1 | //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file implements the RegBankSelect class. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
13 | #include "llvm/ADT/PostOrderIterator.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
17 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
18 | #include "llvm/CodeGen/MachineBasicBlock.h" |
19 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
20 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
21 | #include "llvm/CodeGen/MachineFunction.h" |
22 | #include "llvm/CodeGen/MachineInstr.h" |
23 | #include "llvm/CodeGen/MachineOperand.h" |
24 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
25 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
26 | #include "llvm/CodeGen/RegisterBank.h" |
27 | #include "llvm/CodeGen/RegisterBankInfo.h" |
28 | #include "llvm/CodeGen/TargetOpcodes.h" |
29 | #include "llvm/CodeGen/TargetPassConfig.h" |
30 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
31 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
32 | #include "llvm/Config/llvm-config.h" |
33 | #include "llvm/IR/Function.h" |
34 | #include "llvm/InitializePasses.h" |
35 | #include "llvm/Pass.h" |
36 | #include "llvm/Support/BlockFrequency.h" |
37 | #include "llvm/Support/CommandLine.h" |
38 | #include "llvm/Support/Compiler.h" |
39 | #include "llvm/Support/Debug.h" |
40 | #include "llvm/Support/ErrorHandling.h" |
41 | #include "llvm/Support/raw_ostream.h" |
42 | #include <algorithm> |
43 | #include <cassert> |
44 | #include <cstdint> |
45 | #include <limits> |
46 | #include <memory> |
47 | #include <utility> |
48 | |
49 | #define DEBUG_TYPE "regbankselect" |
50 | |
51 | using namespace llvm; |
52 | |
53 | static cl::opt<RegBankSelect::Mode> RegBankSelectMode( |
54 | cl::desc("Mode of the RegBankSelect pass" ), cl::Hidden, cl::Optional, |
55 | cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast" , |
56 | "Run the Fast mode (default mapping)" ), |
57 | clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy" , |
58 | "Use the Greedy mode (best local mapping)" ))); |
59 | |
60 | char RegBankSelect::ID = 0; |
61 | |
62 | INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, |
63 | "Assign register bank of generic virtual registers" , |
64 | false, false); |
65 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
66 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
67 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
68 | INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, |
69 | "Assign register bank of generic virtual registers" , false, |
70 | false) |
71 | |
72 | RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode) |
73 | : MachineFunctionPass(PassID), OptMode(RunningMode) { |
74 | if (RegBankSelectMode.getNumOccurrences() != 0) { |
75 | OptMode = RegBankSelectMode; |
76 | if (RegBankSelectMode != RunningMode) |
77 | LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n" ); |
78 | } |
79 | } |
80 | |
81 | void RegBankSelect::init(MachineFunction &MF) { |
82 | RBI = MF.getSubtarget().getRegBankInfo(); |
83 | assert(RBI && "Cannot work without RegisterBankInfo" ); |
84 | MRI = &MF.getRegInfo(); |
85 | TRI = MF.getSubtarget().getRegisterInfo(); |
86 | TPC = &getAnalysis<TargetPassConfig>(); |
87 | if (OptMode != Mode::Fast) { |
88 | MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI(); |
89 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
90 | } else { |
91 | MBFI = nullptr; |
92 | MBPI = nullptr; |
93 | } |
94 | MIRBuilder.setMF(MF); |
95 | MORE = std::make_unique<MachineOptimizationRemarkEmitter>(args&: MF, args&: MBFI); |
96 | } |
97 | |
98 | void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { |
99 | if (OptMode != Mode::Fast) { |
100 | // We could preserve the information from these two analysis but |
101 | // the APIs do not allow to do so yet. |
102 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
103 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
104 | } |
105 | AU.addRequired<TargetPassConfig>(); |
106 | getSelectionDAGFallbackAnalysisUsage(AU); |
107 | MachineFunctionPass::getAnalysisUsage(AU); |
108 | } |
109 | |
110 | bool RegBankSelect::assignmentMatch( |
111 | Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, |
112 | bool &OnlyAssign) const { |
113 | // By default we assume we will have to repair something. |
114 | OnlyAssign = false; |
115 | // Each part of a break down needs to end up in a different register. |
116 | // In other word, Reg assignment does not match. |
117 | if (ValMapping.NumBreakDowns != 1) |
118 | return false; |
119 | |
120 | const RegisterBank *CurRegBank = RBI->getRegBank(Reg, MRI: *MRI, TRI: *TRI); |
121 | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
122 | // Reg is free of assignment, a simple assignment will make the |
123 | // register bank to match. |
124 | OnlyAssign = CurRegBank == nullptr; |
125 | LLVM_DEBUG(dbgs() << "Does assignment already match: " ; |
126 | if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none" ; |
127 | dbgs() << " against " ; |
128 | assert(DesiredRegBank && "The mapping must be valid" ); |
129 | dbgs() << *DesiredRegBank << '\n';); |
130 | return CurRegBank == DesiredRegBank; |
131 | } |
132 | |
133 | bool RegBankSelect::repairReg( |
134 | MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, |
135 | RegBankSelect::RepairingPlacement &RepairPt, |
136 | const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { |
137 | |
138 | assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && |
139 | "need new vreg for each breakdown" ); |
140 | |
141 | // An empty range of new register means no repairing. |
142 | assert(!NewVRegs.empty() && "We should not have to repair" ); |
143 | |
144 | MachineInstr *MI; |
145 | if (ValMapping.NumBreakDowns == 1) { |
146 | // Assume we are repairing a use and thus, the original reg will be |
147 | // the source of the repairing. |
148 | Register Src = MO.getReg(); |
149 | Register Dst = *NewVRegs.begin(); |
