1 | //===- LoadStoreOpt.cpp ----------- Generic memory optimizations -*- C++ -*-==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file implements the LoadStoreOpt optimization pass. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "llvm/CodeGen/GlobalISel/LoadStoreOpt.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/ADT/SmallPtrSet.h" |
15 | #include "llvm/ADT/Statistic.h" |
16 | #include "llvm/Analysis/AliasAnalysis.h" |
17 | #include "llvm/Analysis/MemoryLocation.h" |
18 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
19 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
20 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
21 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
22 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
23 | #include "llvm/CodeGen/LowLevelTypeUtils.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
26 | #include "llvm/CodeGen/MachineFunction.h" |
27 | #include "llvm/CodeGen/MachineInstr.h" |
28 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
30 | #include "llvm/CodeGen/Register.h" |
31 | #include "llvm/CodeGen/TargetLowering.h" |
32 | #include "llvm/CodeGen/TargetOpcodes.h" |
33 | #include "llvm/IR/DebugInfoMetadata.h" |
34 | #include "llvm/InitializePasses.h" |
35 | #include "llvm/Support/AtomicOrdering.h" |
36 | #include "llvm/Support/Casting.h" |
37 | #include "llvm/Support/Debug.h" |
38 | #include "llvm/Support/ErrorHandling.h" |
39 | #include "llvm/Support/MathExtras.h" |
40 | #include <algorithm> |
41 | |
42 | #define DEBUG_TYPE "loadstore-opt" |
43 | |
44 | using namespace llvm; |
45 | using namespace ore; |
46 | using namespace MIPatternMatch; |
47 | |
48 | STATISTIC(NumStoresMerged, "Number of stores merged" ); |
49 | |
50 | const unsigned MaxStoreSizeToForm = 128; |
51 | |
52 | char LoadStoreOpt::ID = 0; |
53 | INITIALIZE_PASS_BEGIN(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
54 | false, false) |
55 | INITIALIZE_PASS_END(LoadStoreOpt, DEBUG_TYPE, "Generic memory optimizations" , |
56 | false, false) |
57 | |
58 | LoadStoreOpt::LoadStoreOpt(std::function<bool(const MachineFunction &)> F) |
59 | : MachineFunctionPass(ID), DoNotRunPass(F) {} |
60 | |
61 | LoadStoreOpt::LoadStoreOpt() |
62 | : LoadStoreOpt([](const MachineFunction &) { return false; }) {} |
63 | |
64 | void LoadStoreOpt::init(MachineFunction &MF) { |
65 | this->MF = &MF; |
66 | MRI = &MF.getRegInfo(); |
67 | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
68 | TLI = MF.getSubtarget().getTargetLowering(); |
69 | LI = MF.getSubtarget().getLegalizerInfo(); |
70 | Builder.setMF(MF); |
71 | IsPreLegalizer = !MF.getProperties().hasProperty( |
72 | P: MachineFunctionProperties::Property::Legalized); |
73 | InstsToErase.clear(); |
74 | } |
75 | |
76 | void LoadStoreOpt::getAnalysisUsage(AnalysisUsage &AU) const { |
77 | AU.addRequired<AAResultsWrapperPass>(); |
78 | AU.setPreservesAll(); |
79 | getSelectionDAGFallbackAnalysisUsage(AU); |
80 | MachineFunctionPass::getAnalysisUsage(AU); |
81 | } |
82 | |
83 | BaseIndexOffset GISelAddressing::getPointerInfo(Register Ptr, |
84 | MachineRegisterInfo &MRI) { |
85 | BaseIndexOffset Info; |
86 | Register PtrAddRHS; |
87 | Register BaseReg; |
88 | if (!mi_match(R: Ptr, MRI, P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_Reg(R&: PtrAddRHS)))) { |
89 | Info.setBase(Ptr); |
90 | Info.setOffset(0); |
91 | return Info; |
92 | } |
93 | Info.setBase(BaseReg); |
94 | auto RHSCst = getIConstantVRegValWithLookThrough(VReg: PtrAddRHS, MRI); |
95 | if (RHSCst) |
96 | Info.setOffset(RHSCst->Value.getSExtValue()); |
97 | |
98 | // Just recognize a simple case for now. In future we'll need to match |
99 | // indexing patterns for base + index + constant. |
100 | Info.setIndex(PtrAddRHS); |
101 | return Info; |
102 | } |
103 | |
104 | bool GISelAddressing::aliasIsKnownForLoadStore(const MachineInstr &MI1, |
105 | const MachineInstr &MI2, |
106 | bool &IsAlias, |
107 | MachineRegisterInfo &MRI) { |
108 | auto *LdSt1 = dyn_cast<GLoadStore>(Val: &MI1); |
109 | auto *LdSt2 = dyn_cast<GLoadStore>(Val: &MI2); |
110 | if (!LdSt1 || !LdSt2) |
111 | return false; |
112 | |
113 | BaseIndexOffset BasePtr0 = getPointerInfo(Ptr: LdSt1->getPointerReg(), MRI); |
114 | BaseIndexOffset BasePtr1 = getPointerInfo(Ptr: LdSt2->getPointerReg(), MRI); |
115 | |
116 | if (!BasePtr0.getBase().isValid() || !BasePtr1.getBase().isValid()) |
117 | return false; |
118 | |
119 | LocationSize Size1 = LdSt1->getMemSize(); |
120 | LocationSize Size2 = LdSt2->getMemSize(); |
121 | |
122 | int64_t PtrDiff; |
123 | if (BasePtr0.getBase() == BasePtr1.getBase() && BasePtr0.hasValidOffset() && |
124 | BasePtr1.hasValidOffset()) { |
125 | PtrDiff = BasePtr1.getOffset() - BasePtr0.getOffset(); |
126 | // If the size of memory access is unknown, do not use it to do analysis. |
127 | // One example of unknown size memory access is to load/store scalable |
128 | // vector objects on the stack. |
129 | // BasePtr1 is PtrDiff away from BasePtr0. They alias if none of the |
130 | // following situations arise: |
131 | if (PtrDiff >= 0 && Size1.hasValue() && !Size1.isScalable()) { |
