1 | //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements bookkeeping for "interesting" users of expressions |
10 | // computed from induction variables. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Analysis/IVUsers.h" |
15 | #include "llvm/Analysis/AssumptionCache.h" |
16 | #include "llvm/Analysis/CodeMetrics.h" |
17 | #include "llvm/Analysis/LoopAnalysisManager.h" |
18 | #include "llvm/Analysis/LoopInfo.h" |
19 | #include "llvm/Analysis/LoopPass.h" |
20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | #include "llvm/Analysis/ValueTracking.h" |
22 | #include "llvm/Config/llvm-config.h" |
23 | #include "llvm/IR/DataLayout.h" |
24 | #include "llvm/IR/Dominators.h" |
25 | #include "llvm/IR/Instructions.h" |
26 | #include "llvm/IR/Module.h" |
27 | #include "llvm/InitializePasses.h" |
28 | #include "llvm/Support/Debug.h" |
29 | #include "llvm/Support/raw_ostream.h" |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "iv-users" |
33 | |
34 | AnalysisKey IVUsersAnalysis::Key; |
35 | |
36 | IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, |
37 | LoopStandardAnalysisResults &AR) { |
38 | return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); |
39 | } |
40 | |
41 | char IVUsersWrapperPass::ID = 0; |
42 | INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users" , |
43 | "Induction Variable Users" , false, true) |
44 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
45 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
46 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
47 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
48 | INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users" , "Induction Variable Users" , |
49 | false, true) |
50 | |
51 | Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } |
52 | |
53 | /// isInteresting - Test whether the given expression is "interesting" when |
54 | /// used by the given expression, within the context of analyzing the |
55 | /// given loop. |
56 | static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, |
57 | ScalarEvolution *SE, LoopInfo *LI) { |
58 | // An addrec is interesting if it's affine or if it has an interesting start. |
59 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
60 | // Keep things simple. Don't touch loop-variant strides unless they're |
61 | // only used outside the loop and we can simplify them. |
62 | if (AR->getLoop() == L) |
63 | return AR->isAffine() || |
64 | (!L->contains(Inst: I) && |
65 | SE->getSCEVAtScope(S: AR, L: LI->getLoopFor(BB: I->getParent())) != AR); |
66 | // Otherwise recurse to see if the start value is interesting, and that |
67 | // the step value is not interesting, since we don't yet know how to |
68 | // do effective SCEV expansions for addrecs with interesting steps. |
69 | return isInteresting(S: AR->getStart(), I, L, SE, LI) && |
70 | !isInteresting(S: AR->getStepRecurrence(SE&: *SE), I, L, SE, LI); |
71 | } |
72 | |
73 | // An add is interesting if exactly one of its operands is interesting. |
74 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
75 | bool AnyInterestingYet = false; |
76 | for (const auto *Op : Add->operands()) |
77 | if (isInteresting(S: Op, I, L, SE, LI)) { |
78 | if (AnyInterestingYet) |
79 | return false; |
80 | AnyInterestingYet = true; |
81 | } |
82 | return AnyInterestingYet; |
83 | } |
84 | |
85 | // Nothing else is interesting here. |
86 | return false; |
87 | } |
88 | |
89 | /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression |
90 | /// and now we need to decide whether the user should use the preinc or post-inc |
91 | /// value. If this user should use the post-inc version of the IV, return true. |
92 | /// |
93 | /// Choosing wrong here can break dominance properties (if we choose to use the |
94 | /// post-inc value when we cannot) or it can end up adding extra live-ranges to |
95 | /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we |
96 | /// should use the post-inc value). |
97 | static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, |
98 | const Loop *L, DominatorTree *DT) { |
99 | // If the user is in the loop, use the preinc value. |
100 | if (L->contains(Inst: User)) |
101 | return false; |
102 | |
103 | BasicBlock *LatchBlock = L->getLoopLatch(); |
104 | if (!LatchBlock) |
105 | return false; |
106 | |
107 | // Ok, the user is outside of the loop. If it is dominated by the latch |
108 | // block, use the post-inc value. |
109 | if (DT->dominates(A: LatchBlock, B: User->getParent())) |
110 | return true; |
111 | |
112 | // There is one case we have to be careful of: PHI nodes. These little guys |
113 | // can live in blocks that are not dominated by the latch block, but (since |
114 | // their uses occur in the predecessor block, not the block the PHI lives in) |
115 | // should still use the post-inc value. Check for this case now. |
116 | PHINode *PN = dyn_cast<PHINode>(Val: User); |
117 | if (!PN || !Operand) |
118 | return false; // not a phi, not dominated by latch block. |
119 | |
120 | // Look at all of the uses of Operand by the PHI node. If any use corresponds |
121 | // to a block that is not dominated by the latch block, give up and use the |
122 | // preincremented value. |