150 | |
151 | // If we repair a definition, swap the source and destination for |
152 | // the repairing. |
153 | if (MO.isDef()) |
154 | std::swap(a&: Src, b&: Dst); |
155 | |
156 | assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && |
157 | "We are about to create several defs for Dst" ); |
158 | |
159 | // Build the instruction used to repair, then clone it at the right |
160 | // places. Avoiding buildCopy bypasses the check that Src and Dst have the |
161 | // same types because the type is a placeholder when this function is called. |
162 | MI = MIRBuilder.buildInstrNoInsert(Opcode: TargetOpcode::COPY) |
163 | .addDef(RegNo: Dst) |
164 | .addUse(RegNo: Src); |
165 | LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' |
166 | << printRegClassOrBank(Src, *MRI, TRI) |
167 | << " to: " << printReg(Dst) << ':' |
168 | << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); |
169 | } else { |
170 | // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT |
171 | // sequence. |
172 | assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported" ); |
173 | |
174 | LLT RegTy = MRI->getType(Reg: MO.getReg()); |
175 | if (MO.isDef()) { |
176 | unsigned MergeOp; |
177 | if (RegTy.isVector()) { |
178 | if (ValMapping.NumBreakDowns == RegTy.getNumElements()) |
179 | MergeOp = TargetOpcode::G_BUILD_VECTOR; |
180 | else { |
181 | assert( |
182 | (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == |
183 | RegTy.getSizeInBits()) && |
184 | (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == |
185 | 0) && |
186 | "don't understand this value breakdown" ); |
187 | |
188 | MergeOp = TargetOpcode::G_CONCAT_VECTORS; |
189 | } |
190 | } else |
191 | MergeOp = TargetOpcode::G_MERGE_VALUES; |
192 | |
193 | auto MergeBuilder = |
194 | MIRBuilder.buildInstrNoInsert(Opcode: MergeOp) |
195 | .addDef(RegNo: MO.getReg()); |
196 | |
197 | for (Register SrcReg : NewVRegs) |
198 | MergeBuilder.addUse(RegNo: SrcReg); |
199 | |
200 | MI = MergeBuilder; |
201 | } else { |
202 | MachineInstrBuilder UnMergeBuilder = |
203 | MIRBuilder.buildInstrNoInsert(Opcode: TargetOpcode::G_UNMERGE_VALUES); |
204 | for (Register DefReg : NewVRegs) |
205 | UnMergeBuilder.addDef(RegNo: DefReg); |
206 | |
207 | UnMergeBuilder.addUse(RegNo: MO.getReg()); |
208 | MI = UnMergeBuilder; |
209 | } |
210 | } |
211 | |
212 | if (RepairPt.getNumInsertPoints() != 1) |
213 | report_fatal_error(reason: "need testcase to support multiple insertion points" ); |
214 | |
215 | // TODO: |
216 | // Check if MI is legal. if not, we need to legalize all the |
217 | // instructions we are going to insert. |
218 | std::unique_ptr<MachineInstr *[]> NewInstrs( |
219 | new MachineInstr *[RepairPt.getNumInsertPoints()]); |
220 | bool IsFirst = true; |
221 | unsigned Idx = 0; |
222 | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
223 | MachineInstr *CurMI; |
224 | if (IsFirst) |
225 | CurMI = MI; |
226 | else |
227 | CurMI = MIRBuilder.getMF().CloneMachineInstr(Orig: MI); |
228 | InsertPt->insert(MI&: *CurMI); |
229 | NewInstrs[Idx++] = CurMI; |
230 | IsFirst = false; |
231 | } |
232 | // TODO: |
233 | // Legalize NewInstrs if need be. |
234 | return true; |
235 | } |
236 | |
237 | uint64_t RegBankSelect::getRepairCost( |
238 | const MachineOperand &MO, |
239 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
240 | assert(MO.isReg() && "We should only repair register operand" ); |
241 | assert(ValMapping.NumBreakDowns && "Nothing to map??" ); |
242 | |
243 | bool = ValMapping.NumBreakDowns == 1; |
244 | const RegisterBank *CurRegBank = RBI->getRegBank(Reg: MO.getReg(), MRI: *MRI, TRI: *TRI); |
245 | // If MO does not have a register bank, we should have just been |
246 | // able to set one unless we have to break the value down. |
247 | assert(CurRegBank || MO.isDef()); |
248 | |
249 | // Def: Val <- NewDefs |
250 | // Same number of values: copy |
251 | // Different number: Val = build_sequence Defs1, Defs2, ... |
252 | // Use: NewSources <- Val. |
253 | // Same number of values: copy. |
254 | // Different number: Src1, Src2, ... = |
255 | // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... |
256 | // We should remember that this value is available somewhere else to |
257 | // coalesce the value. |
258 | |
259 | if (ValMapping.NumBreakDowns != 1) |
260 | return RBI->getBreakDownCost(ValMapping, CurBank: CurRegBank); |
261 | |
262 | if (IsSameNumOfValues) { |
263 | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
264 | // If we repair a definition, swap the source and destination for |
265 | // the repairing. |
266 | if (MO.isDef()) |
267 | std::swap(a&: CurRegBank, b&: DesiredRegBank); |
268 | // TODO: It may be possible to actually avoid the copy. |
269 | // If we repair something where the source is defined by a copy |
270 | // and the source of that copy is on the right bank, we can reuse |
271 | // it for free. |
272 | // E.g., |
273 | // RegToRepair<BankA> = copy AlternativeSrc<BankB> |
274 | // = op RegToRepair<BankA> |
275 | // We can simply propagate AlternativeSrc instead of copying RegToRepair |
276 | // into a new virtual register. |
277 | // We would also need to propagate this information in the |
278 | // repairing placement. |
279 | unsigned Cost = RBI->copyCost(A: *DesiredRegBank, B: *CurRegBank, |
280 | Size: RBI->getSizeInBits(Reg: MO.getReg(), MRI: *MRI, TRI: *TRI)); |
281 | // TODO: use a dedicated constant for ImpossibleCost. |
282 | if (Cost != std::numeric_limits<unsigned>::max()) |
283 | return Cost; |
284 | // Return the legalization cost of that repairing. |
285 | } |
286 | return std::numeric_limits<unsigned>::max(); |
287 | } |
288 | |
289 | const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( |
290 | MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, |
291 | SmallVectorImpl<RepairingPlacement> &RepairPts) { |
292 | assert(!PossibleMappings.empty() && |
293 | "Do not know how to map this instruction" ); |
