1 | //===- IfConversion.cpp - Machine code if conversion pass -----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the machine instruction level if-conversion pass, which |
10 | // tries to convert conditional branches into predicated instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "BranchFolding.h" |
15 | #include "llvm/ADT/STLExtras.h" |
16 | #include "llvm/ADT/ScopeExit.h" |
17 | #include "llvm/ADT/SmallSet.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/SparseSet.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/ADT/iterator_range.h" |
22 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
23 | #include "llvm/CodeGen/LivePhysRegs.h" |
24 | #include "llvm/CodeGen/MBFIWrapper.h" |
25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
27 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
28 | #include "llvm/CodeGen/MachineFunction.h" |
29 | #include "llvm/CodeGen/MachineFunctionPass.h" |
30 | #include "llvm/CodeGen/MachineInstr.h" |
31 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
32 | #include "llvm/CodeGen/MachineOperand.h" |
33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
34 | #include "llvm/CodeGen/TargetInstrInfo.h" |
35 | #include "llvm/CodeGen/TargetLowering.h" |
36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetSchedule.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/IR/DebugLoc.h" |
40 | #include "llvm/InitializePasses.h" |
41 | #include "llvm/MC/MCRegisterInfo.h" |
42 | #include "llvm/Pass.h" |
43 | #include "llvm/Support/BranchProbability.h" |
44 | #include "llvm/Support/CommandLine.h" |
45 | #include "llvm/Support/Debug.h" |
46 | #include "llvm/Support/ErrorHandling.h" |
47 | #include "llvm/Support/raw_ostream.h" |
48 | #include <algorithm> |
49 | #include <cassert> |
50 | #include <functional> |
51 | #include <iterator> |
52 | #include <memory> |
53 | #include <utility> |
54 | #include <vector> |
55 | |
56 | using namespace llvm; |
57 | |
58 | #define DEBUG_TYPE "if-converter" |
59 | |
60 | // Hidden options for help debugging. |
61 | static cl::opt<int> IfCvtFnStart("ifcvt-fn-start" , cl::init(Val: -1), cl::Hidden); |
62 | static cl::opt<int> IfCvtFnStop("ifcvt-fn-stop" , cl::init(Val: -1), cl::Hidden); |
63 | static cl::opt<int> IfCvtLimit("ifcvt-limit" , cl::init(Val: -1), cl::Hidden); |
64 | static cl::opt<bool> DisableSimple("disable-ifcvt-simple" , |
65 | cl::init(Val: false), cl::Hidden); |
66 | static cl::opt<bool> DisableSimpleF("disable-ifcvt-simple-false" , |
67 | cl::init(Val: false), cl::Hidden); |
68 | static cl::opt<bool> DisableTriangle("disable-ifcvt-triangle" , |
69 | cl::init(Val: false), cl::Hidden); |
70 | static cl::opt<bool> DisableTriangleR("disable-ifcvt-triangle-rev" , |
71 | cl::init(Val: false), cl::Hidden); |
72 | static cl::opt<bool> DisableTriangleF("disable-ifcvt-triangle-false" , |
73 | cl::init(Val: false), cl::Hidden); |
74 | static cl::opt<bool> DisableDiamond("disable-ifcvt-diamond" , |
75 | cl::init(Val: false), cl::Hidden); |
76 | static cl::opt<bool> DisableForkedDiamond("disable-ifcvt-forked-diamond" , |
77 | cl::init(Val: false), cl::Hidden); |
78 | static cl::opt<bool> IfCvtBranchFold("ifcvt-branch-fold" , |
79 | cl::init(Val: true), cl::Hidden); |
80 | |
81 | STATISTIC(NumSimple, "Number of simple if-conversions performed" ); |
82 | STATISTIC(NumSimpleFalse, "Number of simple (F) if-conversions performed" ); |
83 | STATISTIC(NumTriangle, "Number of triangle if-conversions performed" ); |
84 | STATISTIC(NumTriangleRev, "Number of triangle (R) if-conversions performed" ); |
