1 | //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the primary stateless implementation of the |
10 | // Alias Analysis interface that implements identities (two different |
11 | // globals cannot alias, etc), but does no stateful analysis. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
16 | #include "llvm/ADT/APInt.h" |
17 | #include "llvm/ADT/ScopeExit.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/AliasAnalysis.h" |
22 | #include "llvm/Analysis/AssumptionCache.h" |
23 | #include "llvm/Analysis/CFG.h" |
24 | #include "llvm/Analysis/CaptureTracking.h" |
25 | #include "llvm/Analysis/MemoryBuiltins.h" |
26 | #include "llvm/Analysis/MemoryLocation.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/ValueTracking.h" |
29 | #include "llvm/IR/Argument.h" |
30 | #include "llvm/IR/Attributes.h" |
31 | #include "llvm/IR/Constant.h" |
32 | #include "llvm/IR/ConstantRange.h" |
33 | #include "llvm/IR/Constants.h" |
34 | #include "llvm/IR/DataLayout.h" |
35 | #include "llvm/IR/DerivedTypes.h" |
36 | #include "llvm/IR/Dominators.h" |
37 | #include "llvm/IR/Function.h" |
38 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
39 | #include "llvm/IR/GlobalAlias.h" |
40 | #include "llvm/IR/GlobalVariable.h" |
41 | #include "llvm/IR/InstrTypes.h" |
42 | #include "llvm/IR/Instruction.h" |
43 | #include "llvm/IR/Instructions.h" |
44 | #include "llvm/IR/IntrinsicInst.h" |
45 | #include "llvm/IR/Intrinsics.h" |
46 | #include "llvm/IR/Operator.h" |
47 | #include "llvm/IR/PatternMatch.h" |
48 | #include "llvm/IR/Type.h" |
49 | #include "llvm/IR/User.h" |
50 | #include "llvm/IR/Value.h" |
51 | #include "llvm/InitializePasses.h" |
52 | #include "llvm/Pass.h" |
53 | #include "llvm/Support/Casting.h" |
54 | #include "llvm/Support/CommandLine.h" |
55 | #include "llvm/Support/Compiler.h" |
56 | #include "llvm/Support/KnownBits.h" |
57 | #include "llvm/Support/SaveAndRestore.h" |
58 | #include <cassert> |
59 | #include <cstdint> |
60 | #include <cstdlib> |
61 | #include <optional> |
62 | #include <utility> |
63 | |
64 | #define DEBUG_TYPE "basicaa" |
65 | |
66 | using namespace llvm; |
67 | |
68 | /// Enable analysis of recursive PHI nodes. |
69 | static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi" , cl::Hidden, |
70 | cl::init(Val: true)); |
71 | |
72 | static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage" , |
73 | cl::Hidden, cl::init(Val: true)); |
74 | |
75 | /// SearchLimitReached / SearchTimes shows how often the limit of |
76 | /// to decompose GEPs is reached. It will affect the precision |
77 | /// of basic alias analysis. |
78 | STATISTIC(SearchLimitReached, "Number of times the limit to " |
79 | "decompose GEPs is reached" ); |
80 | STATISTIC(SearchTimes, "Number of times a GEP is decomposed" ); |
81 | |
82 | // The max limit of the search depth in DecomposeGEPExpression() and |
83 | // getUnderlyingObject(). |
84 | static const unsigned MaxLookupSearchDepth = 6; |
85 | |
86 | bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, |
87 | FunctionAnalysisManager::Invalidator &Inv) { |
88 | // We don't care if this analysis itself is preserved, it has no state. But |
89 | // we need to check that the analyses it depends on have been. Note that we |
90 | // may be created without handles to some analyses and in that case don't |
91 | // depend on them. |
92 | if (Inv.invalidate<AssumptionAnalysis>(IR&: Fn, PA) || |
93 | (DT_ && Inv.invalidate<DominatorTreeAnalysis>(IR&: Fn, PA))) |
94 | return true; |
95 | |
96 | // Otherwise this analysis result remains valid. |
97 | return false; |
98 | } |
99 | |
100 | //===----------------------------------------------------------------------===// |
101 | // Useful predicates |
102 | //===----------------------------------------------------------------------===// |
103 | |
104 | /// Returns the size of the object specified by V or UnknownSize if unknown. |
105 | static std::optional<TypeSize> getObjectSize(const Value *V, |
106 | const DataLayout &DL, |
107 | const TargetLibraryInfo &TLI, |
108 | bool NullIsValidLoc, |
109 | bool RoundToAlign = false) { |
110 | uint64_t Size; |
111 | ObjectSizeOpts Opts; |
112 | Opts.RoundToAlign = RoundToAlign; |
113 | Opts.NullIsUnknownSize = NullIsValidLoc; |
114 | if (getObjectSize(Ptr: V, Size, DL, TLI: &TLI, Opts)) |
115 | return TypeSize::getFixed(ExactSize: Size); |
116 | return std::nullopt; |
117 | } |
118 | |
119 | /// Returns true if we can prove that the object specified by V is smaller than |
120 | /// Size. |
121 | static bool isObjectSmallerThan(const Value *V, TypeSize Size, |
122 | const DataLayout &DL, |
123 | const TargetLibraryInfo &TLI, |
124 | bool NullIsValidLoc) { |
125 | // Note that the meanings of the "object" are slightly different in the |
126 | // following contexts: |
127 | // c1: llvm::getObjectSize() |
128 | // c2: llvm.objectsize() intrinsic |
129 | // c3: isObjectSmallerThan() |
130 | // c1 and c2 share the same meaning; however, the meaning of "object" in c3 |
131 | // refers to the "entire object". |
132 | // |
133 | // Consider this example: |
134 | // char *p = (char*)malloc(100) |
135 | // char *q = p+80; |
136 | // |
137 | // In the context of c1 and c2, the "object" pointed by q refers to the |
138 | // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. |
139 | // |
140 | // However, in the context of c3, the "object" refers to the chunk of memory |
141 | // being allocated. So, the "object" has 100 bytes, and q points to the middle |
142 | // the "object". In case q is passed to isObjectSmallerThan() as the 1st |
143 | // parameter, before the llvm::getObjectSize() is called to get the size of |
144 | // entire object, we should: |
145 | // - either rewind the pointer q to the base-address of the object in |
146 | // question (in this case rewind to p), or |
147 | // - just give up. It is up to caller to make sure the pointer is pointing |
148 | // to the base address the object. |
149 | // |
150 | // We go for 2nd option for simplicity. |
151 | if (!isIdentifiedObject(V)) |
152 | return false; |
153 | |
154 | // This function needs to use the aligned object size because we allow |
155 | // reads a bit past the end given sufficient alignment. |
156 | std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, |
157 | /*RoundToAlign*/ true); |
158 | |
159 | return ObjectSize && TypeSize::isKnownLT(LHS: *ObjectSize, RHS: Size); |
160 | } |
161 | |
162 | /// Return the minimal extent from \p V to the end of the underlying object, |
163 | /// assuming the result is used in an aliasing query. E.g., we do use the query |
164 | /// location size and the fact that null pointers cannot alias here. |
165 | static TypeSize getMinimalExtentFrom(const Value &V, |
166 | const LocationSize &LocSize, |
167 | const DataLayout &DL, |
168 | bool NullIsValidLoc) { |
169 | // If we have dereferenceability information we know a lower bound for the |
170 | // extent as accesses for a lower offset would be valid. We need to exclude |
171 | // the "or null" part if null is a valid pointer. We can ignore frees, as an |
172 | // access after free would be undefined behavior. |
173 | bool CanBeNull, CanBeFreed; |
174 | uint64_t DerefBytes = |
175 | V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
176 | DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; |
177 | // If queried with a precise location size, we assume that location size to be |
178 | // accessed, thus valid. |
179 | if (LocSize.isPrecise()) |
180 | DerefBytes = std::max(a: DerefBytes, b: LocSize.getValue().getKnownMinValue()); |
181 | return TypeSize::getFixed(ExactSize: DerefBytes); |
182 | } |
183 | |
184 | /// Returns true if we can prove that the object specified by V has size Size. |
185 | static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL, |
186 | const TargetLibraryInfo &TLI, bool NullIsValidLoc) { |
187 | std::optional<TypeSize> ObjectSize = |
188 | getObjectSize(V, DL, TLI, NullIsValidLoc); |
189 | return ObjectSize && *ObjectSize == Size; |
190 | } |
191 | |
192 | /// Return true if both V1 and V2 are VScale |
193 | static bool areBothVScale(const Value *V1, const Value *V2) { |
194 | return PatternMatch::match(V: V1, P: PatternMatch::m_VScale()) && |
195 | PatternMatch::match(V: V2, P: PatternMatch::m_VScale()); |
196 | } |
197 | |
198 | //===----------------------------------------------------------------------===// |
199 | // CaptureInfo implementations |
200 | //===----------------------------------------------------------------------===// |
201 | |
202 | CaptureInfo::~CaptureInfo() = default; |
203 | |
204 | bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object, |
205 | const Instruction *I, bool OrAt) { |
206 | return isNonEscapingLocalObject(V: Object, IsCapturedCache: &IsCapturedCache); |
207 | } |
208 | |
209 | static bool isNotInCycle(const Instruction *I, const DominatorTree *DT, |
210 | const LoopInfo *LI) { |
211 | BasicBlock *BB = const_cast<BasicBlock *>(I->getParent()); |
212 | SmallVector<BasicBlock *> Succs(successors(BB)); |
213 | return Succs.empty() || |
214 | !isPotentiallyReachableFromMany(Worklist&: Succs, StopBB: BB, ExclusionSet: nullptr, DT, LI); |
215 | } |
216 | |
217 | bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object, |
218 | const Instruction *I, bool OrAt) { |
219 | if (!isIdentifiedFunctionLocal(V: Object)) |
220 | return false; |
221 | |
222 | auto Iter = EarliestEscapes.insert(KV: {Object, nullptr}); |
223 | if (Iter.second) { |
224 | Instruction *EarliestCapture = FindEarliestCapture( |
225 | V: Object, F&: *const_cast<Function *>(DT.getRoot()->getParent()), |
226 | /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT); |
227 | if (EarliestCapture) { |
228 | auto Ins = Inst2Obj.insert(KV: {EarliestCapture, {}}); |
229 | Ins.first->second.push_back(NewVal: Object); |
230 | } |
231 | Iter.first->second = EarliestCapture; |
232 | } |
233 | |
234 | // No capturing instruction. |
235 | if (!Iter.first->second) |
236 | return true; |
237 | |
238 | // No context instruction means any use is capturing. |
239 | if (!I) |
240 | return false; |
241 | |
242 | if (I == Iter.first->second) { |
243 | if (OrAt) |
244 | return false; |
245 | return isNotInCycle(I, DT: &DT, LI); |
246 | } |
247 | |
248 | return !isPotentiallyReachable(From: Iter.first->second, To: I, ExclusionSet: nullptr, DT: &DT, LI); |
249 | } |
250 | |
251 | void EarliestEscapeInfo::removeInstruction(Instruction *I) { |
252 | auto Iter = Inst2Obj.find(Val: I); |
253 | if (Iter != Inst2Obj.end()) { |
254 | for (const Value *Obj : Iter->second) |
255 | EarliestEscapes.erase(Val: Obj); |
256 | Inst2Obj.erase(Val: I); |
257 | } |
258 | } |
259 | |
260 | //===----------------------------------------------------------------------===// |
261 | // GetElementPtr Instruction Decomposition and Analysis |
262 | //===----------------------------------------------------------------------===// |
