1 | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the interface for lazy computation of value constraint |
10 | // information. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Analysis/LazyValueInfo.h" |
15 | #include "llvm/ADT/DenseSet.h" |
16 | #include "llvm/ADT/STLExtras.h" |
17 | #include "llvm/Analysis/AssumptionCache.h" |
18 | #include "llvm/Analysis/ConstantFolding.h" |
19 | #include "llvm/Analysis/InstructionSimplify.h" |
20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
21 | #include "llvm/Analysis/ValueLattice.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/IR/AssemblyAnnotationWriter.h" |
24 | #include "llvm/IR/CFG.h" |
25 | #include "llvm/IR/ConstantRange.h" |
26 | #include "llvm/IR/Constants.h" |
27 | #include "llvm/IR/DataLayout.h" |
28 | #include "llvm/IR/Dominators.h" |
29 | #include "llvm/IR/InstrTypes.h" |
30 | #include "llvm/IR/Instructions.h" |
31 | #include "llvm/IR/IntrinsicInst.h" |
32 | #include "llvm/IR/Intrinsics.h" |
33 | #include "llvm/IR/LLVMContext.h" |
34 | #include "llvm/IR/Module.h" |
35 | #include "llvm/IR/PatternMatch.h" |
36 | #include "llvm/IR/ValueHandle.h" |
37 | #include "llvm/InitializePasses.h" |
38 | #include "llvm/Support/Debug.h" |
39 | #include "llvm/Support/FormattedStream.h" |
40 | #include "llvm/Support/KnownBits.h" |
41 | #include "llvm/Support/raw_ostream.h" |
42 | #include <optional> |
43 | using namespace llvm; |
44 | using namespace PatternMatch; |
45 | |
46 | #define DEBUG_TYPE "lazy-value-info" |
47 | |
48 | // This is the number of worklist items we will process to try to discover an |
49 | // answer for a given value. |
50 | static const unsigned MaxProcessedPerValue = 500; |
51 | |
52 | char LazyValueInfoWrapperPass::ID = 0; |
53 | LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { |
54 | initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
55 | } |
56 | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info" , |
57 | "Lazy Value Information Analysis" , false, true) |
58 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
59 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
60 | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info" , |
61 | "Lazy Value Information Analysis" , false, true) |
62 | |
63 | namespace llvm { |
64 | FunctionPass *createLazyValueInfoPass() { |
65 | return new LazyValueInfoWrapperPass(); |
66 | } |
67 | } // namespace llvm |
68 | |
69 | AnalysisKey LazyValueAnalysis::Key; |
70 | |
71 | /// Returns true if this lattice value represents at most one possible value. |
72 | /// This is as precise as any lattice value can get while still representing |
73 | /// reachable code. |
74 | static bool hasSingleValue(const ValueLatticeElement &Val) { |
75 | if (Val.isConstantRange() && |
76 | Val.getConstantRange().isSingleElement()) |
77 | // Integer constants are single element ranges |
78 | return true; |
79 | if (Val.isConstant()) |
80 | // Non integer constants |
81 | return true; |
82 | return false; |
83 | } |
84 | |
85 | /// Combine two sets of facts about the same value into a single set of |
86 | /// facts. Note that this method is not suitable for merging facts along |
87 | /// different paths in a CFG; that's what the mergeIn function is for. This |
88 | /// is for merging facts gathered about the same value at the same location |
89 | /// through two independent means. |
90 | /// Notes: |
91 | /// * This method does not promise to return the most precise possible lattice |
92 | /// value implied by A and B. It is allowed to return any lattice element |
93 | /// which is at least as strong as *either* A or B (unless our facts |
94 | /// conflict, see below). |
95 | /// * Due to unreachable code, the intersection of two lattice values could be |
96 | /// contradictory. If this happens, we return some valid lattice value so as |
97 | /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but |
98 | /// we do not make this guarantee. TODO: This would be a useful enhancement. |
99 | static ValueLatticeElement intersect(const ValueLatticeElement &A, |
100 | const ValueLatticeElement &B) { |
101 | // Undefined is the strongest state. It means the value is known to be along |
102 | // an unreachable path. |
103 | if (A.isUnknown()) |
104 | return A; |
105 | if (B.isUnknown()) |
106 | return B; |
107 | |
108 | // If we gave up for one, but got a useable fact from the other, use it. |
109 | if (A.isOverdefined()) |
110 | return B; |
111 | if (B.isOverdefined()) |
112 | return A; |
113 | |
114 | // Can't get any more precise than constants. |
115 | if (hasSingleValue(Val: A)) |
116 | return A; |
117 | if (hasSingleValue(Val: B)) |
118 | return B; |
119 | |
120 | // Could be either constant range or not constant here. |
121 | if (!A.isConstantRange() || !B.isConstantRange()) { |
122 | // TODO: Arbitrary choice, could be improved |
123 | return A; |
124 | } |
125 | |
126 | // Intersect two constant ranges |
127 | ConstantRange Range = |
128 | A.getConstantRange().intersectWith(CR: B.getConstantRange()); |
129 | // Note: An empty range is implicitly converted to unknown or undef depending |
130 | // on MayIncludeUndef internally. |
131 | return ValueLatticeElement::getRange( |
132 | CR: std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || |
133 | B.isConstantRangeIncludingUndef()); |
134 | } |
135 | |
136 | //===----------------------------------------------------------------------===// |
137 | // LazyValueInfoCache Decl |
138 | //===----------------------------------------------------------------------===// |
139 | |
140 | namespace { |
141 | /// A callback value handle updates the cache when values are erased. |
142 | class LazyValueInfoCache; |
143 | struct LVIValueHandle final : public CallbackVH { |
144 | LazyValueInfoCache *Parent; |
145 | |
146 | LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) |
147 | : CallbackVH(V), Parent(P) { } |
148 | |
149 | void deleted() override; |
150 | void allUsesReplacedWith(Value *V) override { |
151 | deleted(); |
152 | } |
153 | }; |
154 | } // end anonymous namespace |
155 | |
156 | namespace { |
157 | using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; |
158 | |
159 | /// This is the cache kept by LazyValueInfo which |
160 | /// maintains information about queries across the clients' queries. |
161 | class LazyValueInfoCache { |
162 | /// This is all of the cached information for one basic block. It contains |
163 | /// the per-value lattice elements, as well as a separate set for |
164 | /// overdefined values to reduce memory usage. Additionally pointers |
165 | /// dereferenced in the block are cached for nullability queries. |
166 | struct BlockCacheEntry { |
167 | SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; |
168 | SmallDenseSet<AssertingVH<Value>, 4> OverDefined; |
169 | // std::nullopt indicates that the nonnull pointers for this basic block |
170 | // block have not been computed yet. |
171 | std::optional<NonNullPointerSet> NonNullPointers; |
172 | }; |
173 | |
174 | /// Cached information per basic block. |
175 | DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> |
176 | BlockCache; |
177 | /// Set of value handles used to erase values from the cache on deletion. |
178 | DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; |
179 | |
180 | const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { |
181 | auto It = BlockCache.find_as(Val: BB); |
182 | if (It == BlockCache.end()) |
183 | return nullptr; |
184 | return It->second.get(); |
185 | } |
186 | |
187 | BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { |
188 | auto It = BlockCache.find_as(Val: BB); |
189 | if (It == BlockCache.end()) |
190 | It = BlockCache.insert(KV: {BB, std::make_unique<BlockCacheEntry>()}).first; |
191 | |
192 | return It->second.get(); |
193 | } |
194 | |
195 | void addValueHandle(Value *Val) { |
196 | auto HandleIt = ValueHandles.find_as(Val); |
197 | if (HandleIt == ValueHandles.end()) |
198 | ValueHandles.insert(V: {Val, this}); |
199 | } |
200 | |
201 | public: |
202 | void insertResult(Value *Val, BasicBlock *BB, |
203 | const ValueLatticeElement &Result) { |
204 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); |
205 | |
206 | // Insert over-defined values into their own cache to reduce memory |
207 | // overhead. |
208 | if (Result.isOverdefined()) |
209 | Entry->OverDefined.insert(V: Val); |
210 | else |
211 | Entry->LatticeElements.insert(KV: {Val, Result}); |
212 | |
213 | addValueHandle(Val); |
214 | } |
215 | |
216 | std::optional<ValueLatticeElement> getCachedValueInfo(Value *V, |
217 | BasicBlock *BB) const { |
218 | const BlockCacheEntry *Entry = getBlockEntry(BB); |
219 | if (!Entry) |
220 | return std::nullopt; |
221 | |
222 | if (Entry->OverDefined.count(V)) |
223 | return ValueLatticeElement::getOverdefined(); |
224 | |
225 | auto LatticeIt = Entry->LatticeElements.find_as(Val: V); |
226 | if (LatticeIt == Entry->LatticeElements.end()) |
227 | return std::nullopt; |
228 | |
229 | return LatticeIt->second; |
230 | } |
231 | |
232 | bool |
233 | isNonNullAtEndOfBlock(Value *V, BasicBlock *BB, |
234 | function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { |
235 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); |
236 | if (!Entry->NonNullPointers) { |
237 | Entry->NonNullPointers = InitFn(BB); |
238 | for (Value *V : *Entry->NonNullPointers) |
239 | addValueHandle(Val: V); |
240 | } |
241 | |
242 | return Entry->NonNullPointers->count(V); |
243 | } |
244 | |
245 | /// clear - Empty the cache. |
246 | void clear() { |
247 | BlockCache.clear(); |
248 | ValueHandles.clear(); |
249 | } |
250 | |
251 | /// Inform the cache that a given value has been deleted. |
252 | void eraseValue(Value *V); |
253 | |
254 | /// This is part of the update interface to inform the cache |
255 | /// that a block has been deleted. |
256 | void eraseBlock(BasicBlock *BB); |
257 | |
258 | /// Updates the cache to remove any influence an overdefined value in |
259 | /// OldSucc might have (unless also overdefined in NewSucc). This just |
260 | /// flushes elements from the cache and does not add any. |
261 | void threadEdgeImpl(BasicBlock *OldSucc, BasicBlock *NewSucc); |
262 | }; |
263 | } // namespace |
264 | |
265 | void LazyValueInfoCache::eraseValue(Value *V) { |
266 | for (auto &Pair : BlockCache) { |
267 | Pair.second->LatticeElements.erase(Val: V); |
268 | Pair.second->OverDefined.erase(V); |
269 | if (Pair.second->NonNullPointers) |
270 | Pair.second->NonNullPointers->erase(V); |
271 | } |
272 | |
273 | auto HandleIt = ValueHandles.find_as(Val: V); |
274 | if (HandleIt != ValueHandles.end()) |
275 | ValueHandles.erase(I: HandleIt); |
276 | } |
277 | |
278 | void LVIValueHandle::deleted() { |
279 | // This erasure deallocates *this, so it MUST happen after we're done |
280 | // using any and all members of *this. |
281 | Parent->eraseValue(V: *this); |
282 | } |
283 | |
284 | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { |
285 | BlockCache.erase(Val: BB); |
286 | } |
287 | |
288 | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, |
289 | BasicBlock *NewSucc) { |