85 | STATISTIC(NumTriangleFalse,"Number of triangle (F) if-conversions performed" ); |
86 | STATISTIC(NumTriangleFRev, "Number of triangle (F/R) if-conversions performed" ); |
87 | STATISTIC(NumDiamonds, "Number of diamond if-conversions performed" ); |
88 | STATISTIC(NumForkedDiamonds, "Number of forked-diamond if-conversions performed" ); |
89 | STATISTIC(NumIfConvBBs, "Number of if-converted blocks" ); |
90 | STATISTIC(NumDupBBs, "Number of duplicated blocks" ); |
91 | STATISTIC(NumUnpred, "Number of true blocks of diamonds unpredicated" ); |
92 | |
93 | namespace { |
94 | |
95 | class IfConverter : public MachineFunctionPass { |
96 | enum IfcvtKind { |
97 | ICNotClassfied, // BB data valid, but not classified. |
98 | ICSimpleFalse, // Same as ICSimple, but on the false path. |
99 | ICSimple, // BB is entry of an one split, no rejoin sub-CFG. |
100 | ICTriangleFRev, // Same as ICTriangleFalse, but false path rev condition. |
101 | ICTriangleRev, // Same as ICTriangle, but true path rev condition. |
102 | ICTriangleFalse, // Same as ICTriangle, but on the false path. |
103 | ICTriangle, // BB is entry of a triangle sub-CFG. |
104 | ICDiamond, // BB is entry of a diamond sub-CFG. |
105 | ICForkedDiamond // BB is entry of an almost diamond sub-CFG, with a |
106 | // common tail that can be shared. |
107 | }; |
108 | |
109 | /// One per MachineBasicBlock, this is used to cache the result |
110 | /// if-conversion feasibility analysis. This includes results from |
111 | /// TargetInstrInfo::analyzeBranch() (i.e. TBB, FBB, and Cond), and its |
112 | /// classification, and common tail block of its successors (if it's a |
113 | /// diamond shape), its size, whether it's predicable, and whether any |
114 | /// instruction can clobber the 'would-be' predicate. |
115 | /// |
116 | /// IsDone - True if BB is not to be considered for ifcvt. |
117 | /// IsBeingAnalyzed - True if BB is currently being analyzed. |
118 | /// IsAnalyzed - True if BB has been analyzed (info is still valid). |
119 | /// IsEnqueued - True if BB has been enqueued to be ifcvt'ed. |
120 | /// IsBrAnalyzable - True if analyzeBranch() returns false. |
121 | /// HasFallThrough - True if BB may fallthrough to the following BB. |
122 | /// IsUnpredicable - True if BB is known to be unpredicable. |
123 | /// ClobbersPred - True if BB could modify predicates (e.g. has |
124 | /// cmp, call, etc.) |
125 | /// NonPredSize - Number of non-predicated instructions. |
126 | /// ExtraCost - Extra cost for multi-cycle instructions. |
127 | /// ExtraCost2 - Some instructions are slower when predicated |
128 | /// BB - Corresponding MachineBasicBlock. |
129 | /// TrueBB / FalseBB- See analyzeBranch(). |
130 | /// BrCond - Conditions for end of block conditional branches. |
131 | /// Predicate - Predicate used in the BB. |
132 | struct BBInfo { |
133 | bool IsDone : 1; |
134 | bool IsBeingAnalyzed : 1; |
135 | bool IsAnalyzed : 1; |
136 | bool IsEnqueued : 1; |
137 | bool IsBrAnalyzable : 1; |
138 | bool IsBrReversible : 1; |
139 | bool HasFallThrough : 1; |
140 | bool IsUnpredicable : 1; |
141 | bool CannotBeCopied : 1; |
142 | bool ClobbersPred : 1; |
143 | unsigned NonPredSize = 0; |
144 | unsigned = 0; |
145 | unsigned = 0; |
146 | MachineBasicBlock *BB = nullptr; |
147 | MachineBasicBlock *TrueBB = nullptr; |
148 | MachineBasicBlock *FalseBB = nullptr; |
149 | SmallVector<MachineOperand, 4> BrCond; |
150 | SmallVector<MachineOperand, 4> Predicate; |
151 | |
152 | BBInfo() : IsDone(false), IsBeingAnalyzed(false), |
153 | IsAnalyzed(false), IsEnqueued(false), IsBrAnalyzable(false), |
