | Instr OA = RDA.Addr->getOwner(G: *this); |
1490 | if (IsPhi(BA: OA)) |
1491 | PhiQ.insert(X: OA.Id); |
1492 | } |
1493 | if (RA.Addr->isDef()) |
1494 | unlinkDef(DA: RA, RemoveFromOwner: true); |
1495 | else |
1496 | unlinkUse(UA: RA, RemoveFromOwner: true); |
1497 | } |
1498 | Block BA = PA.Addr->getOwner(G: *this); |
1499 | BA.Addr->removeMember(NA: PA, G: *this); |
1500 | } |
1501 | } |
1502 | |
1503 | // For a given reference node TA in an instruction node IA, connect the |
1504 | // reaching def of TA to the appropriate def node. Create any shadow nodes |
1505 | // as appropriate. |
1506 | template <typename T> |
1507 | void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) { |
1508 | if (DS.empty()) |
1509 | return; |
1510 | RegisterRef RR = TA.Addr->getRegRef(*this); |
1511 | NodeAddr<T> TAP; |
1512 | |
1513 | // References from the def stack that have been examined so far. |
1514 | RegisterAggr Defs(getPRI()); |
1515 | |
1516 | for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { |
1517 | RegisterRef QR = I->Addr->getRegRef(G: *this); |
1518 | |
1519 | // Skip all defs that are aliased to any of the defs that we have already |
1520 | // seen. If this completes a cover of RR, stop the stack traversal. |
1521 | bool Alias = Defs.hasAliasOf(RR: QR); |
1522 | bool Cover = Defs.insert(RR: QR).hasCoverOf(RR); |
1523 | if (Alias) { |
1524 | if (Cover) |
1525 | break; |
1526 | continue; |
1527 | } |
1528 | |
1529 | // The reaching def. |
1530 | Def RDA = *I; |
1531 | |
1532 | // Pick the reached node. |
1533 | if (TAP.Id == 0) { |
1534 | TAP = TA; |
1535 | } else { |
1536 | // Mark the existing ref as "shadow" and create a new shadow. |
1537 | TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); |
1538 | TAP = getNextShadow(IA, RA: TAP, Create: true); |
1539 | } |
1540 | |
1541 | // Create the link. |
1542 | TAP.Addr->linkToDef(TAP.Id, RDA); |
1543 | |
1544 | if (Cover) |
1545 | break; |
1546 | } |
1547 | } |
1548 | |
1549 | // Create data-flow links for all reference nodes in the statement node SA. |
1550 | template <typename Predicate> |
1551 | void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) { |
1552 | #ifndef NDEBUG |
1553 | RegisterSet Defs(getPRI()); |
1554 | #endif |
1555 | |
1556 | // Link all nodes (upwards in the data-flow) with their reaching defs. |
1557 | for (Ref RA : SA.Addr->members_if(P, *this)) { |
1558 | uint16_t Kind = RA.Addr->getKind(); |
1559 | assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); |
1560 | RegisterRef RR = RA.Addr->getRegRef(G: *this); |
1561 | #ifndef NDEBUG |
1562 | // Do not expect multiple defs of the same reference. |
1563 | assert(Kind != NodeAttrs::Def || !Defs.count(RR)); |
1564 | Defs.insert(RR); |
1565 | #endif |
1566 | |
1567 | auto F = DefM.find(x: RR.Reg); |
1568 | if (F == DefM.end()) |
1569 | continue; |
1570 | DefStack &DS = F->second; |
1571 | if (Kind == NodeAttrs::Use) |
1572 | linkRefUp<UseNode *>(IA: SA, TA: RA, DS); |
1573 | else if (Kind == NodeAttrs::Def) |
1574 | linkRefUp<DefNode *>(IA: SA, TA: RA, DS); |
1575 | else |
1576 | llvm_unreachable("Unexpected node in instruction" ); |
1577 | } |
1578 | } |
1579 | |
1580 | // Create data-flow links for all instructions in the block node BA. This |
1581 | // will include updating any phi nodes in BA. |
1582 | void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) { |
1583 | // Push block delimiters. |
1584 | markBlock(B: BA.Id, DefM); |
1585 | |
1586 | auto IsClobber = [](Ref RA) -> bool { |
1587 | return IsDef(BA: RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); |
1588 | }; |
1589 | auto IsNoClobber = [](Ref RA) -> bool { |
1590 | return IsDef(BA: RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); |