132 | // [----BasePtr0----] |
133 | // [---BasePtr1--] |
134 | // ========PtrDiff========> |
135 | IsAlias = !((int64_t)Size1.getValue() <= PtrDiff); |
136 | return true; |
137 | } |
138 | if (PtrDiff < 0 && Size2.hasValue() && !Size2.isScalable()) { |
139 | // [----BasePtr0----] |
140 | // [---BasePtr1--] |
141 | // =====(-PtrDiff)====> |
142 | IsAlias = !((PtrDiff + (int64_t)Size2.getValue()) <= 0); |
143 | return true; |
144 | } |
145 | return false; |
146 | } |
147 | |
148 | // If both BasePtr0 and BasePtr1 are FrameIndexes, we will not be |
149 | // able to calculate their relative offset if at least one arises |
150 | // from an alloca. However, these allocas cannot overlap and we |
151 | // can infer there is no alias. |
152 | auto *Base0Def = getDefIgnoringCopies(Reg: BasePtr0.getBase(), MRI); |
153 | auto *Base1Def = getDefIgnoringCopies(Reg: BasePtr1.getBase(), MRI); |
154 | if (!Base0Def || !Base1Def) |
155 | return false; // Couldn't tell anything. |
156 | |
157 | |
158 | if (Base0Def->getOpcode() != Base1Def->getOpcode()) |
159 | return false; |
160 | |
161 | if (Base0Def->getOpcode() == TargetOpcode::G_FRAME_INDEX) { |
162 | MachineFrameInfo &MFI = Base0Def->getMF()->getFrameInfo(); |
163 | // If the bases have the same frame index but we couldn't find a |
164 | // constant offset, (indices are different) be conservative. |
165 | if (Base0Def != Base1Def && |
166 | (!MFI.isFixedObjectIndex(ObjectIdx: Base0Def->getOperand(i: 1).getIndex()) || |
167 | !MFI.isFixedObjectIndex(ObjectIdx: Base1Def->getOperand(i: 1).getIndex()))) { |
168 | IsAlias = false; |
169 | return true; |
170 | } |
171 | } |
172 | |
173 | // This implementation is a lot more primitive than the SDAG one for now. |
174 | // FIXME: what about constant pools? |
175 | if (Base0Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) { |
176 | auto GV0 = Base0Def->getOperand(i: 1).getGlobal(); |
177 | auto GV1 = Base1Def->getOperand(i: 1).getGlobal(); |
178 | if (GV0 != GV1) { |
179 | IsAlias = false; |
180 | return true; |
181 | } |
182 | } |
183 | |
184 | // Can't tell anything about aliasing. |
185 | return false; |
186 | } |
187 | |
188 | bool GISelAddressing::instMayAlias(const MachineInstr &MI, |
189 | const MachineInstr &Other, |
190 | MachineRegisterInfo &MRI, |
191 | AliasAnalysis *AA) { |
192 | struct MemUseCharacteristics { |
193 | bool IsVolatile; |
194 | bool IsAtomic; |
195 | Register BasePtr; |
196 | int64_t Offset; |
197 | LocationSize NumBytes; |
198 | MachineMemOperand *MMO; |
199 | }; |
200 | |
201 | auto getCharacteristics = |
202 | [&](const MachineInstr *MI) -> MemUseCharacteristics { |
203 | if (const auto *LS = dyn_cast<GLoadStore>(Val: MI)) { |
204 | Register BaseReg; |
205 | int64_t Offset = 0; |
206 | // No pre/post-inc addressing modes are considered here, unlike in SDAG. |
207 | if (!mi_match(R: LS->getPointerReg(), MRI, |
208 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: Offset)))) { |
209 | BaseReg = LS->getPointerReg(); |
210 | Offset = 0; |
211 | } |
212 | |
213 | LocationSize Size = LS->getMMO().getSize(); |
214 | return {.IsVolatile: LS->isVolatile(), .IsAtomic: LS->isAtomic(), .BasePtr: BaseReg, |
215 | .Offset: Offset /*base offset*/, .NumBytes: Size, .MMO: &LS->getMMO()}; |
216 | } |
217 | // FIXME: support recognizing lifetime instructions. |
218 | // Default. |
219 | return {.IsVolatile: false /*isvolatile*/, |
220 | /*isAtomic*/ .IsAtomic: false, |
221 | .BasePtr: Register(), |
222 | .Offset: (int64_t)0 /*offset*/, |
223 | .NumBytes: LocationSize::beforeOrAfterPointer() /*size*/, |
224 | .MMO: (MachineMemOperand *)nullptr}; |
225 | }; |
226 | MemUseCharacteristics MUC0 = getCharacteristics(&MI), |
227 | MUC1 = getCharacteristics(&Other); |
228 | |
229 | // If they are to the same address, then they must be aliases. |
230 | if (MUC0.BasePtr.isValid() && MUC0.BasePtr == MUC1.BasePtr && |
231 | MUC0.Offset == MUC1.Offset) |
232 | return true; |
233 | |
234 | // If they are both volatile then they cannot be reordered. |
235 | if (MUC0.IsVolatile && MUC1.IsVolatile) |
236 | return true; |
237 | |
238 | // Be conservative about atomics for the moment |
239 | // TODO: This is way overconservative for unordered atomics (see D66309) |
240 | if (MUC0.IsAtomic && MUC1.IsAtomic) |
241 | return true; |
242 | |
243 | // If one operation reads from invariant memory, and the other may store, they |
244 | // cannot alias. |
245 | if (MUC0.MMO && MUC1.MMO) { |
246 | if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || |
247 | (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) |
248 | return false; |
249 | } |
250 | |
251 | // If NumBytes is scalable and offset is not 0, conservatively return may |
252 | // alias |
253 | if ((MUC0.NumBytes.isScalable() && MUC0.Offset != 0) || |
254 | (MUC1.NumBytes.isScalable() && MUC1.Offset != 0)) |
255 | return true; |
256 | |
257 | const bool BothNotScalable = |
258 | !MUC0.NumBytes.isScalable() && !MUC1.NumBytes.isScalable(); |
259 | |
260 | // Try to prove that there is aliasing, or that there is no aliasing. Either |
261 | // way, we can return now. If nothing can be proved, proceed with more tests. |
