1 | //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the PHITransAddr class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Analysis/PHITransAddr.h" |
14 | #include "llvm/Analysis/InstructionSimplify.h" |
15 | #include "llvm/Analysis/ValueTracking.h" |
16 | #include "llvm/Config/llvm-config.h" |
17 | #include "llvm/IR/Constants.h" |
18 | #include "llvm/IR/Dominators.h" |
19 | #include "llvm/IR/Instructions.h" |
20 | #include "llvm/Support/CommandLine.h" |
21 | #include "llvm/Support/ErrorHandling.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | using namespace llvm; |
24 | |
25 | static cl::opt<bool> EnableAddPhiTranslation( |
26 | "gvn-add-phi-translation" , cl::init(Val: false), cl::Hidden, |
27 | cl::desc("Enable phi-translation of add instructions" )); |
28 | |
29 | static bool canPHITrans(Instruction *Inst) { |
30 | if (isa<PHINode>(Val: Inst) || isa<GetElementPtrInst>(Val: Inst) || isa<CastInst>(Val: Inst)) |
31 | return true; |
32 | |
33 | if (Inst->getOpcode() == Instruction::Add && |
34 | isa<ConstantInt>(Val: Inst->getOperand(i: 1))) |
35 | return true; |
36 | |
37 | return false; |
38 | } |
39 | |
40 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
41 | LLVM_DUMP_METHOD void PHITransAddr::dump() const { |
42 | if (!Addr) { |
43 | dbgs() << "PHITransAddr: null\n" ; |
44 | return; |
45 | } |
46 | dbgs() << "PHITransAddr: " << *Addr << "\n" ; |
47 | for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) |
48 | dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n" ; |
49 | } |
50 | #endif |
51 | |
52 | static bool verifySubExpr(Value *Expr, |
53 | SmallVectorImpl<Instruction *> &InstInputs) { |
54 | // If this is a non-instruction value, there is nothing to do. |
55 | Instruction *I = dyn_cast<Instruction>(Val: Expr); |
56 | if (!I) return true; |
57 | |
58 | // If it's an instruction, it is either in Tmp or its operands recursively |
59 | // are. |
60 | if (auto Entry = find(Range&: InstInputs, Val: I); Entry != InstInputs.end()) { |
61 | InstInputs.erase(CI: Entry); |
62 | return true; |
63 | } |
64 | |
65 | // If it isn't in the InstInputs list it is a subexpr incorporated into the |
66 | // address. Validate that it is phi translatable. |
67 | if (!canPHITrans(Inst: I)) { |
68 | errs() << "Instruction in PHITransAddr is not phi-translatable:\n" ; |
69 | errs() << *I << '\n'; |
70 | llvm_unreachable("Either something is missing from InstInputs or " |
71 | "canPHITrans is wrong." ); |
72 | } |
73 | |
74 | // Validate the operands of the instruction. |
75 | return all_of(Range: I->operands(), |
76 | P: [&](Value *Op) { return verifySubExpr(Expr: Op, InstInputs); }); |
77 | } |
78 | |
79 | /// verify - Check internal consistency of this data structure. If the |
80 | /// structure is valid, it returns true. If invalid, it prints errors and |
81 | /// returns false. |
82 | bool PHITransAddr::verify() const { |
83 | if (!Addr) return true; |
84 | |
85 | SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end()); |
86 | |
87 | if (!verifySubExpr(Expr: Addr, InstInputs&: Tmp)) |
88 | return false; |
89 | |
90 | if (!Tmp.empty()) { |
91 | errs() << "PHITransAddr contains extra instructions:\n" ; |
92 | for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) |
93 | errs() << " InstInput #" << i << " is " << *InstInputs[i] << "\n" ; |
94 | llvm_unreachable("This is unexpected." ); |
95 | } |
96 | |
97 | // a-ok. |
98 | return true; |
99 | } |
100 | |