294 | |
295 | const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; |
296 | MappingCost Cost = MappingCost::ImpossibleCost(); |
297 | SmallVector<RepairingPlacement, 4> LocalRepairPts; |
298 | for (const RegisterBankInfo::InstructionMapping *CurMapping : |
299 | PossibleMappings) { |
300 | MappingCost CurCost = |
301 | computeMapping(MI, InstrMapping: *CurMapping, RepairPts&: LocalRepairPts, BestCost: &Cost); |
302 | if (CurCost < Cost) { |
303 | LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); |
304 | Cost = CurCost; |
305 | BestMapping = CurMapping; |
306 | RepairPts.clear(); |
307 | for (RepairingPlacement &RepairPt : LocalRepairPts) |
308 | RepairPts.emplace_back(Args: std::move(RepairPt)); |
309 | } |
310 | } |
311 | if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { |
312 | // If none of the mapping worked that means they are all impossible. |
313 | // Thus, pick the first one and set an impossible repairing point. |
314 | // It will trigger the failed isel mode. |
315 | BestMapping = *PossibleMappings.begin(); |
316 | RepairPts.emplace_back( |
317 | Args: RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); |
318 | } else |
319 | assert(BestMapping && "No suitable mapping for instruction" ); |
320 | return *BestMapping; |
321 | } |
322 | |
323 | void RegBankSelect::tryAvoidingSplit( |
324 | RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, |
325 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
326 | const MachineInstr &MI = *MO.getParent(); |
327 | assert(RepairPt.hasSplit() && "We should not have to adjust for split" ); |
328 | // Splitting should only occur for PHIs or between terminators, |
329 | // because we only do local repairing. |
330 | assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?" ); |
331 | |
332 | assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && |
333 | "Repairing placement does not match operand" ); |
334 | |
335 | // If we need splitting for phis, that means it is because we |
336 | // could not find an insertion point before the terminators of |
337 | // the predecessor block for this argument. In other words, |
338 | // the input value is defined by one of the terminators. |
339 | assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?" ); |
340 | |
341 | // We split to repair the use of a phi or a terminator. |
342 | if (!MO.isDef()) { |
343 | if (MI.isTerminator()) { |
344 | assert(&MI != &(*MI.getParent()->getFirstTerminator()) && |
345 | "Need to split for the first terminator?!" ); |
346 | } else { |
347 | // For the PHI case, the split may not be actually required. |
348 | // In the copy case, a phi is already a copy on the incoming edge, |
349 | // therefore there is no need to split. |
350 | if (ValMapping.NumBreakDowns == 1) |
351 | // This is a already a copy, there is nothing to do. |
352 | RepairPt.switchTo(NewKind: RepairingPlacement::RepairingKind::Reassign); |
353 | } |
354 | return; |
355 | } |
356 | |
357 | // At this point, we need to repair a defintion of a terminator. |
358 | |
359 | // Technically we need to fix the def of MI on all outgoing |
360 | // edges of MI to keep the repairing local. In other words, we |
361 | // will create several definitions of the same register. This |
362 | // does not work for SSA unless that definition is a physical |
363 | // register. |
364 | // However, there are other cases where we can get away with |
365 | // that while still keeping the repairing local. |
366 | assert(MI.isTerminator() && MO.isDef() && |
367 | "This code is for the def of a terminator" ); |
368 | |
369 | // Since we use RPO traversal, if we need to repair a definition |
370 | // this means this definition could be: |
371 | // 1. Used by PHIs (i.e., this VReg has been visited as part of the |
372 | // uses of a phi.), or |
373 | // 2. Part of a target specific instruction (i.e., the target applied |
374 | // some register class constraints when creating the instruction.) |
375 | // If the constraints come for #2, the target said that another mapping |
376 | // is supported so we may just drop them. Indeed, if we do not change |
377 | // the number of registers holding that value, the uses will get fixed |
378 | // when we get to them. |
379 | // Uses in PHIs may have already been proceeded though. |
380 | // If the constraints come for #1, then, those are weak constraints and |
381 | // no actual uses may rely on them. However, the problem remains mainly |
382 | // the same as for #2. If the value stays in one register, we could |
383 | // just switch the register bank of the definition, but we would need to |
384 | // account for a repairing cost for each phi we silently change. |
385 | // |
386 | // In any case, if the value needs to be broken down into several |
387 | // registers, the repairing is not local anymore as we need to patch |
388 | // every uses to rebuild the value in just one register. |
389 | // |
390 | // To summarize: |
391 | // - If the value is in a physical register, we can do the split and |
392 | // fix locally. |
393 | // Otherwise if the value is in a virtual register: |
394 | // - If the value remains in one register, we do not have to split |
395 | // just switching the register bank would do, but we need to account |
396 | // in the repairing cost all the phi we changed. |
397 | // - If the value spans several registers, then we cannot do a local |
398 | // repairing. |
399 | |
400 | // Check if this is a physical or virtual register. |
401 | Register Reg = MO.getReg(); |
402 | if (Reg.isPhysical()) { |
403 | // We are going to split every outgoing edges. |
404 | // Check that this is possible. |
405 | // FIXME: The machine representation is currently broken |
406 | // since it also several terminators in one basic block. |
407 | // Because of that we would technically need a way to get |
408 | // the targets of just one terminator to know which edges |
409 | // we have to split. |