263 | |
264 | namespace { |
265 | /// Represents zext(sext(trunc(V))). |
266 | struct CastedValue { |
267 | const Value *V; |
268 | unsigned ZExtBits = 0; |
269 | unsigned SExtBits = 0; |
270 | unsigned TruncBits = 0; |
271 | /// Whether trunc(V) is non-negative. |
272 | bool IsNonNegative = false; |
273 | |
274 | explicit CastedValue(const Value *V) : V(V) {} |
275 | explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, |
276 | unsigned TruncBits, bool IsNonNegative) |
277 | : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits), |
278 | IsNonNegative(IsNonNegative) {} |
279 | |
280 | unsigned getBitWidth() const { |
281 | return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + |
282 | SExtBits; |
283 | } |
284 | |
285 | CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const { |
286 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits, |
287 | IsNonNegative && PreserveNonNeg); |
288 | } |
289 | |
290 | /// Replace V with zext(NewV) |
291 | CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const { |
292 | unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - |
293 | NewV->getType()->getPrimitiveSizeInBits(); |
294 | if (ExtendBy <= TruncBits) |
295 | // zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV)) |
296 | // The nneg can be preserved on the outer zext here. |
297 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, |
298 | IsNonNegative); |
299 | |
300 | // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) |
301 | ExtendBy -= TruncBits; |
302 | // zext<nneg>(zext(NewV)) == zext(NewV) |
303 | // zext(zext<nneg>(NewV)) == zext<nneg>(NewV) |
304 | // The nneg can be preserved from the inner zext here but must be dropped |
305 | // from the outer. |
306 | return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0, |
307 | ZExtNonNegative); |
308 | } |
309 | |
310 | /// Replace V with sext(NewV) |
311 | CastedValue withSExtOfValue(const Value *NewV) const { |
312 | unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - |
313 | NewV->getType()->getPrimitiveSizeInBits(); |
314 | if (ExtendBy <= TruncBits) |
315 | // zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV)) |
316 | // The nneg can be preserved on the outer zext here |
317 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy, |
318 | IsNonNegative); |
319 | |
320 | // zext(sext(sext(NewV))) |
321 | ExtendBy -= TruncBits; |
322 | // zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV)) |
323 | // The nneg can be preserved on the outer zext here |
324 | return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative); |
325 | } |
326 | |
327 | APInt evaluateWith(APInt N) const { |
328 | assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && |
329 | "Incompatible bit width" ); |
330 | if (TruncBits) N = N.trunc(width: N.getBitWidth() - TruncBits); |
331 | if (SExtBits) N = N.sext(width: N.getBitWidth() + SExtBits); |
332 | if (ZExtBits) N = N.zext(width: N.getBitWidth() + ZExtBits); |
333 | return N; |
334 | } |
335 | |
336 | ConstantRange evaluateWith(ConstantRange N) const { |
337 | assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && |
338 | "Incompatible bit width" ); |
339 | if (TruncBits) N = N.truncate(BitWidth: N.getBitWidth() - TruncBits); |
340 | if (SExtBits) N = N.signExtend(BitWidth: N.getBitWidth() + SExtBits); |
341 | if (ZExtBits) N = N.zeroExtend(BitWidth: N.getBitWidth() + ZExtBits); |
342 | return N; |
343 | } |
344 | |
345 | bool canDistributeOver(bool NUW, bool NSW) const { |
346 | // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) |
347 | // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) |
348 | // trunc(x op y) == trunc(x) op trunc(y) |
349 | return (!ZExtBits || NUW) && (!SExtBits || NSW); |
350 | } |
351 | |
352 | bool hasSameCastsAs(const CastedValue &Other) const { |
353 | if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && |
354 | TruncBits == Other.TruncBits) |
355 | return true; |
356 | // If either CastedValue has a nneg zext then the sext/zext bits are |
357 | // interchangable for that value. |
358 | if (IsNonNegative || Other.IsNonNegative) |
359 | return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits && |
360 | TruncBits == Other.TruncBits); |
361 | return false; |
362 | } |
363 | }; |
364 | |
365 | /// Represents zext(sext(trunc(V))) * Scale + Offset. |
366 | struct LinearExpression { |
367 | CastedValue Val; |
368 | APInt Scale; |
369 | APInt Offset; |
370 | |
371 | /// True if all operations in this expression are NSW. |
372 | bool IsNSW; |
373 | |
374 | LinearExpression(const CastedValue &Val, const APInt &Scale, |
375 | const APInt &Offset, bool IsNSW) |
376 | : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} |
377 | |
378 | LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { |
379 | unsigned BitWidth = Val.getBitWidth(); |
380 | Scale = APInt(BitWidth, 1); |
381 | Offset = APInt(BitWidth, 0); |
382 | } |
383 | |
384 | LinearExpression mul(const APInt &Other, bool MulIsNSW) const { |
385 | // The check for zero offset is necessary, because generally |
386 | // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). |
387 | bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); |
388 | return LinearExpression(Val, Scale * Other, Offset * Other, NSW); |
389 | } |
390 | }; |
391 | } |
392 | |
393 | /// Analyzes the specified value as a linear expression: "A*V + B", where A and |
394 | /// B are constant integers. |
395 | static LinearExpression GetLinearExpression( |
396 | const CastedValue &Val, const DataLayout &DL, unsigned Depth, |
397 | AssumptionCache *AC, DominatorTree *DT) { |
398 | // Limit our recursion depth. |
399 | if (Depth == 6) |
400 | return Val; |
401 | |
402 | if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val: Val.V)) |
403 | return LinearExpression(Val, APInt(Val.getBitWidth(), 0), |
404 | Val.evaluateWith(N: Const->getValue()), true); |
405 | |
406 | if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: Val.V)) { |
407 | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Val: BOp->getOperand(i_nocapture: 1))) { |
408 | APInt RHS = Val.evaluateWith(N: RHSC->getValue()); |
409 | // The only non-OBO case we deal with is or, and only limited to the |
410 | // case where it is both nuw and nsw. |
411 | bool NUW = true, NSW = true; |
412 | if (isa<OverflowingBinaryOperator>(Val: BOp)) { |
413 | NUW &= BOp->hasNoUnsignedWrap(); |
414 | NSW &= BOp->hasNoSignedWrap(); |
415 | } |
416 | if (!Val.canDistributeOver(NUW, NSW)) |
417 | return Val; |
418 | |
419 | // While we can distribute over trunc, we cannot preserve nowrap flags |
420 | // in that case. |
421 | if (Val.TruncBits) |
422 | NUW = NSW = false; |
423 | |
424 | LinearExpression E(Val); |
425 | switch (BOp->getOpcode()) { |
426 | default: |
427 | // We don't understand this instruction, so we can't decompose it any |
428 | // further. |
429 | return Val; |
430 | case Instruction::Or: |
431 | // X|C == X+C if it is disjoint. Otherwise we can't analyze it. |
432 | if (!cast<PossiblyDisjointInst>(Val: BOp)->isDisjoint()) |
433 | return Val; |
434 | |
435 | [[fallthrough]]; |
436 | case Instruction::Add: { |
437 | E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0), PreserveNonNeg: false), DL, |
438 | Depth: Depth + 1, AC, DT); |
439 | E.Offset += RHS; |
440 | E.IsNSW &= NSW; |
441 | break; |
442 | } |
443 | case Instruction::Sub: { |
444 | E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0), PreserveNonNeg: false), DL, |
445 | Depth: Depth + 1, AC, DT); |
446 | E.Offset -= RHS; |
447 | E.IsNSW &= NSW; |
448 | break; |
449 | } |
450 | case Instruction::Mul: |
451 | E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0), PreserveNonNeg: false), DL, |
452 | Depth: Depth + 1, AC, DT) |
453 | .mul(Other: RHS, MulIsNSW: NSW); |
454 | break; |
455 | case Instruction::Shl: |
456 | // We're trying to linearize an expression of the kind: |
457 | // shl i8 -128, 36 |
458 | // where the shift count exceeds the bitwidth of the type. |
459 | // We can't decompose this further (the expression would return |
460 | // a poison value). |
461 | if (RHS.getLimitedValue() > Val.getBitWidth()) |
462 | return Val; |
463 | |
464 | E = GetLinearExpression(Val: Val.withValue(NewV: BOp->getOperand(i_nocapture: 0), PreserveNonNeg: NSW), DL, |
465 | Depth: Depth + 1, AC, DT); |
466 | E.Offset <<= RHS.getLimitedValue(); |
467 | E.Scale <<= RHS.getLimitedValue(); |
468 | E.IsNSW &= NSW; |
469 | break; |
470 | } |
471 | return E; |
472 | } |
473 | } |
474 | |
475 | if (const auto *ZExt = dyn_cast<ZExtInst>(Val: Val.V)) |
476 | return GetLinearExpression( |
477 | Val: Val.withZExtOfValue(NewV: ZExt->getOperand(i_nocapture: 0), ZExtNonNegative: ZExt->hasNonNeg()), DL, |
478 | Depth: Depth + 1, AC, DT); |
479 | |
480 | if (isa<SExtInst>(Val: Val.V)) |
481 | return GetLinearExpression( |
482 | Val: Val.withSExtOfValue(NewV: cast<CastInst>(Val: Val.V)->getOperand(i_nocapture: 0)), |
483 | DL, Depth: Depth + 1, AC, DT); |
484 | |
485 | return Val; |
486 | } |
487 | |
488 | /// To ensure a pointer offset fits in an integer of size IndexSize |
489 | /// (in bits) when that size is smaller than the maximum index size. This is |
490 | /// an issue, for example, in particular for 32b pointers with negative indices |
491 | /// that rely on two's complement wrap-arounds for precise alias information |
492 | /// where the maximum index size is 64b. |
493 | static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) { |
494 | assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!" ); |
495 | unsigned ShiftBits = Offset.getBitWidth() - IndexSize; |
496 | if (ShiftBits != 0) { |
497 | Offset <<= ShiftBits; |
498 | Offset.ashrInPlace(ShiftAmt: ShiftBits); |
499 | } |
500 | } |
501 | |
502 | namespace { |
503 | // A linear transformation of a Value; this class represents |
504 | // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. |
505 | struct VariableGEPIndex { |
506 | CastedValue Val; |
507 | APInt Scale; |
508 | |
509 | // Context instruction to use when querying information about this index. |
510 | const Instruction *CxtI; |
511 | |
512 | /// True if all operations in this expression are NSW. |
513 | bool IsNSW; |
514 | |
515 | /// True if the index should be subtracted rather than added. We don't simply |
516 | /// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be |
517 | /// non-wrapping, while X + INT_MIN*(-1) wraps. |
518 | bool IsNegated; |
519 | |
520 | bool hasNegatedScaleOf(const VariableGEPIndex &Other) const { |
521 | if (IsNegated == Other.IsNegated) |
522 | return Scale == -Other.Scale; |
523 | return Scale == Other.Scale; |
524 | } |
525 | |
526 | void dump() const { |
527 | print(OS&: dbgs()); |
528 | dbgs() << "\n" ; |
529 | } |
530 | void print(raw_ostream &OS) const { |
531 | OS << "(V=" << Val.V->getName() |
532 | << ", zextbits=" << Val.ZExtBits |
