1 | //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines vectorizer utilities. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Analysis/VectorUtils.h" |
14 | #include "llvm/ADT/EquivalenceClasses.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/Analysis/DemandedBits.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/Analysis/LoopIterator.h" |
19 | #include "llvm/Analysis/ScalarEvolution.h" |
20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | #include "llvm/Analysis/TargetTransformInfo.h" |
22 | #include "llvm/Analysis/ValueTracking.h" |
23 | #include "llvm/IR/Constants.h" |
24 | #include "llvm/IR/DerivedTypes.h" |
25 | #include "llvm/IR/IRBuilder.h" |
26 | #include "llvm/IR/MemoryModelRelaxationAnnotations.h" |
27 | #include "llvm/IR/PatternMatch.h" |
28 | #include "llvm/IR/Value.h" |
29 | #include "llvm/Support/CommandLine.h" |
30 | |
31 | #define DEBUG_TYPE "vectorutils" |
32 | |
33 | using namespace llvm; |
34 | using namespace llvm::PatternMatch; |
35 | |
36 | /// Maximum factor for an interleaved memory access. |
37 | static cl::opt<unsigned> MaxInterleaveGroupFactor( |
38 | "max-interleave-group-factor" , cl::Hidden, |
39 | cl::desc("Maximum factor for an interleaved access group (default = 8)" ), |
40 | cl::init(Val: 8)); |
41 | |
42 | /// Return true if all of the intrinsic's arguments and return type are scalars |
43 | /// for the scalar form of the intrinsic, and vectors for the vector form of the |
44 | /// intrinsic (except operands that are marked as always being scalar by |
45 | /// isVectorIntrinsicWithScalarOpAtArg). |
46 | bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { |
47 | switch (ID) { |
48 | case Intrinsic::abs: // Begin integer bit-manipulation. |
49 | case Intrinsic::bswap: |
50 | case Intrinsic::bitreverse: |
51 | case Intrinsic::ctpop: |
52 | case Intrinsic::ctlz: |
53 | case Intrinsic::cttz: |
54 | case Intrinsic::fshl: |
55 | case Intrinsic::fshr: |
56 | case Intrinsic::smax: |
57 | case Intrinsic::smin: |
58 | case Intrinsic::umax: |
59 | case Intrinsic::umin: |
60 | case Intrinsic::sadd_sat: |
61 | case Intrinsic::ssub_sat: |
62 | case Intrinsic::uadd_sat: |
63 | case Intrinsic::usub_sat: |
64 | case Intrinsic::smul_fix: |
65 | case Intrinsic::smul_fix_sat: |
66 | case Intrinsic::umul_fix: |
67 | case Intrinsic::umul_fix_sat: |
68 | case Intrinsic::sqrt: // Begin floating-point. |
69 | case Intrinsic::sin: |
70 | case Intrinsic::cos: |
71 | case Intrinsic::tan: |
72 | case Intrinsic::exp: |
73 | case Intrinsic::exp2: |
74 | case Intrinsic::log: |
75 | case Intrinsic::log10: |
76 | case Intrinsic::log2: |
77 | case Intrinsic::fabs: |
78 | case Intrinsic::minnum: |
79 | case Intrinsic::maxnum: |
80 | case Intrinsic::minimum: |
81 | case Intrinsic::maximum: |
82 | case Intrinsic::copysign: |
83 | case Intrinsic::floor: |
84 | case Intrinsic::ceil: |
85 | case Intrinsic::trunc: |
86 | case Intrinsic::rint: |
87 | case Intrinsic::nearbyint: |
88 | case Intrinsic::round: |
89 | case Intrinsic::roundeven: |
90 | case Intrinsic::pow: |
91 | case Intrinsic::fma: |
92 | case Intrinsic::fmuladd: |
93 | case Intrinsic::is_fpclass: |
94 | case Intrinsic::powi: |
95 | case Intrinsic::canonicalize: |
96 | case Intrinsic::fptosi_sat: |
97 | case Intrinsic::fptoui_sat: |
98 | case Intrinsic::lrint: |
99 | case Intrinsic::llrint: |
100 | return true; |
101 | default: |
102 | return false; |
103 | } |
104 | } |
105 | |
106 | /// Identifies if the vector form of the intrinsic has a scalar operand. |
107 | bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, |
108 | unsigned ScalarOpdIdx) { |
109 | switch (ID) { |
110 | case Intrinsic::abs: |
111 | case Intrinsic::ctlz: |
112 | case Intrinsic::cttz: |
113 | case Intrinsic::is_fpclass: |
114 | case Intrinsic::powi: |
115 | return (ScalarOpdIdx == 1); |
116 | case Intrinsic::smul_fix: |
117 | case Intrinsic::smul_fix_sat: |
118 | case Intrinsic::umul_fix: |
119 | case Intrinsic::umul_fix_sat: |
120 | return (ScalarOpdIdx == 2); |
121 | default: |
122 | return false; |
123 | } |
124 | } |
125 | |
126 | bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID, |
127 | int OpdIdx) { |
128 | assert(ID != Intrinsic::not_intrinsic && "Not an intrinsic!" ); |
129 | |
130 | switch (ID) { |
131 | case Intrinsic::fptosi_sat: |
132 | case Intrinsic::fptoui_sat: |
133 | case Intrinsic::lrint: |
134 | case Intrinsic::llrint: |
135 | return OpdIdx == -1 || OpdIdx == 0; |
136 | case Intrinsic::is_fpclass: |
137 | return OpdIdx == 0; |
138 | case Intrinsic::powi: |
139 | return OpdIdx == -1 || OpdIdx == 1; |
140 | default: |
141 | return OpdIdx == -1; |
142 | } |
143 | } |
144 | |
145 | /// Returns intrinsic ID for call. |
146 | /// For the input call instruction it finds mapping intrinsic and returns |
147 | /// its ID, in case it does not found it return not_intrinsic. |
148 | Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, |
149 | const TargetLibraryInfo *TLI) { |
150 | Intrinsic::ID ID = getIntrinsicForCallSite(CB: *CI, TLI); |
151 | if (ID == Intrinsic::not_intrinsic) |
152 | return Intrinsic::not_intrinsic; |
153 | |
154 | if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || |
155 | ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || |
156 | ID == Intrinsic::experimental_noalias_scope_decl || |
157 | ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe) |
158 | return ID; |
159 | return Intrinsic::not_intrinsic; |
160 | } |
161 | |
162 | /// Given a vector and an element number, see if the scalar value is |
163 | /// already around as a register, for example if it were inserted then extracted |
164 | /// from the vector. |
165 | Value *llvm::findScalarElement(Value *V, unsigned EltNo) { |
166 | assert(V->getType()->isVectorTy() && "Not looking at a vector?" ); |
167 | VectorType *VTy = cast<VectorType>(Val: V->getType()); |
168 | // For fixed-length vector, return poison for out of range access. |
169 | if (auto *FVTy = dyn_cast<FixedVectorType>(Val: VTy)) { |
170 | unsigned Width = FVTy->getNumElements(); |
171 | if (EltNo >= Width) |
172 | return PoisonValue::get(T: FVTy->getElementType()); |
173 | } |
174 | |
175 | if (Constant *C = dyn_cast<Constant>(Val: V)) |
176 | return C->getAggregateElement(Elt: EltNo); |
177 | |
178 | if (InsertElementInst *III = dyn_cast<InsertElementInst>(Val: V)) { |
179 | // If this is an insert to a variable element, we don't know what it is. |
180 | if (!isa<ConstantInt>(Val: III->getOperand(i_nocapture: 2))) |
181 | return nullptr; |
182 | unsigned IIElt = cast<ConstantInt>(Val: III->getOperand(i_nocapture: 2))->getZExtValue(); |
183 | |
184 | // If this is an insert to the element we are looking for, return the |
185 | // inserted value. |
186 | if (EltNo == IIElt) |
187 | return III->getOperand(i_nocapture: 1); |
188 | |
189 | // Guard against infinite loop on malformed, unreachable IR. |
190 | if (III == III->getOperand(i_nocapture: 0)) |
191 | return nullptr; |
192 | |
193 | // Otherwise, the insertelement doesn't modify the value, recurse on its |
194 | // vector input. |
195 | return findScalarElement(V: III->getOperand(i_nocapture: 0), EltNo); |
196 | } |
197 | |
198 | ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Val: V); |
199 | // Restrict the following transformation to fixed-length vector. |
200 | if (SVI && isa<FixedVectorType>(Val: SVI->getType())) { |
201 | unsigned LHSWidth = |
202 | cast<FixedVectorType>(Val: SVI->getOperand(i_nocapture: 0)->getType())->getNumElements(); |
203 | int InEl = SVI->getMaskValue(Elt: EltNo); |
204 | if (InEl < 0) |
205 | return PoisonValue::get(T: VTy->getElementType()); |
206 | if (InEl < (int)LHSWidth) |
207 | return findScalarElement(V: SVI->getOperand(i_nocapture: 0), EltNo: InEl); |
208 | return findScalarElement(V: SVI->getOperand(i_nocapture: 1), EltNo: InEl - LHSWidth); |
209 | } |
210 | |
211 | // Extract a value from a vector add operation with a constant zero. |
212 | // TODO: Use getBinOpIdentity() to generalize this. |
213 | Value *Val; Constant *C; |