290 | // When an edge in the graph has been threaded, values that we could not |
291 | // determine a value for before (i.e. were marked overdefined) may be |
292 | // possible to solve now. We do NOT try to proactively update these values. |
293 | // Instead, we clear their entries from the cache, and allow lazy updating to |
294 | // recompute them when needed. |
295 | |
296 | // The updating process is fairly simple: we need to drop cached info |
297 | // for all values that were marked overdefined in OldSucc, and for those same |
298 | // values in any successor of OldSucc (except NewSucc) in which they were |
299 | // also marked overdefined. |
300 | std::vector<BasicBlock*> worklist; |
301 | worklist.push_back(x: OldSucc); |
302 | |
303 | const BlockCacheEntry *Entry = getBlockEntry(BB: OldSucc); |
304 | if (!Entry || Entry->OverDefined.empty()) |
305 | return; // Nothing to process here. |
306 | SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), |
307 | Entry->OverDefined.end()); |
308 | |
309 | // Use a worklist to perform a depth-first search of OldSucc's successors. |
310 | // NOTE: We do not need a visited list since any blocks we have already |
311 | // visited will have had their overdefined markers cleared already, and we |
312 | // thus won't loop to their successors. |
313 | while (!worklist.empty()) { |
314 | BasicBlock *ToUpdate = worklist.back(); |
315 | worklist.pop_back(); |
316 | |
317 | // Skip blocks only accessible through NewSucc. |
318 | if (ToUpdate == NewSucc) continue; |
319 | |
320 | // If a value was marked overdefined in OldSucc, and is here too... |
321 | auto OI = BlockCache.find_as(Val: ToUpdate); |
322 | if (OI == BlockCache.end() || OI->second->OverDefined.empty()) |
323 | continue; |
324 | auto &ValueSet = OI->second->OverDefined; |
325 | |
326 | bool changed = false; |
327 | for (Value *V : ValsToClear) { |
328 | if (!ValueSet.erase(V)) |
329 | continue; |
330 | |
331 | // If we removed anything, then we potentially need to update |
332 | // blocks successors too. |
333 | changed = true; |
334 | } |
335 | |
336 | if (!changed) continue; |
337 | |
338 | llvm::append_range(C&: worklist, R: successors(BB: ToUpdate)); |
339 | } |
340 | } |
341 | |
342 | namespace llvm { |
343 | namespace { |
344 | /// An assembly annotator class to print LazyValueCache information in |
345 | /// comments. |
346 | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { |
347 | LazyValueInfoImpl *LVIImpl; |
348 | // While analyzing which blocks we can solve values for, we need the dominator |
349 | // information. |
350 | DominatorTree &DT; |
351 | |
352 | public: |
353 | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) |
354 | : LVIImpl(L), DT(DTree) {} |
355 | |
356 | void emitBasicBlockStartAnnot(const BasicBlock *BB, |
357 | formatted_raw_ostream &OS) override; |
358 | |
359 | void emitInstructionAnnot(const Instruction *I, |
360 | formatted_raw_ostream &OS) override; |
361 | }; |
362 | } // namespace |
363 | // The actual implementation of the lazy analysis and update. Note that the |
364 | // inheritance from LazyValueInfoCache is intended to be temporary while |
365 | // splitting the code and then transitioning to a has-a relationship. |
366 | class LazyValueInfoImpl { |
367 | |
368 | /// Cached results from previous queries |
369 | LazyValueInfoCache TheCache; |
370 | |
371 | /// This stack holds the state of the value solver during a query. |
372 | /// It basically emulates the callstack of the naive |
373 | /// recursive value lookup process. |
374 | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; |
375 | |
376 | /// Keeps track of which block-value pairs are in BlockValueStack. |
377 | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; |
378 | |
379 | /// Push BV onto BlockValueStack unless it's already in there. |
380 | /// Returns true on success. |
381 | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { |
382 | if (!BlockValueSet.insert(V: BV).second) |
383 | return false; // It's already in the stack. |
384 | |
385 | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " |
386 | << BV.first->getName() << "\n" ); |
387 | BlockValueStack.push_back(Elt: BV); |
388 | return true; |
389 | } |
390 | |
391 | AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. |
392 | const DataLayout &DL; ///< A mandatory DataLayout |
393 | |
394 | /// Declaration of the llvm.experimental.guard() intrinsic, |
395 | /// if it exists in the module. |
396 | Function *GuardDecl; |
397 | |
398 | std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, |
399 | Instruction *CxtI); |
400 | std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, |
401 | BasicBlock *T, |
402 | Instruction *CxtI = nullptr); |
403 | |
404 | // These methods process one work item and may add more. A false value |
405 | // returned means that the work item was not completely processed and must |
406 | // be revisited after going through the new items. |
407 | bool solveBlockValue(Value *Val, BasicBlock *BB); |
408 | std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, |
409 | BasicBlock *BB); |
410 | std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, |
411 | BasicBlock *BB); |
412 | std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, |
413 | BasicBlock *BB); |
414 | std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, |
415 | BasicBlock *BB); |
416 | std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, |
417 | BasicBlock *BB); |
418 | std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( |
419 | Instruction *I, BasicBlock *BB, |
420 | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> |
421 | OpFn); |
422 | std::optional<ValueLatticeElement> |
423 | solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); |
424 | std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, |
425 | BasicBlock *BB); |
426 | std::optional<ValueLatticeElement> |
427 | solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); |
428 | std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, |
429 | BasicBlock *BB); |
430 | std::optional<ValueLatticeElement> |
431 | solveBlockValueInsertElement(InsertElementInst *IEI, BasicBlock *BB); |
432 | std::optional<ValueLatticeElement> |
433 | solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); |
434 | bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); |
435 | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, |
436 | ValueLatticeElement &BBLV, |
437 | Instruction *BBI); |
438 | |
439 | void solve(); |
440 | |
441 | // For the following methods, if UseBlockValue is true, the function may |
442 | // push additional values to the worklist and return nullopt. If |
443 | // UseBlockValue is false, it will never return nullopt. |
444 | |
445 | std::optional<ValueLatticeElement> |
446 | getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, |
447 | const APInt &Offset, Instruction *CxtI, |
448 | bool UseBlockValue); |
449 | |
450 | std::optional<ValueLatticeElement> |
451 | getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, |
452 | bool UseBlockValue); |
453 | |
454 | std::optional<ValueLatticeElement> |
455 | getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, |
456 | bool UseBlockValue, unsigned Depth = 0); |
457 | |
458 | std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, |
459 | BasicBlock *BBFrom, |
460 | BasicBlock *BBTo, |
461 | bool UseBlockValue); |
462 | |
463 | public: |
464 | /// This is the query interface to determine the lattice value for the |
465 | /// specified Value* at the context instruction (if specified) or at the |
466 | /// start of the block. |
467 | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, |
468 | Instruction *CxtI = nullptr); |
469 | |
470 | /// This is the query interface to determine the lattice value for the |
471 | /// specified Value* at the specified instruction using only information |
472 | /// from assumes/guards and range metadata. Unlike getValueInBlock(), no |
473 | /// recursive query is performed. |
474 | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); |
475 | |
476 | /// This is the query interface to determine the lattice |
477 | /// value for the specified Value* that is true on the specified edge. |
478 | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, |
479 | BasicBlock *ToBB, |
480 | Instruction *CxtI = nullptr); |
481 | |
482 | ValueLatticeElement getValueAtUse(const Use &U); |
483 | |
484 | /// Complete flush all previously computed values |
485 | void clear() { |
486 | TheCache.clear(); |
487 | } |
488 | |
489 | /// Printing the LazyValueInfo Analysis. |
490 | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
491 | LazyValueInfoAnnotatedWriter Writer(this, DTree); |
492 | F.print(OS, AAW: &Writer); |
493 | } |
494 | |
495 | /// This is part of the update interface to remove information related to this |
496 | /// value from the cache. |
497 | void forgetValue(Value *V) { TheCache.eraseValue(V); } |
498 | |
499 | /// This is part of the update interface to inform the cache |
500 | /// that a block has been deleted. |
501 | void eraseBlock(BasicBlock *BB) { |
502 | TheCache.eraseBlock(BB); |
503 | } |
504 | |
505 | /// This is the update interface to inform the cache that an edge from |
506 | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. |
507 | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); |
508 | |
509 | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, |
510 | Function *GuardDecl) |
511 | : AC(AC), DL(DL), GuardDecl(GuardDecl) {} |
512 | }; |
513 | } // namespace llvm |
514 | |
515 | void LazyValueInfoImpl::solve() { |
516 | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( |
517 | BlockValueStack.begin(), BlockValueStack.end()); |
518 | |
519 | unsigned processedCount = 0; |
520 | while (!BlockValueStack.empty()) { |
521 | processedCount++; |
522 | // Abort if we have to process too many values to get a result for this one. |
523 | // Because of the design of the overdefined cache currently being per-block |
524 | // to avoid naming-related issues (IE it wants to try to give different |
525 | // results for the same name in different blocks), overdefined results don't |
526 | // get cached globally, which in turn means we will often try to rediscover |
527 | // the same overdefined result again and again. Once something like |
528 | // PredicateInfo is used in LVI or CVP, we should be able to make the |
529 | // overdefined cache global, and remove this throttle. |
530 | if (processedCount > MaxProcessedPerValue) { |
531 | LLVM_DEBUG( |
532 | dbgs() << "Giving up on stack because we are getting too deep\n" ); |
533 | // Fill in the original values |
534 | while (!StartingStack.empty()) { |
535 | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); |
536 | TheCache.insertResult(Val: e.second, BB: e.first, |
537 | Result: ValueLatticeElement::getOverdefined()); |
538 | StartingStack.pop_back(); |
539 | } |
540 | BlockValueSet.clear(); |
541 | BlockValueStack.clear(); |
542 | return; |
543 | } |
544 | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); |
545 | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!" ); |
546 | unsigned StackSize = BlockValueStack.size(); |