262 | bool IsAlias; |
263 | if (BothNotScalable && |
264 | GISelAddressing::aliasIsKnownForLoadStore(MI1: MI, MI2: Other, IsAlias, MRI)) |
265 | return IsAlias; |
266 | |
267 | // The following all rely on MMO0 and MMO1 being valid. |
268 | if (!MUC0.MMO || !MUC1.MMO) |
269 | return true; |
270 | |
271 | // FIXME: port the alignment based alias analysis from SDAG's isAlias(). |
272 | int64_t SrcValOffset0 = MUC0.MMO->getOffset(); |
273 | int64_t SrcValOffset1 = MUC1.MMO->getOffset(); |
274 | LocationSize Size0 = MUC0.NumBytes; |
275 | LocationSize Size1 = MUC1.NumBytes; |
276 | if (AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && Size0.hasValue() && |
277 | Size1.hasValue()) { |
278 | // Use alias analysis information. |
279 | int64_t MinOffset = std::min(a: SrcValOffset0, b: SrcValOffset1); |
280 | int64_t Overlap0 = |
281 | Size0.getValue().getKnownMinValue() + SrcValOffset0 - MinOffset; |
282 | int64_t Overlap1 = |
283 | Size1.getValue().getKnownMinValue() + SrcValOffset1 - MinOffset; |
284 | LocationSize Loc0 = |
285 | Size0.isScalable() ? Size0 : LocationSize::precise(Value: Overlap0); |
286 | LocationSize Loc1 = |
287 | Size1.isScalable() ? Size1 : LocationSize::precise(Value: Overlap1); |
288 | |
289 | if (AA->isNoAlias( |
290 | LocA: MemoryLocation(MUC0.MMO->getValue(), Loc0, MUC0.MMO->getAAInfo()), |
291 | LocB: MemoryLocation(MUC1.MMO->getValue(), Loc1, MUC1.MMO->getAAInfo()))) |
292 | return false; |
293 | } |
294 | |
295 | // Otherwise we have to assume they alias. |
296 | return true; |
297 | } |
298 | |
299 | /// Returns true if the instruction creates an unavoidable hazard that |
300 | /// forces a boundary between store merge candidates. |
301 | static bool isInstHardMergeHazard(MachineInstr &MI) { |
302 | return MI.hasUnmodeledSideEffects() || MI.hasOrderedMemoryRef(); |
303 | } |
304 | |
305 | bool LoadStoreOpt::mergeStores(SmallVectorImpl<GStore *> &StoresToMerge) { |
306 | // Try to merge all the stores in the vector, splitting into separate segments |
307 | // as necessary. |
308 | assert(StoresToMerge.size() > 1 && "Expected multiple stores to merge" ); |
309 | LLT OrigTy = MRI->getType(Reg: StoresToMerge[0]->getValueReg()); |
310 | LLT PtrTy = MRI->getType(Reg: StoresToMerge[0]->getPointerReg()); |
311 | unsigned AS = PtrTy.getAddressSpace(); |
312 | // Ensure the legal store info is computed for this address space. |
313 | initializeStoreMergeTargetInfo(AddrSpace: AS); |
314 | const auto &LegalSizes = LegalStoreSizes[AS]; |
315 | |
316 | #ifndef NDEBUG |
317 | for (auto *StoreMI : StoresToMerge) |
318 | assert(MRI->getType(StoreMI->getValueReg()) == OrigTy); |
319 | #endif |
320 | |
321 | const auto &DL = MF->getFunction().getDataLayout(); |
322 | bool AnyMerged = false; |
323 | do { |
324 | unsigned NumPow2 = llvm::bit_floor(Value: StoresToMerge.size()); |
325 | unsigned MaxSizeBits = NumPow2 * OrigTy.getSizeInBits().getFixedValue(); |
326 | // Compute the biggest store we can generate to handle the number of stores. |
327 | unsigned MergeSizeBits; |
328 | for (MergeSizeBits = MaxSizeBits; MergeSizeBits > 1; MergeSizeBits /= 2) { |
329 | LLT StoreTy = LLT::scalar(SizeInBits: MergeSizeBits); |
330 | EVT StoreEVT = |
331 | getApproximateEVTForLLT(Ty: StoreTy, DL, Ctx&: MF->getFunction().getContext()); |
332 | if (LegalSizes.size() > MergeSizeBits && LegalSizes[MergeSizeBits] && |
333 | TLI->canMergeStoresTo(AS, MemVT: StoreEVT, MF: *MF) && |
334 | (TLI->isTypeLegal(VT: StoreEVT))) |
335 | break; // We can generate a MergeSize bits store. |
336 | } |
337 | if (MergeSizeBits <= OrigTy.getSizeInBits()) |
338 | return AnyMerged; // No greater merge. |
339 | |
340 | unsigned NumStoresToMerge = MergeSizeBits / OrigTy.getSizeInBits(); |
341 | // Perform the actual merging. |
342 | SmallVector<GStore *, 8> SingleMergeStores( |
343 | StoresToMerge.begin(), StoresToMerge.begin() + NumStoresToMerge); |
344 | AnyMerged |= doSingleStoreMerge(Stores&: SingleMergeStores); |
345 | StoresToMerge.erase(CS: StoresToMerge.begin(), |
346 | CE: StoresToMerge.begin() + NumStoresToMerge); |
347 | } while (StoresToMerge.size() > 1); |
348 | return AnyMerged; |
349 | } |
350 | |
351 | bool LoadStoreOpt::isLegalOrBeforeLegalizer(const LegalityQuery &Query, |
352 | MachineFunction &MF) const { |
353 | auto Action = LI->getAction(Query).Action; |
354 | // If the instruction is unsupported, it can't be legalized at all. |
355 | if (Action == LegalizeActions::Unsupported) |
356 | return false; |
357 | return IsPreLegalizer || Action == LegalizeAction::Legal; |
358 | } |
359 | |
360 | bool LoadStoreOpt::doSingleStoreMerge(SmallVectorImpl<GStore *> &Stores) { |
361 | assert(Stores.size() > 1); |
362 | // We know that all the stores are consecutive and there are no aliasing |
363 | // operations in the range. However, the values that are being stored may be |
364 | // generated anywhere before each store. To ensure we have the values |
365 | // available, we materialize the wide value and new store at the place of the |
366 | // final store in the merge sequence. |
367 | GStore *FirstStore = Stores[0]; |