154 | IsBrReversible(false), HasFallThrough(false), |
155 | IsUnpredicable(false), CannotBeCopied(false), |
156 | ClobbersPred(false) {} |
157 | }; |
158 | |
159 | /// Record information about pending if-conversions to attempt: |
160 | /// BBI - Corresponding BBInfo. |
161 | /// Kind - Type of block. See IfcvtKind. |
162 | /// NeedSubsumption - True if the to-be-predicated BB has already been |
163 | /// predicated. |
164 | /// NumDups - Number of instructions that would be duplicated due |
165 | /// to this if-conversion. (For diamonds, the number of |
166 | /// identical instructions at the beginnings of both |
167 | /// paths). |
168 | /// NumDups2 - For diamonds, the number of identical instructions |
169 | /// at the ends of both paths. |
170 | struct IfcvtToken { |
171 | BBInfo &BBI; |
172 | IfcvtKind Kind; |
173 | unsigned NumDups; |
174 | unsigned NumDups2; |
175 | bool NeedSubsumption : 1; |
176 | bool TClobbersPred : 1; |
177 | bool FClobbersPred : 1; |
178 | |
179 | IfcvtToken(BBInfo &b, IfcvtKind k, bool s, unsigned d, unsigned d2 = 0, |
180 | bool tc = false, bool fc = false) |
181 | : BBI(b), Kind(k), NumDups(d), NumDups2(d2), NeedSubsumption(s), |
182 | TClobbersPred(tc), FClobbersPred(fc) {} |
183 | }; |
184 | |
185 | /// Results of if-conversion feasibility analysis indexed by basic block |
186 | /// number. |
187 | std::vector<BBInfo> BBAnalysis; |
188 | TargetSchedModel SchedModel; |
189 | |
190 | const TargetLoweringBase *TLI = nullptr; |
191 | const TargetInstrInfo *TII = nullptr; |
192 | const TargetRegisterInfo *TRI = nullptr; |
193 | const MachineBranchProbabilityInfo *MBPI = nullptr; |
194 | MachineRegisterInfo *MRI = nullptr; |
195 | |
196 | LivePhysRegs Redefs; |
197 | |
198 | bool PreRegAlloc = true; |
199 | bool MadeChange = false; |
200 | int FnNum = -1; |
201 | std::function<bool(const MachineFunction &)> PredicateFtor; |
202 | |
203 | public: |
204 | static char ID; |
205 | |
206 | IfConverter(std::function<bool(const MachineFunction &)> Ftor = nullptr) |
207 | : MachineFunctionPass(ID), PredicateFtor(std::move(Ftor)) { |
208 | initializeIfConverterPass(*PassRegistry::getPassRegistry()); |
209 | } |
210 | |
211 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
212 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
213 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
214 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
215 | MachineFunctionPass::getAnalysisUsage(AU); |
216 | } |
217 | |
218 | bool runOnMachineFunction(MachineFunction &MF) override; |
219 | |
220 | MachineFunctionProperties getRequiredProperties() const override { |
221 | return MachineFunctionProperties().set( |
222 | MachineFunctionProperties::Property::NoVRegs); |
223 | } |
224 | |
225 | private: |
226 | bool reverseBranchCondition(BBInfo &BBI) const; |
227 | bool ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
228 | BranchProbability Prediction) const; |
229 | bool ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
230 | bool FalseBranch, unsigned &Dups, |
231 | BranchProbability Prediction) const; |
232 | bool CountDuplicatedInstructions( |
233 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
234 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
235 | unsigned &Dups1, unsigned &Dups2, |
236 | MachineBasicBlock &TBB, MachineBasicBlock &FBB, |
237 | bool SkipUnconditionalBranches) const; |
238 | bool ValidDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
239 | unsigned &Dups1, unsigned &Dups2, |
240 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; |
241 | bool ValidForkedDiamond(BBInfo &TrueBBI, BBInfo &FalseBBI, |