547 | (void) StackSize; |
548 | |
549 | if (solveBlockValue(Val: e.second, BB: e.first)) { |
550 | // The work item was completely processed. |
551 | assert(BlockValueStack.size() == StackSize && |
552 | BlockValueStack.back() == e && "Nothing should have been pushed!" ); |
553 | #ifndef NDEBUG |
554 | std::optional<ValueLatticeElement> BBLV = |
555 | TheCache.getCachedValueInfo(e.second, e.first); |
556 | assert(BBLV && "Result should be in cache!" ); |
557 | LLVM_DEBUG( |
558 | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " |
559 | << *BBLV << "\n" ); |
560 | #endif |
561 | |
562 | BlockValueStack.pop_back(); |
563 | BlockValueSet.erase(V: e); |
564 | } else { |
565 | // More work needs to be done before revisiting. |
566 | assert(BlockValueStack.size() == StackSize + 1 && |
567 | "Exactly one element should have been pushed!" ); |
568 | } |
569 | } |
570 | } |
571 | |
572 | std::optional<ValueLatticeElement> |
573 | LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, |
574 | Instruction *CxtI) { |
575 | // If already a constant, there is nothing to compute. |
576 | if (Constant *VC = dyn_cast<Constant>(Val)) |
577 | return ValueLatticeElement::get(C: VC); |
578 | |
579 | if (std::optional<ValueLatticeElement> OptLatticeVal = |
580 | TheCache.getCachedValueInfo(V: Val, BB)) { |
581 | intersectAssumeOrGuardBlockValueConstantRange(Val, BBLV&: *OptLatticeVal, BBI: CxtI); |
582 | return OptLatticeVal; |
583 | } |
584 | |
585 | // We have hit a cycle, assume overdefined. |
586 | if (!pushBlockValue(BV: { BB, Val })) |
587 | return ValueLatticeElement::getOverdefined(); |
588 | |
589 | // Yet to be resolved. |
590 | return std::nullopt; |
591 | } |
592 | |
593 | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { |
594 | switch (BBI->getOpcode()) { |
595 | default: |
596 | break; |
597 | case Instruction::Call: |
598 | case Instruction::Invoke: |
599 | if (std::optional<ConstantRange> Range = cast<CallBase>(Val: BBI)->getRange()) |
600 | return ValueLatticeElement::getRange(CR: *Range); |
601 | [[fallthrough]]; |
602 | case Instruction::Load: |
603 | if (MDNode *Ranges = BBI->getMetadata(KindID: LLVMContext::MD_range)) |
604 | if (isa<IntegerType>(Val: BBI->getType())) { |
605 | return ValueLatticeElement::getRange( |
606 | CR: getConstantRangeFromMetadata(RangeMD: *Ranges)); |
607 | } |
608 | break; |
609 | }; |
610 | // Nothing known - will be intersected with other facts |
611 | return ValueLatticeElement::getOverdefined(); |
612 | } |
613 | |
614 | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { |
615 | assert(!isa<Constant>(Val) && "Value should not be constant" ); |
616 | assert(!TheCache.getCachedValueInfo(Val, BB) && |
617 | "Value should not be in cache" ); |
618 | |
619 | // Hold off inserting this value into the Cache in case we have to return |
620 | // false and come back later. |
621 | std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); |
622 | if (!Res) |
623 | // Work pushed, will revisit |
624 | return false; |
625 | |
626 | TheCache.insertResult(Val, BB, Result: *Res); |
627 | return true; |
628 | } |
629 | |
630 | std::optional<ValueLatticeElement> |
631 | LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { |
632 | Instruction *BBI = dyn_cast<Instruction>(Val); |
633 | if (!BBI || BBI->getParent() != BB) |
634 | return solveBlockValueNonLocal(Val, BB); |
635 | |
636 | if (PHINode *PN = dyn_cast<PHINode>(Val: BBI)) |
637 | return solveBlockValuePHINode(PN, BB); |
638 | |
639 | if (auto *SI = dyn_cast<SelectInst>(Val: BBI)) |
640 | return solveBlockValueSelect(S: SI, BB); |
641 | |
642 | // If this value is a nonnull pointer, record it's range and bailout. Note |
643 | // that for all other pointer typed values, we terminate the search at the |
644 | // definition. We could easily extend this to look through geps, bitcasts, |
645 | // and the like to prove non-nullness, but it's not clear that's worth it |
646 | // compile time wise. The context-insensitive value walk done inside |
647 | // isKnownNonZero gets most of the profitable cases at much less expense. |
648 | // This does mean that we have a sensitivity to where the defining |
649 | // instruction is placed, even if it could legally be hoisted much higher. |
650 | // That is unfortunate. |
651 | PointerType *PT = dyn_cast<PointerType>(Val: BBI->getType()); |
652 | if (PT && isKnownNonZero(V: BBI, Q: DL)) |
653 | return ValueLatticeElement::getNot(C: ConstantPointerNull::get(T: PT)); |
654 | |
655 | if (BBI->getType()->isIntOrIntVectorTy()) { |
656 | if (auto *CI = dyn_cast<CastInst>(Val: BBI)) |
657 | return solveBlockValueCast(CI, BB); |
658 | |
659 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: BBI)) |
660 | return solveBlockValueBinaryOp(BBI: BO, BB); |
661 | |
662 | if (auto *IEI = dyn_cast<InsertElementInst>(Val: BBI)) |
663 | return solveBlockValueInsertElement(IEI, BB); |
664 | |
665 | if (auto *EVI = dyn_cast<ExtractValueInst>(Val: BBI)) |
666 | return solveBlockValueExtractValue(EVI, BB); |
667 | |
668 | if (auto *II = dyn_cast<IntrinsicInst>(Val: BBI)) |
669 | return solveBlockValueIntrinsic(II, BB); |
670 | } |
671 | |
672 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
673 | << "' - unknown inst def found.\n" ); |
674 | return getFromRangeMetadata(BBI); |
675 | } |
676 | |
677 | static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { |
678 | // TODO: Use NullPointerIsDefined instead. |
679 | if (Ptr->getType()->getPointerAddressSpace() == 0) |
680 | PtrSet.insert(V: getUnderlyingObject(V: Ptr)); |
681 | } |
682 | |
683 | static void AddNonNullPointersByInstruction( |
684 | Instruction *I, NonNullPointerSet &PtrSet) { |
685 | if (LoadInst *L = dyn_cast<LoadInst>(Val: I)) { |
686 | AddNonNullPointer(Ptr: L->getPointerOperand(), PtrSet); |
687 | } else if (StoreInst *S = dyn_cast<StoreInst>(Val: I)) { |
688 | AddNonNullPointer(Ptr: S->getPointerOperand(), PtrSet); |
689 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: I)) { |
690 | if (MI->isVolatile()) return; |
691 | |
692 | // FIXME: check whether it has a valuerange that excludes zero? |
693 | ConstantInt *Len = dyn_cast<ConstantInt>(Val: MI->getLength()); |
694 | if (!Len || Len->isZero()) return; |
695 | |
696 | AddNonNullPointer(Ptr: MI->getRawDest(), PtrSet); |
697 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Val: MI)) |
698 | AddNonNullPointer(Ptr: MTI->getRawSource(), PtrSet); |
699 | } |
700 | } |
701 | |
702 | bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { |
703 | if (NullPointerIsDefined(F: BB->getParent(), |
704 | AS: Val->getType()->getPointerAddressSpace())) |
705 | return false; |
706 | |
707 | Val = Val->stripInBoundsOffsets(); |
708 | return TheCache.isNonNullAtEndOfBlock(V: Val, BB, InitFn: [](BasicBlock *BB) { |
709 | NonNullPointerSet NonNullPointers; |
710 | for (Instruction &I : *BB) |
711 | AddNonNullPointersByInstruction(I: &I, PtrSet&: NonNullPointers); |
712 | return NonNullPointers; |
713 | }); |
714 | } |
715 | |
716 | std::optional<ValueLatticeElement> |
717 | LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { |
718 | ValueLatticeElement Result; // Start Undefined. |
719 | |
720 | // If this is the entry block, we must be asking about an argument. |
721 | if (BB->isEntryBlock()) { |
722 | assert(isa<Argument>(Val) && "Unknown live-in to the entry block" ); |
723 | if (std::optional<ConstantRange> Range = cast<Argument>(Val)->getRange()) |
724 | return ValueLatticeElement::getRange(CR: *Range); |
725 | return ValueLatticeElement::getOverdefined(); |
726 | } |
727 | |
728 | // Loop over all of our predecessors, merging what we know from them into |
729 | // result. If we encounter an unexplored predecessor, we eagerly explore it |
730 | // in a depth first manner. In practice, this has the effect of discovering |
731 | // paths we can't analyze eagerly without spending compile times analyzing |
732 | // other paths. This heuristic benefits from the fact that predecessors are |
733 | // frequently arranged such that dominating ones come first and we quickly |
734 | // find a path to function entry. TODO: We should consider explicitly |
735 | // canonicalizing to make this true rather than relying on this happy |
736 | // accident. |
737 | for (BasicBlock *Pred : predecessors(BB)) { |
738 | std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(V: Val, F: Pred, T: BB); |
739 | if (!EdgeResult) |
740 | // Explore that input, then return here |
741 | return std::nullopt; |
742 | |
743 | Result.mergeIn(RHS: *EdgeResult); |
744 | |
745 | // If we hit overdefined, exit early. The BlockVals entry is already set |
746 | // to overdefined. |
747 | if (Result.isOverdefined()) { |
748 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
749 | << "' - overdefined because of pred '" |
750 | << Pred->getName() << "' (non local).\n" ); |
751 | return Result; |
752 | } |
753 | } |
754 | |
755 | // Return the merged value, which is more precise than 'overdefined'. |
756 | assert(!Result.isOverdefined()); |
757 | return Result; |
758 | } |
759 | |
760 | std::optional<ValueLatticeElement> |
761 | LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { |
762 | ValueLatticeElement Result; // Start Undefined. |
763 | |
764 | // Loop over all of our predecessors, merging what we know from them into |
765 | // result. See the comment about the chosen traversal order in |
766 | // solveBlockValueNonLocal; the same reasoning applies here. |
767 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
768 | BasicBlock *PhiBB = PN->getIncomingBlock(i); |
769 | Value *PhiVal = PN->getIncomingValue(i); |
770 | // Note that we can provide PN as the context value to getEdgeValue, even |
771 | // though the results will be cached, because PN is the value being used as |
772 | // the cache key in the caller. |
773 | std::optional<ValueLatticeElement> EdgeResult = |
774 | getEdgeValue(V: PhiVal, F: PhiBB, T: BB, CxtI: PN); |
775 | if (!EdgeResult) |
776 | // Explore that input, then return here |
777 | return std::nullopt; |
778 | |
779 | Result.mergeIn(RHS: *EdgeResult); |
780 | |
781 | // If we hit overdefined, exit early. The BlockVals entry is already set |
782 | // to overdefined. |
783 | if (Result.isOverdefined()) { |
784 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
785 | << "' - overdefined because of pred (local).\n" ); |
786 | |
787 | return Result; |
788 | } |
789 | } |
790 | |
791 | // Return the merged value, which is more precise than 'overdefined'. |
792 | assert(!Result.isOverdefined() && "Possible PHI in entry block?" ); |
793 | return Result; |
794 | } |
795 | |
796 | // If we can determine a constraint on the value given conditions assumed by |
797 | // the program, intersect those constraints with BBLV |
798 | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( |
799 | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { |
800 | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); |
801 | if (!BBI) |
802 | return; |
803 | |
804 | BasicBlock *BB = BBI->getParent(); |
805 | for (auto &AssumeVH : AC->assumptionsFor(V: Val)) { |
806 | if (!AssumeVH) |
807 | continue; |