533 | << ", sextbits=" << Val.SExtBits |
534 | << ", truncbits=" << Val.TruncBits |
535 | << ", scale=" << Scale |
536 | << ", nsw=" << IsNSW |
537 | << ", negated=" << IsNegated << ")" ; |
538 | } |
539 | }; |
540 | } |
541 | |
542 | // Represents the internal structure of a GEP, decomposed into a base pointer, |
543 | // constant offsets, and variable scaled indices. |
544 | struct BasicAAResult::DecomposedGEP { |
545 | // Base pointer of the GEP |
546 | const Value *Base; |
547 | // Total constant offset from base. |
548 | APInt Offset; |
549 | // Scaled variable (non-constant) indices. |
550 | SmallVector<VariableGEPIndex, 4> VarIndices; |
551 | // Are all operations inbounds GEPs or non-indexing operations? |
552 | // (std::nullopt iff expression doesn't involve any geps) |
553 | std::optional<bool> InBounds; |
554 | |
555 | void dump() const { |
556 | print(OS&: dbgs()); |
557 | dbgs() << "\n" ; |
558 | } |
559 | void print(raw_ostream &OS) const { |
560 | OS << "(DecomposedGEP Base=" << Base->getName() |
561 | << ", Offset=" << Offset |
562 | << ", VarIndices=[" ; |
563 | for (size_t i = 0; i < VarIndices.size(); i++) { |
564 | if (i != 0) |
565 | OS << ", " ; |
566 | VarIndices[i].print(OS); |
567 | } |
568 | OS << "])" ; |
569 | } |
570 | }; |
571 | |
572 | |
573 | /// If V is a symbolic pointer expression, decompose it into a base pointer |
574 | /// with a constant offset and a number of scaled symbolic offsets. |
575 | /// |
576 | /// The scaled symbolic offsets (represented by pairs of a Value* and a scale |
577 | /// in the VarIndices vector) are Value*'s that are known to be scaled by the |
578 | /// specified amount, but which may have other unrepresented high bits. As |
579 | /// such, the gep cannot necessarily be reconstructed from its decomposed form. |
580 | BasicAAResult::DecomposedGEP |
581 | BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, |
582 | AssumptionCache *AC, DominatorTree *DT) { |
583 | // Limit recursion depth to limit compile time in crazy cases. |
584 | unsigned MaxLookup = MaxLookupSearchDepth; |
585 | SearchTimes++; |
586 | const Instruction *CxtI = dyn_cast<Instruction>(Val: V); |
587 | |
588 | unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); |
589 | DecomposedGEP Decomposed; |
590 | Decomposed.Offset = APInt(MaxIndexSize, 0); |
591 | do { |
592 | // See if this is a bitcast or GEP. |
593 | const Operator *Op = dyn_cast<Operator>(Val: V); |
594 | if (!Op) { |
595 | // The only non-operator case we can handle are GlobalAliases. |
596 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Val: V)) { |
597 | if (!GA->isInterposable()) { |
598 | V = GA->getAliasee(); |
599 | continue; |
600 | } |
601 | } |
602 | Decomposed.Base = V; |
603 | return Decomposed; |
604 | } |
605 | |
606 | if (Op->getOpcode() == Instruction::BitCast || |
607 | Op->getOpcode() == Instruction::AddrSpaceCast) { |
608 | V = Op->getOperand(i: 0); |
609 | continue; |
610 | } |
611 | |
612 | const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Val: Op); |
613 | if (!GEPOp) { |
614 | if (const auto *PHI = dyn_cast<PHINode>(Val: V)) { |
615 | // Look through single-arg phi nodes created by LCSSA. |
616 | if (PHI->getNumIncomingValues() == 1) { |
617 | V = PHI->getIncomingValue(i: 0); |
618 | continue; |
619 | } |
620 | } else if (const auto *Call = dyn_cast<CallBase>(Val: V)) { |
621 | // CaptureTracking can know about special capturing properties of some |
622 | // intrinsics like launder.invariant.group, that can't be expressed with |
623 | // the attributes, but have properties like returning aliasing pointer. |
624 | // Because some analysis may assume that nocaptured pointer is not |
625 | // returned from some special intrinsic (because function would have to |
626 | // be marked with returns attribute), it is crucial to use this function |
627 | // because it should be in sync with CaptureTracking. Not using it may |
628 | // cause weird miscompilations where 2 aliasing pointers are assumed to |
629 | // noalias. |
630 | if (auto *RP = getArgumentAliasingToReturnedPointer(Call, MustPreserveNullness: false)) { |
631 | V = RP; |
632 | continue; |
633 | } |
634 | } |
635 | |
636 | Decomposed.Base = V; |
637 | return Decomposed; |
638 | } |
639 | |
640 | // Track whether we've seen at least one in bounds gep, and if so, whether |
641 | // all geps parsed were in bounds. |
642 | if (Decomposed.InBounds == std::nullopt) |
643 | Decomposed.InBounds = GEPOp->isInBounds(); |
644 | else if (!GEPOp->isInBounds()) |
645 | Decomposed.InBounds = false; |
646 | |
647 | assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized" ); |
648 | |
649 | unsigned AS = GEPOp->getPointerAddressSpace(); |
650 | // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. |
651 | gep_type_iterator GTI = gep_type_begin(GEP: GEPOp); |
652 | unsigned IndexSize = DL.getIndexSizeInBits(AS); |
653 | // Assume all GEP operands are constants until proven otherwise. |
654 | bool GepHasConstantOffset = true; |
655 | for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); |
656 | I != E; ++I, ++GTI) { |
657 | const Value *Index = *I; |
658 | // Compute the (potentially symbolic) offset in bytes for this index. |
659 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
660 | // For a struct, add the member offset. |
661 | unsigned FieldNo = cast<ConstantInt>(Val: Index)->getZExtValue(); |
662 | if (FieldNo == 0) |
663 | continue; |
664 | |
665 | Decomposed.Offset += DL.getStructLayout(Ty: STy)->getElementOffset(Idx: FieldNo); |
666 | continue; |
667 | } |
668 | |
669 | // For an array/pointer, add the element offset, explicitly scaled. |
670 | if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Val: Index)) { |
671 | if (CIdx->isZero()) |
672 | continue; |
673 | |
674 | // Don't attempt to analyze GEPs if the scalable index is not zero. |
675 | TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); |
676 | if (AllocTypeSize.isScalable()) { |
677 | Decomposed.Base = V; |
678 | return Decomposed; |
679 | } |
680 | |
681 | Decomposed.Offset += AllocTypeSize.getFixedValue() * |
682 | CIdx->getValue().sextOrTrunc(width: MaxIndexSize); |
683 | continue; |
684 | } |
685 | |
686 | TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL); |
687 | if (AllocTypeSize.isScalable()) { |
688 | Decomposed.Base = V; |
689 | return Decomposed; |
690 | } |
691 | |
692 | GepHasConstantOffset = false; |
693 | |
694 | // If the integer type is smaller than the index size, it is implicitly |
695 | // sign extended or truncated to index size. |
696 | unsigned Width = Index->getType()->getIntegerBitWidth(); |
697 | unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; |
698 | unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; |
699 | LinearExpression LE = GetLinearExpression( |
700 | Val: CastedValue(Index, 0, SExtBits, TruncBits, false), DL, Depth: 0, AC, DT); |
701 | |
702 | // Scale by the type size. |
703 | unsigned TypeSize = AllocTypeSize.getFixedValue(); |
704 | LE = LE.mul(Other: APInt(IndexSize, TypeSize), MulIsNSW: GEPOp->isInBounds()); |
705 | Decomposed.Offset += LE.Offset.sext(width: MaxIndexSize); |
706 | APInt Scale = LE.Scale.sext(width: MaxIndexSize); |
707 | |
708 | // If we already had an occurrence of this index variable, merge this |
709 | // scale into it. For example, we want to handle: |
710 | // A[x][x] -> x*16 + x*4 -> x*20 |
711 | // This also ensures that 'x' only appears in the index list once. |
712 | for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { |
713 | if ((Decomposed.VarIndices[i].Val.V == LE.Val.V || |
714 | areBothVScale(V1: Decomposed.VarIndices[i].Val.V, V2: LE.Val.V)) && |
715 | Decomposed.VarIndices[i].Val.hasSameCastsAs(Other: LE.Val)) { |
716 | Scale += Decomposed.VarIndices[i].Scale; |
717 | LE.IsNSW = false; // We cannot guarantee nsw for the merge. |
718 | Decomposed.VarIndices.erase(CI: Decomposed.VarIndices.begin() + i); |
719 | break; |
720 | } |
721 | } |
722 | |
723 | // Make sure that we have a scale that makes sense for this target's |
724 | // index size. |
725 | adjustToIndexSize(Offset&: Scale, IndexSize); |
726 | |
727 | if (!!Scale) { |
728 | VariableGEPIndex Entry = {.Val: LE.Val, .Scale: Scale, .CxtI: CxtI, .IsNSW: LE.IsNSW, |
729 | /* IsNegated */ false}; |
730 | Decomposed.VarIndices.push_back(Elt: Entry); |
731 | } |
732 | } |
733 | |
734 | // Take care of wrap-arounds |
735 | if (GepHasConstantOffset) |
736 | adjustToIndexSize(Offset&: Decomposed.Offset, IndexSize); |
737 | |
738 | // Analyze the base pointer next. |
739 | V = GEPOp->getOperand(i_nocapture: 0); |
740 | } while (--MaxLookup); |
741 | |
742 | // If the chain of expressions is too deep, just return early. |
743 | Decomposed.Base = V; |
744 | SearchLimitReached++; |
745 | return Decomposed; |
746 | } |
747 | |
748 | ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, |
749 | AAQueryInfo &AAQI, |
750 | bool IgnoreLocals) { |
751 | assert(Visited.empty() && "Visited must be cleared after use!" ); |
752 | auto _ = make_scope_exit(F: [&] { Visited.clear(); }); |
753 | |
754 | unsigned MaxLookup = 8; |
755 | SmallVector<const Value *, 16> Worklist; |
756 | Worklist.push_back(Elt: Loc.Ptr); |
757 | ModRefInfo Result = ModRefInfo::NoModRef; |
758 | |
759 | do { |
760 | const Value *V = getUnderlyingObject(V: Worklist.pop_back_val()); |
761 | if (!Visited.insert(Ptr: V).second) |
762 | continue; |
763 | |
764 | // Ignore allocas if we were instructed to do so. |
765 | if (IgnoreLocals && isa<AllocaInst>(Val: V)) |
766 | continue; |
767 | |
768 | // If the location points to memory that is known to be invariant for |
769 | // the life of the underlying SSA value, then we can exclude Mod from |
770 | // the set of valid memory effects. |
771 | // |
772 | // An argument that is marked readonly and noalias is known to be |
773 | // invariant while that function is executing. |
774 | if (const Argument *Arg = dyn_cast<Argument>(Val: V)) { |
775 | if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { |
776 | Result |= ModRefInfo::Ref; |
777 | continue; |
778 | } |
779 | } |
780 | |
781 | // A global constant can't be mutated. |
782 | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Val: V)) { |
783 | // Note: this doesn't require GV to be "ODR" because it isn't legal for a |
784 | // global to be marked constant in some modules and non-constant in |
785 | // others. GV may even be a declaration, not a definition. |
786 | if (!GV->isConstant()) |
787 | return ModRefInfo::ModRef; |
788 | continue; |
789 | } |
790 | |
791 | // If both select values point to local memory, then so does the select. |
792 | if (const SelectInst *SI = dyn_cast<SelectInst>(Val: V)) { |
793 | Worklist.push_back(Elt: SI->getTrueValue()); |
794 | Worklist.push_back(Elt: SI->getFalseValue()); |
795 | continue; |
796 | } |
797 | |