214 | if (match(V, P: m_Add(L: m_Value(V&: Val), R: m_Constant(C)))) |
215 | if (Constant *Elt = C->getAggregateElement(Elt: EltNo)) |
216 | if (Elt->isNullValue()) |
217 | return findScalarElement(V: Val, EltNo); |
218 | |
219 | // If the vector is a splat then we can trivially find the scalar element. |
220 | if (isa<ScalableVectorType>(Val: VTy)) |
221 | if (Value *Splat = getSplatValue(V)) |
222 | if (EltNo < VTy->getElementCount().getKnownMinValue()) |
223 | return Splat; |
224 | |
225 | // Otherwise, we don't know. |
226 | return nullptr; |
227 | } |
228 | |
229 | int llvm::getSplatIndex(ArrayRef<int> Mask) { |
230 | int SplatIndex = -1; |
231 | for (int M : Mask) { |
232 | // Ignore invalid (undefined) mask elements. |
233 | if (M < 0) |
234 | continue; |
235 | |
236 | // There can be only 1 non-negative mask element value if this is a splat. |
237 | if (SplatIndex != -1 && SplatIndex != M) |
238 | return -1; |
239 | |
240 | // Initialize the splat index to the 1st non-negative mask element. |
241 | SplatIndex = M; |
242 | } |
243 | assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?" ); |
244 | return SplatIndex; |
245 | } |
246 | |
247 | /// Get splat value if the input is a splat vector or return nullptr. |
248 | /// This function is not fully general. It checks only 2 cases: |
249 | /// the input value is (1) a splat constant vector or (2) a sequence |
250 | /// of instructions that broadcasts a scalar at element 0. |
251 | Value *llvm::getSplatValue(const Value *V) { |
252 | if (isa<VectorType>(Val: V->getType())) |
253 | if (auto *C = dyn_cast<Constant>(Val: V)) |
254 | return C->getSplatValue(); |
255 | |
256 | // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> |
257 | Value *Splat; |
258 | if (match(V, |
259 | P: m_Shuffle(v1: m_InsertElt(Val: m_Value(), Elt: m_Value(V&: Splat), Idx: m_ZeroInt()), |
260 | v2: m_Value(), mask: m_ZeroMask()))) |
261 | return Splat; |
262 | |
263 | return nullptr; |
264 | } |
265 | |
266 | bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) { |
267 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth" ); |
268 | |
269 | if (isa<VectorType>(Val: V->getType())) { |
270 | if (isa<UndefValue>(Val: V)) |
271 | return true; |
272 | // FIXME: We can allow undefs, but if Index was specified, we may want to |
273 | // check that the constant is defined at that index. |
274 | if (auto *C = dyn_cast<Constant>(Val: V)) |
275 | return C->getSplatValue() != nullptr; |
276 | } |
277 | |
278 | if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: V)) { |
279 | // FIXME: We can safely allow undefs here. If Index was specified, we will |
280 | // check that the mask elt is defined at the required index. |
281 | if (!all_equal(Range: Shuf->getShuffleMask())) |
282 | return false; |
283 | |
284 | // Match any index. |
285 | if (Index == -1) |
286 | return true; |
287 | |
288 | // Match a specific element. The mask should be defined at and match the |
289 | // specified index. |
290 | return Shuf->getMaskValue(Elt: Index) == Index; |
291 | } |
292 | |
293 | // The remaining tests are all recursive, so bail out if we hit the limit. |
294 | if (Depth++ == MaxAnalysisRecursionDepth) |
295 | return false; |
296 | |
297 | // If both operands of a binop are splats, the result is a splat. |
298 | Value *X, *Y, *Z; |
299 | if (match(V, P: m_BinOp(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
300 | return isSplatValue(V: X, Index, Depth) && isSplatValue(V: Y, Index, Depth); |
301 | |
302 | // If all operands of a select are splats, the result is a splat. |
303 | if (match(V, P: m_Select(C: m_Value(V&: X), L: m_Value(V&: Y), R: m_Value(V&: Z)))) |
304 | return isSplatValue(V: X, Index, Depth) && isSplatValue(V: Y, Index, Depth) && |
305 | isSplatValue(V: Z, Index, Depth); |
306 | |
307 | // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). |
308 | |
309 | return false; |
310 | } |
311 | |
312 | bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask, |
313 | const APInt &DemandedElts, APInt &DemandedLHS, |
314 | APInt &DemandedRHS, bool AllowUndefElts) { |
315 | DemandedLHS = DemandedRHS = APInt::getZero(numBits: SrcWidth); |
316 | |
317 | // Early out if we don't demand any elements. |
318 | if (DemandedElts.isZero()) |
319 | return true; |
320 | |
321 | // Simple case of a shuffle with zeroinitializer. |
322 | if (all_of(Range&: Mask, P: [](int Elt) { return Elt == 0; })) { |
323 | DemandedLHS.setBit(0); |
324 | return true; |
325 | } |
326 | |
327 | for (unsigned I = 0, E = Mask.size(); I != E; ++I) { |
328 | int M = Mask[I]; |
329 | assert((-1 <= M) && (M < (SrcWidth * 2)) && |
330 | "Invalid shuffle mask constant" ); |
331 | |
332 | if (!DemandedElts[I] || (AllowUndefElts && (M < 0))) |
333 | continue; |
334 | |
335 | // For undef elements, we don't know anything about the common state of |
336 | // the shuffle result. |
337 | if (M < 0) |
338 | return false; |
339 | |
340 | if (M < SrcWidth) |
341 | DemandedLHS.setBit(M); |
342 | else |
343 | DemandedRHS.setBit(M - SrcWidth); |
344 | } |
345 | |
346 | return true; |
347 | } |
348 | |
349 | void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask, |
350 | SmallVectorImpl<int> &ScaledMask) { |
351 | assert(Scale > 0 && "Unexpected scaling factor" ); |
352 | |
353 | // Fast-path: if no scaling, then it is just a copy. |
354 | if (Scale == 1) { |
355 | ScaledMask.assign(in_start: Mask.begin(), in_end: Mask.end()); |
356 | return; |
357 | } |
358 | |
359 | ScaledMask.clear(); |
360 | for (int MaskElt : Mask) { |
361 | if (MaskElt >= 0) { |
362 | assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX && |
363 | "Overflowed 32-bits" ); |
364 | } |
365 | for (int SliceElt = 0; SliceElt != Scale; ++SliceElt) |
366 | ScaledMask.push_back(Elt: MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt); |
367 | } |
368 | } |
369 | |
370 | bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask, |
371 | SmallVectorImpl<int> &ScaledMask) { |
372 | assert(Scale > 0 && "Unexpected scaling factor" ); |
373 | |
374 | // Fast-path: if no scaling, then it is just a copy. |
375 | if (Scale == 1) { |
376 | ScaledMask.assign(in_start: Mask.begin(), in_end: Mask.end()); |
377 | return true; |
378 | } |
379 | |
380 | // We must map the original elements down evenly to a type with less elements. |
381 | int NumElts = Mask.size(); |
382 | if (NumElts % Scale != 0) |
383 | return false; |
384 | |
385 | ScaledMask.clear(); |
386 | ScaledMask.reserve(N: NumElts / Scale); |
387 | |
388 | // Step through the input mask by splitting into Scale-sized slices. |
389 | do { |
390 | ArrayRef<int> MaskSlice = Mask.take_front(N: Scale); |
391 | assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice." ); |
392 | |
393 | // The first element of the slice determines how we evaluate this slice. |
394 | int SliceFront = MaskSlice.front(); |
395 | if (SliceFront < 0) { |
396 | // Negative values (undef or other "sentinel" values) must be equal across |
397 | // the entire slice. |
398 | if (!all_equal(Range&: MaskSlice)) |
399 | return false; |
400 | ScaledMask.push_back(Elt: SliceFront); |
401 | } else { |
402 | // A positive mask element must be cleanly divisible. |
403 | if (SliceFront % Scale != 0) |
404 | return false; |
405 | // Elements of the slice must be consecutive. |
406 | for (int i = 1; i < Scale; ++i) |
407 | if (MaskSlice[i] != SliceFront + i) |
408 | return false; |
409 | ScaledMask.push_back(Elt: SliceFront / Scale); |
410 | } |
411 | Mask = Mask.drop_front(N: Scale); |
412 | } while (!Mask.empty()); |
413 | |
414 | assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask" ); |
415 | |
416 | // All elements of the original mask can be scaled down to map to the elements |
417 | // of a mask with wider elements. |
418 | return true; |
419 | } |
420 | |
421 | bool llvm::scaleShuffleMaskElts(unsigned NumDstElts, ArrayRef<int> Mask, |
422 | SmallVectorImpl<int> &ScaledMask) { |
423 | unsigned NumSrcElts = Mask.size(); |