410 | // Assert that we do not hit the ill-formed representation. |
411 | |
412 | // If there are other terminators before that one, some of |
413 | // the outgoing edges may not be dominated by this definition. |
414 | assert(&MI == &(*MI.getParent()->getFirstTerminator()) && |
415 | "Do not know which outgoing edges are relevant" ); |
416 | const MachineInstr *Next = MI.getNextNode(); |
417 | assert((!Next || Next->isUnconditionalBranch()) && |
418 | "Do not know where each terminator ends up" ); |
419 | if (Next) |
420 | // If the next terminator uses Reg, this means we have |
421 | // to split right after MI and thus we need a way to ask |
422 | // which outgoing edges are affected. |
423 | assert(!Next->readsRegister(Reg, /*TRI=*/nullptr) && |
424 | "Need to split between terminators" ); |
425 | // We will split all the edges and repair there. |
426 | } else { |
427 | // This is a virtual register defined by a terminator. |
428 | if (ValMapping.NumBreakDowns == 1) { |
429 | // There is nothing to repair, but we may actually lie on |
430 | // the repairing cost because of the PHIs already proceeded |
431 | // as already stated. |
432 | // Though the code will be correct. |
433 | assert(false && "Repairing cost may not be accurate" ); |
434 | } else { |
435 | // We need to do non-local repairing. Basically, patch all |
436 | // the uses (i.e., phis) that we already proceeded. |
437 | // For now, just say this mapping is not possible. |
438 | RepairPt.switchTo(NewKind: RepairingPlacement::RepairingKind::Impossible); |
439 | } |
440 | } |
441 | } |
442 | |
443 | RegBankSelect::MappingCost RegBankSelect::computeMapping( |
444 | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
445 | SmallVectorImpl<RepairingPlacement> &RepairPts, |
446 | const RegBankSelect::MappingCost *BestCost) { |
447 | assert((MBFI || !BestCost) && "Costs comparison require MBFI" ); |
448 | |
449 | if (!InstrMapping.isValid()) |
450 | return MappingCost::ImpossibleCost(); |
451 | |
452 | // If mapped with InstrMapping, MI will have the recorded cost. |
453 | MappingCost Cost(MBFI ? MBFI->getBlockFreq(MBB: MI.getParent()) |
454 | : BlockFrequency(1)); |
455 | bool Saturated = Cost.addLocalCost(Cost: InstrMapping.getCost()); |
456 | assert(!Saturated && "Possible mapping saturated the cost" ); |
457 | LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); |
458 | LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); |
459 | RepairPts.clear(); |
460 | if (BestCost && Cost > *BestCost) { |
461 | LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n" ); |
462 | return Cost; |
463 | } |
464 | const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
465 | |
466 | // Moreover, to realize this mapping, the register bank of each operand must |
467 | // match this mapping. In other words, we may need to locally reassign the |
468 | // register banks. Account for that repairing cost as well. |
469 | // In this context, local means in the surrounding of MI. |
470 | for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); |
471 | OpIdx != EndOpIdx; ++OpIdx) { |
472 | const MachineOperand &MO = MI.getOperand(i: OpIdx); |
473 | if (!MO.isReg()) |
474 | continue; |
475 | Register Reg = MO.getReg(); |
476 | if (!Reg) |
477 | continue; |
478 | LLT Ty = MRI.getType(Reg); |
479 | if (!Ty.isValid()) |
480 | continue; |
481 | |
482 | LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); |
483 | const RegisterBankInfo::ValueMapping &ValMapping = |
484 | InstrMapping.getOperandMapping(i: OpIdx); |
485 | // If Reg is already properly mapped, this is free. |
486 | bool Assign; |
487 | if (assignmentMatch(Reg, ValMapping, OnlyAssign&: Assign)) { |
488 | LLVM_DEBUG(dbgs() << "=> is free (match).\n" ); |
489 | continue; |
490 | } |
491 | if (Assign) { |
492 | LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n" ); |
493 | RepairPts.emplace_back(Args: RepairingPlacement(MI, OpIdx, *TRI, *this, |
494 | RepairingPlacement::Reassign)); |
495 | continue; |
496 | } |
497 | |
498 | // Find the insertion point for the repairing code. |
499 | RepairPts.emplace_back( |
500 | Args: RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); |
501 | RepairingPlacement &RepairPt = RepairPts.back(); |
502 | |
503 | // If we need to split a basic block to materialize this insertion point, |
504 | // we may give a higher cost to this mapping. |
505 | // Nevertheless, we may get away with the split, so try that first. |
506 | if (RepairPt.hasSplit()) |
507 | tryAvoidingSplit(RepairPt, MO, ValMapping); |
508 | |
509 | // Check that the materialization of the repairing is possible. |
510 | if (!RepairPt.canMaterialize()) { |
511 | LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n" ); |
512 | return MappingCost::ImpossibleCost(); |
513 | } |
514 | |
515 | // Account for the split cost and repair cost. |
516 | // Unless the cost is already saturated or we do not care about the cost. |
517 | if (!BestCost || Saturated) |
518 | continue; |
519 | |
520 | // To get accurate information we need MBFI and MBPI. |
521 | // Thus, if we end up here this information should be here. |
522 | assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI" ); |
523 | |
524 | // FIXME: We will have to rework the repairing cost model. |
525 | // The repairing cost depends on the register bank that MO has. |
526 | // However, when we break down the value into different values, |
527 | // MO may not have a register bank while still needing repairing. |
528 | // For the fast mode, we don't compute the cost so that is fine, |
529 | // but still for the repairing code, we will have to make a choice. |
530 | // For the greedy mode, we should choose greedily what is the best |
531 | // choice based on the next use of MO. |
532 | |
533 | // Sums up the repairing cost of MO at each insertion point. |
534 | uint64_t RepairCost = getRepairCost(MO, ValMapping); |
535 | |
536 | // This is an impossible to repair cost. |