808 | |
809 | // Only check assumes in the block of the context instruction. Other |
810 | // assumes will have already been taken into account when the value was |
811 | // propagated from predecessor blocks. |
812 | auto *I = cast<CallInst>(Val&: AssumeVH); |
813 | if (I->getParent() != BB || !isValidAssumeForContext(I, CxtI: BBI)) |
814 | continue; |
815 | |
816 | BBLV = intersect(A: BBLV, B: *getValueFromCondition(Val, Cond: I->getArgOperand(i: 0), |
817 | /*IsTrueDest*/ true, |
818 | /*UseBlockValue*/ false)); |
819 | } |
820 | |
821 | // If guards are not used in the module, don't spend time looking for them |
822 | if (GuardDecl && !GuardDecl->use_empty() && |
823 | BBI->getIterator() != BB->begin()) { |
824 | for (Instruction &I : |
825 | make_range(x: std::next(x: BBI->getIterator().getReverse()), y: BB->rend())) { |
826 | Value *Cond = nullptr; |
827 | if (match(V: &I, P: m_Intrinsic<Intrinsic::experimental_guard>(Op0: m_Value(V&: Cond)))) |
828 | BBLV = intersect(A: BBLV, |
829 | B: *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true, |
830 | /*UseBlockValue*/ false)); |
831 | } |
832 | } |
833 | |
834 | if (BBLV.isOverdefined()) { |
835 | // Check whether we're checking at the terminator, and the pointer has |
836 | // been dereferenced in this block. |
837 | PointerType *PTy = dyn_cast<PointerType>(Val: Val->getType()); |
838 | if (PTy && BB->getTerminator() == BBI && |
839 | isNonNullAtEndOfBlock(Val, BB)) |
840 | BBLV = ValueLatticeElement::getNot(C: ConstantPointerNull::get(T: PTy)); |
841 | } |
842 | } |
843 | |
844 | std::optional<ValueLatticeElement> |
845 | LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { |
846 | // Recurse on our inputs if needed |
847 | std::optional<ValueLatticeElement> OptTrueVal = |
848 | getBlockValue(Val: SI->getTrueValue(), BB, CxtI: SI); |
849 | if (!OptTrueVal) |
850 | return std::nullopt; |
851 | ValueLatticeElement &TrueVal = *OptTrueVal; |
852 | |
853 | std::optional<ValueLatticeElement> OptFalseVal = |
854 | getBlockValue(Val: SI->getFalseValue(), BB, CxtI: SI); |
855 | if (!OptFalseVal) |
856 | return std::nullopt; |
857 | ValueLatticeElement &FalseVal = *OptFalseVal; |
858 | |
859 | if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { |
860 | const ConstantRange &TrueCR = TrueVal.asConstantRange(Ty: SI->getType()); |
861 | const ConstantRange &FalseCR = FalseVal.asConstantRange(Ty: SI->getType()); |
862 | Value *LHS = nullptr; |
863 | Value *RHS = nullptr; |
864 | SelectPatternResult SPR = matchSelectPattern(V: SI, LHS, RHS); |
865 | // Is this a min specifically of our two inputs? (Avoid the risk of |
866 | // ValueTracking getting smarter looking back past our immediate inputs.) |
867 | if (SelectPatternResult::isMinOrMax(SPF: SPR.Flavor) && |
868 | ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || |
869 | (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { |
870 | ConstantRange ResultCR = [&]() { |
871 | switch (SPR.Flavor) { |
872 | default: |
873 | llvm_unreachable("unexpected minmax type!" ); |
874 | case SPF_SMIN: /// Signed minimum |
875 | return TrueCR.smin(Other: FalseCR); |
876 | case SPF_UMIN: /// Unsigned minimum |
877 | return TrueCR.umin(Other: FalseCR); |
878 | case SPF_SMAX: /// Signed maximum |
879 | return TrueCR.smax(Other: FalseCR); |
880 | case SPF_UMAX: /// Unsigned maximum |
881 | return TrueCR.umax(Other: FalseCR); |
882 | }; |
883 | }(); |
884 | return ValueLatticeElement::getRange( |
885 | CR: ResultCR, MayIncludeUndef: TrueVal.isConstantRangeIncludingUndef() || |
886 | FalseVal.isConstantRangeIncludingUndef()); |
887 | } |
888 | |
889 | if (SPR.Flavor == SPF_ABS) { |
890 | if (LHS == SI->getTrueValue()) |
891 | return ValueLatticeElement::getRange( |
892 | CR: TrueCR.abs(), MayIncludeUndef: TrueVal.isConstantRangeIncludingUndef()); |
893 | if (LHS == SI->getFalseValue()) |
894 | return ValueLatticeElement::getRange( |
895 | CR: FalseCR.abs(), MayIncludeUndef: FalseVal.isConstantRangeIncludingUndef()); |
896 | } |
897 | |
898 | if (SPR.Flavor == SPF_NABS) { |
899 | ConstantRange Zero(APInt::getZero(numBits: TrueCR.getBitWidth())); |
900 | if (LHS == SI->getTrueValue()) |
901 | return ValueLatticeElement::getRange( |
902 | CR: Zero.sub(Other: TrueCR.abs()), MayIncludeUndef: FalseVal.isConstantRangeIncludingUndef()); |
903 | if (LHS == SI->getFalseValue()) |
904 | return ValueLatticeElement::getRange( |
905 | CR: Zero.sub(Other: FalseCR.abs()), MayIncludeUndef: FalseVal.isConstantRangeIncludingUndef()); |
906 | } |
907 | } |
908 | |
909 | // Can we constrain the facts about the true and false values by using the |
910 | // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). |
911 | // TODO: We could potentially refine an overdefined true value above. |
912 | Value *Cond = SI->getCondition(); |
913 | // If the value is undef, a different value may be chosen in |
914 | // the select condition. |
915 | if (isGuaranteedNotToBeUndef(V: Cond, AC)) { |
916 | TrueVal = |
917 | intersect(A: TrueVal, B: *getValueFromCondition(Val: SI->getTrueValue(), Cond, |
918 | /*IsTrueDest*/ true, |
919 | /*UseBlockValue*/ false)); |
920 | FalseVal = |
921 | intersect(A: FalseVal, B: *getValueFromCondition(Val: SI->getFalseValue(), Cond, |
922 | /*IsTrueDest*/ false, |
923 | /*UseBlockValue*/ false)); |
924 | } |
925 | |
926 | ValueLatticeElement Result = TrueVal; |
927 | Result.mergeIn(RHS: FalseVal); |
928 | return Result; |
929 | } |
930 | |
931 | std::optional<ConstantRange> |
932 | LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { |
933 | std::optional<ValueLatticeElement> OptVal = getBlockValue(Val: V, BB, CxtI); |
934 | if (!OptVal) |
935 | return std::nullopt; |
936 | return OptVal->asConstantRange(Ty: V->getType()); |
937 | } |
938 | |
939 | std::optional<ValueLatticeElement> |
940 | LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { |
941 | // Filter out casts we don't know how to reason about before attempting to |
942 | // recurse on our operand. This can cut a long search short if we know we're |
943 | // not going to be able to get any useful information anways. |
944 | switch (CI->getOpcode()) { |
945 | case Instruction::Trunc: |
946 | case Instruction::SExt: |
947 | case Instruction::ZExt: |
948 | break; |
949 | default: |
950 | // Unhandled instructions are overdefined. |
951 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
952 | << "' - overdefined (unknown cast).\n" ); |
953 | return ValueLatticeElement::getOverdefined(); |
954 | } |
955 | |
956 | // Figure out the range of the LHS. If that fails, we still apply the |
957 | // transfer rule on the full set since we may be able to locally infer |
958 | // interesting facts. |
959 | std::optional<ConstantRange> LHSRes = getRangeFor(V: CI->getOperand(i_nocapture: 0), CxtI: CI, BB); |
960 | if (!LHSRes) |
961 | // More work to do before applying this transfer rule. |
962 | return std::nullopt; |
963 | const ConstantRange &LHSRange = *LHSRes; |
964 | |
965 | const unsigned ResultBitWidth = CI->getType()->getScalarSizeInBits(); |
966 | |
967 | // NOTE: We're currently limited by the set of operations that ConstantRange |
968 | // can evaluate symbolically. Enhancing that set will allows us to analyze |
969 | // more definitions. |
970 | return ValueLatticeElement::getRange(CR: LHSRange.castOp(CastOp: CI->getOpcode(), |
971 | BitWidth: ResultBitWidth)); |
972 | } |
973 | |
974 | std::optional<ValueLatticeElement> |
975 | LazyValueInfoImpl::solveBlockValueBinaryOpImpl( |
976 | Instruction *I, BasicBlock *BB, |
977 | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> |
978 | OpFn) { |
979 | // Figure out the ranges of the operands. If that fails, use a |
980 | // conservative range, but apply the transfer rule anyways. This |
981 | // lets us pick up facts from expressions like "and i32 (call i32 |
982 | // @foo()), 32" |
983 | std::optional<ConstantRange> LHSRes = getRangeFor(V: I->getOperand(i: 0), CxtI: I, BB); |
984 | if (!LHSRes) |
985 | return std::nullopt; |
986 | |
987 | std::optional<ConstantRange> RHSRes = getRangeFor(V: I->getOperand(i: 1), CxtI: I, BB); |
988 | if (!RHSRes) |
989 | return std::nullopt; |
990 | |
991 | const ConstantRange &LHSRange = *LHSRes; |
992 | const ConstantRange &RHSRange = *RHSRes; |
993 | return ValueLatticeElement::getRange(CR: OpFn(LHSRange, RHSRange)); |
994 | } |
995 | |
996 | std::optional<ValueLatticeElement> |
997 | LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { |
998 | assert(BO->getOperand(0)->getType()->isSized() && |
999 | "all operands to binary operators are sized" ); |
1000 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: BO)) { |
1001 | unsigned NoWrapKind = OBO->getNoWrapKind(); |
1002 | return solveBlockValueBinaryOpImpl( |
1003 | I: BO, BB, |
1004 | OpFn: [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { |
1005 | return CR1.overflowingBinaryOp(BinOp: BO->getOpcode(), Other: CR2, NoWrapKind); |
1006 | }); |
1007 | } |
1008 | |
1009 | return solveBlockValueBinaryOpImpl( |
1010 | I: BO, BB, OpFn: [BO](const ConstantRange &CR1, const ConstantRange &CR2) { |
1011 | return CR1.binaryOp(BinOp: BO->getOpcode(), Other: CR2); |
1012 | }); |
1013 | } |
1014 | |
1015 | std::optional<ValueLatticeElement> |
1016 | LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, |
1017 | BasicBlock *BB) { |
1018 | return solveBlockValueBinaryOpImpl( |
1019 | I: WO, BB, OpFn: [WO](const ConstantRange &CR1, const ConstantRange &CR2) { |
1020 | return CR1.binaryOp(BinOp: WO->getBinaryOp(), Other: CR2); |
1021 | }); |
1022 | } |
1023 | |
1024 | std::optional<ValueLatticeElement> |
1025 | LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { |
1026 | ValueLatticeElement MetadataVal = getFromRangeMetadata(BBI: II); |
1027 | if (!ConstantRange::isIntrinsicSupported(IntrinsicID: II->getIntrinsicID())) { |
1028 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
1029 | << "' - unknown intrinsic.\n" ); |
1030 | return MetadataVal; |
1031 | } |
1032 | |
1033 | SmallVector<ConstantRange, 2> OpRanges; |
1034 | for (Value *Op : II->args()) { |
1035 | std::optional<ConstantRange> Range = getRangeFor(V: Op, CxtI: II, BB); |
1036 | if (!Range) |
1037 | return std::nullopt; |
1038 | OpRanges.push_back(Elt: *Range); |
1039 | } |
1040 | |
1041 | return intersect(A: ValueLatticeElement::getRange(CR: ConstantRange::intrinsic( |
1042 | IntrinsicID: II->getIntrinsicID(), Ops: OpRanges)), |
1043 | B: MetadataVal); |
1044 | } |
1045 | |
1046 | std::optional<ValueLatticeElement> |
1047 | LazyValueInfoImpl::solveBlockValueInsertElement(InsertElementInst *IEI, |
1048 | BasicBlock *BB) { |
1049 | std::optional<ValueLatticeElement> OptEltVal = |
1050 | getBlockValue(Val: IEI->getOperand(i_nocapture: 1), BB, CxtI: IEI); |
1051 | if (!OptEltVal) |
1052 | return std::nullopt; |
1053 | ValueLatticeElement &Res = *OptEltVal; |
1054 | |
1055 | std::optional<ValueLatticeElement> OptVecVal = |
1056 | getBlockValue(Val: IEI->getOperand(i_nocapture: 0), BB, CxtI: IEI); |
1057 | if (!OptVecVal) |
1058 | return std::nullopt; |
1059 | |
1060 | Res.mergeIn(RHS: *OptVecVal); |
1061 | return Res; |
1062 | } |
1063 | |