424 | assert(NumSrcElts > 0 && NumDstElts > 0 && "Unexpected scaling factor" ); |
425 | |
426 | // Fast-path: if no scaling, then it is just a copy. |
427 | if (NumSrcElts == NumDstElts) { |
428 | ScaledMask.assign(in_start: Mask.begin(), in_end: Mask.end()); |
429 | return true; |
430 | } |
431 | |
432 | // Ensure we can find a whole scale factor. |
433 | assert(((NumSrcElts % NumDstElts) == 0 || (NumDstElts % NumSrcElts) == 0) && |
434 | "Unexpected scaling factor" ); |
435 | |
436 | if (NumSrcElts > NumDstElts) { |
437 | int Scale = NumSrcElts / NumDstElts; |
438 | return widenShuffleMaskElts(Scale, Mask, ScaledMask); |
439 | } |
440 | |
441 | int Scale = NumDstElts / NumSrcElts; |
442 | narrowShuffleMaskElts(Scale, Mask, ScaledMask); |
443 | return true; |
444 | } |
445 | |
446 | void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask, |
447 | SmallVectorImpl<int> &ScaledMask) { |
448 | std::array<SmallVector<int, 16>, 2> TmpMasks; |
449 | SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1]; |
450 | ArrayRef<int> InputMask = Mask; |
451 | for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) { |
452 | while (widenShuffleMaskElts(Scale, Mask: InputMask, ScaledMask&: *Output)) { |
453 | InputMask = *Output; |
454 | std::swap(a&: Output, b&: Tmp); |
455 | } |
456 | } |
457 | ScaledMask.assign(in_start: InputMask.begin(), in_end: InputMask.end()); |
458 | } |
459 | |
460 | void llvm::processShuffleMasks( |
461 | ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, |
462 | unsigned NumOfUsedRegs, function_ref<void()> NoInputAction, |
463 | function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction, |
464 | function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) { |
465 | SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs); |
466 | // Try to perform better estimation of the permutation. |
467 | // 1. Split the source/destination vectors into real registers. |
468 | // 2. Do the mask analysis to identify which real registers are |
469 | // permuted. |
470 | int Sz = Mask.size(); |
471 | unsigned SzDest = Sz / NumOfDestRegs; |
472 | unsigned SzSrc = Sz / NumOfSrcRegs; |
473 | for (unsigned I = 0; I < NumOfDestRegs; ++I) { |
474 | auto &RegMasks = Res[I]; |
475 | RegMasks.assign(NumElts: NumOfSrcRegs, Elt: {}); |
476 | // Check that the values in dest registers are in the one src |
477 | // register. |
478 | for (unsigned K = 0; K < SzDest; ++K) { |
479 | int Idx = I * SzDest + K; |
480 | if (Idx == Sz) |
481 | break; |
482 | if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem) |
483 | continue; |
484 | int SrcRegIdx = Mask[Idx] / SzSrc; |
485 | // Add a cost of PermuteTwoSrc for each new source register permute, |
486 | // if we have more than one source registers. |
487 | if (RegMasks[SrcRegIdx].empty()) |
488 | RegMasks[SrcRegIdx].assign(NumElts: SzDest, Elt: PoisonMaskElem); |
489 | RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc; |
490 | } |
491 | } |
492 | // Process split mask. |
493 | for (unsigned I = 0; I < NumOfUsedRegs; ++I) { |
494 | auto &Dest = Res[I]; |
495 | int NumSrcRegs = |
496 | count_if(Range&: Dest, P: [](ArrayRef<int> Mask) { return !Mask.empty(); }); |
497 | switch (NumSrcRegs) { |
498 | case 0: |
499 | // No input vectors were used! |
500 | NoInputAction(); |
501 | break; |
502 | case 1: { |
503 | // Find the only mask with at least single undef mask elem. |
504 | auto *It = |
505 | find_if(Range&: Dest, P: [](ArrayRef<int> Mask) { return !Mask.empty(); }); |
506 | unsigned SrcReg = std::distance(first: Dest.begin(), last: It); |
507 | SingleInputAction(*It, SrcReg, I); |
508 | break; |
509 | } |
510 | default: { |
511 | // The first mask is a permutation of a single register. Since we have >2 |
512 | // input registers to shuffle, we merge the masks for 2 first registers |
513 | // and generate a shuffle of 2 registers rather than the reordering of the |
514 | // first register and then shuffle with the second register. Next, |
515 | // generate the shuffles of the resulting register + the remaining |
516 | // registers from the list. |
517 | auto &&CombineMasks = [](MutableArrayRef<int> FirstMask, |
518 | ArrayRef<int> SecondMask) { |
519 | for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) { |
520 | if (SecondMask[Idx] != PoisonMaskElem) { |
521 | assert(FirstMask[Idx] == PoisonMaskElem && |
522 | "Expected undefined mask element." ); |
523 | FirstMask[Idx] = SecondMask[Idx] + VF; |
524 | } |
525 | } |
526 | }; |
527 | auto &&NormalizeMask = [](MutableArrayRef<int> Mask) { |
528 | for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { |
529 | if (Mask[Idx] != PoisonMaskElem) |
530 | Mask[Idx] = Idx; |
531 | } |
532 | }; |
533 | int SecondIdx; |
534 | do { |
535 | int FirstIdx = -1; |
536 | SecondIdx = -1; |
537 | MutableArrayRef<int> FirstMask, SecondMask; |
538 | for (unsigned I = 0; I < NumOfDestRegs; ++I) { |
539 | SmallVectorImpl<int> &RegMask = Dest[I]; |
540 | if (RegMask.empty()) |
541 | continue; |
542 | |
543 | if (FirstIdx == SecondIdx) { |
544 | FirstIdx = I; |
545 | FirstMask = RegMask; |
546 | continue; |
547 | } |
548 | SecondIdx = I; |
549 | SecondMask = RegMask; |
550 | CombineMasks(FirstMask, SecondMask); |
551 | ManyInputsAction(FirstMask, FirstIdx, SecondIdx); |
552 | NormalizeMask(FirstMask); |
553 | RegMask.clear(); |
554 | SecondMask = FirstMask; |
555 | SecondIdx = FirstIdx; |
556 | } |
557 | if (FirstIdx != SecondIdx && SecondIdx >= 0) { |
558 | CombineMasks(SecondMask, FirstMask); |
559 | ManyInputsAction(SecondMask, SecondIdx, FirstIdx); |
560 | Dest[FirstIdx].clear(); |
561 | NormalizeMask(SecondMask); |
562 | } |
563 | } while (SecondIdx >= 0); |
564 | break; |
565 | } |
566 | } |
567 | } |
568 | } |
569 | |
570 | void llvm::getHorizDemandedEltsForFirstOperand(unsigned VectorBitWidth, |
571 | const APInt &DemandedElts, |
572 | APInt &DemandedLHS, |
573 | APInt &DemandedRHS) { |
574 | assert(VectorBitWidth >= 128 && "Vectors smaller than 128 bit not supported" ); |
575 | int NumLanes = VectorBitWidth / 128; |
576 | int NumElts = DemandedElts.getBitWidth(); |
577 | int NumEltsPerLane = NumElts / NumLanes; |
578 | int HalfEltsPerLane = NumEltsPerLane / 2; |
579 | |
580 | DemandedLHS = APInt::getZero(numBits: NumElts); |
581 | DemandedRHS = APInt::getZero(numBits: NumElts); |
582 | |
583 | // Map DemandedElts to the horizontal operands. |
584 | for (int Idx = 0; Idx != NumElts; ++Idx) { |
585 | if (!DemandedElts[Idx]) |
586 | continue; |
587 | int LaneIdx = (Idx / NumEltsPerLane) * NumEltsPerLane; |
588 | int LocalIdx = Idx % NumEltsPerLane; |
589 | if (LocalIdx < HalfEltsPerLane) { |
590 | DemandedLHS.setBit(LaneIdx + 2 * LocalIdx); |
591 | } else { |
592 | LocalIdx -= HalfEltsPerLane; |
593 | DemandedRHS.setBit(LaneIdx + 2 * LocalIdx); |
594 | } |
595 | } |
596 | } |
597 | |
598 | MapVector<Instruction *, uint64_t> |
599 | llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, |
600 | const TargetTransformInfo *TTI) { |
601 | |
602 | // DemandedBits will give us every value's live-out bits. But we want |
603 | // to ensure no extra casts would need to be inserted, so every DAG |
604 | // of connected values must have the same minimum bitwidth. |
605 | EquivalenceClasses<Value *> ECs; |
606 | SmallVector<Value *, 16> Worklist; |
607 | SmallPtrSet<Value *, 4> Roots; |
608 | SmallPtrSet<Value *, 16> Visited; |
609 | DenseMap<Value *, uint64_t> DBits; |
610 | SmallPtrSet<Instruction *, 4> InstructionSet; |
611 | MapVector<Instruction *, uint64_t> MinBWs; |
612 | |
613 | // Determine the roots. We work bottom-up, from truncs or icmps. |
614 | bool SeenExtFromIllegalType = false; |
615 | for (auto *BB : Blocks) |
616 | for (auto &I : *BB) { |
617 | InstructionSet.insert(Ptr: &I); |
618 | |
619 | if (TTI && (isa<ZExtInst>(Val: &I) || isa<SExtInst>(Val: &I)) && |
620 | !TTI->isTypeLegal(Ty: I.getOperand(i: 0)->getType())) |
621 | SeenExtFromIllegalType = true; |
622 | |
623 | // Only deal with non-vector integers up to 64-bits wide. |
624 | if ((isa<TruncInst>(Val: &I) || isa<ICmpInst>(Val: &I)) && |