368 | const unsigned NumStores = Stores.size(); |
369 | LLT SmallTy = MRI->getType(Reg: FirstStore->getValueReg()); |
370 | LLT WideValueTy = |
371 | LLT::scalar(SizeInBits: NumStores * SmallTy.getSizeInBits().getFixedValue()); |
372 | |
373 | // For each store, compute pairwise merged debug locs. |
374 | DebugLoc MergedLoc = Stores.front()->getDebugLoc(); |
375 | for (auto *Store : drop_begin(RangeOrContainer&: Stores)) |
376 | MergedLoc = DILocation::getMergedLocation(LocA: MergedLoc, LocB: Store->getDebugLoc()); |
377 | |
378 | Builder.setInstr(*Stores.back()); |
379 | Builder.setDebugLoc(MergedLoc); |
380 | |
381 | // If all of the store values are constants, then create a wide constant |
382 | // directly. Otherwise, we need to generate some instructions to merge the |
383 | // existing values together into a wider type. |
384 | SmallVector<APInt, 8> ConstantVals; |
385 | for (auto *Store : Stores) { |
386 | auto MaybeCst = |
387 | getIConstantVRegValWithLookThrough(VReg: Store->getValueReg(), MRI: *MRI); |
388 | if (!MaybeCst) { |
389 | ConstantVals.clear(); |
390 | break; |
391 | } |
392 | ConstantVals.emplace_back(Args&: MaybeCst->Value); |
393 | } |
394 | |
395 | Register WideReg; |
396 | auto *WideMMO = |
397 | MF->getMachineMemOperand(MMO: &FirstStore->getMMO(), Offset: 0, Ty: WideValueTy); |
398 | if (ConstantVals.empty()) { |
399 | // Mimic the SDAG behaviour here and don't try to do anything for unknown |
400 | // values. In future, we should also support the cases of loads and |
401 | // extracted vector elements. |
402 | return false; |
403 | } |
404 | |
405 | assert(ConstantVals.size() == NumStores); |
406 | // Check if our wide constant is legal. |
407 | if (!isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_CONSTANT, {WideValueTy}}, MF&: *MF)) |
408 | return false; |
409 | APInt WideConst(WideValueTy.getSizeInBits(), 0); |
410 | for (unsigned Idx = 0; Idx < ConstantVals.size(); ++Idx) { |
411 | // Insert the smaller constant into the corresponding position in the |
412 | // wider one. |
413 | WideConst.insertBits(SubBits: ConstantVals[Idx], bitPosition: Idx * SmallTy.getSizeInBits()); |
414 | } |
415 | WideReg = Builder.buildConstant(Res: WideValueTy, Val: WideConst).getReg(Idx: 0); |
416 | auto NewStore = |
417 | Builder.buildStore(Val: WideReg, Addr: FirstStore->getPointerReg(), MMO&: *WideMMO); |
418 | (void) NewStore; |
419 | LLVM_DEBUG(dbgs() << "Merged " << Stores.size() |
420 | << " stores into merged store: " << *NewStore); |
421 | LLVM_DEBUG(for (auto *MI : Stores) dbgs() << " " << *MI;); |
422 | NumStoresMerged += Stores.size(); |
423 | |
424 | MachineOptimizationRemarkEmitter MORE(*MF, nullptr); |
425 | MORE.emit(RemarkBuilder: [&]() { |
426 | MachineOptimizationRemark R(DEBUG_TYPE, "MergedStore" , |
427 | FirstStore->getDebugLoc(), |
428 | FirstStore->getParent()); |
429 | R << "Merged " << NV("NumMerged" , Stores.size()) << " stores of " |
430 | << NV("OrigWidth" , SmallTy.getSizeInBytes()) |
431 | << " bytes into a single store of " |
432 | << NV("NewWidth" , WideValueTy.getSizeInBytes()) << " bytes" ; |
433 | return R; |
434 | }); |
435 | |
436 | for (auto *MI : Stores) |
437 | InstsToErase.insert(Ptr: MI); |
438 | return true; |
439 | } |
440 | |
441 | bool LoadStoreOpt::processMergeCandidate(StoreMergeCandidate &C) { |
442 | if (C.Stores.size() < 2) { |
443 | C.reset(); |
444 | return false; |
445 | } |
446 | |
447 | LLVM_DEBUG(dbgs() << "Checking store merge candidate with " << C.Stores.size() |
448 | << " stores, starting with " << *C.Stores[0]); |
449 | // We know that the stores in the candidate are adjacent. |
450 | // Now we need to check if any potential aliasing instructions recorded |
451 | // during the search alias with load/stores added to the candidate after. |
452 | // For example, if we have the candidate: |
453 | // C.Stores = [ST1, ST2, ST3, ST4] |
454 | // and after seeing ST2 we saw a load LD1, which did not alias with ST1 or |
455 | // ST2, then we would have recorded it into the PotentialAliases structure |
456 | // with the associated index value of "1". Then we see ST3 and ST4 and add |
457 | // them to the candidate group. We know that LD1 does not alias with ST1 or |
458 | // ST2, since we already did that check. However we don't yet know if it |
459 | // may alias ST3 and ST4, so we perform those checks now. |
460 | SmallVector<GStore *> StoresToMerge; |
461 | |
462 | auto DoesStoreAliasWithPotential = [&](unsigned Idx, GStore &CheckStore) { |
463 | for (auto AliasInfo : reverse(C&: C.PotentialAliases)) { |
464 | MachineInstr *PotentialAliasOp = AliasInfo.first; |
465 | unsigned PreCheckedIdx = AliasInfo.second; |
466 | if (static_cast<unsigned>(Idx) < PreCheckedIdx) { |
467 | // Once our store index is lower than the index associated with the |
468 | // potential alias, we know that we've already checked for this alias |
469 | // and all of the earlier potential aliases too. |
470 | return false; |
471 | } |
472 | // Need to check this alias. |
473 | if (GISelAddressing::instMayAlias(MI: CheckStore, Other: *PotentialAliasOp, MRI&: *MRI, |
474 | AA)) { |