798 | // If all values incoming to a phi node point to local memory, then so does |
799 | // the phi. |
800 | if (const PHINode *PN = dyn_cast<PHINode>(Val: V)) { |
801 | // Don't bother inspecting phi nodes with many operands. |
802 | if (PN->getNumIncomingValues() > MaxLookup) |
803 | return ModRefInfo::ModRef; |
804 | append_range(C&: Worklist, R: PN->incoming_values()); |
805 | continue; |
806 | } |
807 | |
808 | // Otherwise be conservative. |
809 | return ModRefInfo::ModRef; |
810 | } while (!Worklist.empty() && --MaxLookup); |
811 | |
812 | // If we hit the maximum number of instructions to examine, be conservative. |
813 | if (!Worklist.empty()) |
814 | return ModRefInfo::ModRef; |
815 | |
816 | return Result; |
817 | } |
818 | |
819 | static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { |
820 | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Call); |
821 | return II && II->getIntrinsicID() == IID; |
822 | } |
823 | |
824 | /// Returns the behavior when calling the given call site. |
825 | MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, |
826 | AAQueryInfo &AAQI) { |
827 | MemoryEffects Min = Call->getAttributes().getMemoryEffects(); |
828 | |
829 | if (const Function *F = dyn_cast<Function>(Val: Call->getCalledOperand())) { |
830 | MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); |
831 | // Operand bundles on the call may also read or write memory, in addition |
832 | // to the behavior of the called function. |
833 | if (Call->hasReadingOperandBundles()) |
834 | FuncME |= MemoryEffects::readOnly(); |
835 | if (Call->hasClobberingOperandBundles()) |
836 | FuncME |= MemoryEffects::writeOnly(); |
837 | Min &= FuncME; |
838 | } |
839 | |
840 | return Min; |
841 | } |
842 | |
843 | /// Returns the behavior when calling the given function. For use when the call |
844 | /// site is not known. |
845 | MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { |
846 | switch (F->getIntrinsicID()) { |
847 | case Intrinsic::experimental_guard: |
848 | case Intrinsic::experimental_deoptimize: |
849 | // These intrinsics can read arbitrary memory, and additionally modref |
850 | // inaccessible memory to model control dependence. |
851 | return MemoryEffects::readOnly() | |
852 | MemoryEffects::inaccessibleMemOnly(MR: ModRefInfo::ModRef); |
853 | } |
854 | |
855 | return F->getMemoryEffects(); |
856 | } |
857 | |
858 | ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, |
859 | unsigned ArgIdx) { |
860 | if (Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::WriteOnly)) |
861 | return ModRefInfo::Mod; |
862 | |
863 | if (Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ReadOnly)) |
864 | return ModRefInfo::Ref; |
865 | |
866 | if (Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ReadNone)) |
867 | return ModRefInfo::NoModRef; |
868 | |
869 | return ModRefInfo::ModRef; |
870 | } |
871 | |
872 | #ifndef NDEBUG |
873 | static const Function *getParent(const Value *V) { |
874 | if (const Instruction *inst = dyn_cast<Instruction>(V)) { |
875 | if (!inst->getParent()) |
876 | return nullptr; |
877 | return inst->getParent()->getParent(); |
878 | } |
879 | |
880 | if (const Argument *arg = dyn_cast<Argument>(V)) |
881 | return arg->getParent(); |
882 | |
883 | return nullptr; |
884 | } |
885 | |
886 | static bool notDifferentParent(const Value *O1, const Value *O2) { |
887 | |
888 | const Function *F1 = getParent(O1); |
889 | const Function *F2 = getParent(O2); |
890 | |
891 | return !F1 || !F2 || F1 == F2; |
892 | } |
893 | #endif |
894 | |
895 | AliasResult BasicAAResult::alias(const MemoryLocation &LocA, |
896 | const MemoryLocation &LocB, AAQueryInfo &AAQI, |
897 | const Instruction *CtxI) { |
898 | assert(notDifferentParent(LocA.Ptr, LocB.Ptr) && |
899 | "BasicAliasAnalysis doesn't support interprocedural queries." ); |
900 | return aliasCheck(V1: LocA.Ptr, V1Size: LocA.Size, V2: LocB.Ptr, V2Size: LocB.Size, AAQI, CtxI); |
901 | } |
902 | |
903 | /// Checks to see if the specified callsite can clobber the specified memory |
904 | /// object. |
905 | /// |
906 | /// Since we only look at local properties of this function, we really can't |
907 | /// say much about this query. We do, however, use simple "address taken" |
908 | /// analysis on local objects. |
909 | ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, |
910 | const MemoryLocation &Loc, |
911 | AAQueryInfo &AAQI) { |
912 | assert(notDifferentParent(Call, Loc.Ptr) && |
913 | "AliasAnalysis query involving multiple functions!" ); |
914 | |
915 | const Value *Object = getUnderlyingObject(V: Loc.Ptr); |
916 | |
917 | // Calls marked 'tail' cannot read or write allocas from the current frame |
918 | // because the current frame might be destroyed by the time they run. However, |
919 | // a tail call may use an alloca with byval. Calling with byval copies the |
920 | // contents of the alloca into argument registers or stack slots, so there is |
921 | // no lifetime issue. |
922 | if (isa<AllocaInst>(Val: Object)) |
923 | if (const CallInst *CI = dyn_cast<CallInst>(Val: Call)) |
924 | if (CI->isTailCall() && |
925 | !CI->getAttributes().hasAttrSomewhere(Kind: Attribute::ByVal)) |
926 | return ModRefInfo::NoModRef; |
927 | |
928 | // Stack restore is able to modify unescaped dynamic allocas. Assume it may |
929 | // modify them even though the alloca is not escaped. |
930 | if (auto *AI = dyn_cast<AllocaInst>(Val: Object)) |
931 | if (!AI->isStaticAlloca() && isIntrinsicCall(Call, IID: Intrinsic::stackrestore)) |
932 | return ModRefInfo::Mod; |
933 | |
934 | // A call can access a locally allocated object either because it is passed as |
935 | // an argument to the call, or because it has escaped prior to the call. |
936 | // |
937 | // Make sure the object has not escaped here, and then check that none of the |
938 | // call arguments alias the object below. |
939 | if (!isa<Constant>(Val: Object) && Call != Object && |
940 | AAQI.CI->isNotCapturedBefore(Object, I: Call, /*OrAt*/ false)) { |
941 | |
942 | // Optimistically assume that call doesn't touch Object and check this |
943 | // assumption in the following loop. |
944 | ModRefInfo Result = ModRefInfo::NoModRef; |
945 | |
946 | unsigned OperandNo = 0; |
947 | for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); |
948 | CI != CE; ++CI, ++OperandNo) { |
949 | if (!(*CI)->getType()->isPointerTy()) |
950 | continue; |
951 | |
952 | // Call doesn't access memory through this operand, so we don't care |
953 | // if it aliases with Object. |
954 | if (Call->doesNotAccessMemory(OpNo: OperandNo)) |
955 | continue; |
956 | |
957 | // If this is a no-capture pointer argument, see if we can tell that it |
958 | // is impossible to alias the pointer we're checking. |
959 | AliasResult AR = |
960 | AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: *CI), |
961 | LocB: MemoryLocation::getBeforeOrAfter(Ptr: Object), AAQI); |
962 | // Operand doesn't alias 'Object', continue looking for other aliases |
963 | if (AR == AliasResult::NoAlias) |
964 | continue; |
965 | // Operand aliases 'Object', but call doesn't modify it. Strengthen |
966 | // initial assumption and keep looking in case if there are more aliases. |
967 | if (Call->onlyReadsMemory(OpNo: OperandNo)) { |
968 | Result |= ModRefInfo::Ref; |
969 | continue; |
970 | } |
971 | // Operand aliases 'Object' but call only writes into it. |
972 | if (Call->onlyWritesMemory(OpNo: OperandNo)) { |
973 | Result |= ModRefInfo::Mod; |
974 | continue; |
975 | } |
976 | // This operand aliases 'Object' and call reads and writes into it. |
977 | // Setting ModRef will not yield an early return below, MustAlias is not |
978 | // used further. |
979 | Result = ModRefInfo::ModRef; |
980 | break; |
981 | } |
982 | |
983 | // Early return if we improved mod ref information |
984 | if (!isModAndRefSet(MRI: Result)) |
985 | return Result; |
986 | } |
987 | |
988 | // If the call is malloc/calloc like, we can assume that it doesn't |
989 | // modify any IR visible value. This is only valid because we assume these |
990 | // routines do not read values visible in the IR. TODO: Consider special |
991 | // casing realloc and strdup routines which access only their arguments as |
992 | // well. Or alternatively, replace all of this with inaccessiblememonly once |
993 | // that's implemented fully. |
994 | if (isMallocOrCallocLikeFn(V: Call, TLI: &TLI)) { |
995 | // Be conservative if the accessed pointer may alias the allocation - |
996 | // fallback to the generic handling below. |
997 | if (AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: Call), LocB: Loc, AAQI) == |
998 | AliasResult::NoAlias) |
999 | return ModRefInfo::NoModRef; |
1000 | } |
1001 | |
1002 | // Like assumes, invariant.start intrinsics were also marked as arbitrarily |
1003 | // writing so that proper control dependencies are maintained but they never |
1004 | // mod any particular memory location visible to the IR. |
1005 | // *Unlike* assumes (which are now modeled as NoModRef), invariant.start |
1006 | // intrinsic is now modeled as reading memory. This prevents hoisting the |
1007 | // invariant.start intrinsic over stores. Consider: |
1008 | // *ptr = 40; |
1009 | // *ptr = 50; |
1010 | // invariant_start(ptr) |
1011 | // int val = *ptr; |
1012 | // print(val); |
1013 | // |
1014 | // This cannot be transformed to: |
1015 | // |
1016 | // *ptr = 40; |
1017 | // invariant_start(ptr) |
1018 | // *ptr = 50; |
1019 | // int val = *ptr; |
1020 | // print(val); |
1021 | // |
1022 | // The transformation will cause the second store to be ignored (based on |
1023 | // rules of invariant.start) and print 40, while the first program always |
1024 | // prints 50. |
1025 | if (isIntrinsicCall(Call, IID: Intrinsic::invariant_start)) |
1026 | return ModRefInfo::Ref; |
1027 | |
1028 | // Be conservative. |
1029 | return ModRefInfo::ModRef; |
1030 | } |
1031 | |
1032 | ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, |
1033 | const CallBase *Call2, |
1034 | AAQueryInfo &AAQI) { |
1035 | // Guard intrinsics are marked as arbitrarily writing so that proper control |
1036 | // dependencies are maintained but they never mods any particular memory |
1037 | // location. |
1038 | // |
1039 | // *Unlike* assumes, guard intrinsics are modeled as reading memory since the |
1040 | // heap state at the point the guard is issued needs to be consistent in case |
1041 | // the guard invokes the "deopt" continuation. |
1042 | |
1043 | // NB! This function is *not* commutative, so we special case two |
1044 | // possibilities for guard intrinsics. |
1045 | |
1046 | if (isIntrinsicCall(Call: Call1, IID: Intrinsic::experimental_guard)) |
1047 | return isModSet(MRI: getMemoryEffects(Call: Call2, AAQI).getModRef()) |
1048 | ? ModRefInfo::Ref |
1049 | : ModRefInfo::NoModRef; |
1050 | |
1051 | if (isIntrinsicCall(Call: Call2, IID: Intrinsic::experimental_guard)) |