242 | unsigned &Dups1, unsigned &Dups2, |
243 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const; |
244 | void AnalyzeBranches(BBInfo &BBI); |
245 | void ScanInstructions(BBInfo &BBI, |
246 | MachineBasicBlock::iterator &Begin, |
247 | MachineBasicBlock::iterator &End, |
248 | bool BranchUnpredicable = false) const; |
249 | bool RescanInstructions( |
250 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
251 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
252 | BBInfo &TrueBBI, BBInfo &FalseBBI) const; |
253 | void AnalyzeBlock(MachineBasicBlock &MBB, |
254 | std::vector<std::unique_ptr<IfcvtToken>> &Tokens); |
255 | bool FeasibilityAnalysis(BBInfo &BBI, SmallVectorImpl<MachineOperand> &Pred, |
256 | bool isTriangle = false, bool RevBranch = false, |
257 | bool hasCommonTail = false); |
258 | void AnalyzeBlocks(MachineFunction &MF, |
259 | std::vector<std::unique_ptr<IfcvtToken>> &Tokens); |
260 | void InvalidatePreds(MachineBasicBlock &MBB); |
261 | bool IfConvertSimple(BBInfo &BBI, IfcvtKind Kind); |
262 | bool IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind); |
263 | bool IfConvertDiamondCommon(BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, |
264 | unsigned NumDups1, unsigned NumDups2, |
265 | bool TClobbersPred, bool FClobbersPred, |
266 | bool RemoveBranch, bool MergeAddEdges); |
267 | bool IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
268 | unsigned NumDups1, unsigned NumDups2, |
269 | bool TClobbers, bool FClobbers); |
270 | bool IfConvertForkedDiamond(BBInfo &BBI, IfcvtKind Kind, |
271 | unsigned NumDups1, unsigned NumDups2, |
272 | bool TClobbers, bool FClobbers); |
273 | void PredicateBlock(BBInfo &BBI, |
274 | MachineBasicBlock::iterator E, |
275 | SmallVectorImpl<MachineOperand> &Cond, |
276 | SmallSet<MCPhysReg, 4> *LaterRedefs = nullptr); |
277 | void CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
278 | SmallVectorImpl<MachineOperand> &Cond, |
279 | bool IgnoreBr = false); |
280 | void MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges = true); |
281 | |
282 | bool MeetIfcvtSizeLimit(MachineBasicBlock &BB, |
283 | unsigned Cycle, unsigned , |
284 | BranchProbability Prediction) const { |
285 | return Cycle > 0 && TII->isProfitableToIfCvt(MBB&: BB, NumCycles: Cycle, ExtraPredCycles: Extra, |
286 | Probability: Prediction); |
287 | } |
288 | |
289 | bool MeetIfcvtSizeLimit(BBInfo &TBBInfo, BBInfo &FBBInfo, |
290 | MachineBasicBlock &CommBB, unsigned Dups, |
291 | BranchProbability Prediction, bool Forked) const { |
292 | const MachineFunction &MF = *TBBInfo.BB->getParent(); |
293 | if (MF.getFunction().hasMinSize()) { |
294 | MachineBasicBlock::iterator TIB = TBBInfo.BB->begin(); |
295 | MachineBasicBlock::iterator FIB = FBBInfo.BB->begin(); |
296 | MachineBasicBlock::iterator TIE = TBBInfo.BB->end(); |
297 | MachineBasicBlock::iterator FIE = FBBInfo.BB->end(); |
298 | |
299 | unsigned Dups1 = 0, Dups2 = 0; |
300 | if (!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
301 | TBB&: *TBBInfo.BB, FBB&: *FBBInfo.BB, |
302 | /*SkipUnconditionalBranches*/ true)) |
303 | llvm_unreachable("should already have been checked by ValidDiamond" ); |
304 | |
305 | unsigned BranchBytes = 0; |
306 | unsigned CommonBytes = 0; |
307 | |
308 | // Count common instructions at the start of the true and false blocks. |
309 | for (auto &I : make_range(x: TBBInfo.BB->begin(), y: TIB)) { |
310 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
311 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
312 | } |