101 | /// isPotentiallyPHITranslatable - If this needs PHI translation, return true |
102 | /// if we have some hope of doing it. This should be used as a filter to |
103 | /// avoid calling PHITranslateValue in hopeless situations. |
104 | bool PHITransAddr::isPotentiallyPHITranslatable() const { |
105 | // If the input value is not an instruction, or if it is not defined in CurBB, |
106 | // then we don't need to phi translate it. |
107 | Instruction *Inst = dyn_cast<Instruction>(Val: Addr); |
108 | return !Inst || canPHITrans(Inst); |
109 | } |
110 | |
111 | static void RemoveInstInputs(Value *V, |
112 | SmallVectorImpl<Instruction*> &InstInputs) { |
113 | Instruction *I = dyn_cast<Instruction>(Val: V); |
114 | if (!I) return; |
115 | |
116 | // If the instruction is in the InstInputs list, remove it. |
117 | if (auto Entry = find(Range&: InstInputs, Val: I); Entry != InstInputs.end()) { |
118 | InstInputs.erase(CI: Entry); |
119 | return; |
120 | } |
121 | |
122 | assert(!isa<PHINode>(I) && "Error, removing something that isn't an input" ); |
123 | |
124 | // Otherwise, it must have instruction inputs itself. Zap them recursively. |
125 | for (Value *Op : I->operands()) |
126 | if (Instruction *OpInst = dyn_cast<Instruction>(Val: Op)) |
127 | RemoveInstInputs(V: OpInst, InstInputs); |
128 | } |
129 | |
130 | Value *PHITransAddr::translateSubExpr(Value *V, BasicBlock *CurBB, |
131 | BasicBlock *PredBB, |
132 | const DominatorTree *DT) { |
133 | // If this is a non-instruction value, it can't require PHI translation. |
134 | Instruction *Inst = dyn_cast<Instruction>(Val: V); |
135 | if (!Inst) return V; |
136 | |
137 | // Determine whether 'Inst' is an input to our PHI translatable expression. |
138 | bool isInput = is_contained(Range&: InstInputs, Element: Inst); |
139 | |
140 | // Handle inputs instructions if needed. |
141 | if (isInput) { |
142 | if (Inst->getParent() != CurBB) { |
143 | // If it is an input defined in a different block, then it remains an |
144 | // input. |
145 | return Inst; |
146 | } |
147 | |
148 | // If 'Inst' is defined in this block and is an input that needs to be phi |
149 | // translated, we need to incorporate the value into the expression or fail. |
150 | |
151 | // In either case, the instruction itself isn't an input any longer. |
152 | InstInputs.erase(CI: find(Range&: InstInputs, Val: Inst)); |
153 | |
154 | // If this is a PHI, go ahead and translate it. |
155 | if (PHINode *PN = dyn_cast<PHINode>(Val: Inst)) |
156 | return addAsInput(V: PN->getIncomingValueForBlock(BB: PredBB)); |
157 | |
158 | // If this is a non-phi value, and it is analyzable, we can incorporate it |
159 | // into the expression by making all instruction operands be inputs. |
160 | if (!canPHITrans(Inst)) |
161 | return nullptr; |
162 | |
163 | // All instruction operands are now inputs (and of course, they may also be |
164 | // defined in this block, so they may need to be phi translated themselves. |
165 | for (Value *Op : Inst->operands()) |
166 | addAsInput(V: Op); |
167 | } |
168 | |
169 | // Ok, it must be an intermediate result (either because it started that way |
170 | // or because we just incorporated it into the expression). See if its |
171 | // operands need to be phi translated, and if so, reconstruct it. |
172 | |
173 | if (CastInst *Cast = dyn_cast<CastInst>(Val: Inst)) { |
174 | Value *PHIIn = translateSubExpr(V: Cast->getOperand(i_nocapture: 0), CurBB, PredBB, DT); |
175 | if (!PHIIn) return nullptr; |
176 | if (PHIIn == Cast->getOperand(i_nocapture: 0)) |