625 | !I.getType()->isVectorTy() && |
626 | I.getOperand(i: 0)->getType()->getScalarSizeInBits() <= 64) { |
627 | // Don't make work for ourselves. If we know the loaded type is legal, |
628 | // don't add it to the worklist. |
629 | if (TTI && isa<TruncInst>(Val: &I) && TTI->isTypeLegal(Ty: I.getType())) |
630 | continue; |
631 | |
632 | Worklist.push_back(Elt: &I); |
633 | Roots.insert(Ptr: &I); |
634 | } |
635 | } |
636 | // Early exit. |
637 | if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) |
638 | return MinBWs; |
639 | |
640 | // Now proceed breadth-first, unioning values together. |
641 | while (!Worklist.empty()) { |
642 | Value *Val = Worklist.pop_back_val(); |
643 | Value *Leader = ECs.getOrInsertLeaderValue(V: Val); |
644 | |
645 | if (!Visited.insert(Ptr: Val).second) |
646 | continue; |
647 | |
648 | // Non-instructions terminate a chain successfully. |
649 | if (!isa<Instruction>(Val)) |
650 | continue; |
651 | Instruction *I = cast<Instruction>(Val); |
652 | |
653 | // If we encounter a type that is larger than 64 bits, we can't represent |
654 | // it so bail out. |
655 | if (DB.getDemandedBits(I).getBitWidth() > 64) |
656 | return MapVector<Instruction *, uint64_t>(); |
657 | |
658 | uint64_t V = DB.getDemandedBits(I).getZExtValue(); |
659 | DBits[Leader] |= V; |
660 | DBits[I] = V; |
661 | |
662 | // Casts, loads and instructions outside of our range terminate a chain |
663 | // successfully. |
664 | if (isa<SExtInst>(Val: I) || isa<ZExtInst>(Val: I) || isa<LoadInst>(Val: I) || |
665 | !InstructionSet.count(Ptr: I)) |
666 | continue; |
667 | |
668 | // Unsafe casts terminate a chain unsuccessfully. We can't do anything |
669 | // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to |
670 | // transform anything that relies on them. |
671 | if (isa<BitCastInst>(Val: I) || isa<PtrToIntInst>(Val: I) || isa<IntToPtrInst>(Val: I) || |
672 | !I->getType()->isIntegerTy()) { |
673 | DBits[Leader] |= ~0ULL; |
674 | continue; |
675 | } |
676 | |
677 | // We don't modify the types of PHIs. Reductions will already have been |
678 | // truncated if possible, and inductions' sizes will have been chosen by |
679 | // indvars. |
680 | if (isa<PHINode>(Val: I)) |
681 | continue; |
682 | |
683 | if (DBits[Leader] == ~0ULL) |
684 | // All bits demanded, no point continuing. |
685 | continue; |
686 | |
687 | for (Value *O : cast<User>(Val: I)->operands()) { |
688 | ECs.unionSets(V1: Leader, V2: O); |
689 | Worklist.push_back(Elt: O); |
690 | } |
691 | } |
692 | |
693 | // Now we've discovered all values, walk them to see if there are |
694 | // any users we didn't see. If there are, we can't optimize that |
695 | // chain. |
696 | for (auto &I : DBits) |
697 | for (auto *U : I.first->users()) |
698 | if (U->getType()->isIntegerTy() && DBits.count(Val: U) == 0) |
699 | DBits[ECs.getOrInsertLeaderValue(V: I.first)] |= ~0ULL; |
700 | |
701 | for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { |
702 | uint64_t LeaderDemandedBits = 0; |
703 | for (Value *M : llvm::make_range(x: ECs.member_begin(I), y: ECs.member_end())) |
704 | LeaderDemandedBits |= DBits[M]; |
705 | |
706 | uint64_t MinBW = llvm::bit_width(Value: LeaderDemandedBits); |
707 | // Round up to a power of 2 |
708 | MinBW = llvm::bit_ceil(Value: MinBW); |
709 | |
710 | // We don't modify the types of PHIs. Reductions will already have been |
711 | // truncated if possible, and inductions' sizes will have been chosen by |
712 | // indvars. |
713 | // If we are required to shrink a PHI, abandon this entire equivalence class. |
714 | bool Abort = false; |
715 | for (Value *M : llvm::make_range(x: ECs.member_begin(I), y: ECs.member_end())) |
716 | if (isa<PHINode>(Val: M) && MinBW < M->getType()->getScalarSizeInBits()) { |
717 | Abort = true; |
718 | break; |
719 | } |
720 | if (Abort) |
721 | continue; |
722 | |
723 | for (Value *M : llvm::make_range(x: ECs.member_begin(I), y: ECs.member_end())) { |
724 | auto *MI = dyn_cast<Instruction>(Val: M); |
725 | if (!MI) |
726 | continue; |
727 | Type *Ty = M->getType(); |
728 | if (Roots.count(Ptr: M)) |
729 | Ty = MI->getOperand(i: 0)->getType(); |
730 | |
731 | if (MinBW >= Ty->getScalarSizeInBits()) |
732 | continue; |
733 | |
734 | // If any of M's operands demand more bits than MinBW then M cannot be |
735 | // performed safely in MinBW. |
736 | if (any_of(Range: MI->operands(), P: [&DB, MinBW](Use &U) { |
737 | auto *CI = dyn_cast<ConstantInt>(Val&: U); |
738 | // For constants shift amounts, check if the shift would result in |
739 | // poison. |
740 | if (CI && |
741 | isa<ShlOperator, LShrOperator, AShrOperator>(Val: U.getUser()) && |
742 | U.getOperandNo() == 1) |
743 | return CI->uge(Num: MinBW); |
744 | uint64_t BW = bit_width(Value: DB.getDemandedBits(U: &U).getZExtValue()); |
745 | return bit_ceil(Value: BW) > MinBW; |
746 | })) |
747 | continue; |
748 | |
749 | MinBWs[MI] = MinBW; |
750 | } |
751 | } |
752 | |
753 | return MinBWs; |
754 | } |
755 | |
756 | /// Add all access groups in @p AccGroups to @p List. |
757 | template <typename ListT> |
758 | static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { |
759 | // Interpret an access group as a list containing itself. |
760 | if (AccGroups->getNumOperands() == 0) { |
761 | assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group" ); |
762 | List.insert(AccGroups); |
763 | return; |
764 | } |
765 | |
766 | for (const auto &AccGroupListOp : AccGroups->operands()) { |
767 | auto *Item = cast<MDNode>(Val: AccGroupListOp.get()); |
768 | assert(isValidAsAccessGroup(Item) && "List item must be an access group" ); |
769 | List.insert(Item); |
770 | } |
771 | } |
772 | |
773 | MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { |
774 | if (!AccGroups1) |
775 | return AccGroups2; |
776 | if (!AccGroups2) |
777 | return AccGroups1; |
778 | if (AccGroups1 == AccGroups2) |
779 | return AccGroups1; |
780 | |
781 | SmallSetVector<Metadata *, 4> Union; |
782 | addToAccessGroupList(List&: Union, AccGroups: AccGroups1); |
783 | addToAccessGroupList(List&: Union, AccGroups: AccGroups2); |
784 | |
785 | if (Union.size() == 0) |
786 | return nullptr; |
787 | if (Union.size() == 1) |
788 | return cast<MDNode>(Val: Union.front()); |
789 | |
790 | LLVMContext &Ctx = AccGroups1->getContext(); |
791 | return MDNode::get(Context&: Ctx, MDs: Union.getArrayRef()); |
792 | } |
793 | |
794 | MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, |
795 | const Instruction *Inst2) { |
796 | bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); |
797 | bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); |
798 | |
799 | if (!MayAccessMem1 && !MayAccessMem2) |
800 | return nullptr; |
801 | if (!MayAccessMem1) |
802 | return Inst2->getMetadata(KindID: LLVMContext::MD_access_group); |
803 | if (!MayAccessMem2) |
804 | return Inst1->getMetadata(KindID: LLVMContext::MD_access_group); |
805 | |
806 | MDNode *MD1 = Inst1->getMetadata(KindID: LLVMContext::MD_access_group); |
807 | MDNode *MD2 = Inst2->getMetadata(KindID: LLVMContext::MD_access_group); |
808 | if (!MD1 || !MD2) |
809 | return nullptr; |
810 | if (MD1 == MD2) |
811 | return MD1; |
812 | |
813 | // Use set for scalable 'contains' check. |
814 | SmallPtrSet<Metadata *, 4> AccGroupSet2; |
815 | addToAccessGroupList(List&: AccGroupSet2, AccGroups: MD2); |
816 | |
817 | SmallVector<Metadata *, 4> Intersection; |
818 | if (MD1->getNumOperands() == 0) { |
819 | assert(isValidAsAccessGroup(MD1) && "Node must be an access group" ); |
820 | if (AccGroupSet2.count(Ptr: MD1)) |
821 | Intersection.push_back(Elt: MD1); |
822 | } else { |
823 | for (const MDOperand &Node : MD1->operands()) { |
824 | auto *Item = cast<MDNode>(Val: Node.get()); |
825 | assert(isValidAsAccessGroup(Item) && "List item must be an access group" ); |
826 | if (AccGroupSet2.count(Ptr: Item)) |
827 | Intersection.push_back(Elt: Item); |
828 | } |
829 | } |
830 | |
831 | if (Intersection.size() == 0) |
832 | return nullptr; |
833 | if (Intersection.size() == 1) |