123 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
124 | if (PN->getIncomingValue(i) == Operand && |
125 | !DT->dominates(A: LatchBlock, B: PN->getIncomingBlock(i))) |
126 | return false; |
127 | |
128 | // Okay, all uses of Operand by PN are in predecessor blocks that really are |
129 | // dominated by the latch block. Use the post-incremented value. |
130 | return true; |
131 | } |
132 | |
133 | /// Inspect the specified instruction. If it is a reducible SCEV, recursively |
134 | /// add its users to the IVUsesByStride set and return true. Otherwise, return |
135 | /// false. |
136 | bool IVUsers::AddUsersIfInteresting(Instruction *I) { |
137 | const DataLayout &DL = I->getDataLayout(); |
138 | |
139 | // Add this IV user to the Processed set before returning false to ensure that |
140 | // all IV users are members of the set. See IVUsers::isIVUserOrOperand. |
141 | if (!Processed.insert(Ptr: I).second) |
142 | return true; // Instruction already handled. |
143 | |
144 | if (!SE->isSCEVable(Ty: I->getType())) |
145 | return false; // Void and FP expressions cannot be reduced. |
146 | |
147 | // IVUsers is used by LSR which assumes that all SCEV expressions are safe to |
148 | // pass to SCEVExpander. Expressions are not safe to expand if they represent |
149 | // operations that are not safe to speculate, namely integer division. |
150 | if (!isa<PHINode>(Val: I) && !isSafeToSpeculativelyExecute(I)) |
151 | return false; |
152 | |
153 | // LSR is not APInt clean, do not touch integers bigger than 64-bits. |
154 | // Also avoid creating IVs of non-native types. For example, we don't want a |
155 | // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. |
156 | uint64_t Width = SE->getTypeSizeInBits(Ty: I->getType()); |
157 | if (Width > 64 || !DL.isLegalInteger(Width)) |
158 | return false; |
159 | |
160 | // Don't attempt to promote ephemeral values to indvars. They will be removed |
161 | // later anyway. |
162 | if (EphValues.count(Ptr: I)) |
163 | return false; |
164 | |
165 | // Get the symbolic expression for this instruction. |
166 | const SCEV *ISE = SE->getSCEV(V: I); |
167 | |
168 | // If we've come to an uninteresting expression, stop the traversal and |
169 | // call this a user. |
170 | if (!isInteresting(S: ISE, I, L, SE, LI)) |
171 | return false; |
172 | |
173 | SmallPtrSet<Instruction *, 4> UniqueUsers; |
174 | for (Use &U : I->uses()) { |
175 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
176 | if (!UniqueUsers.insert(Ptr: User).second) |
177 | continue; |
178 | |
179 | // Do not infinitely recurse on PHI nodes. |
180 | if (isa<PHINode>(Val: User) && Processed.count(Ptr: User)) |
181 | continue; |
182 | |
183 | // Descend recursively, but not into PHI nodes outside the current loop. |
184 | // It's important to see the entire expression outside the loop to get |
185 | // choices that depend on addressing mode use right, although we won't |
186 | // consider references outside the loop in all cases. |
187 | // If User is already in Processed, we don't want to recurse into it again, |
188 | // but do want to record a second reference in the same instruction. |
189 | bool AddUserToIVUsers = false; |
190 | if (LI->getLoopFor(BB: User->getParent()) != L) { |
191 | if (isa<PHINode>(Val: User) || Processed.count(Ptr: User) || |
192 | !AddUsersIfInteresting(I: User)) { |
193 | LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' |
194 | << " OF SCEV: " << *ISE << '\n'); |
195 | AddUserToIVUsers = true; |
196 | } |
197 | } else if (Processed.count(Ptr: User) || !AddUsersIfInteresting(I: User)) { |
198 | LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' |
199 | << " OF SCEV: " << *ISE << '\n'); |
200 | AddUserToIVUsers = true; |
201 | } |
202 | |
203 | if (AddUserToIVUsers) { |
204 | // Okay, we found a user that we cannot reduce. |
205 | IVStrideUse &NewUse = AddUser(User, Operand: I); |
206 | // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. |
207 | // The regular return value here is discarded; instead of recording |
208 | // it, we just recompute it when we need it. |
209 | const SCEV *OriginalISE = ISE; |
210 | |
211 | auto NormalizePred = [&](const SCEVAddRecExpr *AR) { |
212 | auto *L = AR->getLoop(); |
213 | bool Result = IVUseShouldUsePostIncValue(User, Operand: I, L, DT); |
214 | if (Result) |
215 | NewUse.PostIncLoops.insert(Ptr: L); |
216 | return Result; |
217 | }; |
218 | |
219 | ISE = normalizeForPostIncUseIf(S: ISE, Pred: NormalizePred, SE&: *SE); |
220 | |
221 | // PostIncNormalization effectively simplifies the expression under |
222 | // pre-increment assumptions. Those assumptions (no wrapping) might not |
223 | // hold for the post-inc value. Catch such cases by making sure the |
224 | // transformation is invertible. |
225 | if (OriginalISE != ISE) { |
226 | const SCEV *DenormalizedISE = |
227 | denormalizeForPostIncUse(S: ISE, Loops: NewUse.PostIncLoops, SE&: *SE); |
228 | |
229 | // If we normalized the expression, but denormalization doesn't give the |
230 | // original one, discard this user. |
231 | if (OriginalISE != DenormalizedISE) { |
232 | LLVM_DEBUG(dbgs() |
233 | << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " |
234 | << *ISE << '\n'); |
235 | IVUses.pop_back(); |
236 | return false; |
237 | } |
238 | } |
239 | LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() |
240 | << " NORMALIZED TO: " << *ISE << '\n'); |
241 | } |
242 | } |
243 | return true; |
244 | } |
245 | |
246 | IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { |
247 | IVUses.push_back(val: new IVStrideUse(this, User, Operand)); |
248 | return IVUses.back(); |
249 | } |
250 | |
251 | IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, |
252 | ScalarEvolution *SE) |
253 | : L(L), AC(AC), LI(LI), DT(DT), SE(SE) { |
254 | // Collect ephemeral values so that AddUsersIfInteresting skips them. |
255 | EphValues.clear(); |
256 | CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
257 | |
258 | // Find all uses of induction variables in this loop, and categorize |
259 | // them by stride. Start by finding all of the PHI nodes in the header for |
260 | // this loop. If they are induction variables, inspect their uses. |
261 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(Val: I); ++I) |
262 | (void)AddUsersIfInteresting(I: &*I); |
263 | } |
264 | |
265 | void IVUsers::print(raw_ostream &OS, const Module *M) const { |
266 | OS << "IV Users for loop " ; |
267 | L->getHeader()->printAsOperand(O&: OS, PrintType: false); |
268 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
269 | OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); |
270 | } |
271 | OS << ":\n" ; |
272 | |
273 | for (const IVStrideUse &IVUse : IVUses) { |
274 | OS << " " ; |
275 | IVUse.getOperandValToReplace()->printAsOperand(O&: OS, PrintType: false); |
276 | OS << " = " << *getReplacementExpr(IU: IVUse); |
277 | for (const auto *PostIncLoop : IVUse.PostIncLoops) { |
278 | OS << " (post-inc with loop " ; |
279 | PostIncLoop->getHeader()->printAsOperand(O&: OS, PrintType: false); |
280 | OS << ")" ; |
281 | } |
282 | OS << " in " ; |
283 | if (IVUse.getUser()) |
284 | IVUse.getUser()->print(O&: OS); |
285 | else |
286 | OS << "Printing <null> User" ; |
287 | OS << '\n'; |
288 | } |
289 | } |
290 | |
291 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
292 | LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } |
293 | #endif |
294 | |
295 | void IVUsers::releaseMemory() { |
296 | Processed.clear(); |
297 | IVUses.clear(); |
298 | } |
299 | |
300 | IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { |
301 | initializeIVUsersWrapperPassPass(Registry&: *PassRegistry::getPassRegistry()); |
302 | } |
303 | |
304 | void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
305 | AU.addRequired<AssumptionCacheTracker>(); |
306 | AU.addRequired<LoopInfoWrapperPass>(); |
307 | AU.addRequired<DominatorTreeWrapperPass>(); |
308 | AU.addRequired<ScalarEvolutionWrapperPass>(); |
309 | AU.setPreservesAll(); |
310 | } |
311 | |
312 | bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { |
313 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( |
314 | F&: *L->getHeader()->getParent()); |
315 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
316 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
317 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
318 | |
319 | IU.reset(p: new IVUsers(L, AC, LI, DT, SE)); |
320 | return false; |
321 | } |
322 | |
323 | void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { |
324 | IU->print(OS, M); |
325 | } |
326 | |
327 | void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } |
328 | |
329 | /// getReplacementExpr - Return a SCEV expression which computes the |
330 | /// value of the OperandValToReplace. |
331 | const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { |
332 | return SE->getSCEV(V: IU.getOperandValToReplace()); |
333 | } |
334 | |
335 | /// getExpr - Return the expression for the use. |
336 | const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { |
337 | const SCEV *Replacement = getReplacementExpr(IU); |
338 | return normalizeForPostIncUse(S: Replacement, Loops: IU.getPostIncLoops(), SE&: *SE); |
339 | } |
340 | |
341 | static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { |
342 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
343 | if (AR->getLoop() == L) |
344 | return AR; |
345 | return findAddRecForLoop(S: AR->getStart(), L); |
346 | } |
347 | |
348 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Val: S)) { |
349 | for (const auto *Op : Add->operands()) |
350 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(S: Op, L)) |
351 | return AR; |
352 | return nullptr; |
353 | } |
354 | |
355 | return nullptr; |
356 | } |
357 | |
358 | const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { |
359 | const SCEV *Expr = getExpr(IU); |
360 | if (!Expr) |
361 | return nullptr; |
362 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(S: Expr, L)) |
363 | return AR->getStepRecurrence(SE&: *SE); |
364 | return nullptr; |
365 | } |
366 | |
367 | void IVStrideUse::transformToPostInc(const Loop *L) { |
368 | PostIncLoops.insert(Ptr: L); |
369 | } |
370 | |
371 | void IVStrideUse::deleted() { |
372 | // Remove this user from the list. |
373 | Parent->Processed.erase(Ptr: this->getUser()); |
374 | Parent->IVUses.erase(IT: this); |
375 | // this now dangles! |
376 | } |
377 | |