537 | if (RepairCost == std::numeric_limits<unsigned>::max()) |
538 | return MappingCost::ImpossibleCost(); |
539 | |
540 | // Bias used for splitting: 5%. |
541 | const uint64_t PercentageForBias = 5; |
542 | uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; |
543 | // We should not need more than a couple of instructions to repair |
544 | // an assignment. In other words, the computation should not |
545 | // overflow because the repairing cost is free of basic block |
546 | // frequency. |
547 | assert(((RepairCost < RepairCost * PercentageForBias) && |
548 | (RepairCost * PercentageForBias < |
549 | RepairCost * PercentageForBias + 99)) && |
550 | "Repairing involves more than a billion of instructions?!" ); |
551 | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
552 | assert(InsertPt->canMaterialize() && "We should not have made it here" ); |
553 | // We will applied some basic block frequency and those uses uint64_t. |
554 | if (!InsertPt->isSplit()) |
555 | Saturated = Cost.addLocalCost(Cost: RepairCost); |
556 | else { |
557 | uint64_t CostForInsertPt = RepairCost; |
558 | // Again we shouldn't overflow here givent that |
559 | // CostForInsertPt is frequency free at this point. |
560 | assert(CostForInsertPt + Bias > CostForInsertPt && |
561 | "Repairing + split bias overflows" ); |
562 | CostForInsertPt += Bias; |
563 | uint64_t PtCost = InsertPt->frequency(P: *this) * CostForInsertPt; |
564 | // Check if we just overflowed. |
565 | if ((Saturated = PtCost < CostForInsertPt)) |
566 | Cost.saturate(); |
567 | else |
568 | Saturated = Cost.addNonLocalCost(Cost: PtCost); |
569 | } |
570 | |
571 | // Stop looking into what it takes to repair, this is already |
572 | // too expensive. |
573 | if (BestCost && Cost > *BestCost) { |
574 | LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n" ); |
575 | return Cost; |
576 | } |
577 | |
578 | // No need to accumulate more cost information. |
579 | // We need to still gather the repairing information though. |
580 | if (Saturated) |
581 | break; |
582 | } |
583 | } |
584 | LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n" ); |
585 | return Cost; |
586 | } |
587 | |
588 | bool RegBankSelect::applyMapping( |
589 | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
590 | SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { |
591 | // OpdMapper will hold all the information needed for the rewriting. |
592 | RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); |
593 | |
594 | // First, place the repairing code. |
595 | for (RepairingPlacement &RepairPt : RepairPts) { |
596 | if (!RepairPt.canMaterialize() || |
597 | RepairPt.getKind() == RepairingPlacement::Impossible) |
598 | return false; |
599 | assert(RepairPt.getKind() != RepairingPlacement::None && |
600 | "This should not make its way in the list" ); |
601 | unsigned OpIdx = RepairPt.getOpIdx(); |
602 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
603 | const RegisterBankInfo::ValueMapping &ValMapping = |
604 | InstrMapping.getOperandMapping(i: OpIdx); |
605 | Register Reg = MO.getReg(); |
606 | |
607 | switch (RepairPt.getKind()) { |
608 | case RepairingPlacement::Reassign: |
609 | assert(ValMapping.NumBreakDowns == 1 && |
610 | "Reassignment should only be for simple mapping" ); |
611 | MRI->setRegBank(Reg, RegBank: *ValMapping.BreakDown[0].RegBank); |
612 | break; |
613 | case RepairingPlacement::Insert: |
614 | // Don't insert additional instruction for debug instruction. |
615 | if (MI.isDebugInstr()) |
616 | break; |
617 | OpdMapper.createVRegs(OpIdx); |
618 | if (!repairReg(MO, ValMapping, RepairPt, NewVRegs: OpdMapper.getVRegs(OpIdx))) |
619 | return false; |
620 | break; |
621 | default: |
622 | llvm_unreachable("Other kind should not happen" ); |
623 | } |
624 | } |
625 | |
626 | // Second, rewrite the instruction. |
627 | LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); |
628 | RBI->applyMapping(Builder&: MIRBuilder, OpdMapper); |
629 | |
630 | return true; |
631 | } |
632 | |
633 | bool RegBankSelect::assignInstr(MachineInstr &MI) { |
634 | LLVM_DEBUG(dbgs() << "Assign: " << MI); |
635 | |
636 | unsigned Opc = MI.getOpcode(); |
637 | if (isPreISelGenericOptimizationHint(Opcode: Opc)) { |
638 | assert((Opc == TargetOpcode::G_ASSERT_ZEXT || |
639 | Opc == TargetOpcode::G_ASSERT_SEXT || |
640 | Opc == TargetOpcode::G_ASSERT_ALIGN) && |
641 | "Unexpected hint opcode!" ); |
642 | // The only correct mapping for these is to always use the source register |
643 | // bank. |
644 | const RegisterBank *RB = |
645 | RBI->getRegBank(Reg: MI.getOperand(i: 1).getReg(), MRI: *MRI, TRI: *TRI); |
646 | // We can assume every instruction above this one has a selected register |
647 | // bank. |
648 | assert(RB && "Expected source register to have a register bank?" ); |
649 | LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n" ); |
650 | MRI->setRegBank(Reg: MI.getOperand(i: 0).getReg(), RegBank: *RB); |
651 | return true; |
652 | } |
653 | |
654 | // Remember the repairing placement for all the operands. |
655 | SmallVector<RepairingPlacement, 4> RepairPts; |
656 | |
657 | const RegisterBankInfo::InstructionMapping *BestMapping; |
658 | if (OptMode == RegBankSelect::Mode::Fast) { |
659 | BestMapping = &RBI->getInstrMapping(MI); |
660 | MappingCost DefaultCost = computeMapping(MI, InstrMapping: *BestMapping, RepairPts); |
661 | (void)DefaultCost; |
662 | if (DefaultCost == MappingCost::ImpossibleCost()) |
663 | return false; |
664 | } else { |
665 | RegisterBankInfo::InstructionMappings PossibleMappings = |
666 | RBI->getInstrPossibleMappings(MI); |
667 | if (PossibleMappings.empty()) |
668 | return false; |
669 | BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); |
670 | } |
671 | // Make sure the mapping is valid for MI. |
672 | assert(BestMapping->verify(MI) && "Invalid instruction mapping" ); |
673 | |
674 | LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); |
675 | |