1052 | return isModSet(MRI: getMemoryEffects(Call: Call1, AAQI).getModRef()) |
1053 | ? ModRefInfo::Mod |
1054 | : ModRefInfo::NoModRef; |
1055 | |
1056 | // Be conservative. |
1057 | return ModRefInfo::ModRef; |
1058 | } |
1059 | |
1060 | /// Return true if we know V to the base address of the corresponding memory |
1061 | /// object. This implies that any address less than V must be out of bounds |
1062 | /// for the underlying object. Note that just being isIdentifiedObject() is |
1063 | /// not enough - For example, a negative offset from a noalias argument or call |
1064 | /// can be inbounds w.r.t the actual underlying object. |
1065 | static bool isBaseOfObject(const Value *V) { |
1066 | // TODO: We can handle other cases here |
1067 | // 1) For GC languages, arguments to functions are often required to be |
1068 | // base pointers. |
1069 | // 2) Result of allocation routines are often base pointers. Leverage TLI. |
1070 | return (isa<AllocaInst>(Val: V) || isa<GlobalVariable>(Val: V)); |
1071 | } |
1072 | |
1073 | /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against |
1074 | /// another pointer. |
1075 | /// |
1076 | /// We know that V1 is a GEP, but we don't know anything about V2. |
1077 | /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for |
1078 | /// V2. |
1079 | AliasResult BasicAAResult::aliasGEP( |
1080 | const GEPOperator *GEP1, LocationSize V1Size, |
1081 | const Value *V2, LocationSize V2Size, |
1082 | const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { |
1083 | if (!V1Size.hasValue() && !V2Size.hasValue()) { |
1084 | // TODO: This limitation exists for compile-time reasons. Relax it if we |
1085 | // can avoid exponential pathological cases. |
1086 | if (!isa<GEPOperator>(Val: V2)) |
1087 | return AliasResult::MayAlias; |
1088 | |
1089 | // If both accesses have unknown size, we can only check whether the base |
1090 | // objects don't alias. |
1091 | AliasResult BaseAlias = |
1092 | AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: UnderlyingV1), |
1093 | LocB: MemoryLocation::getBeforeOrAfter(Ptr: UnderlyingV2), AAQI); |
1094 | return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias |
1095 | : AliasResult::MayAlias; |
1096 | } |
1097 | |
1098 | DominatorTree *DT = getDT(AAQI); |
1099 | DecomposedGEP DecompGEP1 = DecomposeGEPExpression(V: GEP1, DL, AC: &AC, DT); |
1100 | DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V: V2, DL, AC: &AC, DT); |
1101 | |
1102 | // Bail if we were not able to decompose anything. |
1103 | if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) |
1104 | return AliasResult::MayAlias; |
1105 | |
1106 | // Subtract the GEP2 pointer from the GEP1 pointer to find out their |
1107 | // symbolic difference. |
1108 | subtractDecomposedGEPs(DestGEP&: DecompGEP1, SrcGEP: DecompGEP2, AAQI); |
1109 | |
1110 | // If an inbounds GEP would have to start from an out of bounds address |
1111 | // for the two to alias, then we can assume noalias. |
1112 | // TODO: Remove !isScalable() once BasicAA fully support scalable location |
1113 | // size |
1114 | if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && |
1115 | V2Size.hasValue() && !V2Size.isScalable() && |
1116 | DecompGEP1.Offset.sge(RHS: V2Size.getValue()) && |
1117 | isBaseOfObject(V: DecompGEP2.Base)) |
1118 | return AliasResult::NoAlias; |
1119 | |
1120 | if (isa<GEPOperator>(Val: V2)) { |
1121 | // Symmetric case to above. |
1122 | if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && |
1123 | V1Size.hasValue() && !V1Size.isScalable() && |
1124 | DecompGEP1.Offset.sle(RHS: -V1Size.getValue()) && |
1125 | isBaseOfObject(V: DecompGEP1.Base)) |
1126 | return AliasResult::NoAlias; |
1127 | } |
1128 | |
1129 | // For GEPs with identical offsets, we can preserve the size and AAInfo |
1130 | // when performing the alias check on the underlying objects. |
1131 | if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) |
1132 | return AAQI.AAR.alias(LocA: MemoryLocation(DecompGEP1.Base, V1Size), |
1133 | LocB: MemoryLocation(DecompGEP2.Base, V2Size), AAQI); |
1134 | |
1135 | // Do the base pointers alias? |
1136 | AliasResult BaseAlias = |
1137 | AAQI.AAR.alias(LocA: MemoryLocation::getBeforeOrAfter(Ptr: DecompGEP1.Base), |
1138 | LocB: MemoryLocation::getBeforeOrAfter(Ptr: DecompGEP2.Base), AAQI); |
1139 | |
1140 | // If we get a No or May, then return it immediately, no amount of analysis |
1141 | // will improve this situation. |
1142 | if (BaseAlias != AliasResult::MustAlias) { |
1143 | assert(BaseAlias == AliasResult::NoAlias || |
1144 | BaseAlias == AliasResult::MayAlias); |
1145 | return BaseAlias; |
1146 | } |
1147 | |
1148 | // If there is a constant difference between the pointers, but the difference |
1149 | // is less than the size of the associated memory object, then we know |
1150 | // that the objects are partially overlapping. If the difference is |
1151 | // greater, we know they do not overlap. |
1152 | if (DecompGEP1.VarIndices.empty()) { |
1153 | APInt &Off = DecompGEP1.Offset; |
1154 | |
1155 | // Initialize for Off >= 0 (V2 <= GEP1) case. |
1156 | const Value *LeftPtr = V2; |
1157 | const Value *RightPtr = GEP1; |
1158 | LocationSize VLeftSize = V2Size; |
1159 | LocationSize VRightSize = V1Size; |
1160 | const bool Swapped = Off.isNegative(); |
1161 | |
1162 | if (Swapped) { |
1163 | // Swap if we have the situation where: |
1164 | // + + |
1165 | // | BaseOffset | |
1166 | // ---------------->| |
1167 | // |-->V1Size |-------> V2Size |
1168 | // GEP1 V2 |
1169 | std::swap(a&: LeftPtr, b&: RightPtr); |
1170 | std::swap(a&: VLeftSize, b&: VRightSize); |
1171 | Off = -Off; |
1172 | } |
1173 | |
1174 | if (!VLeftSize.hasValue()) |
1175 | return AliasResult::MayAlias; |
1176 | |
1177 | const TypeSize LSize = VLeftSize.getValue(); |
1178 | if (!LSize.isScalable()) { |
1179 | if (Off.ult(RHS: LSize)) { |
1180 | // Conservatively drop processing if a phi was visited and/or offset is |
1181 | // too big. |
1182 | AliasResult AR = AliasResult::PartialAlias; |
1183 | if (VRightSize.hasValue() && !VRightSize.isScalable() && |
1184 | Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(RHS: LSize)) { |
1185 | // Memory referenced by right pointer is nested. Save the offset in |
1186 | // cache. Note that originally offset estimated as GEP1-V2, but |
1187 | // AliasResult contains the shift that represents GEP1+Offset=V2. |
1188 | AR.setOffset(-Off.getSExtValue()); |
1189 | AR.swap(DoSwap: Swapped); |
1190 | } |
1191 | return AR; |
1192 | } |
1193 | return AliasResult::NoAlias; |
1194 | } else { |
1195 | // We can use the getVScaleRange to prove that Off >= (CR.upper * LSize). |
1196 | ConstantRange CR = getVScaleRange(F: &F, BitWidth: Off.getBitWidth()); |
1197 | bool Overflow; |
1198 | APInt UpperRange = CR.getUnsignedMax().umul_ov( |
1199 | RHS: APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow); |
1200 | if (!Overflow && Off.uge(RHS: UpperRange)) |
1201 | return AliasResult::NoAlias; |
1202 | } |
1203 | } |
1204 | |
1205 | // VScale Alias Analysis - Given one scalable offset between accesses and a |
1206 | // scalable typesize, we can divide each side by vscale, treating both values |
1207 | // as a constant. We prove that Offset/vscale >= TypeSize/vscale. |
1208 | if (DecompGEP1.VarIndices.size() == 1 && |
1209 | DecompGEP1.VarIndices[0].Val.TruncBits == 0 && |
1210 | DecompGEP1.Offset.isZero() && |
1211 | PatternMatch::match(V: DecompGEP1.VarIndices[0].Val.V, |
1212 | P: PatternMatch::m_VScale())) { |
1213 | const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0]; |
1214 | APInt Scale = |
1215 | ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale; |
1216 | LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size; |
1217 | |
1218 | // Check if the offset is known to not overflow, if it does then attempt to |
1219 | // prove it with the known values of vscale_range. |
1220 | bool Overflows = !DecompGEP1.VarIndices[0].IsNSW; |
1221 | if (Overflows) { |
1222 | ConstantRange CR = getVScaleRange(F: &F, BitWidth: Scale.getBitWidth()); |
1223 | (void)CR.getSignedMax().smul_ov(RHS: Scale, Overflow&: Overflows); |
1224 | } |
1225 | |
1226 | if (!Overflows) { |
1227 | // Note that we do not check that the typesize is scalable, as vscale >= 1 |
1228 | // so noalias still holds so long as the dependency distance is at least |
1229 | // as big as the typesize. |
1230 | if (VLeftSize.hasValue() && |
1231 | Scale.abs().uge(RHS: VLeftSize.getValue().getKnownMinValue())) |
1232 | return AliasResult::NoAlias; |
1233 | } |
1234 | } |
1235 | |
1236 | // Bail on analysing scalable LocationSize |
1237 | if (V1Size.isScalable() || V2Size.isScalable()) |
1238 | return AliasResult::MayAlias; |
1239 | |
1240 | // We need to know both acess sizes for all the following heuristics. |
1241 | if (!V1Size.hasValue() || !V2Size.hasValue()) |
1242 | return AliasResult::MayAlias; |
1243 | |
1244 | APInt GCD; |
1245 | ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); |
1246 | for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { |
1247 | const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; |
1248 | const APInt &Scale = Index.Scale; |
1249 | APInt ScaleForGCD = Scale; |
1250 | if (!Index.IsNSW) |
1251 | ScaleForGCD = |
1252 | APInt::getOneBitSet(numBits: Scale.getBitWidth(), BitNo: Scale.countr_zero()); |
1253 | |
1254 | if (i == 0) |
1255 | GCD = ScaleForGCD.abs(); |
1256 | else |
1257 | GCD = APIntOps::GreatestCommonDivisor(A: GCD, B: ScaleForGCD.abs()); |
1258 | |
1259 | ConstantRange CR = computeConstantRange(V: Index.Val.V, /* ForSigned */ false, |
1260 | UseInstrInfo: true, AC: &AC, CtxI: Index.CxtI); |
1261 | KnownBits Known = |
1262 | computeKnownBits(V: Index.Val.V, DL, Depth: 0, AC: &AC, CxtI: Index.CxtI, DT); |
1263 | CR = CR.intersectWith( |
1264 | CR: ConstantRange::fromKnownBits(Known, /* Signed */ IsSigned: true), |
1265 | Type: ConstantRange::Signed); |
1266 | CR = Index.Val.evaluateWith(N: CR).sextOrTrunc(BitWidth: OffsetRange.getBitWidth()); |
1267 | |
1268 | assert(OffsetRange.getBitWidth() == Scale.getBitWidth() && |
1269 | "Bit widths are normalized to MaxIndexSize" ); |
1270 | if (Index.IsNSW) |
1271 | CR = CR.smul_sat(Other: ConstantRange(Scale)); |
1272 | else |
1273 | CR = CR.smul_fast(Other: ConstantRange(Scale)); |
1274 | |
1275 | if (Index.IsNegated) |
1276 | OffsetRange = OffsetRange.sub(Other: CR); |
1277 | else |
1278 | OffsetRange = OffsetRange.add(Other: CR); |
1279 | } |
1280 | |
1281 | // We now have accesses at two offsets from the same base: |
1282 | // 1. (...)*GCD + DecompGEP1.Offset with size V1Size |
1283 | // 2. 0 with size V2Size |
1284 | // Using arithmetic modulo GCD, the accesses are at |
1285 | // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits |
1286 | // into the range [V2Size..GCD), then we know they cannot overlap. |
1287 | APInt ModOffset = DecompGEP1.Offset.srem(RHS: GCD); |