177 | return Cast; |
178 | |
179 | // Find an available version of this cast. |
180 | |
181 | // Try to simplify cast first. |
182 | if (Value *V = simplifyCastInst(CastOpc: Cast->getOpcode(), Op: PHIIn, Ty: Cast->getType(), |
183 | Q: {DL, TLI, DT, AC})) { |
184 | RemoveInstInputs(V: PHIIn, InstInputs); |
185 | return addAsInput(V); |
186 | } |
187 | |
188 | // Otherwise we have to see if a casted version of the incoming pointer |
189 | // is available. If so, we can use it, otherwise we have to fail. |
190 | for (User *U : PHIIn->users()) { |
191 | if (CastInst *CastI = dyn_cast<CastInst>(Val: U)) |
192 | if (CastI->getOpcode() == Cast->getOpcode() && |
193 | CastI->getType() == Cast->getType() && |
194 | (!DT || DT->dominates(A: CastI->getParent(), B: PredBB))) |
195 | return CastI; |
196 | } |
197 | return nullptr; |
198 | } |
199 | |
200 | // Handle getelementptr with at least one PHI translatable operand. |
201 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
202 | SmallVector<Value*, 8> GEPOps; |
203 | bool AnyChanged = false; |
204 | for (Value *Op : GEP->operands()) { |
205 | Value *GEPOp = translateSubExpr(V: Op, CurBB, PredBB, DT); |
206 | if (!GEPOp) return nullptr; |
207 | |
208 | AnyChanged |= GEPOp != Op; |
209 | GEPOps.push_back(Elt: GEPOp); |
210 | } |
211 | |
212 | if (!AnyChanged) |
213 | return GEP; |
214 | |
215 | // Simplify the GEP to handle 'gep x, 0' -> x etc. |
216 | if (Value *V = simplifyGEPInst(SrcTy: GEP->getSourceElementType(), Ptr: GEPOps[0], |
217 | Indices: ArrayRef<Value *>(GEPOps).slice(N: 1), |
218 | NW: GEP->getNoWrapFlags(), Q: {DL, TLI, DT, AC})) { |
219 | for (Value *Op : GEPOps) |
220 | RemoveInstInputs(V: Op, InstInputs); |
221 | |
222 | return addAsInput(V); |
223 | } |
224 | |
225 | // Scan to see if we have this GEP available. |
226 | Value *APHIOp = GEPOps[0]; |
227 | for (User *U : APHIOp->users()) { |
228 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: U)) |
229 | if (GEPI->getType() == GEP->getType() && |
230 | GEPI->getSourceElementType() == GEP->getSourceElementType() && |
231 | GEPI->getNumOperands() == GEPOps.size() && |
232 | GEPI->getParent()->getParent() == CurBB->getParent() && |
233 | (!DT || DT->dominates(A: GEPI->getParent(), B: PredBB))) { |
234 | if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin())) |
235 | return GEPI; |
236 | } |
237 | } |
238 | return nullptr; |
239 | } |
240 | |
241 | // Handle add with a constant RHS. |
242 | if (Inst->getOpcode() == Instruction::Add && |
243 | isa<ConstantInt>(Val: Inst->getOperand(i: 1))) { |
244 | // PHI translate the LHS. |
245 | Constant *RHS = cast<ConstantInt>(Val: Inst->getOperand(i: 1)); |
246 | bool isNSW = cast<BinaryOperator>(Val: Inst)->hasNoSignedWrap(); |
247 | bool isNUW = cast<BinaryOperator>(Val: Inst)->hasNoUnsignedWrap(); |
248 | |
249 | Value *LHS = translateSubExpr(V: Inst->getOperand(i: 0), CurBB, PredBB, DT); |
250 | if (!LHS) return nullptr; |
251 | |
252 | // If the PHI translated LHS is an add of a constant, fold the immediates. |
253 | if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: LHS)) |
254 | if (BOp->getOpcode() == Instruction::Add) |
255 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: BOp->getOperand(i_nocapture: 1))) { |
256 | LHS = BOp->getOperand(i_nocapture: 0); |
257 | RHS = ConstantExpr::getAdd(C1: RHS, C2: CI); |
258 | isNSW = isNUW = false; |
259 | |
260 | // If the old 'LHS' was an input, add the new 'LHS' as an input. |