834 | return cast<MDNode>(Val: Intersection.front()); |
835 | |
836 | LLVMContext &Ctx = Inst1->getContext(); |
837 | return MDNode::get(Context&: Ctx, MDs: Intersection); |
838 | } |
839 | |
840 | /// \returns \p I after propagating metadata from \p VL. |
841 | Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { |
842 | if (VL.empty()) |
843 | return Inst; |
844 | Instruction *I0 = cast<Instruction>(Val: VL[0]); |
845 | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
846 | I0->getAllMetadataOtherThanDebugLoc(MDs&: Metadata); |
847 | |
848 | for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
849 | LLVMContext::MD_noalias, LLVMContext::MD_fpmath, |
850 | LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, |
851 | LLVMContext::MD_access_group, LLVMContext::MD_mmra}) { |
852 | MDNode *MD = I0->getMetadata(KindID: Kind); |
853 | for (int J = 1, E = VL.size(); MD && J != E; ++J) { |
854 | const Instruction *IJ = cast<Instruction>(Val: VL[J]); |
855 | MDNode *IMD = IJ->getMetadata(KindID: Kind); |
856 | |
857 | switch (Kind) { |
858 | case LLVMContext::MD_mmra: { |
859 | MD = MMRAMetadata::combine(Ctx&: Inst->getContext(), A: MD, B: IMD); |
860 | break; |
861 | } |
862 | case LLVMContext::MD_tbaa: |
863 | MD = MDNode::getMostGenericTBAA(A: MD, B: IMD); |
864 | break; |
865 | case LLVMContext::MD_alias_scope: |
866 | MD = MDNode::getMostGenericAliasScope(A: MD, B: IMD); |
867 | break; |
868 | case LLVMContext::MD_fpmath: |
869 | MD = MDNode::getMostGenericFPMath(A: MD, B: IMD); |
870 | break; |
871 | case LLVMContext::MD_noalias: |
872 | case LLVMContext::MD_nontemporal: |
873 | case LLVMContext::MD_invariant_load: |
874 | MD = MDNode::intersect(A: MD, B: IMD); |
875 | break; |
876 | case LLVMContext::MD_access_group: |
877 | MD = intersectAccessGroups(Inst1: Inst, Inst2: IJ); |
878 | break; |
879 | default: |
880 | llvm_unreachable("unhandled metadata" ); |
881 | } |
882 | } |
883 | |
884 | Inst->setMetadata(KindID: Kind, Node: MD); |
885 | } |
886 | |
887 | return Inst; |
888 | } |
889 | |
890 | Constant * |
891 | llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF, |
892 | const InterleaveGroup<Instruction> &Group) { |
893 | // All 1's means mask is not needed. |
894 | if (Group.getNumMembers() == Group.getFactor()) |
895 | return nullptr; |
896 | |
897 | // TODO: support reversed access. |
898 | assert(!Group.isReverse() && "Reversed group not supported." ); |
899 | |
900 | SmallVector<Constant *, 16> Mask; |
901 | for (unsigned i = 0; i < VF; i++) |
902 | for (unsigned j = 0; j < Group.getFactor(); ++j) { |
903 | unsigned HasMember = Group.getMember(Index: j) ? 1 : 0; |
904 | Mask.push_back(Elt: Builder.getInt1(V: HasMember)); |
905 | } |
906 | |
907 | return ConstantVector::get(V: Mask); |
908 | } |
909 | |
910 | llvm::SmallVector<int, 16> |
911 | llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) { |
912 | SmallVector<int, 16> MaskVec; |
913 | for (unsigned i = 0; i < VF; i++) |
914 | for (unsigned j = 0; j < ReplicationFactor; j++) |
915 | MaskVec.push_back(Elt: i); |
916 | |
917 | return MaskVec; |
918 | } |
919 | |
920 | llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF, |
921 | unsigned NumVecs) { |
922 | SmallVector<int, 16> Mask; |
923 | for (unsigned i = 0; i < VF; i++) |
924 | for (unsigned j = 0; j < NumVecs; j++) |
925 | Mask.push_back(Elt: j * VF + i); |
926 | |
927 | return Mask; |
928 | } |
929 | |
930 | llvm::SmallVector<int, 16> |
931 | llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) { |
932 | SmallVector<int, 16> Mask; |
933 | for (unsigned i = 0; i < VF; i++) |
934 | Mask.push_back(Elt: Start + i * Stride); |
935 | |
936 | return Mask; |
937 | } |
938 | |
939 | llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start, |
940 | unsigned NumInts, |
941 | unsigned NumUndefs) { |
942 | SmallVector<int, 16> Mask; |
943 | for (unsigned i = 0; i < NumInts; i++) |
944 | Mask.push_back(Elt: Start + i); |
945 | |
946 | for (unsigned i = 0; i < NumUndefs; i++) |
947 | Mask.push_back(Elt: -1); |
948 | |
949 | return Mask; |
950 | } |
951 | |
952 | llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask, |
953 | unsigned NumElts) { |
954 | // Avoid casts in the loop and make sure we have a reasonable number. |
955 | int NumEltsSigned = NumElts; |
956 | assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count" ); |
957 | |
958 | // If the mask chooses an element from operand 1, reduce it to choose from the |
959 | // corresponding element of operand 0. Undef mask elements are unchanged. |
960 | SmallVector<int, 16> UnaryMask; |
961 | for (int MaskElt : Mask) { |
962 | assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask" ); |
963 | int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt; |
964 | UnaryMask.push_back(Elt: UnaryElt); |
965 | } |
966 | return UnaryMask; |
967 | } |
968 | |
969 | /// A helper function for concatenating vectors. This function concatenates two |
970 | /// vectors having the same element type. If the second vector has fewer |
971 | /// elements than the first, it is padded with undefs. |
972 | static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1, |
973 | Value *V2) { |
974 | VectorType *VecTy1 = dyn_cast<VectorType>(Val: V1->getType()); |
975 | VectorType *VecTy2 = dyn_cast<VectorType>(Val: V2->getType()); |
976 | assert(VecTy1 && VecTy2 && |
977 | VecTy1->getScalarType() == VecTy2->getScalarType() && |
978 | "Expect two vectors with the same element type" ); |
979 | |
980 | unsigned NumElts1 = cast<FixedVectorType>(Val: VecTy1)->getNumElements(); |
981 | unsigned NumElts2 = cast<FixedVectorType>(Val: VecTy2)->getNumElements(); |
982 | assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements" ); |
983 | |
984 | if (NumElts1 > NumElts2) { |
985 | // Extend with UNDEFs. |
986 | V2 = Builder.CreateShuffleVector( |
987 | V: V2, Mask: createSequentialMask(Start: 0, NumInts: NumElts2, NumUndefs: NumElts1 - NumElts2)); |
988 | } |
989 | |
990 | return Builder.CreateShuffleVector( |
991 | V1, V2, Mask: createSequentialMask(Start: 0, NumInts: NumElts1 + NumElts2, NumUndefs: 0)); |
992 | } |
993 | |
994 | Value *llvm::concatenateVectors(IRBuilderBase &Builder, |
995 | ArrayRef<Value *> Vecs) { |
996 | unsigned NumVecs = Vecs.size(); |
997 | assert(NumVecs > 1 && "Should be at least two vectors" ); |
998 | |
999 | SmallVector<Value *, 8> ResList; |
1000 | ResList.append(in_start: Vecs.begin(), in_end: Vecs.end()); |
1001 | do { |
1002 | SmallVector<Value *, 8> TmpList; |
1003 | for (unsigned i = 0; i < NumVecs - 1; i += 2) { |
1004 | Value *V0 = ResList[i], *V1 = ResList[i + 1]; |
1005 | assert((V0->getType() == V1->getType() || i == NumVecs - 2) && |
1006 | "Only the last vector may have a different type" ); |
1007 | |
1008 | TmpList.push_back(Elt: concatenateTwoVectors(Builder, V1: V0, V2: V1)); |
1009 | } |
1010 | |
1011 | // Push the last vector if the total number of vectors is odd. |
1012 | if (NumVecs % 2 != 0) |
1013 | TmpList.push_back(Elt: ResList[NumVecs - 1]); |
1014 | |
1015 | ResList = TmpList; |
1016 | NumVecs = ResList.size(); |
1017 | } while (NumVecs > 1); |
1018 | |
1019 | return ResList[0]; |
1020 | } |
1021 | |
1022 | bool llvm::maskIsAllZeroOrUndef(Value *Mask) { |
1023 | assert(isa<VectorType>(Mask->getType()) && |
1024 | isa<IntegerType>(Mask->getType()->getScalarType()) && |
1025 | cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
1026 | 1 && |
1027 | "Mask must be a vector of i1" ); |
1028 | |
1029 | auto *ConstMask = dyn_cast<Constant>(Val: Mask); |
1030 | if (!ConstMask) |
1031 | return false; |
1032 | if (ConstMask->isNullValue() || isa<UndefValue>(Val: ConstMask)) |
1033 | return true; |
1034 | if (isa<ScalableVectorType>(Val: ConstMask->getType())) |
1035 | return false; |
1036 | for (unsigned |
1037 | I = 0, |
1038 | E = cast<FixedVectorType>(Val: ConstMask->getType())->getNumElements(); |
1039 | I != E; ++I) { |
1040 | if (auto *MaskElt = ConstMask->getAggregateElement(Elt: I)) |