676 | // After this call, MI may not be valid anymore. |
677 | // Do not use it. |
678 | return applyMapping(MI, InstrMapping: *BestMapping, RepairPts); |
679 | } |
680 | |
681 | bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { |
682 | // Walk the function and assign register banks to all operands. |
683 | // Use a RPOT to make sure all registers are assigned before we choose |
684 | // the best mapping of the current instruction. |
685 | ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); |
686 | for (MachineBasicBlock *MBB : RPOT) { |
687 | // Set a sensible insertion point so that subsequent calls to |
688 | // MIRBuilder. |
689 | MIRBuilder.setMBB(*MBB); |
690 | SmallVector<MachineInstr *> WorkList( |
691 | make_pointer_range(Range: reverse(C: MBB->instrs()))); |
692 | |
693 | while (!WorkList.empty()) { |
694 | MachineInstr &MI = *WorkList.pop_back_val(); |
695 | |
696 | // Ignore target-specific post-isel instructions: they should use proper |
697 | // regclasses. |
698 | if (isTargetSpecificOpcode(Opcode: MI.getOpcode()) && !MI.isPreISelOpcode()) |
699 | continue; |
700 | |
701 | // Ignore inline asm instructions: they should use physical |
702 | // registers/regclasses |
703 | if (MI.isInlineAsm()) |
704 | continue; |
705 | |
706 | // Ignore IMPLICIT_DEF which must have a regclass. |
707 | if (MI.isImplicitDef()) |
708 | continue; |
709 | |
710 | if (!assignInstr(MI)) { |
711 | reportGISelFailure(MF, TPC: *TPC, MORE&: *MORE, PassName: "gisel-regbankselect" , |
712 | Msg: "unable to map instruction" , MI); |
713 | return false; |
714 | } |
715 | } |
716 | } |
717 | |
718 | return true; |
719 | } |
720 | |
721 | bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { |
722 | #ifndef NDEBUG |
723 | if (!DisableGISelLegalityCheck) { |
724 | if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { |
725 | reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect" , |
726 | "instruction is not legal" , *MI); |
727 | return false; |
728 | } |
729 | } |
730 | #endif |
731 | return true; |
732 | } |
733 | |
734 | bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { |
735 | // If the ISel pipeline failed, do not bother running that pass. |
736 | if (MF.getProperties().hasProperty( |
737 | P: MachineFunctionProperties::Property::FailedISel)) |
738 | return false; |
739 | |
740 | LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); |
741 | const Function &F = MF.getFunction(); |
742 | Mode SaveOptMode = OptMode; |
743 | if (F.hasOptNone()) |
744 | OptMode = Mode::Fast; |
745 | init(MF); |
746 | |
747 | #ifndef NDEBUG |
748 | if (!checkFunctionIsLegal(MF)) |
749 | return false; |
750 | #endif |
751 | |
752 | assignRegisterBanks(MF); |
753 | |
754 | OptMode = SaveOptMode; |
755 | return false; |
756 | } |
757 | |
758 | //------------------------------------------------------------------------------ |
759 | // Helper Classes Implementation |
760 | //------------------------------------------------------------------------------ |
761 | RegBankSelect::RepairingPlacement::RepairingPlacement( |
762 | MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, |
763 | RepairingPlacement::RepairingKind Kind) |
764 | // Default is, we are going to insert code to repair OpIdx. |
765 | : Kind(Kind), OpIdx(OpIdx), |
766 | CanMaterialize(Kind != RepairingKind::Impossible), P(P) { |
767 | const MachineOperand &MO = MI.getOperand(i: OpIdx); |
768 | assert(MO.isReg() && "Trying to repair a non-reg operand" ); |
769 | |
770 | if (Kind != RepairingKind::Insert) |
771 | return; |
772 | |
773 | // Repairings for definitions happen after MI, uses happen before. |
774 | bool Before = !MO.isDef(); |
775 | |
776 | // Check if we are done with MI. |
777 | if (!MI.isPHI() && !MI.isTerminator()) { |
778 | addInsertPoint(MI, Before); |
779 | // We are done with the initialization. |
780 | return; |
781 | } |
782 | |
783 | // Now, look for the special cases. |
784 | if (MI.isPHI()) { |
785 | // - PHI must be the first instructions: |
786 | // * Before, we have to split the related incoming edge. |
787 | // * After, move the insertion point past the last phi. |
788 | if (!Before) { |
789 | MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); |
790 | if (It != MI.getParent()->end()) |
791 | addInsertPoint(MI&: *It, /*Before*/ true); |
792 | else |
793 | addInsertPoint(MI&: *(--It), /*Before*/ false); |
794 | return; |
795 | } |
796 | // We repair a use of a phi, we may need to split the related edge. |
797 | MachineBasicBlock &Pred = *MI.getOperand(i: OpIdx + 1).getMBB(); |
798 | // Check if we can move the insertion point prior to the |
799 | // terminators of the predecessor. |
800 | Register Reg = MO.getReg(); |
801 | MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); |
802 | for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) |
803 | if (It->modifiesRegister(Reg, TRI: &TRI)) { |
804 | // We cannot hoist the repairing code in the predecessor. |
805 | // Split the edge. |
806 | addInsertPoint(Src&: Pred, Dst&: *MI.getParent()); |
807 | return; |
808 | } |
809 | // At this point, we can insert in Pred. |
810 | |
811 | // - If It is invalid, Pred is empty and we can insert in Pred |
812 | // wherever we want. |
813 | // - If It is valid, It is the first non-terminator, insert after It. |
814 | if (It == Pred.end()) |
815 | addInsertPoint(MBB&: Pred, /*Beginning*/ false); |
816 | else |
817 | addInsertPoint(MI&: *It, /*Before*/ false); |
818 | } else { |
819 | // - Terminators must be the last instructions: |
820 | // * Before, move the insert point before the first terminator. |
821 | // * After, we have to split the outcoming edges. |
822 | if (Before) { |
823 | // Check whether Reg is defined by any terminator. |
824 | MachineBasicBlock::reverse_iterator It = MI; |
825 | auto REnd = MI.getParent()->rend(); |
826 | |
827 | for (; It != REnd && It->isTerminator(); ++It) { |
828 | assert(!It->modifiesRegister(MO.getReg(), &TRI) && |
829 | "copy insertion in middle of terminators not handled" ); |