261 | if (is_contained(Range&: InstInputs, Element: BOp)) { |
262 | RemoveInstInputs(V: BOp, InstInputs); |
263 | addAsInput(V: LHS); |
264 | } |
265 | } |
266 | |
267 | // See if the add simplifies away. |
268 | if (Value *Res = simplifyAddInst(LHS, RHS, IsNSW: isNSW, IsNUW: isNUW, Q: {DL, TLI, DT, AC})) { |
269 | // If we simplified the operands, the LHS is no longer an input, but Res |
270 | // is. |
271 | RemoveInstInputs(V: LHS, InstInputs); |
272 | return addAsInput(V: Res); |
273 | } |
274 | |
275 | // If we didn't modify the add, just return it. |
276 | if (LHS == Inst->getOperand(i: 0) && RHS == Inst->getOperand(i: 1)) |
277 | return Inst; |
278 | |
279 | // Otherwise, see if we have this add available somewhere. |
280 | for (User *U : LHS->users()) { |
281 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: U)) |
282 | if (BO->getOpcode() == Instruction::Add && |
283 | BO->getOperand(i_nocapture: 0) == LHS && BO->getOperand(i_nocapture: 1) == RHS && |
284 | BO->getParent()->getParent() == CurBB->getParent() && |
285 | (!DT || DT->dominates(A: BO->getParent(), B: PredBB))) |
286 | return BO; |
287 | } |
288 | |
289 | return nullptr; |
290 | } |
291 | |
292 | // Otherwise, we failed. |
293 | return nullptr; |
294 | } |
295 | |
296 | /// PHITranslateValue - PHI translate the current address up the CFG from |
297 | /// CurBB to Pred, updating our state to reflect any needed changes. If |
298 | /// 'MustDominate' is true, the translated value must dominate PredBB. |
299 | Value *PHITransAddr::translateValue(BasicBlock *CurBB, BasicBlock *PredBB, |
300 | const DominatorTree *DT, |
301 | bool MustDominate) { |
302 | assert(DT || !MustDominate); |
303 | assert(verify() && "Invalid PHITransAddr!" ); |
304 | if (DT && DT->isReachableFromEntry(A: PredBB)) |
305 | Addr = translateSubExpr(V: Addr, CurBB, PredBB, DT); |
306 | else |
307 | Addr = nullptr; |
308 | assert(verify() && "Invalid PHITransAddr!" ); |
309 | |
310 | if (MustDominate) |
311 | // Make sure the value is live in the predecessor. |
312 | if (Instruction *Inst = dyn_cast_or_null<Instruction>(Val: Addr)) |
313 | if (!DT->dominates(A: Inst->getParent(), B: PredBB)) |
314 | Addr = nullptr; |
315 | |
316 | return Addr; |
317 | } |
318 | |
319 | /// PHITranslateWithInsertion - PHI translate this value into the specified |
320 | /// predecessor block, inserting a computation of the value if it is |
321 | /// unavailable. |
322 | /// |
323 | /// All newly created instructions are added to the NewInsts list. This |
324 | /// returns null on failure. |
325 | /// |
326 | Value * |
327 | PHITransAddr::translateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, |
328 | const DominatorTree &DT, |
329 | SmallVectorImpl<Instruction *> &NewInsts) { |
330 | unsigned NISize = NewInsts.size(); |
331 | |
332 | // Attempt to PHI translate with insertion. |
333 | Addr = insertTranslatedSubExpr(InVal: Addr, CurBB, PredBB, DT, NewInsts); |
334 | |
335 | // If successful, return the new value. |
336 | if (Addr) return Addr; |
337 | |
338 | // If not, destroy any intermediate instructions inserted. |
339 | while (NewInsts.size() != NISize) |
340 | NewInsts.pop_back_val()->eraseFromParent(); |
341 | return nullptr; |
342 | } |
343 | |
344 | /// insertTranslatedSubExpr - Insert a computation of the PHI translated |
345 | /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB |
346 | /// block. All newly created instructions are added to the NewInsts list. |