313 | for (auto &I : make_range(x: FBBInfo.BB->begin(), y: FIB)) { |
314 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
315 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
316 | } |
317 | |
318 | // Count instructions at the end of the true and false blocks, after |
319 | // the ones we plan to predicate. Analyzable branches will be removed |
320 | // (unless this is a forked diamond), and all other instructions are |
321 | // common between the two blocks. |
322 | for (auto &I : make_range(x: TIE, y: TBBInfo.BB->end())) { |
323 | if (I.isBranch() && TBBInfo.IsBrAnalyzable && !Forked) { |
324 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
325 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
326 | } else { |
327 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
328 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
329 | } |
330 | } |
331 | for (auto &I : make_range(x: FIE, y: FBBInfo.BB->end())) { |
332 | if (I.isBranch() && FBBInfo.IsBrAnalyzable && !Forked) { |
333 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
334 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
335 | } else { |
336 | LLVM_DEBUG(dbgs() << "Common inst: " << I); |
337 | CommonBytes += TII->getInstSizeInBytes(MI: I); |
338 | } |
339 | } |
340 | for (auto &I : CommBB.terminators()) { |
341 | if (I.isBranch()) { |
342 | LLVM_DEBUG(dbgs() << "Saving branch: " << I); |
343 | BranchBytes += TII->predictBranchSizeForIfCvt(MI&: I); |
344 | } |
345 | } |
346 | |
347 | // The common instructions in one branch will be eliminated, halving |
348 | // their code size. |
349 | CommonBytes /= 2; |
350 | |
351 | // Count the instructions which we need to predicate. |
352 | unsigned NumPredicatedInstructions = 0; |
353 | for (auto &I : make_range(x: TIB, y: TIE)) { |
354 | if (!I.isDebugInstr()) { |
355 | LLVM_DEBUG(dbgs() << "Predicating: " << I); |
356 | NumPredicatedInstructions++; |
357 | } |
358 | } |
359 | for (auto &I : make_range(x: FIB, y: FIE)) { |
360 | if (!I.isDebugInstr()) { |
361 | LLVM_DEBUG(dbgs() << "Predicating: " << I); |
362 | NumPredicatedInstructions++; |
363 | } |
364 | } |
365 | |
366 | // Even though we're optimising for size at the expense of performance, |
367 | // avoid creating really long predicated blocks. |
368 | if (NumPredicatedInstructions > 15) |
369 | return false; |
370 | |
371 | // Some targets (e.g. Thumb2) need to insert extra instructions to |
372 | // start predicated blocks. |
373 | unsigned = TII->extraSizeToPredicateInstructions( |
374 | MF, NumInsts: NumPredicatedInstructions); |
375 | |
376 | LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(BranchBytes=" << BranchBytes |
377 | << ", CommonBytes=" << CommonBytes |
378 | << ", NumPredicatedInstructions=" |
379 | << NumPredicatedInstructions |
380 | << ", ExtraPredicateBytes=" << ExtraPredicateBytes |
381 | << ")\n" ); |
382 | return (BranchBytes + CommonBytes) > ExtraPredicateBytes; |
383 | } else { |
384 | unsigned TCycle = TBBInfo.NonPredSize + TBBInfo.ExtraCost - Dups; |
385 | unsigned FCycle = FBBInfo.NonPredSize + FBBInfo.ExtraCost - Dups; |
386 | bool Res = TCycle > 0 && FCycle > 0 && |
387 | TII->isProfitableToIfCvt( |
388 | TMBB&: *TBBInfo.BB, NumTCycles: TCycle, ExtraTCycles: TBBInfo.ExtraCost2, FMBB&: *FBBInfo.BB, |
389 | NumFCycles: FCycle, ExtraFCycles: FBBInfo.ExtraCost2, Probability: Prediction); |
390 | LLVM_DEBUG(dbgs() << "MeetIfcvtSizeLimit(TCycle=" << TCycle |
391 | << ", FCycle=" << FCycle |
392 | << ", TExtra=" << TBBInfo.ExtraCost2 << ", FExtra=" |
393 | << FBBInfo.ExtraCost2 << ") = " << Res << "\n" ); |
394 | return Res; |