1064 | std::optional<ValueLatticeElement> |
1065 | LazyValueInfoImpl::(ExtractValueInst *EVI, |
1066 | BasicBlock *BB) { |
1067 | if (auto *WO = dyn_cast<WithOverflowInst>(Val: EVI->getAggregateOperand())) |
1068 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) |
1069 | return solveBlockValueOverflowIntrinsic(WO, BB); |
1070 | |
1071 | // Handle extractvalue of insertvalue to allow further simplification |
1072 | // based on replaced with.overflow intrinsics. |
1073 | if (Value *V = simplifyExtractValueInst( |
1074 | Agg: EVI->getAggregateOperand(), Idxs: EVI->getIndices(), |
1075 | Q: EVI->getDataLayout())) |
1076 | return getBlockValue(Val: V, BB, CxtI: EVI); |
1077 | |
1078 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
1079 | << "' - overdefined (unknown extractvalue).\n" ); |
1080 | return ValueLatticeElement::getOverdefined(); |
1081 | } |
1082 | |
1083 | static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, |
1084 | ICmpInst::Predicate Pred) { |
1085 | if (LHS == Val) |
1086 | return true; |
1087 | |
1088 | // Handle range checking idiom produced by InstCombine. We will subtract the |
1089 | // offset from the allowed range for RHS in this case. |
1090 | const APInt *C; |
1091 | if (match(V: LHS, P: m_AddLike(L: m_Specific(V: Val), R: m_APInt(Res&: C)))) { |
1092 | Offset = *C; |
1093 | return true; |
1094 | } |
1095 | |
1096 | // Handle the symmetric case. This appears in saturation patterns like |
1097 | // (x == 16) ? 16 : (x + 1). |
1098 | if (match(V: Val, P: m_AddLike(L: m_Specific(V: LHS), R: m_APInt(Res&: C)))) { |
1099 | Offset = -*C; |
1100 | return true; |
1101 | } |
1102 | |
1103 | // If (x | y) < C, then (x < C) && (y < C). |
1104 | if (match(V: LHS, P: m_c_Or(L: m_Specific(V: Val), R: m_Value())) && |
1105 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) |
1106 | return true; |
1107 | |
1108 | // If (x & y) > C, then (x > C) && (y > C). |
1109 | if (match(V: LHS, P: m_c_And(L: m_Specific(V: Val), R: m_Value())) && |
1110 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) |
1111 | return true; |
1112 | |
1113 | return false; |
1114 | } |
1115 | |
1116 | /// Get value range for a "(Val + Offset) Pred RHS" condition. |
1117 | std::optional<ValueLatticeElement> |
1118 | LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, |
1119 | Value *RHS, |
1120 | const APInt &Offset, |
1121 | Instruction *CxtI, |
1122 | bool UseBlockValue) { |
1123 | ConstantRange RHSRange(RHS->getType()->getScalarSizeInBits(), |
1124 | /*isFullSet=*/true); |
1125 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: RHS)) { |
1126 | RHSRange = ConstantRange(CI->getValue()); |
1127 | } else if (UseBlockValue) { |
1128 | std::optional<ValueLatticeElement> R = |
1129 | getBlockValue(Val: RHS, BB: CxtI->getParent(), CxtI); |
1130 | if (!R) |
1131 | return std::nullopt; |
1132 | RHSRange = R->asConstantRange(Ty: RHS->getType()); |
1133 | } |
1134 | |
1135 | ConstantRange TrueValues = |
1136 | ConstantRange::makeAllowedICmpRegion(Pred, Other: RHSRange); |
1137 | return ValueLatticeElement::getRange(CR: TrueValues.subtract(CI: Offset)); |
1138 | } |
1139 | |
1140 | static std::optional<ConstantRange> |
1141 | getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, |
1142 | function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { |
1143 | bool Invert = false; |
1144 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { |
1145 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
1146 | Invert = true; |
1147 | } |
1148 | if (Pred == ICmpInst::ICMP_SLE) { |
1149 | Pred = ICmpInst::ICMP_SLT; |
1150 | if (RHS.isMaxSignedValue()) |
1151 | return std::nullopt; // Could also return full/empty here, if we wanted. |
1152 | ++RHS; |
1153 | } |
1154 | assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate" ); |
1155 | if (auto CR = Fn(RHS)) |
1156 | return Invert ? CR->inverse() : CR; |
1157 | return std::nullopt; |
1158 | } |
1159 | |
1160 | std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( |
1161 | Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { |
1162 | Value *LHS = ICI->getOperand(i_nocapture: 0); |
1163 | Value *RHS = ICI->getOperand(i_nocapture: 1); |
1164 | |
1165 | // Get the predicate that must hold along the considered edge. |
1166 | CmpInst::Predicate EdgePred = |
1167 | isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); |
1168 | |
1169 | if (isa<Constant>(Val: RHS)) { |
1170 | if (ICI->isEquality() && LHS == Val) { |
1171 | if (EdgePred == ICmpInst::ICMP_EQ) |
1172 | return ValueLatticeElement::get(C: cast<Constant>(Val: RHS)); |
1173 | else if (!isa<UndefValue>(Val: RHS)) |
1174 | return ValueLatticeElement::getNot(C: cast<Constant>(Val: RHS)); |
1175 | } |
1176 | } |
1177 | |
1178 | Type *Ty = Val->getType(); |
1179 | if (!Ty->isIntegerTy()) |
1180 | return ValueLatticeElement::getOverdefined(); |
1181 | |
1182 | unsigned BitWidth = Ty->getScalarSizeInBits(); |
1183 | APInt Offset(BitWidth, 0); |
1184 | if (matchICmpOperand(Offset, LHS, Val, Pred: EdgePred)) |
1185 | return getValueFromSimpleICmpCondition(Pred: EdgePred, RHS, Offset, CxtI: ICI, |
1186 | UseBlockValue); |
1187 | |
1188 | CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(pred: EdgePred); |
1189 | if (matchICmpOperand(Offset, LHS: RHS, Val, Pred: SwappedPred)) |
1190 | return getValueFromSimpleICmpCondition(Pred: SwappedPred, RHS: LHS, Offset, CxtI: ICI, |
1191 | UseBlockValue); |
1192 | |
1193 | const APInt *Mask, *C; |
1194 | if (match(V: LHS, P: m_And(L: m_Specific(V: Val), R: m_APInt(Res&: Mask))) && |
1195 | match(V: RHS, P: m_APInt(Res&: C))) { |
1196 | // If (Val & Mask) == C then all the masked bits are known and we can |
1197 | // compute a value range based on that. |
1198 | if (EdgePred == ICmpInst::ICMP_EQ) { |
1199 | KnownBits Known; |
1200 | Known.Zero = ~*C & *Mask; |
1201 | Known.One = *C & *Mask; |
1202 | return ValueLatticeElement::getRange( |
1203 | CR: ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); |
1204 | } |
1205 | |
1206 | if (EdgePred == ICmpInst::ICMP_NE) |
1207 | return ValueLatticeElement::getRange( |
1208 | CR: ConstantRange::makeMaskNotEqualRange(Mask: *Mask, C: *C)); |
1209 | } |
1210 | |
1211 | // If (X urem Modulus) >= C, then X >= C. |
1212 | // If trunc X >= C, then X >= C. |
1213 | // TODO: An upper bound could be computed as well. |
1214 | if (match(V: LHS, P: m_CombineOr(L: m_URem(L: m_Specific(V: Val), R: m_Value()), |
1215 | R: m_Trunc(Op: m_Specific(V: Val)))) && |
1216 | match(V: RHS, P: m_APInt(Res&: C))) { |
1217 | // Use the icmp region so we don't have to deal with different predicates. |
1218 | ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred: EdgePred, Other: *C); |
1219 | if (!CR.isEmptySet()) |
1220 | return ValueLatticeElement::getRange(CR: ConstantRange::getNonEmpty( |
1221 | Lower: CR.getUnsignedMin().zext(width: BitWidth), Upper: APInt(BitWidth, 0))); |
1222 | } |
1223 | |
1224 | // Recognize: |
1225 | // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC |
1226 | // Preconditions: (C << ShAmtC) >> ShAmtC == C |
1227 | const APInt *ShAmtC; |
1228 | if (CmpInst::isSigned(predicate: EdgePred) && |
1229 | match(V: LHS, P: m_AShr(L: m_Specific(V: Val), R: m_APInt(Res&: ShAmtC))) && |
1230 | match(V: RHS, P: m_APInt(Res&: C))) { |
1231 | auto CR = getRangeViaSLT( |
1232 | Pred: EdgePred, RHS: *C, Fn: [&](const APInt &RHS) -> std::optional<ConstantRange> { |
1233 | APInt New = RHS << *ShAmtC; |
1234 | if ((New.ashr(ShiftAmt: *ShAmtC)) != RHS) |
1235 | return std::nullopt; |
1236 | return ConstantRange::getNonEmpty( |
1237 | Lower: APInt::getSignedMinValue(numBits: New.getBitWidth()), Upper: New); |
1238 | }); |
1239 | if (CR) |
1240 | return ValueLatticeElement::getRange(CR: *CR); |
1241 | } |
1242 | |
1243 | return ValueLatticeElement::getOverdefined(); |
1244 | } |
1245 | |
1246 | // Handle conditions of the form |
1247 | // extractvalue(op.with.overflow(%x, C), 1). |
1248 | static ValueLatticeElement getValueFromOverflowCondition( |
1249 | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { |
1250 | // TODO: This only works with a constant RHS for now. We could also compute |
1251 | // the range of the RHS, but this doesn't fit into the current structure of |
1252 | // the edge value calculation. |
1253 | const APInt *C; |
1254 | if (WO->getLHS() != Val || !match(V: WO->getRHS(), P: m_APInt(Res&: C))) |
1255 | return ValueLatticeElement::getOverdefined(); |
1256 | |
1257 | // Calculate the possible values of %x for which no overflow occurs. |
1258 | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( |
1259 | BinOp: WO->getBinaryOp(), Other: *C, NoWrapKind: WO->getNoWrapKind()); |
1260 | |
1261 | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is |
1262 | // constrained to it's inverse (all values that might cause overflow). |
1263 | if (IsTrueDest) |
1264 | NWR = NWR.inverse(); |
1265 | return ValueLatticeElement::getRange(CR: NWR); |
1266 | } |
1267 | |
1268 | std::optional<ValueLatticeElement> |
1269 | LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, |
1270 | bool IsTrueDest, bool UseBlockValue, |
1271 | unsigned Depth) { |
1272 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Val: Cond)) |
1273 | return getValueFromICmpCondition(Val, ICI, isTrueDest: IsTrueDest, UseBlockValue); |
1274 | |
1275 | if (auto *EVI = dyn_cast<ExtractValueInst>(Val: Cond)) |
1276 | if (auto *WO = dyn_cast<WithOverflowInst>(Val: EVI->getAggregateOperand())) |
1277 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) |
1278 | return getValueFromOverflowCondition(Val, WO, IsTrueDest); |
1279 | |
1280 | if (++Depth == MaxAnalysisRecursionDepth) |
1281 | return ValueLatticeElement::getOverdefined(); |
1282 | |
1283 | Value *N; |
1284 | if (match(V: Cond, P: m_Not(V: m_Value(V&: N)))) |
1285 | return getValueFromCondition(Val, Cond: N, IsTrueDest: !IsTrueDest, UseBlockValue, Depth); |
1286 | |
1287 | Value *L, *R; |
1288 | bool IsAnd; |
1289 | if (match(V: Cond, P: m_LogicalAnd(L: m_Value(V&: L), R: m_Value(V&: R)))) |
1290 | IsAnd = true; |
1291 | else if (match(V: Cond, P: m_LogicalOr(L: m_Value(V&: L), R: m_Value(V&: R)))) |
1292 | IsAnd = false; |
1293 | else |
1294 | return ValueLatticeElement::getOverdefined(); |
1295 | |
1296 | std::optional<ValueLatticeElement> LV = |
1297 | getValueFromCondition(Val, Cond: L, IsTrueDest, UseBlockValue, Depth); |
1298 | if (!LV) |
1299 | return std::nullopt; |
1300 | std::optional<ValueLatticeElement> RV = |
1301 | getValueFromCondition(Val, Cond: R, IsTrueDest, UseBlockValue, Depth); |
1302 | if (!RV) |
1303 | return std::nullopt; |
1304 | |
1305 | // if (L && R) -> intersect L and R |
1306 | // if (!(L || R)) -> intersect !L and !R |
1307 | // if (L || R) -> union L and R |
1308 | // if (!(L && R)) -> union !L and !R |
1309 | if (IsTrueDest ^ IsAnd) { |
1310 | LV->mergeIn(RHS: *RV); |
1311 | return *LV; |
1312 | } |
1313 | |
1314 | return intersect(A: *LV, B: *RV); |
1315 | } |
1316 | |
1317 | // Return true if Usr has Op as an operand, otherwise false. |
1318 | static bool usesOperand(User *Usr, Value *Op) { |
1319 | return is_contained(Range: Usr->operands(), Element: Op); |
1320 | } |
1321 | |