1288 | if (ModOffset.isNegative()) |
1289 | ModOffset += GCD; // We want mod, not rem. |
1290 | if (ModOffset.uge(RHS: V2Size.getValue()) && |
1291 | (GCD - ModOffset).uge(RHS: V1Size.getValue())) |
1292 | return AliasResult::NoAlias; |
1293 | |
1294 | // Compute ranges of potentially accessed bytes for both accesses. If the |
1295 | // interseciton is empty, there can be no overlap. |
1296 | unsigned BW = OffsetRange.getBitWidth(); |
1297 | ConstantRange Range1 = OffsetRange.add( |
1298 | Other: ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); |
1299 | ConstantRange Range2 = |
1300 | ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); |
1301 | if (Range1.intersectWith(CR: Range2).isEmptySet()) |
1302 | return AliasResult::NoAlias; |
1303 | |
1304 | // Try to determine the range of values for VarIndex such that |
1305 | // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. |
1306 | std::optional<APInt> MinAbsVarIndex; |
1307 | if (DecompGEP1.VarIndices.size() == 1) { |
1308 | // VarIndex = Scale*V. |
1309 | const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; |
1310 | if (Var.Val.TruncBits == 0 && |
1311 | isKnownNonZero(V: Var.Val.V, Q: SimplifyQuery(DL, DT, &AC, Var.CxtI))) { |
1312 | // Check if abs(V*Scale) >= abs(Scale) holds in the presence of |
1313 | // potentially wrapping math. |
1314 | auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { |
1315 | if (Var.IsNSW) |
1316 | return true; |
1317 | |
1318 | int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); |
1319 | // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. |
1320 | // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a |
1321 | // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. |
1322 | int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; |
1323 | if (MaxScaleValueBW <= 0) |
1324 | return false; |
1325 | return Var.Scale.ule( |
1326 | RHS: APInt::getMaxValue(numBits: MaxScaleValueBW).zext(width: Var.Scale.getBitWidth())); |
1327 | }; |
1328 | // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the |
1329 | // presence of potentially wrapping math. |
1330 | if (MultiplyByScaleNoWrap(Var)) { |
1331 | // If V != 0 then abs(VarIndex) >= abs(Scale). |
1332 | MinAbsVarIndex = Var.Scale.abs(); |
1333 | } |
1334 | } |
1335 | } else if (DecompGEP1.VarIndices.size() == 2) { |
1336 | // VarIndex = Scale*V0 + (-Scale)*V1. |
1337 | // If V0 != V1 then abs(VarIndex) >= abs(Scale). |
1338 | // Check that MayBeCrossIteration is false, to avoid reasoning about |
1339 | // inequality of values across loop iterations. |
1340 | const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; |
1341 | const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; |
1342 | if (Var0.hasNegatedScaleOf(Other: Var1) && Var0.Val.TruncBits == 0 && |
1343 | Var0.Val.hasSameCastsAs(Other: Var1.Val) && !AAQI.MayBeCrossIteration && |
1344 | isKnownNonEqual(V1: Var0.Val.V, V2: Var1.Val.V, DL, AC: &AC, /* CxtI */ nullptr, |
1345 | DT)) |
1346 | MinAbsVarIndex = Var0.Scale.abs(); |
1347 | } |
1348 | |
1349 | if (MinAbsVarIndex) { |
1350 | // The constant offset will have added at least +/-MinAbsVarIndex to it. |
1351 | APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; |
1352 | APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; |
1353 | // We know that Offset <= OffsetLo || Offset >= OffsetHi |
1354 | if (OffsetLo.isNegative() && (-OffsetLo).uge(RHS: V1Size.getValue()) && |
1355 | OffsetHi.isNonNegative() && OffsetHi.uge(RHS: V2Size.getValue())) |
1356 | return AliasResult::NoAlias; |
1357 | } |
1358 | |
1359 | if (constantOffsetHeuristic(GEP: DecompGEP1, V1Size, V2Size, AC: &AC, DT, AAQI)) |
1360 | return AliasResult::NoAlias; |
1361 | |
1362 | // Statically, we can see that the base objects are the same, but the |
1363 | // pointers have dynamic offsets which we can't resolve. And none of our |
1364 | // little tricks above worked. |
1365 | return AliasResult::MayAlias; |
1366 | } |
1367 | |
1368 | static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { |
1369 | // If the results agree, take it. |
1370 | if (A == B) |
1371 | return A; |
1372 | // A mix of PartialAlias and MustAlias is PartialAlias. |
1373 | if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || |
1374 | (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) |
1375 | return AliasResult::PartialAlias; |
1376 | // Otherwise, we don't know anything. |
1377 | return AliasResult::MayAlias; |
1378 | } |
1379 | |
1380 | /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction |
1381 | /// against another. |
1382 | AliasResult |
1383 | BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, |
1384 | const Value *V2, LocationSize V2Size, |
1385 | AAQueryInfo &AAQI) { |
1386 | // If the values are Selects with the same condition, we can do a more precise |
1387 | // check: just check for aliases between the values on corresponding arms. |
1388 | if (const SelectInst *SI2 = dyn_cast<SelectInst>(Val: V2)) |
1389 | if (isValueEqualInPotentialCycles(V1: SI->getCondition(), V2: SI2->getCondition(), |
1390 | AAQI)) { |
1391 | AliasResult Alias = |
1392 | AAQI.AAR.alias(LocA: MemoryLocation(SI->getTrueValue(), SISize), |
1393 | LocB: MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); |
1394 | if (Alias == AliasResult::MayAlias) |
1395 | return AliasResult::MayAlias; |
1396 | AliasResult ThisAlias = |
1397 | AAQI.AAR.alias(LocA: MemoryLocation(SI->getFalseValue(), SISize), |
1398 | LocB: MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); |
1399 | return MergeAliasResults(A: ThisAlias, B: Alias); |
1400 | } |
1401 | |
1402 | // If both arms of the Select node NoAlias or MustAlias V2, then returns |
1403 | // NoAlias / MustAlias. Otherwise, returns MayAlias. |
1404 | AliasResult Alias = AAQI.AAR.alias(LocA: MemoryLocation(SI->getTrueValue(), SISize), |
1405 | LocB: MemoryLocation(V2, V2Size), AAQI); |
1406 | if (Alias == AliasResult::MayAlias) |
1407 | return AliasResult::MayAlias; |
1408 | |
1409 | AliasResult ThisAlias = |
1410 | AAQI.AAR.alias(LocA: MemoryLocation(SI->getFalseValue(), SISize), |
1411 | LocB: MemoryLocation(V2, V2Size), AAQI); |
1412 | return MergeAliasResults(A: ThisAlias, B: Alias); |
1413 | } |
1414 | |
1415 | /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against |
1416 | /// another. |
1417 | AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, |
1418 | const Value *V2, LocationSize V2Size, |
1419 | AAQueryInfo &AAQI) { |
1420 | if (!PN->getNumIncomingValues()) |
1421 | return AliasResult::NoAlias; |
1422 | // If the values are PHIs in the same block, we can do a more precise |
1423 | // as well as efficient check: just check for aliases between the values |
1424 | // on corresponding edges. |
1425 | if (const PHINode *PN2 = dyn_cast<PHINode>(Val: V2)) |
1426 | if (PN2->getParent() == PN->getParent()) { |
1427 | std::optional<AliasResult> Alias; |
1428 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
1429 | AliasResult ThisAlias = AAQI.AAR.alias( |
1430 | LocA: MemoryLocation(PN->getIncomingValue(i), PNSize), |
1431 | LocB: MemoryLocation( |
1432 | PN2->getIncomingValueForBlock(BB: PN->getIncomingBlock(i)), V2Size), |
1433 | AAQI); |
1434 | if (Alias) |
1435 | *Alias = MergeAliasResults(A: *Alias, B: ThisAlias); |
1436 | else |
1437 | Alias = ThisAlias; |
1438 | if (*Alias == AliasResult::MayAlias) |
1439 | break; |
1440 | } |
1441 | return *Alias; |
1442 | } |
1443 | |
1444 | SmallVector<Value *, 4> V1Srcs; |
1445 | // If a phi operand recurses back to the phi, we can still determine NoAlias |
1446 | // if we don't alias the underlying objects of the other phi operands, as we |
1447 | // know that the recursive phi needs to be based on them in some way. |
1448 | bool isRecursive = false; |
1449 | auto CheckForRecPhi = [&](Value *PV) { |
1450 | if (!EnableRecPhiAnalysis) |
1451 | return false; |
1452 | if (getUnderlyingObject(V: PV) == PN) { |
1453 | isRecursive = true; |
1454 | return true; |
1455 | } |
1456 | return false; |
1457 | }; |
1458 | |
1459 | SmallPtrSet<Value *, 4> UniqueSrc; |
1460 | Value *OnePhi = nullptr; |
1461 | for (Value *PV1 : PN->incoming_values()) { |
1462 | // Skip the phi itself being the incoming value. |
1463 | if (PV1 == PN) |
1464 | continue; |
1465 | |
1466 | if (isa<PHINode>(Val: PV1)) { |
1467 | if (OnePhi && OnePhi != PV1) { |
1468 | // To control potential compile time explosion, we choose to be |
1469 | // conserviate when we have more than one Phi input. It is important |
1470 | // that we handle the single phi case as that lets us handle LCSSA |
1471 | // phi nodes and (combined with the recursive phi handling) simple |
1472 | // pointer induction variable patterns. |
1473 | return AliasResult::MayAlias; |
1474 | } |
1475 | OnePhi = PV1; |
1476 | } |
1477 | |
1478 | if (CheckForRecPhi(PV1)) |
1479 | continue; |
1480 | |
1481 | if (UniqueSrc.insert(Ptr: PV1).second) |
1482 | V1Srcs.push_back(Elt: PV1); |
1483 | } |
1484 | |
1485 | if (OnePhi && UniqueSrc.size() > 1) |
1486 | // Out of an abundance of caution, allow only the trivial lcssa and |
1487 | // recursive phi cases. |
1488 | return AliasResult::MayAlias; |
1489 | |
1490 | // If V1Srcs is empty then that means that the phi has no underlying non-phi |
1491 | // value. This should only be possible in blocks unreachable from the entry |
1492 | // block, but return MayAlias just in case. |
1493 | if (V1Srcs.empty()) |
1494 | return AliasResult::MayAlias; |
1495 | |
1496 | // If this PHI node is recursive, indicate that the pointer may be moved |
1497 | // across iterations. We can only prove NoAlias if different underlying |
1498 | // objects are involved. |
1499 | if (isRecursive) |
1500 | PNSize = LocationSize::beforeOrAfterPointer(); |
1501 | |
1502 | // In the recursive alias queries below, we may compare values from two |
1503 | // different loop iterations. |
1504 | SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); |
1505 | |
1506 | AliasResult Alias = AAQI.AAR.alias(LocA: MemoryLocation(V1Srcs[0], PNSize), |
1507 | LocB: MemoryLocation(V2, V2Size), AAQI); |
1508 | |
1509 | // Early exit if the check of the first PHI source against V2 is MayAlias. |
1510 | // Other results are not possible. |
1511 | if (Alias == AliasResult::MayAlias) |
1512 | return AliasResult::MayAlias; |
1513 | // With recursive phis we cannot guarantee that MustAlias/PartialAlias will |
1514 | // remain valid to all elements and needs to conservatively return MayAlias. |
1515 | if (isRecursive && Alias != AliasResult::NoAlias) |
1516 | return AliasResult::MayAlias; |
1517 | |
1518 | // If all sources of the PHI node NoAlias or MustAlias V2, then returns |
1519 | // NoAlias / MustAlias. Otherwise, returns MayAlias. |
1520 | for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { |
1521 | Value *V = V1Srcs[i]; |
1522 | |
1523 | AliasResult ThisAlias = AAQI.AAR.alias( |