475 | LLVM_DEBUG(dbgs() << "Potential alias " << *PotentialAliasOp |
476 | << " detected\n" ); |
477 | return true; |
478 | } |
479 | } |
480 | return false; |
481 | }; |
482 | // Start from the last store in the group, and check if it aliases with any |
483 | // of the potential aliasing operations in the list. |
484 | for (int StoreIdx = C.Stores.size() - 1; StoreIdx >= 0; --StoreIdx) { |
485 | auto *CheckStore = C.Stores[StoreIdx]; |
486 | if (DoesStoreAliasWithPotential(StoreIdx, *CheckStore)) |
487 | continue; |
488 | StoresToMerge.emplace_back(Args&: CheckStore); |
489 | } |
490 | |
491 | LLVM_DEBUG(dbgs() << StoresToMerge.size() |
492 | << " stores remaining after alias checks. Merging...\n" ); |
493 | |
494 | // Now we've checked for aliasing hazards, merge any stores left. |
495 | C.reset(); |
496 | if (StoresToMerge.size() < 2) |
497 | return false; |
498 | return mergeStores(StoresToMerge); |
499 | } |
500 | |
501 | bool LoadStoreOpt::operationAliasesWithCandidate(MachineInstr &MI, |
502 | StoreMergeCandidate &C) { |
503 | if (C.Stores.empty()) |
504 | return false; |
505 | return llvm::any_of(Range&: C.Stores, P: [&](MachineInstr *OtherMI) { |
506 | return instMayAlias(MI, Other: *OtherMI, MRI&: *MRI, AA); |
507 | }); |
508 | } |
509 | |
510 | void LoadStoreOpt::StoreMergeCandidate::addPotentialAlias(MachineInstr &MI) { |
511 | PotentialAliases.emplace_back(Args: std::make_pair(x: &MI, y: Stores.size() - 1)); |
512 | } |
513 | |
514 | bool LoadStoreOpt::addStoreToCandidate(GStore &StoreMI, |
515 | StoreMergeCandidate &C) { |
516 | // Check if the given store writes to an adjacent address, and other |
517 | // requirements. |
518 | LLT ValueTy = MRI->getType(Reg: StoreMI.getValueReg()); |
519 | LLT PtrTy = MRI->getType(Reg: StoreMI.getPointerReg()); |
520 | |
521 | // Only handle scalars. |
522 | if (!ValueTy.isScalar()) |
523 | return false; |
524 | |
525 | // Don't allow truncating stores for now. |
526 | if (StoreMI.getMemSizeInBits() != ValueTy.getSizeInBits()) |
527 | return false; |
528 | |
529 | // Avoid adding volatile or ordered stores to the candidate. We already have a |
530 | // check for this in instMayAlias() but that only get's called later between |
531 | // potential aliasing hazards. |
532 | if (!StoreMI.isSimple()) |
533 | return false; |
534 | |
535 | Register StoreAddr = StoreMI.getPointerReg(); |
536 | auto BIO = getPointerInfo(Ptr: StoreAddr, MRI&: *MRI); |
537 | Register StoreBase = BIO.getBase(); |
538 | if (C.Stores.empty()) { |
539 | C.BasePtr = StoreBase; |
540 | if (!BIO.hasValidOffset()) { |
541 | C.CurrentLowestOffset = 0; |
542 | } else { |
543 | C.CurrentLowestOffset = BIO.getOffset(); |
544 | } |
545 | // This is the first store of the candidate. |
546 | // If the offset can't possibly allow for a lower addressed store with the |
547 | // same base, don't bother adding it. |
548 | if (BIO.hasValidOffset() && |
549 | BIO.getOffset() < static_cast<int64_t>(ValueTy.getSizeInBytes())) |
550 | return false; |
551 | C.Stores.emplace_back(Args: &StoreMI); |
552 | LLVM_DEBUG(dbgs() << "Starting a new merge candidate group with: " |
553 | << StoreMI); |
554 | return true; |
555 | } |
556 | |
557 | // Check the store is the same size as the existing ones in the candidate. |
558 | if (MRI->getType(Reg: C.Stores[0]->getValueReg()).getSizeInBits() != |
559 | ValueTy.getSizeInBits()) |
560 | return false; |
561 | |
562 | if (MRI->getType(Reg: C.Stores[0]->getPointerReg()).getAddressSpace() != |
563 | PtrTy.getAddressSpace()) |
564 | return false; |
565 | |
566 | // There are other stores in the candidate. Check that the store address |
567 | // writes to the next lowest adjacent address. |
568 | if (C.BasePtr != StoreBase) |
569 | return false; |
570 | // If we don't have a valid offset, we can't guarantee to be an adjacent |
571 | // offset. |
572 | if (!BIO.hasValidOffset()) |
573 | return false; |
574 | if ((C.CurrentLowestOffset - |
575 | static_cast<int64_t>(ValueTy.getSizeInBytes())) != BIO.getOffset()) |
576 | return false; |
577 | |
578 | // This writes to an adjacent address. Allow it. |
579 | C.Stores.emplace_back(Args: &StoreMI); |
580 | C.CurrentLowestOffset = C.CurrentLowestOffset - ValueTy.getSizeInBytes(); |
581 | LLVM_DEBUG(dbgs() << "Candidate added store: " << StoreMI); |
582 | return true; |
583 | } |
584 | |
585 | bool LoadStoreOpt::mergeBlockStores(MachineBasicBlock &MBB) { |
586 | bool Changed = false; |
587 | // Walk through the block bottom-up, looking for merging candidates. |
588 | StoreMergeCandidate Candidate; |
589 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
590 | if (InstsToErase.contains(Ptr: &MI)) |
591 | continue; |
592 | |
593 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) { |
594 | // We have a G_STORE. Add it to the candidate if it writes to an adjacent |
595 | // address. |
596 | if (!addStoreToCandidate(StoreMI&: *StoreMI, C&: Candidate)) { |
597 | // Store wasn't eligible to be added. May need to record it as a |
598 | // potential alias. |
599 | if (operationAliasesWithCandidate(MI&: *StoreMI, C&: Candidate)) { |