395 | } |
396 | } |
397 | |
398 | /// Returns true if Block ends without a terminator. |
399 | bool blockAlwaysFallThrough(BBInfo &BBI) const { |
400 | return BBI.IsBrAnalyzable && BBI.TrueBB == nullptr; |
401 | } |
402 | |
403 | /// Used to sort if-conversion candidates. |
404 | static bool IfcvtTokenCmp(const std::unique_ptr<IfcvtToken> &C1, |
405 | const std::unique_ptr<IfcvtToken> &C2) { |
406 | int Incr1 = (C1->Kind == ICDiamond) |
407 | ? -(int)(C1->NumDups + C1->NumDups2) : (int)C1->NumDups; |
408 | int Incr2 = (C2->Kind == ICDiamond) |
409 | ? -(int)(C2->NumDups + C2->NumDups2) : (int)C2->NumDups; |
410 | if (Incr1 > Incr2) |
411 | return true; |
412 | else if (Incr1 == Incr2) { |
413 | // Favors subsumption. |
414 | if (!C1->NeedSubsumption && C2->NeedSubsumption) |
415 | return true; |
416 | else if (C1->NeedSubsumption == C2->NeedSubsumption) { |
417 | // Favors diamond over triangle, etc. |
418 | if ((unsigned)C1->Kind < (unsigned)C2->Kind) |
419 | return true; |
420 | else if (C1->Kind == C2->Kind) |
421 | return C1->BBI.BB->getNumber() < C2->BBI.BB->getNumber(); |
422 | } |
423 | } |
424 | return false; |
425 | } |
426 | }; |
427 | |
428 | } // end anonymous namespace |
429 | |
430 | char IfConverter::ID = 0; |
431 | |
432 | char &llvm::IfConverterID = IfConverter::ID; |
433 | |
434 | INITIALIZE_PASS_BEGIN(IfConverter, DEBUG_TYPE, "If Converter" , false, false) |
435 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) |
436 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
437 | INITIALIZE_PASS_END(IfConverter, DEBUG_TYPE, "If Converter" , false, false) |
438 | |
439 | bool IfConverter::runOnMachineFunction(MachineFunction &MF) { |
440 | if (skipFunction(F: MF.getFunction()) || (PredicateFtor && !PredicateFtor(MF))) |
441 | return false; |
442 | |
443 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
444 | TLI = ST.getTargetLowering(); |
445 | TII = ST.getInstrInfo(); |
446 | TRI = ST.getRegisterInfo(); |
447 | MBFIWrapper MBFI( |
448 | getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()); |
449 | MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); |
450 | ProfileSummaryInfo *PSI = |
451 | &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
452 | MRI = &MF.getRegInfo(); |
453 | SchedModel.init(TSInfo: &ST); |
454 | |
455 | if (!TII) return false; |
456 | |
457 | PreRegAlloc = MRI->isSSA(); |
458 | |
459 | bool BFChange = false; |
460 | if (!PreRegAlloc) { |
461 | // Tail merge tend to expose more if-conversion opportunities. |
462 | BranchFolder BF(true, false, MBFI, *MBPI, PSI); |
463 | BFChange = BF.OptimizeFunction(MF, tii: TII, tri: ST.getRegisterInfo()); |
464 | } |
465 | |
466 | LLVM_DEBUG(dbgs() << "\nIfcvt: function (" << ++FnNum << ") \'" |
467 | << MF.getName() << "\'" ); |
468 | |
469 | if (FnNum < IfCvtFnStart || (IfCvtFnStop != -1 && FnNum > IfCvtFnStop)) { |
470 | LLVM_DEBUG(dbgs() << " skipped\n" ); |
471 | return false; |
472 | } |
473 | LLVM_DEBUG(dbgs() << "\n" ); |
474 | |
475 | MF.RenumberBlocks(); |
476 | BBAnalysis.resize(new_size: MF.getNumBlockIDs()); |
477 | |
478 | std::vector<std::unique_ptr<IfcvtToken>> Tokens; |
479 | MadeChange = false; |
480 | unsigned NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + |
481 | NumTriangleRev + NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
482 | while (IfCvtLimit == -1 || (int)NumIfCvts < IfCvtLimit) { |
483 | // Do an initial analysis for each basic block and find all the potential |
484 | // candidates to perform if-conversion. |
485 | bool Change = false; |
486 | AnalyzeBlocks(MF, Tokens); |