830 | } |
831 | |
832 | if (It == REnd) { |
833 | addInsertPoint(MI&: *MI.getParent()->begin(), Before: true); |
834 | return; |
835 | } |
836 | |
837 | // We are sure to be right before the first terminator. |
838 | addInsertPoint(MI&: *It, /*Before*/ false); |
839 | return; |
840 | } |
841 | // Make sure Reg is not redefined by other terminators, otherwise |
842 | // we do not know how to split. |
843 | for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); |
844 | ++It != End;) |
845 | // The machine verifier should reject this kind of code. |
846 | assert(It->modifiesRegister(MO.getReg(), &TRI) && |
847 | "Do not know where to split" ); |
848 | // Split each outcoming edges. |
849 | MachineBasicBlock &Src = *MI.getParent(); |
850 | for (auto &Succ : Src.successors()) |
851 | addInsertPoint(MBB&: Src, Beginning: Succ); |
852 | } |
853 | } |
854 | |
855 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, |
856 | bool Before) { |
857 | addInsertPoint(Point&: *new InstrInsertPoint(MI, Before)); |
858 | } |
859 | |
860 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, |
861 | bool Beginning) { |
862 | addInsertPoint(Point&: *new MBBInsertPoint(MBB, Beginning)); |
863 | } |
864 | |
865 | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, |
866 | MachineBasicBlock &Dst) { |
867 | addInsertPoint(Point&: *new EdgeInsertPoint(Src, Dst, P)); |
868 | } |
869 | |
870 | void RegBankSelect::RepairingPlacement::addInsertPoint( |
871 | RegBankSelect::InsertPoint &Point) { |
872 | CanMaterialize &= Point.canMaterialize(); |
873 | HasSplit |= Point.isSplit(); |
874 | InsertPoints.emplace_back(Args: &Point); |
875 | } |
876 | |
877 | RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, |
878 | bool Before) |
879 | : Instr(Instr), Before(Before) { |
880 | // Since we do not support splitting, we do not need to update |
881 | // liveness and such, so do not do anything with P. |
882 | assert((!Before || !Instr.isPHI()) && |
883 | "Splitting before phis requires more points" ); |
884 | assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && |
885 | "Splitting between phis does not make sense" ); |
886 | } |
887 | |
888 | void RegBankSelect::InstrInsertPoint::materialize() { |
889 | if (isSplit()) { |
890 | // Slice and return the beginning of the new block. |
891 | // If we need to split between the terminators, we theoritically |
892 | // need to know where the first and second set of terminators end |
893 | // to update the successors properly. |
894 | // Now, in pratice, we should have a maximum of 2 branch |
895 | // instructions; one conditional and one unconditional. Therefore |
896 | // we know how to update the successor by looking at the target of |
897 | // the unconditional branch. |
898 | // If we end up splitting at some point, then, we should update |
899 | // the liveness information and such. I.e., we would need to |
900 | // access P here. |
901 | // The machine verifier should actually make sure such cases |
902 | // cannot happen. |
903 | llvm_unreachable("Not yet implemented" ); |
904 | } |
905 | // Otherwise the insertion point is just the current or next |
906 | // instruction depending on Before. I.e., there is nothing to do |
907 | // here. |
908 | } |
909 | |
910 | bool RegBankSelect::InstrInsertPoint::isSplit() const { |
911 | // If the insertion point is after a terminator, we need to split. |
912 | if (!Before) |
913 | return Instr.isTerminator(); |
914 | // If we insert before an instruction that is after a terminator, |
915 | // we are still after a terminator. |
916 | return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); |
917 | } |
918 | |
919 | uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { |
920 | // Even if we need to split, because we insert between terminators, |
921 | // this split has actually the same frequency as the instruction. |
922 | const auto *MBFIWrapper = |
923 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
924 | if (!MBFIWrapper) |
925 | return 1; |
926 | return MBFIWrapper->getMBFI().getBlockFreq(MBB: Instr.getParent()).getFrequency(); |
927 | } |
928 | |
929 | uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { |
930 | const auto *MBFIWrapper = |
931 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
932 | if (!MBFIWrapper) |
933 | return 1; |
934 | return MBFIWrapper->getMBFI().getBlockFreq(MBB: &MBB).getFrequency(); |
935 | } |
936 | |
937 | void RegBankSelect::EdgeInsertPoint::materialize() { |
938 | // If we end up repairing twice at the same place before materializing the |
939 | // insertion point, we may think we have to split an edge twice. |
940 | // We should have a factory for the insert point such that identical points |
941 | // are the same instance. |
942 | assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && |
943 | "This point has already been split" ); |
944 | MachineBasicBlock *NewBB = Src.SplitCriticalEdge(Succ: DstOrSplit, P); |
945 | assert(NewBB && "Invalid call to materialize" ); |
946 | // We reuse the destination block to hold the information of the new block. |
947 | DstOrSplit = NewBB; |
948 | } |
949 | |
950 | uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { |
951 | const auto *MBFIWrapper = |
952 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfoWrapperPass>(); |
953 | if (!MBFIWrapper) |
954 | return 1; |
955 | const auto *MBFI = &MBFIWrapper->getMBFI(); |
956 | if (WasMaterialized) |
957 | return MBFI->getBlockFreq(MBB: DstOrSplit).getFrequency(); |
958 | |
959 | auto *MBPIWrapper = |
960 | P.getAnalysisIfAvailable<MachineBranchProbabilityInfoWrapperPass>(); |
961 | const MachineBranchProbabilityInfo *MBPI = |
962 | MBPIWrapper ? &MBPIWrapper->getMBPI() : nullptr; |
963 | if (!MBPI) |
964 | return 1; |
965 | // The basic block will be on the edge. |
966 | return (MBFI->getBlockFreq(MBB: &Src) * MBPI->getEdgeProbability(Src: &Src, Dst: DstOrSplit)) |
967 | .getFrequency(); |