600 | Changed |= processMergeCandidate(C&: Candidate); |
601 | continue; |
602 | } |
603 | Candidate.addPotentialAlias(MI&: *StoreMI); |
604 | } |
605 | continue; |
606 | } |
607 | |
608 | // If we don't have any stores yet, this instruction can't pose a problem. |
609 | if (Candidate.Stores.empty()) |
610 | continue; |
611 | |
612 | // We're dealing with some other kind of instruction. |
613 | if (isInstHardMergeHazard(MI)) { |
614 | Changed |= processMergeCandidate(C&: Candidate); |
615 | Candidate.Stores.clear(); |
616 | continue; |
617 | } |
618 | |
619 | if (!MI.mayLoadOrStore()) |
620 | continue; |
621 | |
622 | if (operationAliasesWithCandidate(MI, C&: Candidate)) { |
623 | // We have a potential alias, so process the current candidate if we can |
624 | // and then continue looking for a new candidate. |
625 | Changed |= processMergeCandidate(C&: Candidate); |
626 | continue; |
627 | } |
628 | |
629 | // Record this instruction as a potential alias for future stores that are |
630 | // added to the candidate. |
631 | Candidate.addPotentialAlias(MI); |
632 | } |
633 | |
634 | // Process any candidate left after finishing searching the entire block. |
635 | Changed |= processMergeCandidate(C&: Candidate); |
636 | |
637 | // Erase instructions now that we're no longer iterating over the block. |
638 | for (auto *MI : InstsToErase) |
639 | MI->eraseFromParent(); |
640 | InstsToErase.clear(); |
641 | return Changed; |
642 | } |
643 | |
644 | /// Check if the store \p Store is a truncstore that can be merged. That is, |
645 | /// it's a store of a shifted value of \p SrcVal. If \p SrcVal is an empty |
646 | /// Register then it does not need to match and SrcVal is set to the source |
647 | /// value found. |
648 | /// On match, returns the start byte offset of the \p SrcVal that is being |
649 | /// stored. |
650 | static std::optional<int64_t> |
651 | getTruncStoreByteOffset(GStore &Store, Register &SrcVal, |
652 | MachineRegisterInfo &MRI) { |
653 | Register TruncVal; |
654 | if (!mi_match(R: Store.getValueReg(), MRI, P: m_GTrunc(Src: m_Reg(R&: TruncVal)))) |
655 | return std::nullopt; |
656 | |
657 | // The shift amount must be a constant multiple of the narrow type. |
658 | // It is translated to the offset address in the wide source value "y". |
659 | // |
660 | // x = G_LSHR y, ShiftAmtC |
661 | // s8 z = G_TRUNC x |
662 | // store z, ... |
663 | Register FoundSrcVal; |
664 | int64_t ShiftAmt; |
665 | if (!mi_match(R: TruncVal, MRI, |
666 | P: m_any_of(preds: m_GLShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt)), |
667 | preds: m_GAShr(L: m_Reg(R&: FoundSrcVal), R: m_ICst(Cst&: ShiftAmt))))) { |
668 | if (!SrcVal.isValid() || TruncVal == SrcVal) { |
669 | if (!SrcVal.isValid()) |
670 | SrcVal = TruncVal; |
671 | return 0; // If it's the lowest index store. |
672 | } |
673 | return std::nullopt; |
674 | } |
675 | |
676 | unsigned NarrowBits = Store.getMMO().getMemoryType().getScalarSizeInBits(); |
677 | if (ShiftAmt % NarrowBits != 0) |
678 | return std::nullopt; |
679 | const unsigned Offset = ShiftAmt / NarrowBits; |
680 | |
681 | if (SrcVal.isValid() && FoundSrcVal != SrcVal) |
682 | return std::nullopt; |
683 | |
684 | if (!SrcVal.isValid()) |
685 | SrcVal = FoundSrcVal; |
686 | else if (MRI.getType(Reg: SrcVal) != MRI.getType(Reg: FoundSrcVal)) |
687 | return std::nullopt; |
688 | return Offset; |
689 | } |
690 | |
691 | /// Match a pattern where a wide type scalar value is stored by several narrow |
692 | /// stores. Fold it into a single store or a BSWAP and a store if the targets |
693 | /// supports it. |
694 | /// |
695 | /// Assuming little endian target: |
696 | /// i8 *p = ... |
697 | /// i32 val = ... |
698 | /// p[0] = (val >> 0) & 0xFF; |
699 | /// p[1] = (val >> 8) & 0xFF; |
700 | /// p[2] = (val >> 16) & 0xFF; |
701 | /// p[3] = (val >> 24) & 0xFF; |
702 | /// => |
703 | /// *((i32)p) = val; |
704 | /// |
705 | /// i8 *p = ... |
706 | /// i32 val = ... |
707 | /// p[0] = (val >> 24) & 0xFF; |
708 | /// p[1] = (val >> 16) & 0xFF; |
709 | /// p[2] = (val >> 8) & 0xFF; |
710 | /// p[3] = (val >> 0) & 0xFF; |
711 | /// => |
712 | /// *((i32)p) = BSWAP(val); |
713 | bool LoadStoreOpt::mergeTruncStore(GStore &StoreMI, |
714 | SmallPtrSetImpl<GStore *> &DeletedStores) { |
715 | LLT MemTy = StoreMI.getMMO().getMemoryType(); |
716 | |
717 | // We only handle merging simple stores of 1-4 bytes. |
718 | if (!MemTy.isScalar()) |
719 | return false; |
720 | switch (MemTy.getSizeInBits()) { |
721 | case 8: |
722 | case 16: |
723 | case 32: |
724 | break; |
725 | default: |
726 | return false; |
727 | } |
728 | if (!StoreMI.isSimple()) |
729 | return false; |
730 | |
731 | // We do a simple search for mergeable stores prior to this one. |
732 | // Any potential alias hazard along the way terminates the search. |
733 | SmallVector<GStore *> FoundStores; |
734 | |
735 | // We're looking for: |
736 | // 1) a (store(trunc(...))) |
737 | // 2) of an LSHR/ASHR of a single wide value, by the appropriate shift to get |
738 | // the partial value stored. |
739 | // 3) where the offsets form either a little or big-endian sequence. |