1322 | // Return true if the instruction type of Val is supported by |
1323 | // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. |
1324 | // Call this before calling constantFoldUser() to find out if it's even worth |
1325 | // attempting to call it. |
1326 | static bool isOperationFoldable(User *Usr) { |
1327 | return isa<CastInst>(Val: Usr) || isa<BinaryOperator>(Val: Usr) || isa<FreezeInst>(Val: Usr); |
1328 | } |
1329 | |
1330 | // Check if Usr can be simplified to an integer constant when the value of one |
1331 | // of its operands Op is an integer constant OpConstVal. If so, return it as an |
1332 | // lattice value range with a single element or otherwise return an overdefined |
1333 | // lattice value. |
1334 | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, |
1335 | const APInt &OpConstVal, |
1336 | const DataLayout &DL) { |
1337 | assert(isOperationFoldable(Usr) && "Precondition" ); |
1338 | Constant* OpConst = Constant::getIntegerValue(Ty: Op->getType(), V: OpConstVal); |
1339 | // Check if Usr can be simplified to a constant. |
1340 | if (auto *CI = dyn_cast<CastInst>(Val: Usr)) { |
1341 | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op" ); |
1342 | if (auto *C = dyn_cast_or_null<ConstantInt>( |
1343 | Val: simplifyCastInst(CastOpc: CI->getOpcode(), Op: OpConst, |
1344 | Ty: CI->getDestTy(), Q: DL))) { |
1345 | return ValueLatticeElement::getRange(CR: ConstantRange(C->getValue())); |
1346 | } |
1347 | } else if (auto *BO = dyn_cast<BinaryOperator>(Val: Usr)) { |
1348 | bool Op0Match = BO->getOperand(i_nocapture: 0) == Op; |
1349 | bool Op1Match = BO->getOperand(i_nocapture: 1) == Op; |
1350 | assert((Op0Match || Op1Match) && |
1351 | "Operand 0 nor Operand 1 isn't a match" ); |
1352 | Value *LHS = Op0Match ? OpConst : BO->getOperand(i_nocapture: 0); |
1353 | Value *RHS = Op1Match ? OpConst : BO->getOperand(i_nocapture: 1); |
1354 | if (auto *C = dyn_cast_or_null<ConstantInt>( |
1355 | Val: simplifyBinOp(Opcode: BO->getOpcode(), LHS, RHS, Q: DL))) { |
1356 | return ValueLatticeElement::getRange(CR: ConstantRange(C->getValue())); |
1357 | } |
1358 | } else if (isa<FreezeInst>(Val: Usr)) { |
1359 | assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op" ); |
1360 | return ValueLatticeElement::getRange(CR: ConstantRange(OpConstVal)); |
1361 | } |
1362 | return ValueLatticeElement::getOverdefined(); |
1363 | } |
1364 | |
1365 | /// Compute the value of Val on the edge BBFrom -> BBTo. |
1366 | std::optional<ValueLatticeElement> |
1367 | LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, |
1368 | BasicBlock *BBTo, bool UseBlockValue) { |
1369 | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we |
1370 | // know that v != 0. |
1371 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: BBFrom->getTerminator())) { |
1372 | // If this is a conditional branch and only one successor goes to BBTo, then |
1373 | // we may be able to infer something from the condition. |
1374 | if (BI->isConditional() && |
1375 | BI->getSuccessor(i: 0) != BI->getSuccessor(i: 1)) { |
1376 | bool isTrueDest = BI->getSuccessor(i: 0) == BBTo; |
1377 | assert(BI->getSuccessor(!isTrueDest) == BBTo && |
1378 | "BBTo isn't a successor of BBFrom" ); |
1379 | Value *Condition = BI->getCondition(); |
1380 | |
1381 | // If V is the condition of the branch itself, then we know exactly what |
1382 | // it is. |
1383 | // NB: The condition on a `br` can't be a vector type. |
1384 | if (Condition == Val) |
1385 | return ValueLatticeElement::get(C: ConstantInt::get( |
1386 | Ty: Type::getInt1Ty(C&: Val->getContext()), V: isTrueDest)); |
1387 | |
1388 | // If the condition of the branch is an equality comparison, we may be |
1389 | // able to infer the value. |
1390 | std::optional<ValueLatticeElement> Result = |
1391 | getValueFromCondition(Val, Cond: Condition, IsTrueDest: isTrueDest, UseBlockValue); |
1392 | if (!Result) |
1393 | return std::nullopt; |
1394 | |
1395 | if (!Result->isOverdefined()) |
1396 | return Result; |
1397 | |
1398 | if (User *Usr = dyn_cast<User>(Val)) { |
1399 | assert(Result->isOverdefined() && "Result isn't overdefined" ); |
1400 | // Check with isOperationFoldable() first to avoid linearly iterating |
1401 | // over the operands unnecessarily which can be expensive for |
1402 | // instructions with many operands. |
1403 | if (isa<IntegerType>(Val: Usr->getType()) && isOperationFoldable(Usr)) { |
1404 | const DataLayout &DL = BBTo->getDataLayout(); |
1405 | if (usesOperand(Usr, Op: Condition)) { |
1406 | // If Val has Condition as an operand and Val can be folded into a |
1407 | // constant with either Condition == true or Condition == false, |
1408 | // propagate the constant. |
1409 | // eg. |
1410 | // ; %Val is true on the edge to %then. |
1411 | // %Val = and i1 %Condition, true. |
1412 | // br %Condition, label %then, label %else |
1413 | APInt ConditionVal(1, isTrueDest ? 1 : 0); |
1414 | Result = constantFoldUser(Usr, Op: Condition, OpConstVal: ConditionVal, DL); |
1415 | } else { |
1416 | // If one of Val's operand has an inferred value, we may be able to |
1417 | // infer the value of Val. |
1418 | // eg. |
1419 | // ; %Val is 94 on the edge to %then. |
1420 | // %Val = add i8 %Op, 1 |
1421 | // %Condition = icmp eq i8 %Op, 93 |
1422 | // br i1 %Condition, label %then, label %else |
1423 | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { |
1424 | Value *Op = Usr->getOperand(i); |
1425 | ValueLatticeElement OpLatticeVal = *getValueFromCondition( |
1426 | Val: Op, Cond: Condition, IsTrueDest: isTrueDest, /*UseBlockValue*/ false); |
1427 | if (std::optional<APInt> OpConst = |
1428 | OpLatticeVal.asConstantInteger()) { |
1429 | Result = constantFoldUser(Usr, Op, OpConstVal: *OpConst, DL); |
1430 | break; |
1431 | } |
1432 | } |
1433 | } |
1434 | } |
1435 | } |
1436 | if (!Result->isOverdefined()) |
1437 | return Result; |
1438 | } |
1439 | } |
1440 | |
1441 | // If the edge was formed by a switch on the value, then we may know exactly |
1442 | // what it is. |
1443 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: BBFrom->getTerminator())) { |
1444 | Value *Condition = SI->getCondition(); |
1445 | if (!isa<IntegerType>(Val: Val->getType())) |
1446 | return ValueLatticeElement::getOverdefined(); |
1447 | bool ValUsesConditionAndMayBeFoldable = false; |
1448 | if (Condition != Val) { |
1449 | // Check if Val has Condition as an operand. |
1450 | if (User *Usr = dyn_cast<User>(Val)) |
1451 | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && |
1452 | usesOperand(Usr, Op: Condition); |
1453 | if (!ValUsesConditionAndMayBeFoldable) |
1454 | return ValueLatticeElement::getOverdefined(); |
1455 | } |
1456 | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && |
1457 | "Condition != Val nor Val doesn't use Condition" ); |
1458 | |
1459 | bool DefaultCase = SI->getDefaultDest() == BBTo; |
1460 | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); |
1461 | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); |
1462 | |
1463 | for (auto Case : SI->cases()) { |
1464 | APInt CaseValue = Case.getCaseValue()->getValue(); |
1465 | ConstantRange EdgeVal(CaseValue); |
1466 | if (ValUsesConditionAndMayBeFoldable) { |
1467 | User *Usr = cast<User>(Val); |
1468 | const DataLayout &DL = BBTo->getDataLayout(); |
1469 | ValueLatticeElement EdgeLatticeVal = |
1470 | constantFoldUser(Usr, Op: Condition, OpConstVal: CaseValue, DL); |
1471 | if (EdgeLatticeVal.isOverdefined()) |
1472 | return ValueLatticeElement::getOverdefined(); |
1473 | EdgeVal = EdgeLatticeVal.getConstantRange(); |
1474 | } |
1475 | if (DefaultCase) { |
1476 | // It is possible that the default destination is the destination of |
1477 | // some cases. We cannot perform difference for those cases. |
1478 | // We know Condition != CaseValue in BBTo. In some cases we can use |
1479 | // this to infer Val == f(Condition) is != f(CaseValue). For now, we |
1480 | // only do this when f is identity (i.e. Val == Condition), but we |
1481 | // should be able to do this for any injective f. |
1482 | if (Case.getCaseSuccessor() != BBTo && Condition == Val) |
1483 | EdgesVals = EdgesVals.difference(CR: EdgeVal); |
1484 | } else if (Case.getCaseSuccessor() == BBTo) |
1485 | EdgesVals = EdgesVals.unionWith(CR: EdgeVal); |
1486 | } |
1487 | return ValueLatticeElement::getRange(CR: std::move(EdgesVals)); |
1488 | } |
1489 | return ValueLatticeElement::getOverdefined(); |
1490 | } |
1491 | |
1492 | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at |
1493 | /// the basic block if the edge does not constrain Val. |
1494 | std::optional<ValueLatticeElement> |
1495 | LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, |
1496 | BasicBlock *BBTo, Instruction *CxtI) { |
1497 | // If already a constant, there is nothing to compute. |
1498 | if (Constant *VC = dyn_cast<Constant>(Val)) |
1499 | return ValueLatticeElement::get(C: VC); |
1500 | |
1501 | std::optional<ValueLatticeElement> LocalResult = |
1502 | getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); |
1503 | if (!LocalResult) |
1504 | return std::nullopt; |
1505 | |
1506 | if (hasSingleValue(Val: *LocalResult)) |
1507 | // Can't get any more precise here |
1508 | return LocalResult; |
1509 | |
1510 | std::optional<ValueLatticeElement> OptInBlock = |
1511 | getBlockValue(Val, BB: BBFrom, CxtI: BBFrom->getTerminator()); |
1512 | if (!OptInBlock) |
1513 | return std::nullopt; |
1514 | ValueLatticeElement &InBlock = *OptInBlock; |
1515 | |
1516 | // We can use the context instruction (generically the ultimate instruction |
1517 | // the calling pass is trying to simplify) here, even though the result of |
1518 | // this function is generally cached when called from the solve* functions |
1519 | // (and that cached result might be used with queries using a different |
1520 | // context instruction), because when this function is called from the solve* |
1521 | // functions, the context instruction is not provided. When called from |
1522 | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, |
1523 | // but then the result is not cached. |
1524 | intersectAssumeOrGuardBlockValueConstantRange(Val, BBLV&: InBlock, BBI: CxtI); |
1525 | |
1526 | return intersect(A: *LocalResult, B: InBlock); |
1527 | } |
1528 | |
1529 | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, |
1530 | Instruction *CxtI) { |
1531 | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" |
1532 | << BB->getName() << "'\n" ); |
1533 | |
1534 | assert(BlockValueStack.empty() && BlockValueSet.empty()); |
1535 | std::optional<ValueLatticeElement> OptResult = getBlockValue(Val: V, BB, CxtI); |
1536 | if (!OptResult) { |
1537 | solve(); |
1538 | OptResult = getBlockValue(Val: V, BB, CxtI); |
1539 | assert(OptResult && "Value not available after solving" ); |
1540 | } |
1541 | |
1542 | ValueLatticeElement Result = *OptResult; |
1543 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n" ); |
1544 | return Result; |
1545 | } |
1546 | |
1547 | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { |
1548 | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() |
1549 | << "'\n" ); |
1550 | |