968 | } |
969 | |
970 | bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { |
971 | // If this is not a critical edge, we should not have used this insert |
972 | // point. Indeed, either the successor or the predecessor should |
973 | // have do. |
974 | assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && |
975 | "Edge is not critical" ); |
976 | return Src.canSplitCriticalEdge(Succ: DstOrSplit); |
977 | } |
978 | |
979 | RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq) |
980 | : LocalFreq(LocalFreq.getFrequency()) {} |
981 | |
982 | bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { |
983 | // Check if this overflows. |
984 | if (LocalCost + Cost < LocalCost) { |
985 | saturate(); |
986 | return true; |
987 | } |
988 | LocalCost += Cost; |
989 | return isSaturated(); |
990 | } |
991 | |
992 | bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { |
993 | // Check if this overflows. |
994 | if (NonLocalCost + Cost < NonLocalCost) { |
995 | saturate(); |
996 | return true; |
997 | } |
998 | NonLocalCost += Cost; |
999 | return isSaturated(); |
1000 | } |
1001 | |
1002 | bool RegBankSelect::MappingCost::isSaturated() const { |
1003 | return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && |
1004 | LocalFreq == UINT64_MAX; |
1005 | } |
1006 | |
1007 | void RegBankSelect::MappingCost::saturate() { |
1008 | *this = ImpossibleCost(); |
1009 | --LocalCost; |
1010 | } |
1011 | |
1012 | RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { |
1013 | return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); |
1014 | } |
1015 | |
1016 | bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { |
1017 | // Sort out the easy cases. |
1018 | if (*this == Cost) |
1019 | return false; |
1020 | // If one is impossible to realize the other is cheaper unless it is |
1021 | // impossible as well. |
1022 | if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) |
1023 | return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); |
1024 | // If one is saturated the other is cheaper, unless it is saturated |
1025 | // as well. |
1026 | if (isSaturated() || Cost.isSaturated()) |
1027 | return isSaturated() < Cost.isSaturated(); |
1028 | // At this point we know both costs hold sensible values. |
1029 | |
1030 | // If both values have a different base frequency, there is no much |
1031 | // we can do but to scale everything. |
1032 | // However, if they have the same base frequency we can avoid making |
1033 | // complicated computation. |
1034 | uint64_t ThisLocalAdjust; |
1035 | uint64_t OtherLocalAdjust; |
1036 | if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { |
1037 | |
1038 | // At this point, we know the local costs are comparable. |
1039 | // Do the case that do not involve potential overflow first. |
1040 | if (NonLocalCost == Cost.NonLocalCost) |
1041 | // Since the non-local costs do not discriminate on the result, |
1042 | // just compare the local costs. |
1043 | return LocalCost < Cost.LocalCost; |
1044 | |
1045 | // The base costs are comparable so we may only keep the relative |
1046 | // value to increase our chances of avoiding overflows. |
1047 | ThisLocalAdjust = 0; |
1048 | OtherLocalAdjust = 0; |
1049 | if (LocalCost < Cost.LocalCost) |
1050 | OtherLocalAdjust = Cost.LocalCost - LocalCost; |
1051 | else |
1052 | ThisLocalAdjust = LocalCost - Cost.LocalCost; |
1053 | } else { |
1054 | ThisLocalAdjust = LocalCost; |
1055 | OtherLocalAdjust = Cost.LocalCost; |
1056 | } |
1057 | |
1058 | // The non-local costs are comparable, just keep the relative value. |
1059 | uint64_t ThisNonLocalAdjust = 0; |
1060 | uint64_t OtherNonLocalAdjust = 0; |
1061 | if (NonLocalCost < Cost.NonLocalCost) |
1062 | OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; |
1063 | else |
1064 | ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; |
1065 | // Scale everything to make them comparable. |
1066 | uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; |
1067 | // Check for overflow on that operation. |
1068 | bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || |
1069 | ThisScaledCost < LocalFreq); |
1070 | uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; |
1071 | // Check for overflow on the last operation. |
1072 | bool OtherOverflows = |
1073 | OtherLocalAdjust && |
1074 | (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); |
1075 | // Add the non-local costs. |
1076 | ThisOverflows |= ThisNonLocalAdjust && |
1077 | ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; |
1078 | ThisScaledCost += ThisNonLocalAdjust; |
1079 | OtherOverflows |= OtherNonLocalAdjust && |
1080 | OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; |
1081 | OtherScaledCost += OtherNonLocalAdjust; |
1082 | // If both overflows, we cannot compare without additional |
1083 | // precision, e.g., APInt. Just give up on that case. |
1084 | if (ThisOverflows && OtherOverflows) |
1085 | return false; |
1086 | // If one overflows but not the other, we can still compare. |
1087 | if (ThisOverflows || OtherOverflows) |
1088 | return ThisOverflows < OtherOverflows; |
1089 | // Otherwise, just compare the values. |
1090 | return ThisScaledCost < OtherScaledCost; |
1091 | } |
1092 | |
1093 | bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { |
1094 | return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && |
1095 | LocalFreq == Cost.LocalFreq; |
1096 | } |
1097 | |
1098 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1099 | LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { |
1100 | print(dbgs()); |
1101 | dbgs() << '\n'; |
1102 | } |
1103 | #endif |
1104 | |
1105 | void RegBankSelect::MappingCost::print(raw_ostream &OS) const { |
1106 | if (*this == ImpossibleCost()) { |
1107 | OS << "impossible" ; |
1108 | return; |
1109 | } |
1110 | if (isSaturated()) { |
1111 | OS << "saturated" ; |
1112 | return; |
1113 | } |
1114 | OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; |
1115 | } |
1116 | |