740 | |
741 | auto &LastStore = StoreMI; |
742 | |
743 | // The single base pointer that all stores must use. |
744 | Register BaseReg; |
745 | int64_t LastOffset; |
746 | if (!mi_match(R: LastStore.getPointerReg(), MRI: *MRI, |
747 | P: m_GPtrAdd(L: m_Reg(R&: BaseReg), R: m_ICst(Cst&: LastOffset)))) { |
748 | BaseReg = LastStore.getPointerReg(); |
749 | LastOffset = 0; |
750 | } |
751 | |
752 | GStore *LowestIdxStore = &LastStore; |
753 | int64_t LowestIdxOffset = LastOffset; |
754 | |
755 | Register WideSrcVal; |
756 | auto LowestShiftAmt = getTruncStoreByteOffset(Store&: LastStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
757 | if (!LowestShiftAmt) |
758 | return false; // Didn't match a trunc. |
759 | assert(WideSrcVal.isValid()); |
760 | |
761 | LLT WideStoreTy = MRI->getType(Reg: WideSrcVal); |
762 | // The wide type might not be a multiple of the memory type, e.g. s48 and s32. |
763 | if (WideStoreTy.getSizeInBits() % MemTy.getSizeInBits() != 0) |
764 | return false; |
765 | const unsigned NumStoresRequired = |
766 | WideStoreTy.getSizeInBits() / MemTy.getSizeInBits(); |
767 | |
768 | SmallVector<int64_t, 8> OffsetMap(NumStoresRequired, INT64_MAX); |
769 | OffsetMap[*LowestShiftAmt] = LastOffset; |
770 | FoundStores.emplace_back(Args: &LastStore); |
771 | |
772 | const int MaxInstsToCheck = 10; |
773 | int NumInstsChecked = 0; |
774 | for (auto II = ++LastStore.getReverseIterator(); |
775 | II != LastStore.getParent()->rend() && NumInstsChecked < MaxInstsToCheck; |
776 | ++II) { |
777 | NumInstsChecked++; |
778 | GStore *NewStore; |
779 | if ((NewStore = dyn_cast<GStore>(Val: &*II))) { |
780 | if (NewStore->getMMO().getMemoryType() != MemTy || !NewStore->isSimple()) |
781 | break; |
782 | } else if (II->isLoadFoldBarrier() || II->mayLoad()) { |
783 | break; |
784 | } else { |
785 | continue; // This is a safe instruction we can look past. |
786 | } |
787 | |
788 | Register NewBaseReg; |
789 | int64_t MemOffset; |
790 | // Check we're storing to the same base + some offset. |
791 | if (!mi_match(R: NewStore->getPointerReg(), MRI: *MRI, |
792 | P: m_GPtrAdd(L: m_Reg(R&: NewBaseReg), R: m_ICst(Cst&: MemOffset)))) { |
793 | NewBaseReg = NewStore->getPointerReg(); |
794 | MemOffset = 0; |
795 | } |
796 | if (BaseReg != NewBaseReg) |
797 | break; |
798 | |
799 | auto ShiftByteOffset = getTruncStoreByteOffset(Store&: *NewStore, SrcVal&: WideSrcVal, MRI&: *MRI); |
800 | if (!ShiftByteOffset) |
801 | break; |
802 | if (MemOffset < LowestIdxOffset) { |
803 | LowestIdxOffset = MemOffset; |
804 | LowestIdxStore = NewStore; |
805 | } |
806 | |
807 | // Map the offset in the store and the offset in the combined value, and |
808 | // early return if it has been set before. |
809 | if (*ShiftByteOffset < 0 || *ShiftByteOffset >= NumStoresRequired || |
810 | OffsetMap[*ShiftByteOffset] != INT64_MAX) |
811 | break; |
812 | OffsetMap[*ShiftByteOffset] = MemOffset; |
813 | |
814 | FoundStores.emplace_back(Args&: NewStore); |
815 | // Reset counter since we've found a matching inst. |
816 | NumInstsChecked = 0; |
817 | if (FoundStores.size() == NumStoresRequired) |
818 | break; |
819 | } |
820 | |
821 | if (FoundStores.size() != NumStoresRequired) { |
822 | if (FoundStores.size() == 1) |
823 | return false; |
824 | // We didn't find enough stores to merge into the size of the original |
825 | // source value, but we may be able to generate a smaller store if we |
826 | // truncate the source value. |
827 | WideStoreTy = LLT::scalar(SizeInBits: FoundStores.size() * MemTy.getScalarSizeInBits()); |
828 | } |
829 | |
830 | unsigned NumStoresFound = FoundStores.size(); |
831 | |
832 | const auto &DL = LastStore.getMF()->getDataLayout(); |
833 | auto &C = LastStore.getMF()->getFunction().getContext(); |
834 | // Check that a store of the wide type is both allowed and fast on the target |
835 | unsigned Fast = 0; |
836 | bool Allowed = TLI->allowsMemoryAccess( |
837 | Context&: C, DL, Ty: WideStoreTy, MMO: LowestIdxStore->getMMO(), Fast: &Fast); |
838 | if (!Allowed || !Fast) |
839 | return false; |
840 | |
841 | // Check if the pieces of the value are going to the expected places in memory |
842 | // to merge the stores. |
843 | unsigned NarrowBits = MemTy.getScalarSizeInBits(); |
844 | auto checkOffsets = [&](bool MatchLittleEndian) { |
845 | if (MatchLittleEndian) { |
846 | for (unsigned i = 0; i != NumStoresFound; ++i) |
847 | if (OffsetMap[i] != i * (NarrowBits / 8) + LowestIdxOffset) |
848 | return false; |
849 | } else { // MatchBigEndian by reversing loop counter. |
850 | for (unsigned i = 0, j = NumStoresFound - 1; i != NumStoresFound; |
851 | ++i, --j) |
852 | if (OffsetMap[j] != i * (NarrowBits / 8) + LowestIdxOffset) |
853 | return false; |
854 | } |
855 | return true; |
856 | }; |
857 | |
858 | // Check if the offsets line up for the native data layout of this target. |
859 | bool NeedBswap = false; |
860 | bool NeedRotate = false; |
861 | if (!checkOffsets(DL.isLittleEndian())) { |
862 | // Special-case: check if byte offsets line up for the opposite endian. |
863 | if (NarrowBits == 8 && checkOffsets(DL.isBigEndian())) |