1041 | if (MaskElt->isNullValue() || isa<UndefValue>(Val: MaskElt)) |
1042 | continue; |
1043 | return false; |
1044 | } |
1045 | return true; |
1046 | } |
1047 | |
1048 | bool llvm::maskIsAllOneOrUndef(Value *Mask) { |
1049 | assert(isa<VectorType>(Mask->getType()) && |
1050 | isa<IntegerType>(Mask->getType()->getScalarType()) && |
1051 | cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
1052 | 1 && |
1053 | "Mask must be a vector of i1" ); |
1054 | |
1055 | auto *ConstMask = dyn_cast<Constant>(Val: Mask); |
1056 | if (!ConstMask) |
1057 | return false; |
1058 | if (ConstMask->isAllOnesValue() || isa<UndefValue>(Val: ConstMask)) |
1059 | return true; |
1060 | if (isa<ScalableVectorType>(Val: ConstMask->getType())) |
1061 | return false; |
1062 | for (unsigned |
1063 | I = 0, |
1064 | E = cast<FixedVectorType>(Val: ConstMask->getType())->getNumElements(); |
1065 | I != E; ++I) { |
1066 | if (auto *MaskElt = ConstMask->getAggregateElement(Elt: I)) |
1067 | if (MaskElt->isAllOnesValue() || isa<UndefValue>(Val: MaskElt)) |
1068 | continue; |
1069 | return false; |
1070 | } |
1071 | return true; |
1072 | } |
1073 | |
1074 | bool llvm::maskContainsAllOneOrUndef(Value *Mask) { |
1075 | assert(isa<VectorType>(Mask->getType()) && |
1076 | isa<IntegerType>(Mask->getType()->getScalarType()) && |
1077 | cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
1078 | 1 && |
1079 | "Mask must be a vector of i1" ); |
1080 | |
1081 | auto *ConstMask = dyn_cast<Constant>(Val: Mask); |
1082 | if (!ConstMask) |
1083 | return false; |
1084 | if (ConstMask->isAllOnesValue() || isa<UndefValue>(Val: ConstMask)) |
1085 | return true; |
1086 | if (isa<ScalableVectorType>(Val: ConstMask->getType())) |
1087 | return false; |
1088 | for (unsigned |
1089 | I = 0, |
1090 | E = cast<FixedVectorType>(Val: ConstMask->getType())->getNumElements(); |
1091 | I != E; ++I) { |
1092 | if (auto *MaskElt = ConstMask->getAggregateElement(Elt: I)) |
1093 | if (MaskElt->isAllOnesValue() || isa<UndefValue>(Val: MaskElt)) |
1094 | return true; |
1095 | } |
1096 | return false; |
1097 | } |
1098 | |
1099 | /// TODO: This is a lot like known bits, but for |
1100 | /// vectors. Is there something we can common this with? |
1101 | APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { |
1102 | assert(isa<FixedVectorType>(Mask->getType()) && |
1103 | isa<IntegerType>(Mask->getType()->getScalarType()) && |
1104 | cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() == |
1105 | 1 && |
1106 | "Mask must be a fixed width vector of i1" ); |
1107 | |
1108 | const unsigned VWidth = |
1109 | cast<FixedVectorType>(Val: Mask->getType())->getNumElements(); |
1110 | APInt DemandedElts = APInt::getAllOnes(numBits: VWidth); |
1111 | if (auto *CV = dyn_cast<ConstantVector>(Val: Mask)) |
1112 | for (unsigned i = 0; i < VWidth; i++) |
1113 | if (CV->getAggregateElement(Elt: i)->isNullValue()) |
1114 | DemandedElts.clearBit(BitPosition: i); |
1115 | return DemandedElts; |
1116 | } |
1117 | |
1118 | bool InterleavedAccessInfo::isStrided(int Stride) { |
1119 | unsigned Factor = std::abs(x: Stride); |
1120 | return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; |
1121 | } |
1122 | |
1123 | void InterleavedAccessInfo::collectConstStrideAccesses( |
1124 | MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, |
1125 | const DenseMap<Value*, const SCEV*> &Strides) { |
1126 | auto &DL = TheLoop->getHeader()->getDataLayout(); |
1127 | |
1128 | // Since it's desired that the load/store instructions be maintained in |
1129 | // "program order" for the interleaved access analysis, we have to visit the |
1130 | // blocks in the loop in reverse postorder (i.e., in a topological order). |
1131 | // Such an ordering will ensure that any load/store that may be executed |
1132 | // before a second load/store will precede the second load/store in |
1133 | // AccessStrideInfo. |
1134 | LoopBlocksDFS DFS(TheLoop); |
1135 | DFS.perform(LI); |
1136 | for (BasicBlock *BB : make_range(x: DFS.beginRPO(), y: DFS.endRPO())) |
1137 | for (auto &I : *BB) { |
1138 | Value *Ptr = getLoadStorePointerOperand(V: &I); |
1139 | if (!Ptr) |
1140 | continue; |
1141 | Type *ElementTy = getLoadStoreType(I: &I); |
1142 | |
1143 | // Currently, codegen doesn't support cases where the type size doesn't |
1144 | // match the alloc size. Skip them for now. |
1145 | uint64_t Size = DL.getTypeAllocSize(Ty: ElementTy); |
1146 | if (Size * 8 != DL.getTypeSizeInBits(Ty: ElementTy)) |
1147 | continue; |
1148 | |
1149 | // We don't check wrapping here because we don't know yet if Ptr will be |
1150 | // part of a full group or a group with gaps. Checking wrapping for all |
1151 | // pointers (even those that end up in groups with no gaps) will be overly |
1152 | // conservative. For full groups, wrapping should be ok since if we would |
1153 | // wrap around the address space we would do a memory access at nullptr |
1154 | // even without the transformation. The wrapping checks are therefore |
1155 | // deferred until after we've formed the interleaved groups. |
1156 | int64_t Stride = |
1157 | getPtrStride(PSE, AccessTy: ElementTy, Ptr, Lp: TheLoop, StridesMap: Strides, |
1158 | /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(u: 0); |
1159 | |
1160 | const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, PtrToStride: Strides, Ptr); |
1161 | AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, |
1162 | getLoadStoreAlignment(I: &I)); |
1163 | } |
1164 | } |
1165 | |
1166 | // Analyze interleaved accesses and collect them into interleaved load and |
1167 | // store groups. |
1168 | // |
1169 | // When generating code for an interleaved load group, we effectively hoist all |
1170 | // loads in the group to the location of the first load in program order. When |
1171 | // generating code for an interleaved store group, we sink all stores to the |
1172 | // location of the last store. This code motion can change the order of load |
1173 | // and store instructions and may break dependences. |
1174 | // |
1175 | // The code generation strategy mentioned above ensures that we won't violate |
1176 | // any write-after-read (WAR) dependences. |
1177 | // |
1178 | // E.g., for the WAR dependence: a = A[i]; // (1) |
1179 | // A[i] = b; // (2) |
1180 | // |
1181 | // The store group of (2) is always inserted at or below (2), and the load |
1182 | // group of (1) is always inserted at or above (1). Thus, the instructions will |
1183 | // never be reordered. All other dependences are checked to ensure the |
1184 | // correctness of the instruction reordering. |
1185 | // |
1186 | // The algorithm visits all memory accesses in the loop in bottom-up program |
1187 | // order. Program order is established by traversing the blocks in the loop in |
1188 | // reverse postorder when collecting the accesses. |
1189 | // |
1190 | // We visit the memory accesses in bottom-up order because it can simplify the |
1191 | // construction of store groups in the presence of write-after-write (WAW) |
1192 | // dependences. |
1193 | // |
1194 | // E.g., for the WAW dependence: A[i] = a; // (1) |
1195 | // A[i] = b; // (2) |
1196 | // A[i + 1] = c; // (3) |
1197 | // |
1198 | // We will first create a store group with (3) and (2). (1) can't be added to |
1199 | // this group because it and (2) are dependent. However, (1) can be grouped |
1200 | // with other accesses that may precede it in program order. Note that a |
1201 | // bottom-up order does not imply that WAW dependences should not be checked. |
1202 | void InterleavedAccessInfo::analyzeInterleaving( |
1203 | bool EnablePredicatedInterleavedMemAccesses) { |
1204 | LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n" ); |
1205 | const auto &Strides = LAI->getSymbolicStrides(); |
1206 | |
1207 | // Holds all accesses with a constant stride. |
1208 | MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; |
1209 | collectConstStrideAccesses(AccessStrideInfo, Strides); |
1210 | |
1211 | if (AccessStrideInfo.empty()) |
1212 | return; |