1591 | }; |
1592 | |
1593 | assert(BA.Addr && "block node address is needed to create a data-flow link" ); |
1594 | // For each non-phi instruction in the block, link all the defs and uses |
1595 | // to their reaching defs. For any member of the block (including phis), |
1596 | // push the defs on the corresponding stacks. |
1597 | for (Instr IA : BA.Addr->members(G: *this)) { |
1598 | // Ignore phi nodes here. They will be linked part by part from the |
1599 | // predecessors. |
1600 | if (IA.Addr->getKind() == NodeAttrs::Stmt) { |
1601 | linkStmtRefs(DefM, SA: IA, P: IsUse); |
1602 | linkStmtRefs(DefM, SA: IA, P: IsClobber); |
1603 | } |
1604 | |
1605 | // Push the definitions on the stack. |
1606 | pushClobbers(IA, DefM); |
1607 | |
1608 | if (IA.Addr->getKind() == NodeAttrs::Stmt) |
1609 | linkStmtRefs(DefM, SA: IA, P: IsNoClobber); |
1610 | |
1611 | pushDefs(IA, DefM); |
1612 | } |
1613 | |
1614 | // Recursively process all children in the dominator tree. |
1615 | MachineDomTreeNode *N = MDT.getNode(BB: BA.Addr->getCode()); |
1616 | for (auto *I : *N) { |
1617 | MachineBasicBlock *SB = I->getBlock(); |
1618 | Block SBA = findBlock(BB: SB); |
1619 | linkBlockRefs(DefM, BA: SBA); |
1620 | } |
1621 | |
1622 | // Link the phi uses from the successor blocks. |
1623 | auto IsUseForBA = [BA](Node NA) -> bool { |
1624 | if (NA.Addr->getKind() != NodeAttrs::Use) |
1625 | return false; |
1626 | assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); |
1627 | return PhiUse(NA).Addr->getPredecessor() == BA.Id; |
1628 | }; |
1629 | |
1630 | RegisterAggr EHLiveIns = getLandingPadLiveIns(); |
1631 | MachineBasicBlock *MBB = BA.Addr->getCode(); |
1632 | |
1633 | for (MachineBasicBlock *SB : MBB->successors()) { |
1634 | bool IsEHPad = SB->isEHPad(); |
1635 | Block SBA = findBlock(BB: SB); |
1636 | for (Instr IA : SBA.Addr->members_if(P: IsPhi, G: *this)) { |
1637 | // Do not link phi uses for landing pad live-ins. |
1638 | if (IsEHPad) { |
1639 | // Find what register this phi is for. |
1640 | Ref RA = IA.Addr->getFirstMember(G: *this); |
1641 | assert(RA.Id != 0); |
1642 | if (EHLiveIns.hasCoverOf(RR: RA.Addr->getRegRef(G: *this))) |
1643 | continue; |
1644 | } |
1645 | // Go over each phi use associated with MBB, and link it. |
1646 | for (auto U : IA.Addr->members_if(P: IsUseForBA, G: *this)) { |
1647 | PhiUse PUA = U; |
1648 | RegisterRef RR = PUA.Addr->getRegRef(G: *this); |
1649 | linkRefUp<UseNode *>(IA, TA: PUA, DS&: DefM[RR.Reg]); |
1650 | } |
1651 | } |
1652 | } |
1653 | |
1654 | // Pop all defs from this block from the definition stacks. |
1655 | releaseBlock(B: BA.Id, DefM); |
1656 | } |
1657 | |
1658 | // Remove the use node UA from any data-flow and structural links. |
1659 | void DataFlowGraph::unlinkUseDF(Use UA) { |
1660 | NodeId RD = UA.Addr->getReachingDef(); |
1661 | NodeId Sib = UA.Addr->getSibling(); |
1662 | |
1663 | if (RD == 0) { |
1664 | assert(Sib == 0); |
1665 | return; |
1666 | } |
1667 | |
1668 | auto RDA = addr<DefNode *>(N: RD); |
1669 | auto TA = addr<UseNode *>(N: RDA.Addr->getReachedUse()); |
1670 | if (TA.Id == UA.Id) { |
1671 | RDA.Addr->setReachedUse(Sib); |
1672 | return; |
1673 | } |
1674 | |
1675 | while (TA.Id != 0) { |
1676 | NodeId S = TA.Addr->getSibling(); |
1677 | if (S == UA.Id) { |
1678 | TA.Addr->setSibling(UA.Addr->getSibling()); |
1679 | return; |
1680 | } |
1681 | TA = addr<UseNode *>(N: S); |
1682 | } |
1683 | } |
1684 | |
1685 | // Remove the def node DA from any data-flow and structural links. |
1686 | void DataFlowGraph::unlinkDefDF(Def DA) { |
1687 | // |
1688 | // RD |
1689 | // | reached |
1690 | // | def |
1691 | // : |
1692 | // . |
1693 | // +----+ |