864 | NeedBswap = true; |
865 | else if (NumStoresFound == 2 && checkOffsets(DL.isBigEndian())) |
866 | NeedRotate = true; |
867 | else |
868 | return false; |
869 | } |
870 | |
871 | if (NeedBswap && |
872 | !isLegalOrBeforeLegalizer(Query: {TargetOpcode::G_BSWAP, {WideStoreTy}}, MF&: *MF)) |
873 | return false; |
874 | if (NeedRotate && |
875 | !isLegalOrBeforeLegalizer( |
876 | Query: {TargetOpcode::G_ROTR, {WideStoreTy, WideStoreTy}}, MF&: *MF)) |
877 | return false; |
878 | |
879 | Builder.setInstrAndDebugLoc(StoreMI); |
880 | |
881 | if (WideStoreTy != MRI->getType(Reg: WideSrcVal)) |
882 | WideSrcVal = Builder.buildTrunc(Res: WideStoreTy, Op: WideSrcVal).getReg(Idx: 0); |
883 | |
884 | if (NeedBswap) { |
885 | WideSrcVal = Builder.buildBSwap(Dst: WideStoreTy, Src0: WideSrcVal).getReg(Idx: 0); |
886 | } else if (NeedRotate) { |
887 | assert(WideStoreTy.getSizeInBits() % 2 == 0 && |
888 | "Unexpected type for rotate" ); |
889 | auto RotAmt = |
890 | Builder.buildConstant(Res: WideStoreTy, Val: WideStoreTy.getSizeInBits() / 2); |
891 | WideSrcVal = |
892 | Builder.buildRotateRight(Dst: WideStoreTy, Src: WideSrcVal, Amt: RotAmt).getReg(Idx: 0); |
893 | } |
894 | |
895 | Builder.buildStore(Val: WideSrcVal, Addr: LowestIdxStore->getPointerReg(), |
896 | PtrInfo: LowestIdxStore->getMMO().getPointerInfo(), |
897 | Alignment: LowestIdxStore->getMMO().getAlign()); |
898 | |
899 | // Erase the old stores. |
900 | for (auto *ST : FoundStores) { |
901 | ST->eraseFromParent(); |
902 | DeletedStores.insert(Ptr: ST); |
903 | } |
904 | return true; |
905 | } |
906 | |
907 | bool LoadStoreOpt::mergeTruncStoresBlock(MachineBasicBlock &BB) { |
908 | bool Changed = false; |
909 | SmallVector<GStore *, 16> Stores; |
910 | SmallPtrSet<GStore *, 8> DeletedStores; |
911 | // Walk up the block so we can see the most eligible stores. |
912 | for (MachineInstr &MI : llvm::reverse(C&: BB)) |
913 | if (auto *StoreMI = dyn_cast<GStore>(Val: &MI)) |
914 | Stores.emplace_back(Args&: StoreMI); |
915 | |
916 | for (auto *StoreMI : Stores) { |
917 | if (DeletedStores.count(Ptr: StoreMI)) |
918 | continue; |
919 | if (mergeTruncStore(StoreMI&: *StoreMI, DeletedStores)) |
920 | Changed = true; |
921 | } |
922 | return Changed; |
923 | } |
924 | |
925 | bool LoadStoreOpt::mergeFunctionStores(MachineFunction &MF) { |
926 | bool Changed = false; |
927 | for (auto &BB : MF){ |
928 | Changed |= mergeBlockStores(MBB&: BB); |
929 | Changed |= mergeTruncStoresBlock(BB); |
930 | } |
931 | |
932 | // Erase all dead instructions left over by the merging. |
933 | if (Changed) { |
934 | for (auto &BB : MF) { |
935 | for (auto &I : make_early_inc_range(Range: make_range(x: BB.rbegin(), y: BB.rend()))) { |
936 | if (isTriviallyDead(MI: I, MRI: *MRI)) |
937 | I.eraseFromParent(); |
938 | } |
939 | } |
940 | } |
941 | |
942 | return Changed; |
943 | } |
944 | |
945 | void LoadStoreOpt::initializeStoreMergeTargetInfo(unsigned AddrSpace) { |
946 | // Query the legalizer info to record what store types are legal. |
947 | // We record this because we don't want to bother trying to merge stores into |
948 | // illegal ones, which would just result in being split again. |
949 | |
950 | if (LegalStoreSizes.count(Val: AddrSpace)) { |
951 | assert(LegalStoreSizes[AddrSpace].any()); |
952 | return; // Already cached sizes for this address space. |
953 | } |
954 | |
955 | // Need to reserve at least MaxStoreSizeToForm + 1 bits. |
956 | BitVector LegalSizes(MaxStoreSizeToForm * 2); |
957 | const auto &LI = *MF->getSubtarget().getLegalizerInfo(); |
958 | const auto &DL = MF->getFunction().getDataLayout(); |
959 | Type *IRPtrTy = PointerType::get(C&: MF->getFunction().getContext(), AddressSpace: AddrSpace); |
960 | LLT PtrTy = getLLTForType(Ty&: *IRPtrTy, DL); |
961 | // We assume that we're not going to be generating any stores wider than |
962 | // MaxStoreSizeToForm bits for now. |
963 | for (unsigned Size = 2; Size <= MaxStoreSizeToForm; Size *= 2) { |
964 | LLT Ty = LLT::scalar(SizeInBits: Size); |
965 | SmallVector<LegalityQuery::MemDesc, 2> MemDescrs( |
966 | {{Ty, Ty.getSizeInBits(), AtomicOrdering::NotAtomic}}); |
967 | SmallVector<LLT> StoreTys({Ty, PtrTy}); |
968 | LegalityQuery Q(TargetOpcode::G_STORE, StoreTys, MemDescrs); |
969 | LegalizeActionStep ActionStep = LI.getAction(Query: Q); |
970 | if (ActionStep.Action == LegalizeActions::Legal) |
971 | LegalSizes.set(Size); |
972 | } |
973 | assert(LegalSizes.any() && "Expected some store sizes to be legal!" ); |
974 | LegalStoreSizes[AddrSpace] = LegalSizes; |
975 | } |
976 | |
977 | bool LoadStoreOpt::runOnMachineFunction(MachineFunction &MF) { |
978 | // If the ISel pipeline failed, do not bother running that pass. |
979 | if (MF.getProperties().hasProperty( |
980 | P: MachineFunctionProperties::Property::FailedISel)) |
981 | return false; |
982 | |
983 | LLVM_DEBUG(dbgs() << "Begin memory optimizations for: " << MF.getName() |
984 | << '\n'); |
985 | |
986 | init(MF); |
987 | bool Changed = false; |
988 | Changed |= mergeFunctionStores(MF); |
989 | |
990 | LegalStoreSizes.clear(); |
991 | return Changed; |
992 | } |
993 | |