1524 | LocA: MemoryLocation(V, PNSize), LocB: MemoryLocation(V2, V2Size), AAQI); |
1525 | Alias = MergeAliasResults(A: ThisAlias, B: Alias); |
1526 | if (Alias == AliasResult::MayAlias) |
1527 | break; |
1528 | } |
1529 | |
1530 | return Alias; |
1531 | } |
1532 | |
1533 | /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as |
1534 | /// array references. |
1535 | AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, |
1536 | const Value *V2, LocationSize V2Size, |
1537 | AAQueryInfo &AAQI, |
1538 | const Instruction *CtxI) { |
1539 | // If either of the memory references is empty, it doesn't matter what the |
1540 | // pointer values are. |
1541 | if (V1Size.isZero() || V2Size.isZero()) |
1542 | return AliasResult::NoAlias; |
1543 | |
1544 | // Strip off any casts if they exist. |
1545 | V1 = V1->stripPointerCastsForAliasAnalysis(); |
1546 | V2 = V2->stripPointerCastsForAliasAnalysis(); |
1547 | |
1548 | // If V1 or V2 is undef, the result is NoAlias because we can always pick a |
1549 | // value for undef that aliases nothing in the program. |
1550 | if (isa<UndefValue>(Val: V1) || isa<UndefValue>(Val: V2)) |
1551 | return AliasResult::NoAlias; |
1552 | |
1553 | // Are we checking for alias of the same value? |
1554 | // Because we look 'through' phi nodes, we could look at "Value" pointers from |
1555 | // different iterations. We must therefore make sure that this is not the |
1556 | // case. The function isValueEqualInPotentialCycles ensures that this cannot |
1557 | // happen by looking at the visited phi nodes and making sure they cannot |
1558 | // reach the value. |
1559 | if (isValueEqualInPotentialCycles(V1, V2, AAQI)) |
1560 | return AliasResult::MustAlias; |
1561 | |
1562 | if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) |
1563 | return AliasResult::NoAlias; // Scalars cannot alias each other |
1564 | |
1565 | // Figure out what objects these things are pointing to if we can. |
1566 | const Value *O1 = getUnderlyingObject(V: V1, MaxLookup: MaxLookupSearchDepth); |
1567 | const Value *O2 = getUnderlyingObject(V: V2, MaxLookup: MaxLookupSearchDepth); |
1568 | |
1569 | // Null values in the default address space don't point to any object, so they |
1570 | // don't alias any other pointer. |
1571 | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(Val: O1)) |
1572 | if (!NullPointerIsDefined(F: &F, AS: CPN->getType()->getAddressSpace())) |
1573 | return AliasResult::NoAlias; |
1574 | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(Val: O2)) |
1575 | if (!NullPointerIsDefined(F: &F, AS: CPN->getType()->getAddressSpace())) |
1576 | return AliasResult::NoAlias; |
1577 | |
1578 | if (O1 != O2) { |
1579 | // If V1/V2 point to two different objects, we know that we have no alias. |
1580 | if (isIdentifiedObject(V: O1) && isIdentifiedObject(V: O2)) |
1581 | return AliasResult::NoAlias; |
1582 | |
1583 | // Function arguments can't alias with things that are known to be |
1584 | // unambigously identified at the function level. |
1585 | if ((isa<Argument>(Val: O1) && isIdentifiedFunctionLocal(V: O2)) || |
1586 | (isa<Argument>(Val: O2) && isIdentifiedFunctionLocal(V: O1))) |
1587 | return AliasResult::NoAlias; |
1588 | |
1589 | // If one pointer is the result of a call/invoke or load and the other is a |
1590 | // non-escaping local object within the same function, then we know the |
1591 | // object couldn't escape to a point where the call could return it. |
1592 | // |
1593 | // Note that if the pointers are in different functions, there are a |
1594 | // variety of complications. A call with a nocapture argument may still |
1595 | // temporary store the nocapture argument's value in a temporary memory |
1596 | // location if that memory location doesn't escape. Or it may pass a |
1597 | // nocapture value to other functions as long as they don't capture it. |
1598 | if (isEscapeSource(V: O1) && AAQI.CI->isNotCapturedBefore( |
1599 | Object: O2, I: dyn_cast<Instruction>(Val: O1), /*OrAt*/ true)) |
1600 | return AliasResult::NoAlias; |
1601 | if (isEscapeSource(V: O2) && AAQI.CI->isNotCapturedBefore( |
1602 | Object: O1, I: dyn_cast<Instruction>(Val: O2), /*OrAt*/ true)) |
1603 | return AliasResult::NoAlias; |
1604 | } |
1605 | |
1606 | // If the size of one access is larger than the entire object on the other |
1607 | // side, then we know such behavior is undefined and can assume no alias. |
1608 | bool NullIsValidLocation = NullPointerIsDefined(F: &F); |
1609 | if ((isObjectSmallerThan( |
1610 | V: O2, Size: getMinimalExtentFrom(V: *V1, LocSize: V1Size, DL, NullIsValidLoc: NullIsValidLocation), DL, |
1611 | TLI, NullIsValidLoc: NullIsValidLocation)) || |
1612 | (isObjectSmallerThan( |
1613 | V: O1, Size: getMinimalExtentFrom(V: *V2, LocSize: V2Size, DL, NullIsValidLoc: NullIsValidLocation), DL, |
1614 | TLI, NullIsValidLoc: NullIsValidLocation))) |
1615 | return AliasResult::NoAlias; |
1616 | |
1617 | if (EnableSeparateStorageAnalysis) { |
1618 | for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(V: O1)) { |
1619 | if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx) |
1620 | continue; |
1621 | |
1622 | AssumeInst *Assume = cast<AssumeInst>(Val&: Elem); |
1623 | OperandBundleUse OBU = Assume->getOperandBundleAt(Index: Elem.Index); |
1624 | if (OBU.getTagName() == "separate_storage" ) { |
1625 | assert(OBU.Inputs.size() == 2); |
1626 | const Value *Hint1 = OBU.Inputs[0].get(); |
1627 | const Value *Hint2 = OBU.Inputs[1].get(); |
1628 | // This is often a no-op; instcombine rewrites this for us. No-op |
1629 | // getUnderlyingObject calls are fast, though. |
1630 | const Value *HintO1 = getUnderlyingObject(V: Hint1); |
1631 | const Value *HintO2 = getUnderlyingObject(V: Hint2); |
1632 | |
1633 | DominatorTree *DT = getDT(AAQI); |
1634 | auto ValidAssumeForPtrContext = [&](const Value *Ptr) { |
1635 | if (const Instruction *PtrI = dyn_cast<Instruction>(Val: Ptr)) { |
1636 | return isValidAssumeForContext(I: Assume, CxtI: PtrI, DT, |
1637 | /* AllowEphemerals */ true); |
1638 | } |
1639 | if (const Argument *PtrA = dyn_cast<Argument>(Val: Ptr)) { |
1640 | const Instruction *FirstI = |
1641 | &*PtrA->getParent()->getEntryBlock().begin(); |
1642 | return isValidAssumeForContext(I: Assume, CxtI: FirstI, DT, |
1643 | /* AllowEphemerals */ true); |
1644 | } |
1645 | return false; |
1646 | }; |
1647 | |
1648 | if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) { |
1649 | // Note that we go back to V1 and V2 for the |
1650 | // ValidAssumeForPtrContext checks; they're dominated by O1 and O2, |
1651 | // so strictly more assumptions are valid for them. |
1652 | if ((CtxI && isValidAssumeForContext(I: Assume, CxtI: CtxI, DT, |
1653 | /* AllowEphemerals */ true)) || |
1654 | ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) { |
1655 | return AliasResult::NoAlias; |
1656 | } |
1657 | } |
1658 | } |
1659 | } |
1660 | } |
1661 | |
1662 | // If one the accesses may be before the accessed pointer, canonicalize this |
1663 | // by using unknown after-pointer sizes for both accesses. This is |
1664 | // equivalent, because regardless of which pointer is lower, one of them |
1665 | // will always came after the other, as long as the underlying objects aren't |
1666 | // disjoint. We do this so that the rest of BasicAA does not have to deal |
1667 | // with accesses before the base pointer, and to improve cache utilization by |
1668 | // merging equivalent states. |
1669 | if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { |
1670 | V1Size = LocationSize::afterPointer(); |
1671 | V2Size = LocationSize::afterPointer(); |
1672 | } |
1673 | |
1674 | // FIXME: If this depth limit is hit, then we may cache sub-optimal results |
1675 | // for recursive queries. For this reason, this limit is chosen to be large |
1676 | // enough to be very rarely hit, while still being small enough to avoid |
1677 | // stack overflows. |
1678 | if (AAQI.Depth >= 512) |
1679 | return AliasResult::MayAlias; |
1680 | |
1681 | // Check the cache before climbing up use-def chains. This also terminates |
1682 | // otherwise infinitely recursive queries. Include MayBeCrossIteration in the |
1683 | // cache key, because some cases where MayBeCrossIteration==false returns |
1684 | // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. |
1685 | AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, |
1686 | {V2, V2Size, AAQI.MayBeCrossIteration}); |
1687 | const bool Swapped = V1 > V2; |
1688 | if (Swapped) |
1689 | std::swap(a&: Locs.first, b&: Locs.second); |
1690 | const auto &Pair = AAQI.AliasCache.try_emplace( |
1691 | Key: Locs, Args: AAQueryInfo::CacheEntry{.Result: AliasResult::NoAlias, .NumAssumptionUses: 0}); |
1692 | if (!Pair.second) { |
1693 | auto &Entry = Pair.first->second; |
1694 | if (!Entry.isDefinitive()) { |
1695 | // Remember that we used an assumption. This may either be a direct use |
1696 | // of an assumption, or a use of an entry that may itself be based on an |
1697 | // assumption. |
1698 | ++AAQI.NumAssumptionUses; |
1699 | if (Entry.isAssumption()) |
1700 | ++Entry.NumAssumptionUses; |
1701 | } |
1702 | // Cache contains sorted {V1,V2} pairs but we should return original order. |
1703 | auto Result = Entry.Result; |
1704 | Result.swap(DoSwap: Swapped); |
1705 | return Result; |
1706 | } |
1707 | |
1708 | int OrigNumAssumptionUses = AAQI.NumAssumptionUses; |
1709 | unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); |
1710 | AliasResult Result = |
1711 | aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); |
1712 | |
1713 | auto It = AAQI.AliasCache.find(Val: Locs); |
1714 | assert(It != AAQI.AliasCache.end() && "Must be in cache" ); |
1715 | auto &Entry = It->second; |
1716 | |
1717 | // Check whether a NoAlias assumption has been used, but disproven. |
1718 | bool AssumptionDisproven = |
1719 | Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; |
1720 | if (AssumptionDisproven) |
1721 | Result = AliasResult::MayAlias; |
1722 | |
1723 | // This is a definitive result now, when considered as a root query. |
1724 | AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; |
1725 | Entry.Result = Result; |
1726 | // Cache contains sorted {V1,V2} pairs. |
1727 | Entry.Result.swap(DoSwap: Swapped); |
1728 | |
1729 | // If the assumption has been disproven, remove any results that may have |
1730 | // been based on this assumption. Do this after the Entry updates above to |
1731 | // avoid iterator invalidation. |
1732 | if (AssumptionDisproven) |
1733 | while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) |
1734 | AAQI.AliasCache.erase(Val: AAQI.AssumptionBasedResults.pop_back_val()); |
1735 | |
1736 | // The result may still be based on assumptions higher up in the chain. |
1737 | // Remember it, so it can be purged from the cache later. |
1738 | if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && |
1739 | Result != AliasResult::MayAlias) { |
1740 | AAQI.AssumptionBasedResults.push_back(Elt: Locs); |
1741 | Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased; |
1742 | } else { |
1743 | Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; |
1744 | } |
1745 | |
1746 | // Depth is incremented before this function is called, so Depth==1 indicates |
1747 | // a root query. |
1748 | if (AAQI.Depth == 1) { |
1749 | // Any remaining assumption based results must be based on proven |
1750 | // assumptions, so convert them to definitive results. |
1751 | for (const auto &Loc : AAQI.AssumptionBasedResults) { |
1752 | auto It = AAQI.AliasCache.find(Val: Loc); |
1753 | if (It != AAQI.AliasCache.end()) |
1754 | It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive; |
1755 | } |
1756 | AAQI.AssumptionBasedResults.clear(); |
1757 | AAQI.NumAssumptionUses = 0; |
1758 | } |
1759 | return Result; |
1760 | } |
1761 | |
1762 | AliasResult BasicAAResult::aliasCheckRecursive( |
1763 | const Value *V1, LocationSize V1Size, |
1764 | const Value *V2, LocationSize V2Size, |
1765 | AAQueryInfo &AAQI, const Value *O1, const Value *O2) { |
1766 | if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(Val: V1)) { |
1767 | AliasResult Result = aliasGEP(GEP1: GV1, V1Size, V2, V2Size, UnderlyingV1: O1, UnderlyingV2: O2, AAQI); |
1768 | if (Result != AliasResult::MayAlias) |
1769 | return Result; |
1770 | } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(Val: V2)) { |
1771 | AliasResult Result = aliasGEP(GEP1: GV2, V1Size: V2Size, V2: V1, V2Size: V1Size, UnderlyingV1: O2, UnderlyingV2: O1, AAQI); |
1772 | Result.swap(); |
1773 | if (Result != AliasResult::MayAlias) |
1774 | return Result; |
1775 | } |
1776 | |
1777 | if (const PHINode *PN = dyn_cast<PHINode>(Val: V1)) { |
1778 | AliasResult Result = aliasPHI(PN, PNSize: V1Size, V2, V2Size, AAQI); |
1779 | if (Result != AliasResult::MayAlias) |
1780 | return Result; |
1781 | } else if (const PHINode *PN = dyn_cast<PHINode>(Val: V2)) { |
1782 | AliasResult Result = aliasPHI(PN, PNSize: V2Size, V2: V1, V2Size: V1Size, AAQI); |
1783 | Result.swap(); |
1784 | if (Result != AliasResult::MayAlias) |
1785 | return Result; |
1786 | } |
1787 | |
1788 | if (const SelectInst *S1 = dyn_cast<SelectInst>(Val: V1)) { |
1789 | AliasResult Result = aliasSelect(SI: S1, SISize: V1Size, V2, V2Size, AAQI); |
1790 | if (Result != AliasResult::MayAlias) |
1791 | return Result; |
1792 | } else if (const SelectInst *S2 = dyn_cast<SelectInst>(Val: V2)) { |
1793 | AliasResult Result = aliasSelect(SI: S2, SISize: V2Size, V2: V1, V2Size: V1Size, AAQI); |
1794 | Result.swap(); |
1795 | if (Result != AliasResult::MayAlias) |
1796 | return Result; |
1797 | } |
1798 | |
1799 | // If both pointers are pointing into the same object and one of them |
1800 | // accesses the entire object, then the accesses must overlap in some way. |
1801 | if (O1 == O2) { |
1802 | bool NullIsValidLocation = NullPointerIsDefined(F: &F); |
1803 | if (V1Size.isPrecise() && V2Size.isPrecise() && |
1804 | (isObjectSize(V: O1, Size: V1Size.getValue(), DL, TLI, NullIsValidLoc: NullIsValidLocation) || |
1805 | isObjectSize(V: O2, Size: V2Size.getValue(), DL, TLI, NullIsValidLoc: NullIsValidLocation))) |
1806 | return AliasResult::PartialAlias; |
1807 | } |
1808 | |
1809 | return AliasResult::MayAlias; |
1810 | } |
1811 | |
1812 | /// Check whether two Values can be considered equivalent. |
1813 | /// |
1814 | /// If the values may come from different cycle iterations, this will also |
1815 | /// check that the values are not part of cycle. We have to do this because we |
1816 | /// are looking through phi nodes, that is we say |
1817 | /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). |
1818 | bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, |
1819 | const Value *V2, |
1820 | const AAQueryInfo &AAQI) { |
1821 | if (V != V2) |
1822 | return false; |
1823 | |
1824 | if (!AAQI.MayBeCrossIteration) |
1825 | return true; |
1826 | |
1827 | // Non-instructions and instructions in the entry block cannot be part of |
1828 | // a loop. |
1829 | const Instruction *Inst = dyn_cast<Instruction>(Val: V); |
1830 | if (!Inst || Inst->getParent()->isEntryBlock()) |
1831 | return true; |
1832 | |
1833 | return isNotInCycle(I: Inst, DT: getDT(AAQI), /*LI*/ nullptr); |
1834 | } |
1835 | |
1836 | /// Computes the symbolic difference between two de-composed GEPs. |
1837 | void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, |
1838 | const DecomposedGEP &SrcGEP, |
1839 | const AAQueryInfo &AAQI) { |
1840 | DestGEP.Offset -= SrcGEP.Offset; |
1841 | for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { |
1842 | // Find V in Dest. This is N^2, but pointer indices almost never have more |
1843 | // than a few variable indexes. |
1844 | bool Found = false; |
1845 | for (auto I : enumerate(First&: DestGEP.VarIndices)) { |
1846 | VariableGEPIndex &Dest = I.value(); |
1847 | if ((!isValueEqualInPotentialCycles(V: Dest.Val.V, V2: Src.Val.V, AAQI) && |
1848 | !areBothVScale(V1: Dest.Val.V, V2: Src.Val.V)) || |
1849 | !Dest.Val.hasSameCastsAs(Other: Src.Val)) |
1850 | continue; |
1851 | |
1852 | // Normalize IsNegated if we're going to lose the NSW flag anyway. |
1853 | if (Dest.IsNegated) { |
1854 | Dest.Scale = -Dest.Scale; |
1855 | Dest.IsNegated = false; |
1856 | Dest.IsNSW = false; |
1857 | } |
1858 | |
1859 | // If we found it, subtract off Scale V's from the entry in Dest. If it |
1860 | // goes to zero, remove the entry. |
1861 | if (Dest.Scale != Src.Scale) { |
1862 | Dest.Scale -= Src.Scale; |
1863 | Dest.IsNSW = false; |
1864 | } else { |
1865 | DestGEP.VarIndices.erase(CI: DestGEP.VarIndices.begin() + I.index()); |
1866 | } |
1867 | Found = true; |
1868 | break; |
1869 | } |
1870 | |
1871 | // If we didn't consume this entry, add it to the end of the Dest list. |
1872 | if (!Found) { |
1873 | VariableGEPIndex Entry = {.Val: Src.Val, .Scale: Src.Scale, .CxtI: Src.CxtI, .IsNSW: Src.IsNSW, |
1874 | /* IsNegated */ true}; |
1875 | DestGEP.VarIndices.push_back(Elt: Entry); |
1876 | } |
1877 | } |
1878 | } |
1879 | |
1880 | bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, |
1881 | LocationSize MaybeV1Size, |
1882 | LocationSize MaybeV2Size, |
1883 | AssumptionCache *AC, |
1884 | DominatorTree *DT, |
1885 | const AAQueryInfo &AAQI) { |
1886 | if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || |
1887 | !MaybeV2Size.hasValue()) |
1888 | return false; |
1889 | |
1890 | const uint64_t V1Size = MaybeV1Size.getValue(); |
1891 | const uint64_t V2Size = MaybeV2Size.getValue(); |
1892 | |
1893 | const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; |
1894 | |
1895 | if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Other: Var1.Val) || |
1896 | !Var0.hasNegatedScaleOf(Other: Var1) || |
1897 | Var0.Val.V->getType() != Var1.Val.V->getType()) |
1898 | return false; |
1899 | |
1900 | // We'll strip off the Extensions of Var0 and Var1 and do another round |
1901 | // of GetLinearExpression decomposition. In the example above, if Var0 |
1902 | // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. |
1903 | |
1904 | LinearExpression E0 = |
1905 | GetLinearExpression(Val: CastedValue(Var0.Val.V), DL, Depth: 0, AC, DT); |
1906 | LinearExpression E1 = |
1907 | GetLinearExpression(Val: CastedValue(Var1.Val.V), DL, Depth: 0, AC, DT); |
1908 | if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(Other: E1.Val) || |
1909 | !isValueEqualInPotentialCycles(V: E0.Val.V, V2: E1.Val.V, AAQI)) |
1910 | return false; |
1911 | |
1912 | // We have a hit - Var0 and Var1 only differ by a constant offset! |
1913 | |
1914 | // If we've been sext'ed then zext'd the maximum difference between Var0 and |
1915 | // Var1 is possible to calculate, but we're just interested in the absolute |
1916 | // minimum difference between the two. The minimum distance may occur due to |
1917 | // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so |
1918 | // the minimum distance between %i and %i + 5 is 3. |
1919 | APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; |
1920 | MinDiff = APIntOps::umin(A: MinDiff, B: Wrapped); |
1921 | APInt MinDiffBytes = |
1922 | MinDiff.zextOrTrunc(width: Var0.Scale.getBitWidth()) * Var0.Scale.abs(); |
1923 | |
1924 | // We can't definitely say whether GEP1 is before or after V2 due to wrapping |
1925 | // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other |
1926 | // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and |
1927 | // V2Size can fit in the MinDiffBytes gap. |
1928 | return MinDiffBytes.uge(RHS: V1Size + GEP.Offset.abs()) && |
1929 | MinDiffBytes.uge(RHS: V2Size + GEP.Offset.abs()); |
1930 | } |
1931 | |
1932 | //===----------------------------------------------------------------------===// |
1933 | // BasicAliasAnalysis Pass |
1934 | //===----------------------------------------------------------------------===// |
1935 | |
1936 | AnalysisKey BasicAA::Key; |
1937 | |
1938 | BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { |
1939 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
1940 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
1941 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1942 | return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT); |
1943 | } |
1944 | |
1945 | BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { |
1946 | initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
1947 | } |
1948 | |
1949 | char BasicAAWrapperPass::ID = 0; |
1950 | |
1951 | void BasicAAWrapperPass::anchor() {} |
1952 | |
1953 | INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa" , |
1954 | "Basic Alias Analysis (stateless AA impl)" , true, true) |
1955 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1956 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
1957 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
1958 | INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa" , |
1959 | "Basic Alias Analysis (stateless AA impl)" , true, true) |
1960 | |
1961 | FunctionPass *llvm::createBasicAAWrapperPass() { |
1962 | return new BasicAAWrapperPass(); |
1963 | } |
1964 | |
1965 | bool BasicAAWrapperPass::runOnFunction(Function &F) { |
1966 | auto &ACT = getAnalysis<AssumptionCacheTracker>(); |
1967 | auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
1968 | auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); |
1969 | |
1970 | Result.reset(p: new BasicAAResult(F.getDataLayout(), F, |
1971 | TLIWP.getTLI(F), ACT.getAssumptionCache(F), |
1972 | &DTWP.getDomTree())); |
1973 | |
1974 | return false; |
1975 | } |
1976 | |
1977 | void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
1978 | AU.setPreservesAll(); |
1979 | AU.addRequiredTransitive<AssumptionCacheTracker>(); |
1980 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
1981 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
1982 | } |
1983 | |