1551 | if (auto *C = dyn_cast<Constant>(Val: V)) |
1552 | return ValueLatticeElement::get(C); |
1553 | |
1554 | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); |
1555 | if (auto *I = dyn_cast<Instruction>(Val: V)) |
1556 | Result = getFromRangeMetadata(BBI: I); |
1557 | intersectAssumeOrGuardBlockValueConstantRange(Val: V, BBLV&: Result, BBI: CxtI); |
1558 | |
1559 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n" ); |
1560 | return Result; |
1561 | } |
1562 | |
1563 | ValueLatticeElement LazyValueInfoImpl:: |
1564 | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, |
1565 | Instruction *CxtI) { |
1566 | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" |
1567 | << FromBB->getName() << "' to '" << ToBB->getName() |
1568 | << "'\n" ); |
1569 | |
1570 | std::optional<ValueLatticeElement> Result = |
1571 | getEdgeValue(Val: V, BBFrom: FromBB, BBTo: ToBB, CxtI); |
1572 | while (!Result) { |
1573 | // As the worklist only explicitly tracks block values (but not edge values) |
1574 | // we may have to call solve() multiple times, as the edge value calculation |
1575 | // may request additional block values. |
1576 | solve(); |
1577 | Result = getEdgeValue(Val: V, BBFrom: FromBB, BBTo: ToBB, CxtI); |
1578 | } |
1579 | |
1580 | LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n" ); |
1581 | return *Result; |
1582 | } |
1583 | |
1584 | ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { |
1585 | Value *V = U.get(); |
1586 | auto *CxtI = cast<Instruction>(Val: U.getUser()); |
1587 | ValueLatticeElement VL = getValueInBlock(V, BB: CxtI->getParent(), CxtI); |
1588 | |
1589 | // Check whether the only (possibly transitive) use of the value is in a |
1590 | // position where V can be constrained by a select or branch condition. |
1591 | const Use *CurrU = &U; |
1592 | // TODO: Increase limit? |
1593 | const unsigned MaxUsesToInspect = 3; |
1594 | for (unsigned I = 0; I < MaxUsesToInspect; ++I) { |
1595 | std::optional<ValueLatticeElement> CondVal; |
1596 | auto *CurrI = cast<Instruction>(Val: CurrU->getUser()); |
1597 | if (auto *SI = dyn_cast<SelectInst>(Val: CurrI)) { |
1598 | // If the value is undef, a different value may be chosen in |
1599 | // the select condition and at use. |
1600 | if (!isGuaranteedNotToBeUndef(V: SI->getCondition(), AC)) |
1601 | break; |
1602 | if (CurrU->getOperandNo() == 1) |
1603 | CondVal = |
1604 | *getValueFromCondition(Val: V, Cond: SI->getCondition(), /*IsTrueDest*/ true, |
1605 | /*UseBlockValue*/ false); |
1606 | else if (CurrU->getOperandNo() == 2) |
1607 | CondVal = |
1608 | *getValueFromCondition(Val: V, Cond: SI->getCondition(), /*IsTrueDest*/ false, |
1609 | /*UseBlockValue*/ false); |
1610 | } else if (auto *PHI = dyn_cast<PHINode>(Val: CurrI)) { |
1611 | // TODO: Use non-local query? |
1612 | CondVal = *getEdgeValueLocal(Val: V, BBFrom: PHI->getIncomingBlock(U: *CurrU), |
1613 | BBTo: PHI->getParent(), /*UseBlockValue*/ false); |
1614 | } |
1615 | if (CondVal) |
1616 | VL = intersect(A: VL, B: *CondVal); |
1617 | |
1618 | // Only follow one-use chain, to allow direct intersection of conditions. |
1619 | // If there are multiple uses, we would have to intersect with the union of |
1620 | // all conditions at different uses. |
1621 | // Stop walking if we hit a non-speculatable instruction. Even if the |
1622 | // result is only used under a specific condition, executing the |
1623 | // instruction itself may cause side effects or UB already. |
1624 | // This also disallows looking through phi nodes: If the phi node is part |
1625 | // of a cycle, we might end up reasoning about values from different cycle |
1626 | // iterations (PR60629). |
1627 | if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(I: CurrI)) |
1628 | break; |
1629 | CurrU = &*CurrI->use_begin(); |
1630 | } |
1631 | return VL; |
1632 | } |
1633 | |
1634 | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
1635 | BasicBlock *NewSucc) { |
1636 | TheCache.threadEdgeImpl(OldSucc, NewSucc); |
1637 | } |
1638 | |
1639 | //===----------------------------------------------------------------------===// |
1640 | // LazyValueInfo Impl |
1641 | //===----------------------------------------------------------------------===// |
1642 | |
1643 | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { |
1644 | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1645 | |
1646 | if (auto *Impl = Info.getImpl()) |
1647 | Impl->clear(); |
1648 | |
1649 | // Fully lazy. |
1650 | return false; |
1651 | } |
1652 | |
1653 | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
1654 | AU.setPreservesAll(); |
1655 | AU.addRequired<AssumptionCacheTracker>(); |
1656 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
1657 | } |
1658 | |
1659 | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } |
1660 | |
1661 | /// This lazily constructs the LazyValueInfoImpl. |
1662 | LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { |
1663 | if (!PImpl) { |
1664 | assert(M && "getCache() called with a null Module" ); |
1665 | const DataLayout &DL = M->getDataLayout(); |
1666 | Function *GuardDecl = |
1667 | M->getFunction(Name: Intrinsic::getName(id: Intrinsic::experimental_guard)); |
1668 | PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); |
1669 | } |
1670 | return *static_cast<LazyValueInfoImpl *>(PImpl); |
1671 | } |
1672 | |
1673 | LazyValueInfoImpl *LazyValueInfo::getImpl() { |
1674 | if (!PImpl) |
1675 | return nullptr; |
1676 | return static_cast<LazyValueInfoImpl *>(PImpl); |
1677 | } |
1678 | |
1679 | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } |
1680 | |
1681 | void LazyValueInfo::releaseMemory() { |
1682 | // If the cache was allocated, free it. |
1683 | if (auto *Impl = getImpl()) { |
1684 | delete &*Impl; |
1685 | PImpl = nullptr; |
1686 | } |
1687 | } |
1688 | |
1689 | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
1690 | FunctionAnalysisManager::Invalidator &Inv) { |
1691 | // We need to invalidate if we have either failed to preserve this analyses |
1692 | // result directly or if any of its dependencies have been invalidated. |
1693 | auto PAC = PA.getChecker<LazyValueAnalysis>(); |
1694 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) |
1695 | return true; |
1696 | |
1697 | return false; |
1698 | } |
1699 | |
1700 | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } |
1701 | |
1702 | LazyValueInfo LazyValueAnalysis::run(Function &F, |
1703 | FunctionAnalysisManager &FAM) { |
1704 | auto &AC = FAM.getResult<AssumptionAnalysis>(IR&: F); |
1705 | |
1706 | return LazyValueInfo(&AC, &F.getDataLayout()); |
1707 | } |
1708 | |
1709 | /// Returns true if we can statically tell that this value will never be a |
1710 | /// "useful" constant. In practice, this means we've got something like an |
1711 | /// alloca or a malloc call for which a comparison against a constant can |
1712 | /// only be guarding dead code. Note that we are potentially giving up some |
1713 | /// precision in dead code (a constant result) in favour of avoiding a |
1714 | /// expensive search for a easily answered common query. |
1715 | static bool isKnownNonConstant(Value *V) { |
1716 | V = V->stripPointerCasts(); |
1717 | // The return val of alloc cannot be a Constant. |
1718 | if (isa<AllocaInst>(Val: V)) |
1719 | return true; |
1720 | return false; |
1721 | } |
1722 | |
1723 | Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { |
1724 | // Bail out early if V is known not to be a Constant. |
1725 | if (isKnownNonConstant(V)) |
1726 | return nullptr; |
1727 | |
1728 | BasicBlock *BB = CxtI->getParent(); |
1729 | ValueLatticeElement Result = |
1730 | getOrCreateImpl(M: BB->getModule()).getValueInBlock(V, BB, CxtI); |
1731 | |
1732 | if (Result.isConstant()) |
1733 | return Result.getConstant(); |
1734 | if (Result.isConstantRange()) { |
1735 | const ConstantRange &CR = Result.getConstantRange(); |
1736 | if (const APInt *SingleVal = CR.getSingleElement()) |
1737 | return ConstantInt::get(Ty: V->getType(), V: *SingleVal); |
1738 | } |
1739 | return nullptr; |
1740 | } |
1741 | |
1742 | ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, |
1743 | bool UndefAllowed) { |
1744 | BasicBlock *BB = CxtI->getParent(); |
1745 | ValueLatticeElement Result = |
1746 | getOrCreateImpl(M: BB->getModule()).getValueInBlock(V, BB, CxtI); |
1747 | return Result.asConstantRange(Ty: V->getType(), UndefAllowed); |
1748 | } |
1749 | |
1750 | ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, |
1751 | bool UndefAllowed) { |
1752 | auto *Inst = cast<Instruction>(Val: U.getUser()); |
1753 | ValueLatticeElement Result = |
1754 | getOrCreateImpl(M: Inst->getModule()).getValueAtUse(U); |
1755 | return Result.asConstantRange(Ty: U->getType(), UndefAllowed); |
1756 | } |
1757 | |
1758 | /// Determine whether the specified value is known to be a |
1759 | /// constant on the specified edge. Return null if not. |
1760 | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, |
1761 | BasicBlock *ToBB, |
1762 | Instruction *CxtI) { |
1763 | Module *M = FromBB->getModule(); |
1764 | ValueLatticeElement Result = |
1765 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1766 | |
1767 | if (Result.isConstant()) |
1768 | return Result.getConstant(); |
1769 | if (Result.isConstantRange()) { |
1770 | const ConstantRange &CR = Result.getConstantRange(); |
1771 | if (const APInt *SingleVal = CR.getSingleElement()) |
1772 | return ConstantInt::get(Ty: V->getType(), V: *SingleVal); |
1773 | } |
1774 | return nullptr; |
1775 | } |
1776 | |
1777 | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, |
1778 | BasicBlock *FromBB, |
1779 | BasicBlock *ToBB, |
1780 | Instruction *CxtI) { |
1781 | Module *M = FromBB->getModule(); |
1782 | ValueLatticeElement Result = |
1783 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1784 | // TODO: Should undef be allowed here? |
1785 | return Result.asConstantRange(Ty: V->getType(), /*UndefAllowed*/ true); |
1786 | } |
1787 | |
1788 | static Constant *getPredicateResult(CmpInst::Predicate Pred, Constant *C, |
1789 | const ValueLatticeElement &Val, |
1790 | const DataLayout &DL) { |
1791 | // If we know the value is a constant, evaluate the conditional. |
1792 | if (Val.isConstant()) |
1793 | return ConstantFoldCompareInstOperands(Predicate: Pred, LHS: Val.getConstant(), RHS: C, DL); |
1794 | |
1795 | Type *ResTy = CmpInst::makeCmpResultType(opnd_type: C->getType()); |
1796 | if (Val.isConstantRange()) { |
1797 | const ConstantRange &CR = Val.getConstantRange(); |
1798 | ConstantRange RHS = C->toConstantRange(); |
1799 | if (CR.icmp(Pred, Other: RHS)) |
1800 | return ConstantInt::getTrue(Ty: ResTy); |
1801 | if (CR.icmp(Pred: CmpInst::getInversePredicate(pred: Pred), Other: RHS)) |
1802 | return ConstantInt::getFalse(Ty: ResTy); |
1803 | return nullptr; |
1804 | } |
1805 | |
1806 | if (Val.isNotConstant()) { |
1807 | // If this is an equality comparison, we can try to fold it knowing that |
1808 | // "V != C1". |
1809 | if (Pred == ICmpInst::ICMP_EQ) { |
1810 | // !C1 == C -> false iff C1 == C. |
1811 | Constant *Res = ConstantFoldCompareInstOperands( |
1812 | Predicate: ICmpInst::ICMP_NE, LHS: Val.getNotConstant(), RHS: C, DL); |