1694 | // ... -- | DA | -- ... -- 0 : sibling chain of DA |
1695 | // +----+ |
1696 | // | | reached |
1697 | // | : def |
1698 | // | . |
1699 | // | ... : Siblings (defs) |
1700 | // | |
1701 | // : reached |
1702 | // . use |
1703 | // ... : sibling chain of reached uses |
1704 | |
1705 | NodeId RD = DA.Addr->getReachingDef(); |
1706 | |
1707 | // Visit all siblings of the reached def and reset their reaching defs. |
1708 | // Also, defs reached by DA are now "promoted" to being reached by RD, |
1709 | // so all of them will need to be spliced into the sibling chain where |
1710 | // DA belongs. |
1711 | auto getAllNodes = [this](NodeId N) -> NodeList { |
1712 | NodeList Res; |
1713 | while (N) { |
1714 | auto RA = addr<RefNode *>(N); |
1715 | // Keep the nodes in the exact sibling order. |
1716 | Res.push_back(Elt: RA); |
1717 | N = RA.Addr->getSibling(); |
1718 | } |
1719 | return Res; |
1720 | }; |
1721 | NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); |
1722 | NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); |
1723 | |
1724 | if (RD == 0) { |
1725 | for (Ref I : ReachedDefs) |
1726 | I.Addr->setSibling(0); |
1727 | for (Ref I : ReachedUses) |
1728 | I.Addr->setSibling(0); |
1729 | } |
1730 | for (Def I : ReachedDefs) |
1731 | I.Addr->setReachingDef(RD); |
1732 | for (Use I : ReachedUses) |
1733 | I.Addr->setReachingDef(RD); |
1734 | |
1735 | NodeId Sib = DA.Addr->getSibling(); |
1736 | if (RD == 0) { |
1737 | assert(Sib == 0); |
1738 | return; |
1739 | } |
1740 | |
1741 | // Update the reaching def node and remove DA from the sibling list. |
1742 | auto RDA = addr<DefNode *>(N: RD); |
1743 | auto TA = addr<DefNode *>(N: RDA.Addr->getReachedDef()); |
1744 | if (TA.Id == DA.Id) { |
1745 | // If DA is the first reached def, just update the RD's reached def |
1746 | // to the DA's sibling. |
1747 | RDA.Addr->setReachedDef(Sib); |
1748 | } else { |
1749 | // Otherwise, traverse the sibling list of the reached defs and remove |
1750 | // DA from it. |
1751 | while (TA.Id != 0) { |
1752 | NodeId S = TA.Addr->getSibling(); |
1753 | if (S == DA.Id) { |
1754 | TA.Addr->setSibling(Sib); |
1755 | break; |
1756 | } |
1757 | TA = addr<DefNode *>(N: S); |
1758 | } |
1759 | } |
1760 | |
1761 | // Splice the DA's reached defs into the RDA's reached def chain. |
1762 | if (!ReachedDefs.empty()) { |
1763 | auto Last = Def(ReachedDefs.back()); |
1764 | Last.Addr->setSibling(RDA.Addr->getReachedDef()); |
1765 | RDA.Addr->setReachedDef(ReachedDefs.front().Id); |
1766 | } |
1767 | // Splice the DA's reached uses into the RDA's reached use chain. |
1768 | if (!ReachedUses.empty()) { |
1769 | auto Last = Use(ReachedUses.back()); |
1770 | Last.Addr->setSibling(RDA.Addr->getReachedUse()); |
1771 | RDA.Addr->setReachedUse(ReachedUses.front().Id); |
1772 | } |
1773 | } |
1774 | |
1775 | bool DataFlowGraph::isTracked(RegisterRef RR) const { |
1776 | return !disjoint(A: getPRI().getUnits(RR), B: TrackedUnits); |
1777 | } |
1778 | |
1779 | bool DataFlowGraph::hasUntrackedRef(Stmt S, bool IgnoreReserved) const { |
1780 | SmallVector<MachineOperand *> Ops; |
1781 | |
1782 | for (Ref R : S.Addr->members(G: *this)) { |
1783 | Ops.push_back(Elt: &R.Addr->getOp()); |
1784 | RegisterRef RR = R.Addr->getRegRef(G: *this); |
1785 | if (IgnoreReserved && RR.isReg() && ReservedRegs[RR.idx()]) |
1786 | continue; |
1787 | if (!isTracked(RR)) |
1788 | return true; |
1789 | } |
1790 | for (const MachineOperand &Op : S.Addr->getCode()->operands()) { |
1791 | if (!Op.isReg() && !Op.isRegMask()) |
1792 | continue; |
1793 | if (!llvm::is_contained(Range&: Ops, Element: &Op)) |
1794 | return true; |
1795 | } |
1796 | return false; |
1797 | } |
1798 | |
1799 | } // end namespace llvm::rdf |
1800 | |