1213 | |
1214 | // Collect the dependences in the loop. |
1215 | collectDependences(); |
1216 | |
1217 | // Holds all interleaved store groups temporarily. |
1218 | SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; |
1219 | // Holds all interleaved load groups temporarily. |
1220 | SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; |
1221 | // Groups added to this set cannot have new members added. |
1222 | SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups; |
1223 | |
1224 | // Search in bottom-up program order for pairs of accesses (A and B) that can |
1225 | // form interleaved load or store groups. In the algorithm below, access A |
1226 | // precedes access B in program order. We initialize a group for B in the |
1227 | // outer loop of the algorithm, and then in the inner loop, we attempt to |
1228 | // insert each A into B's group if: |
1229 | // |
1230 | // 1. A and B have the same stride, |
1231 | // 2. A and B have the same memory object size, and |
1232 | // 3. A belongs in B's group according to its distance from B. |
1233 | // |
1234 | // Special care is taken to ensure group formation will not break any |
1235 | // dependences. |
1236 | for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); |
1237 | BI != E; ++BI) { |
1238 | Instruction *B = BI->first; |
1239 | StrideDescriptor DesB = BI->second; |
1240 | |
1241 | // Initialize a group for B if it has an allowable stride. Even if we don't |
1242 | // create a group for B, we continue with the bottom-up algorithm to ensure |
1243 | // we don't break any of B's dependences. |
1244 | InterleaveGroup<Instruction> *GroupB = nullptr; |
1245 | if (isStrided(Stride: DesB.Stride) && |
1246 | (!isPredicated(BB: B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { |
1247 | GroupB = getInterleaveGroup(Instr: B); |
1248 | if (!GroupB) { |
1249 | LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B |
1250 | << '\n'); |
1251 | GroupB = createInterleaveGroup(Instr: B, Stride: DesB.Stride, Alignment: DesB.Alignment); |
1252 | if (B->mayWriteToMemory()) |
1253 | StoreGroups.insert(X: GroupB); |
1254 | else |
1255 | LoadGroups.insert(X: GroupB); |
1256 | } |
1257 | } |
1258 | |
1259 | for (auto AI = std::next(x: BI); AI != E; ++AI) { |
1260 | Instruction *A = AI->first; |
1261 | StrideDescriptor DesA = AI->second; |
1262 | |
1263 | // Our code motion strategy implies that we can't have dependences |
1264 | // between accesses in an interleaved group and other accesses located |
1265 | // between the first and last member of the group. Note that this also |
1266 | // means that a group can't have more than one member at a given offset. |
1267 | // The accesses in a group can have dependences with other accesses, but |
1268 | // we must ensure we don't extend the boundaries of the group such that |
1269 | // we encompass those dependent accesses. |
1270 | // |
1271 | // For example, assume we have the sequence of accesses shown below in a |
1272 | // stride-2 loop: |
1273 | // |
1274 | // (1, 2) is a group | A[i] = a; // (1) |
1275 | // | A[i-1] = b; // (2) | |
1276 | // A[i-3] = c; // (3) |
1277 | // A[i] = d; // (4) | (2, 4) is not a group |
1278 | // |
1279 | // Because accesses (2) and (3) are dependent, we can group (2) with (1) |
1280 | // but not with (4). If we did, the dependent access (3) would be within |
1281 | // the boundaries of the (2, 4) group. |
1282 | auto DependentMember = [&](InterleaveGroup<Instruction> *Group, |
1283 | StrideEntry *A) -> Instruction * { |
1284 | for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) { |
1285 | Instruction *MemberOfGroupB = Group->getMember(Index); |
1286 | if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups( |
1287 | A, B: &*AccessStrideInfo.find(Key: MemberOfGroupB))) |
1288 | return MemberOfGroupB; |
1289 | } |
1290 | return nullptr; |
1291 | }; |
1292 | |
1293 | auto GroupA = getInterleaveGroup(Instr: A); |
1294 | // If A is a load, dependencies are tolerable, there's nothing to do here. |
1295 | // If both A and B belong to the same (store) group, they are independent, |
1296 | // even if dependencies have not been recorded. |
1297 | // If both GroupA and GroupB are null, there's nothing to do here. |
1298 | if (A->mayWriteToMemory() && GroupA != GroupB) { |
1299 | Instruction *DependentInst = nullptr; |
1300 | // If GroupB is a load group, we have to compare AI against all |
1301 | // members of GroupB because if any load within GroupB has a dependency |
1302 | // on AI, we need to mark GroupB as complete and also release the |
1303 | // store GroupA (if A belongs to one). The former prevents incorrect |
1304 | // hoisting of load B above store A while the latter prevents incorrect |
1305 | // sinking of store A below load B. |
1306 | if (GroupB && LoadGroups.contains(key: GroupB)) |
1307 | DependentInst = DependentMember(GroupB, &*AI); |
1308 | else if (!canReorderMemAccessesForInterleavedGroups(A: &*AI, B: &*BI)) |
1309 | DependentInst = B; |
1310 | |
1311 | if (DependentInst) { |
1312 | // A has a store dependence on B (or on some load within GroupB) and |
1313 | // is part of a store group. Release A's group to prevent illegal |
1314 | // sinking of A below B. A will then be free to form another group |
1315 | // with instructions that precede it. |
1316 | if (GroupA && StoreGroups.contains(key: GroupA)) { |
1317 | LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " |
1318 | "dependence between " |
1319 | << *A << " and " << *DependentInst << '\n'); |
1320 | StoreGroups.remove(X: GroupA); |
1321 | releaseGroup(Group: GroupA); |
1322 | } |
1323 | // If B is a load and part of an interleave group, no earlier loads |
1324 | // can be added to B's interleave group, because this would mean the |
1325 | // DependentInst would move across store A. Mark the interleave group |
1326 | // as complete. |
1327 | if (GroupB && LoadGroups.contains(key: GroupB)) { |
1328 | LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B |
1329 | << " as complete.\n" ); |
1330 | CompletedLoadGroups.insert(Ptr: GroupB); |
1331 | } |
1332 | } |
1333 | } |
1334 | if (CompletedLoadGroups.contains(Ptr: GroupB)) { |
1335 | // Skip trying to add A to B, continue to look for other conflicting A's |
1336 | // in groups to be released. |
1337 | continue; |
1338 | } |
1339 | |
1340 | // At this point, we've checked for illegal code motion. If either A or B |
1341 | // isn't strided, there's nothing left to do. |
1342 | if (!isStrided(Stride: DesA.Stride) || !isStrided(Stride: DesB.Stride)) |
1343 | continue; |
1344 | |
1345 | // Ignore A if it's already in a group or isn't the same kind of memory |
1346 | // operation as B. |
1347 | // Note that mayReadFromMemory() isn't mutually exclusive to |
1348 | // mayWriteToMemory in the case of atomic loads. We shouldn't see those |
1349 | // here, canVectorizeMemory() should have returned false - except for the |
1350 | // case we asked for optimization remarks. |
1351 | if (isInterleaved(Instr: A) || |
1352 | (A->mayReadFromMemory() != B->mayReadFromMemory()) || |
1353 | (A->mayWriteToMemory() != B->mayWriteToMemory())) |
1354 | continue; |
1355 | |
1356 | // Check rules 1 and 2. Ignore A if its stride or size is different from |
1357 | // that of B. |
1358 | if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) |
1359 | continue; |
1360 | |
1361 | // Ignore A if the memory object of A and B don't belong to the same |
1362 | // address space |
1363 | if (getLoadStoreAddressSpace(I: A) != getLoadStoreAddressSpace(I: B)) |
1364 | continue; |
1365 | |
1366 | // Calculate the distance from A to B. |
1367 | const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( |
1368 | Val: PSE.getSE()->getMinusSCEV(LHS: DesA.Scev, RHS: DesB.Scev)); |
1369 | if (!DistToB) |
1370 | continue; |
1371 | int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); |
1372 | |
1373 | // Check rule 3. Ignore A if its distance to B is not a multiple of the |
1374 | // size. |
1375 | if (DistanceToB % static_cast<int64_t>(DesB.Size)) |