1813 | if (Res && Res->isNullValue()) |
1814 | return ConstantInt::getFalse(Ty: ResTy); |
1815 | } else if (Pred == ICmpInst::ICMP_NE) { |
1816 | // !C1 != C -> true iff C1 == C. |
1817 | Constant *Res = ConstantFoldCompareInstOperands( |
1818 | Predicate: ICmpInst::ICMP_NE, LHS: Val.getNotConstant(), RHS: C, DL); |
1819 | if (Res && Res->isNullValue()) |
1820 | return ConstantInt::getTrue(Ty: ResTy); |
1821 | } |
1822 | return nullptr; |
1823 | } |
1824 | |
1825 | return nullptr; |
1826 | } |
1827 | |
1828 | /// Determine whether the specified value comparison with a constant is known to |
1829 | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. |
1830 | Constant *LazyValueInfo::getPredicateOnEdge(CmpInst::Predicate Pred, Value *V, |
1831 | Constant *C, BasicBlock *FromBB, |
1832 | BasicBlock *ToBB, |
1833 | Instruction *CxtI) { |
1834 | Module *M = FromBB->getModule(); |
1835 | ValueLatticeElement Result = |
1836 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1837 | |
1838 | return getPredicateResult(Pred, C, Val: Result, DL: M->getDataLayout()); |
1839 | } |
1840 | |
1841 | Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *V, |
1842 | Constant *C, Instruction *CxtI, |
1843 | bool UseBlockValue) { |
1844 | // Is or is not NonNull are common predicates being queried. If |
1845 | // isKnownNonZero can tell us the result of the predicate, we can |
1846 | // return it quickly. But this is only a fastpath, and falling |
1847 | // through would still be correct. |
1848 | Module *M = CxtI->getModule(); |
1849 | const DataLayout &DL = M->getDataLayout(); |
1850 | if (V->getType()->isPointerTy() && C->isNullValue() && |
1851 | isKnownNonZero(V: V->stripPointerCastsSameRepresentation(), Q: DL)) { |
1852 | Type *ResTy = CmpInst::makeCmpResultType(opnd_type: C->getType()); |
1853 | if (Pred == ICmpInst::ICMP_EQ) |
1854 | return ConstantInt::getFalse(Ty: ResTy); |
1855 | else if (Pred == ICmpInst::ICMP_NE) |
1856 | return ConstantInt::getTrue(Ty: ResTy); |
1857 | } |
1858 | |
1859 | auto &Impl = getOrCreateImpl(M); |
1860 | ValueLatticeElement Result = |
1861 | UseBlockValue ? Impl.getValueInBlock(V, BB: CxtI->getParent(), CxtI) |
1862 | : Impl.getValueAt(V, CxtI); |
1863 | Constant *Ret = getPredicateResult(Pred, C, Val: Result, DL); |
1864 | if (Ret) |
1865 | return Ret; |
1866 | |
1867 | // Note: The following bit of code is somewhat distinct from the rest of LVI; |
1868 | // LVI as a whole tries to compute a lattice value which is conservatively |
1869 | // correct at a given location. In this case, we have a predicate which we |
1870 | // weren't able to prove about the merged result, and we're pushing that |
1871 | // predicate back along each incoming edge to see if we can prove it |
1872 | // separately for each input. As a motivating example, consider: |
1873 | // bb1: |
1874 | // %v1 = ... ; constantrange<1, 5> |
1875 | // br label %merge |
1876 | // bb2: |
1877 | // %v2 = ... ; constantrange<10, 20> |
1878 | // br label %merge |
1879 | // merge: |
1880 | // %phi = phi [%v1, %v2] ; constantrange<1,20> |
1881 | // %pred = icmp eq i32 %phi, 8 |
1882 | // We can't tell from the lattice value for '%phi' that '%pred' is false |
1883 | // along each path, but by checking the predicate over each input separately, |
1884 | // we can. |
1885 | // We limit the search to one step backwards from the current BB and value. |
1886 | // We could consider extending this to search further backwards through the |
1887 | // CFG and/or value graph, but there are non-obvious compile time vs quality |
1888 | // tradeoffs. |
1889 | BasicBlock *BB = CxtI->getParent(); |
1890 | |
1891 | // Function entry or an unreachable block. Bail to avoid confusing |
1892 | // analysis below. |
1893 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
1894 | if (PI == PE) |
1895 | return nullptr; |
1896 | |
1897 | // If V is a PHI node in the same block as the context, we need to ask |
1898 | // questions about the predicate as applied to the incoming value along |
1899 | // each edge. This is useful for eliminating cases where the predicate is |
1900 | // known along all incoming edges. |
1901 | if (auto *PHI = dyn_cast<PHINode>(Val: V)) |
1902 | if (PHI->getParent() == BB) { |
1903 | Constant *Baseline = nullptr; |
1904 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { |
1905 | Value *Incoming = PHI->getIncomingValue(i); |
1906 | BasicBlock *PredBB = PHI->getIncomingBlock(i); |
1907 | // Note that PredBB may be BB itself. |
1908 | Constant *Result = |
1909 | getPredicateOnEdge(Pred, V: Incoming, C, FromBB: PredBB, ToBB: BB, CxtI); |
1910 | |
1911 | // Keep going as long as we've seen a consistent known result for |
1912 | // all inputs. |
1913 | Baseline = (i == 0) ? Result /* First iteration */ |
1914 | : (Baseline == Result ? Baseline |
1915 | : nullptr); /* All others */ |
1916 | if (!Baseline) |
1917 | break; |
1918 | } |
1919 | if (Baseline) |
1920 | return Baseline; |
1921 | } |
1922 | |
1923 | // For a comparison where the V is outside this block, it's possible |
1924 | // that we've branched on it before. Look to see if the value is known |
1925 | // on all incoming edges. |
1926 | if (!isa<Instruction>(Val: V) || cast<Instruction>(Val: V)->getParent() != BB) { |
1927 | // For predecessor edge, determine if the comparison is true or false |
1928 | // on that edge. If they're all true or all false, we can conclude |
1929 | // the value of the comparison in this block. |
1930 | Constant *Baseline = getPredicateOnEdge(Pred, V, C, FromBB: *PI, ToBB: BB, CxtI); |
1931 | if (Baseline) { |
1932 | // Check that all remaining incoming values match the first one. |
1933 | while (++PI != PE) { |
1934 | Constant *Ret = getPredicateOnEdge(Pred, V, C, FromBB: *PI, ToBB: BB, CxtI); |
1935 | if (Ret != Baseline) |
1936 | break; |
1937 | } |
1938 | // If we terminated early, then one of the values didn't match. |
1939 | if (PI == PE) { |
1940 | return Baseline; |
1941 | } |
1942 | } |
1943 | } |
1944 | |
1945 | return nullptr; |
1946 | } |
1947 | |
1948 | Constant *LazyValueInfo::getPredicateAt(CmpInst::Predicate Pred, Value *LHS, |
1949 | Value *RHS, Instruction *CxtI, |
1950 | bool UseBlockValue) { |
1951 | if (auto *C = dyn_cast<Constant>(Val: RHS)) |
1952 | return getPredicateAt(Pred, V: LHS, C, CxtI, UseBlockValue); |
1953 | if (auto *C = dyn_cast<Constant>(Val: LHS)) |
1954 | return getPredicateAt(Pred: CmpInst::getSwappedPredicate(pred: Pred), V: RHS, C, CxtI, |
1955 | UseBlockValue); |
1956 | |
1957 | // Got two non-Constant values. Try to determine the comparison results based |
1958 | // on the block values of the two operands, e.g. because they have |
1959 | // non-overlapping ranges. |
1960 | if (UseBlockValue) { |
1961 | Module *M = CxtI->getModule(); |
1962 | ValueLatticeElement L = |
1963 | getOrCreateImpl(M).getValueInBlock(V: LHS, BB: CxtI->getParent(), CxtI); |
1964 | if (L.isOverdefined()) |
1965 | return nullptr; |
1966 | |
1967 | ValueLatticeElement R = |
1968 | getOrCreateImpl(M).getValueInBlock(V: RHS, BB: CxtI->getParent(), CxtI); |
1969 | Type *Ty = CmpInst::makeCmpResultType(opnd_type: LHS->getType()); |
1970 | return L.getCompare(Pred, Ty, Other: R, DL: M->getDataLayout()); |
1971 | } |
1972 | return nullptr; |
1973 | } |
1974 | |
1975 | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
1976 | BasicBlock *NewSucc) { |
1977 | if (auto *Impl = getImpl()) |
1978 | Impl->threadEdge(PredBB, OldSucc, NewSucc); |
1979 | } |
1980 | |
1981 | void LazyValueInfo::forgetValue(Value *V) { |
1982 | if (auto *Impl = getImpl()) |
1983 | Impl->forgetValue(V); |
1984 | } |
1985 | |
1986 | void LazyValueInfo::eraseBlock(BasicBlock *BB) { |
1987 | if (auto *Impl = getImpl()) |
1988 | Impl->eraseBlock(BB); |
1989 | } |
1990 | |
1991 | void LazyValueInfo::clear() { |
1992 | if (auto *Impl = getImpl()) |
1993 | Impl->clear(); |
1994 | } |
1995 | |
1996 | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
1997 | if (auto *Impl = getImpl()) |
1998 | Impl->printLVI(F, DTree, OS); |
1999 | } |
2000 | |
2001 | // Print the LVI for the function arguments at the start of each basic block. |
2002 | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( |
2003 | const BasicBlock *BB, formatted_raw_ostream &OS) { |
2004 | // Find if there are latticevalues defined for arguments of the function. |
2005 | auto *F = BB->getParent(); |
2006 | for (const auto &Arg : F->args()) { |
2007 | ValueLatticeElement Result = LVIImpl->getValueInBlock( |
2008 | V: const_cast<Argument *>(&Arg), BB: const_cast<BasicBlock *>(BB)); |
2009 | if (Result.isUnknown()) |
2010 | continue; |
2011 | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n" ; |
2012 | } |
2013 | } |
2014 | |
2015 | // This function prints the LVI analysis for the instruction I at the beginning |
2016 | // of various basic blocks. It relies on calculated values that are stored in |
2017 | // the LazyValueInfoCache, and in the absence of cached values, recalculate the |
2018 | // LazyValueInfo for `I`, and print that info. |
2019 | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( |
2020 | const Instruction *I, formatted_raw_ostream &OS) { |
2021 | |
2022 | auto *ParentBB = I->getParent(); |
2023 | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; |
2024 | // We can generate (solve) LVI values only for blocks that are dominated by |
2025 | // the I's parent. However, to avoid generating LVI for all dominating blocks, |
2026 | // that contain redundant/uninteresting information, we print LVI for |
2027 | // blocks that may use this LVI information (such as immediate successor |
2028 | // blocks, and blocks that contain uses of `I`). |
2029 | auto printResult = [&](const BasicBlock *BB) { |
2030 | if (!BlocksContainingLVI.insert(Ptr: BB).second) |
2031 | return; |
2032 | ValueLatticeElement Result = LVIImpl->getValueInBlock( |
2033 | V: const_cast<Instruction *>(I), BB: const_cast<BasicBlock *>(BB)); |
2034 | OS << "; LatticeVal for: '" << *I << "' in BB: '" ; |
2035 | BB->printAsOperand(O&: OS, PrintType: false); |
2036 | OS << "' is: " << Result << "\n" ; |
2037 | }; |
2038 | |
2039 | printResult(ParentBB); |
2040 | // Print the LVI analysis results for the immediate successor blocks, that |
2041 | // are dominated by `ParentBB`. |
2042 | for (const auto *BBSucc : successors(BB: ParentBB)) |
2043 | if (DT.dominates(A: ParentBB, B: BBSucc)) |
2044 | printResult(BBSucc); |
2045 | |
2046 | // Print LVI in blocks where `I` is used. |
2047 | for (const auto *U : I->users()) |
2048 | if (auto *UseI = dyn_cast<Instruction>(Val: U)) |
2049 | if (!isa<PHINode>(Val: UseI) || DT.dominates(A: ParentBB, B: UseI->getParent())) |
2050 | printResult(UseI->getParent()); |
2051 | |
2052 | } |
2053 | |
2054 | PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, |
2055 | FunctionAnalysisManager &AM) { |
2056 | OS << "LVI for function '" << F.getName() << "':\n" ; |
2057 | auto &LVI = AM.getResult<LazyValueAnalysis>(IR&: F); |
2058 | auto &DTree = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
2059 | LVI.printLVI(F, DTree, OS); |
2060 | return PreservedAnalyses::all(); |
2061 | } |
2062 | |