347 | /// This returns null on failure. |
348 | /// |
349 | Value *PHITransAddr::insertTranslatedSubExpr( |
350 | Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB, |
351 | const DominatorTree &DT, SmallVectorImpl<Instruction *> &NewInsts) { |
352 | // See if we have a version of this value already available and dominating |
353 | // PredBB. If so, there is no need to insert a new instance of it. |
354 | PHITransAddr Tmp(InVal, DL, AC); |
355 | if (Value *Addr = |
356 | Tmp.translateValue(CurBB, PredBB, DT: &DT, /*MustDominate=*/true)) |
357 | return Addr; |
358 | |
359 | // We don't need to PHI translate values which aren't instructions. |
360 | auto *Inst = dyn_cast<Instruction>(Val: InVal); |
361 | if (!Inst) |
362 | return nullptr; |
363 | |
364 | // Handle cast of PHI translatable value. |
365 | if (CastInst *Cast = dyn_cast<CastInst>(Val: Inst)) { |
366 | Value *OpVal = insertTranslatedSubExpr(InVal: Cast->getOperand(i_nocapture: 0), CurBB, PredBB, |
367 | DT, NewInsts); |
368 | if (!OpVal) return nullptr; |
369 | |
370 | // Otherwise insert a cast at the end of PredBB. |
371 | CastInst *New = CastInst::Create(Cast->getOpcode(), S: OpVal, Ty: InVal->getType(), |
372 | Name: InVal->getName() + ".phi.trans.insert" , |
373 | InsertBefore: PredBB->getTerminator()->getIterator()); |
374 | New->setDebugLoc(Inst->getDebugLoc()); |
375 | NewInsts.push_back(Elt: New); |
376 | return New; |
377 | } |
378 | |
379 | // Handle getelementptr with at least one PHI operand. |
380 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: Inst)) { |
381 | SmallVector<Value*, 8> GEPOps; |
382 | BasicBlock *CurBB = GEP->getParent(); |
383 | for (Value *Op : GEP->operands()) { |
384 | Value *OpVal = insertTranslatedSubExpr(InVal: Op, CurBB, PredBB, DT, NewInsts); |
385 | if (!OpVal) return nullptr; |
386 | GEPOps.push_back(Elt: OpVal); |
387 | } |
388 | |
389 | GetElementPtrInst *Result = GetElementPtrInst::Create( |
390 | PointeeType: GEP->getSourceElementType(), Ptr: GEPOps[0], IdxList: ArrayRef(GEPOps).slice(N: 1), |
391 | NameStr: InVal->getName() + ".phi.trans.insert" , |
392 | InsertBefore: PredBB->getTerminator()->getIterator()); |
393 | Result->setDebugLoc(Inst->getDebugLoc()); |
394 | Result->setNoWrapFlags(GEP->getNoWrapFlags()); |
395 | NewInsts.push_back(Elt: Result); |
396 | return Result; |
397 | } |
398 | |
399 | // Handle add with a constant RHS. |
400 | if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add && |
401 | isa<ConstantInt>(Val: Inst->getOperand(i: 1))) { |
402 | |
403 | // FIXME: This code works, but it is unclear that we actually want to insert |
404 | // a big chain of computation in order to make a value available in a block. |
405 | // This needs to be evaluated carefully to consider its cost trade offs. |
406 | |
407 | // PHI translate the LHS. |
408 | Value *OpVal = insertTranslatedSubExpr(InVal: Inst->getOperand(i: 0), CurBB, PredBB, |
409 | DT, NewInsts); |
410 | if (OpVal == nullptr) |
411 | return nullptr; |
412 | |
413 | BinaryOperator *Res = BinaryOperator::CreateAdd( |
414 | V1: OpVal, V2: Inst->getOperand(i: 1), Name: InVal->getName() + ".phi.trans.insert" , |
415 | It: PredBB->getTerminator()->getIterator()); |
416 | Res->setHasNoSignedWrap(cast<BinaryOperator>(Val: Inst)->hasNoSignedWrap()); |
417 | Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Val: Inst)->hasNoUnsignedWrap()); |
418 | NewInsts.push_back(Elt: Res); |
419 | return Res; |
420 | } |
421 | |
422 | return nullptr; |
423 | } |
424 | |