1376 | continue; |
1377 | |
1378 | // All members of a predicated interleave-group must have the same predicate, |
1379 | // and currently must reside in the same BB. |
1380 | BasicBlock *BlockA = A->getParent(); |
1381 | BasicBlock *BlockB = B->getParent(); |
1382 | if ((isPredicated(BB: BlockA) || isPredicated(BB: BlockB)) && |
1383 | (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) |
1384 | continue; |
1385 | |
1386 | // The index of A is the index of B plus A's distance to B in multiples |
1387 | // of the size. |
1388 | int IndexA = |
1389 | GroupB->getIndex(Instr: B) + DistanceToB / static_cast<int64_t>(DesB.Size); |
1390 | |
1391 | // Try to insert A into B's group. |
1392 | if (GroupB->insertMember(Instr: A, Index: IndexA, NewAlign: DesA.Alignment)) { |
1393 | LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' |
1394 | << " into the interleave group with" << *B |
1395 | << '\n'); |
1396 | InterleaveGroupMap[A] = GroupB; |
1397 | |
1398 | // Set the first load in program order as the insert position. |
1399 | if (A->mayReadFromMemory()) |
1400 | GroupB->setInsertPos(A); |
1401 | } |
1402 | } // Iteration over A accesses. |
1403 | } // Iteration over B accesses. |
1404 | |
1405 | auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group, |
1406 | int Index, |
1407 | std::string FirstOrLast) -> bool { |
1408 | Instruction *Member = Group->getMember(Index); |
1409 | assert(Member && "Group member does not exist" ); |
1410 | Value *MemberPtr = getLoadStorePointerOperand(V: Member); |
1411 | Type *AccessTy = getLoadStoreType(I: Member); |
1412 | if (getPtrStride(PSE, AccessTy, Ptr: MemberPtr, Lp: TheLoop, StridesMap: Strides, |
1413 | /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(u: 0)) |
1414 | return false; |
1415 | LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to " |
1416 | << FirstOrLast |
1417 | << " group member potentially pointer-wrapping.\n" ); |
1418 | releaseGroup(Group); |
1419 | return true; |
1420 | }; |
1421 | |
1422 | // Remove interleaved groups with gaps whose memory |
1423 | // accesses may wrap around. We have to revisit the getPtrStride analysis, |
1424 | // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does |
1425 | // not check wrapping (see documentation there). |
1426 | // FORNOW we use Assume=false; |
1427 | // TODO: Change to Assume=true but making sure we don't exceed the threshold |
1428 | // of runtime SCEV assumptions checks (thereby potentially failing to |
1429 | // vectorize altogether). |
1430 | // Additional optional optimizations: |
1431 | // TODO: If we are peeling the loop and we know that the first pointer doesn't |
1432 | // wrap then we can deduce that all pointers in the group don't wrap. |
1433 | // This means that we can forcefully peel the loop in order to only have to |
1434 | // check the first pointer for no-wrap. When we'll change to use Assume=true |
1435 | // we'll only need at most one runtime check per interleaved group. |
1436 | for (auto *Group : LoadGroups) { |
1437 | // Case 1: A full group. Can Skip the checks; For full groups, if the wide |
1438 | // load would wrap around the address space we would do a memory access at |
1439 | // nullptr even without the transformation. |
1440 | if (Group->getNumMembers() == Group->getFactor()) |
1441 | continue; |
1442 | |
1443 | // Case 2: If first and last members of the group don't wrap this implies |
1444 | // that all the pointers in the group don't wrap. |
1445 | // So we check only group member 0 (which is always guaranteed to exist), |
1446 | // and group member Factor - 1; If the latter doesn't exist we rely on |
1447 | // peeling (if it is a non-reversed accsess -- see Case 3). |
1448 | if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first" ))) |
1449 | continue; |
1450 | if (Group->getMember(Index: Group->getFactor() - 1)) |
1451 | InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1, |
1452 | std::string("last" )); |
1453 | else { |
1454 | // Case 3: A non-reversed interleaved load group with gaps: We need |
1455 | // to execute at least one scalar epilogue iteration. This will ensure |
1456 | // we don't speculatively access memory out-of-bounds. We only need |
1457 | // to look for a member at index factor - 1, since every group must have |
1458 | // a member at index zero. |
1459 | if (Group->isReverse()) { |
1460 | LLVM_DEBUG( |
1461 | dbgs() << "LV: Invalidate candidate interleaved group due to " |
1462 | "a reverse access with gaps.\n" ); |
1463 | releaseGroup(Group); |
1464 | continue; |
1465 | } |
1466 | LLVM_DEBUG( |
1467 | dbgs() << "LV: Interleaved group requires epilogue iteration.\n" ); |
1468 | RequiresScalarEpilogue = true; |
1469 | } |
1470 | } |
1471 | |
1472 | for (auto *Group : StoreGroups) { |
1473 | // Case 1: A full group. Can Skip the checks; For full groups, if the wide |
1474 | // store would wrap around the address space we would do a memory access at |
1475 | // nullptr even without the transformation. |
1476 | if (Group->getNumMembers() == Group->getFactor()) |
1477 | continue; |
1478 | |
1479 | // Interleave-store-group with gaps is implemented using masked wide store. |
1480 | // Remove interleaved store groups with gaps if |
1481 | // masked-interleaved-accesses are not enabled by the target. |
1482 | if (!EnablePredicatedInterleavedMemAccesses) { |
1483 | LLVM_DEBUG( |
1484 | dbgs() << "LV: Invalidate candidate interleaved store group due " |
1485 | "to gaps.\n" ); |
1486 | releaseGroup(Group); |
1487 | continue; |
1488 | } |
1489 | |
1490 | // Case 2: If first and last members of the group don't wrap this implies |
1491 | // that all the pointers in the group don't wrap. |
1492 | // So we check only group member 0 (which is always guaranteed to exist), |
1493 | // and the last group member. Case 3 (scalar epilog) is not relevant for |
1494 | // stores with gaps, which are implemented with masked-store (rather than |
1495 | // speculative access, as in loads). |
1496 | if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first" ))) |
1497 | continue; |
1498 | for (int Index = Group->getFactor() - 1; Index > 0; Index--) |
1499 | if (Group->getMember(Index)) { |
1500 | InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last" )); |
1501 | break; |
1502 | } |
1503 | } |
1504 | } |
1505 | |
1506 | void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { |
1507 | // If no group had triggered the requirement to create an epilogue loop, |
1508 | // there is nothing to do. |
1509 | if (!requiresScalarEpilogue()) |
1510 | return; |
1511 | |
1512 | // Release groups requiring scalar epilogues. Note that this also removes them |
1513 | // from InterleaveGroups. |
1514 | bool ReleasedGroup = InterleaveGroups.remove_if(P: [&](auto *Group) { |
1515 | if (!Group->requiresScalarEpilogue()) |
1516 | return false; |
1517 | LLVM_DEBUG( |
1518 | dbgs() |
1519 | << "LV: Invalidate candidate interleaved group due to gaps that " |
1520 | "require a scalar epilogue (not allowed under optsize) and cannot " |
1521 | "be masked (not enabled). \n" ); |
1522 | releaseGroupWithoutRemovingFromSet(Group); |
1523 | return true; |
1524 | }); |
1525 | assert(ReleasedGroup && "At least one group must be invalidated, as a " |
1526 | "scalar epilogue was required" ); |
1527 | (void)ReleasedGroup; |
1528 | RequiresScalarEpilogue = false; |
1529 | } |
1530 | |
1531 | template <typename InstT> |
1532 | void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { |
1533 | llvm_unreachable("addMetadata can only be used for Instruction" ); |
1534 | } |
1535 | |
1536 | namespace llvm { |
1537 | template <> |
1538 | void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { |
1539 | SmallVector<Value *, 4> VL; |
1540 | std::transform(first: Members.begin(), last: Members.end(), result: std::back_inserter(x&: VL), |
1541 | unary_op: [](std::pair<int, Instruction *> p) { return p.second; }); |
1542 | propagateMetadata(Inst: NewInst, VL); |
1543 | } |
1544 | } // namespace llvm |
1545 | |