487 | while (!Tokens.empty()) { |
488 | std::unique_ptr<IfcvtToken> Token = std::move(Tokens.back()); |
489 | Tokens.pop_back(); |
490 | BBInfo &BBI = Token->BBI; |
491 | IfcvtKind Kind = Token->Kind; |
492 | unsigned NumDups = Token->NumDups; |
493 | unsigned NumDups2 = Token->NumDups2; |
494 | |
495 | // If the block has been evicted out of the queue or it has already been |
496 | // marked dead (due to it being predicated), then skip it. |
497 | if (BBI.IsDone) |
498 | BBI.IsEnqueued = false; |
499 | if (!BBI.IsEnqueued) |
500 | continue; |
501 | |
502 | BBI.IsEnqueued = false; |
503 | |
504 | bool RetVal = false; |
505 | switch (Kind) { |
506 | default: llvm_unreachable("Unexpected!" ); |
507 | case ICSimple: |
508 | case ICSimpleFalse: { |
509 | bool isFalse = Kind == ICSimpleFalse; |
510 | if ((isFalse && DisableSimpleF) || (!isFalse && DisableSimple)) break; |
511 | LLVM_DEBUG(dbgs() << "Ifcvt (Simple" |
512 | << (Kind == ICSimpleFalse ? " false" : "" ) |
513 | << "): " << printMBBReference(*BBI.BB) << " (" |
514 | << ((Kind == ICSimpleFalse) ? BBI.FalseBB->getNumber() |
515 | : BBI.TrueBB->getNumber()) |
516 | << ") " ); |
517 | RetVal = IfConvertSimple(BBI, Kind); |
518 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
519 | if (RetVal) { |
520 | if (isFalse) ++NumSimpleFalse; |
521 | else ++NumSimple; |
522 | } |
523 | break; |
524 | } |
525 | case ICTriangle: |
526 | case ICTriangleRev: |
527 | case ICTriangleFalse: |
528 | case ICTriangleFRev: { |
529 | bool isFalse = Kind == ICTriangleFalse; |
530 | bool isRev = (Kind == ICTriangleRev || Kind == ICTriangleFRev); |
531 | if (DisableTriangle && !isFalse && !isRev) break; |
532 | if (DisableTriangleR && !isFalse && isRev) break; |
533 | if (DisableTriangleF && isFalse && !isRev) break; |
534 | LLVM_DEBUG(dbgs() << "Ifcvt (Triangle" ); |
535 | if (isFalse) |
536 | LLVM_DEBUG(dbgs() << " false" ); |
537 | if (isRev) |
538 | LLVM_DEBUG(dbgs() << " rev" ); |
539 | LLVM_DEBUG(dbgs() << "): " << printMBBReference(*BBI.BB) |
540 | << " (T:" << BBI.TrueBB->getNumber() |
541 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
542 | RetVal = IfConvertTriangle(BBI, Kind); |
543 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
544 | if (RetVal) { |
545 | if (isFalse) |
546 | ++NumTriangleFalse; |
547 | else if (isRev) |
548 | ++NumTriangleRev; |
549 | else |
550 | ++NumTriangle; |
551 | } |
552 | break; |
553 | } |
554 | case ICDiamond: |
555 | if (DisableDiamond) break; |
556 | LLVM_DEBUG(dbgs() << "Ifcvt (Diamond): " << printMBBReference(*BBI.BB) |
557 | << " (T:" << BBI.TrueBB->getNumber() |
558 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
559 | RetVal = IfConvertDiamond(BBI, Kind, NumDups1: NumDups, NumDups2, |
560 | TClobbers: Token->TClobbersPred, |
561 | FClobbers: Token->FClobbersPred); |
562 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
563 | if (RetVal) ++NumDiamonds; |
564 | break; |
565 | case ICForkedDiamond: |
566 | if (DisableForkedDiamond) break; |
567 | LLVM_DEBUG(dbgs() << "Ifcvt (Forked Diamond): " |
568 | << printMBBReference(*BBI.BB) |
569 | << " (T:" << BBI.TrueBB->getNumber() |
570 | << ",F:" << BBI.FalseBB->getNumber() << ") " ); |
571 | RetVal = IfConvertForkedDiamond(BBI, Kind, NumDups1: NumDups, NumDups2, |
572 | TClobbers: Token->TClobbersPred, |
573 | FClobbers: Token->FClobbersPred); |
574 | LLVM_DEBUG(dbgs() << (RetVal ? "succeeded!" : "failed!" ) << "\n" ); |
575 | if (RetVal) ++NumForkedDiamonds; |
576 | break; |
577 | } |
578 | |
579 | if (RetVal && MRI->tracksLiveness()) |
580 | recomputeLivenessFlags(MBB&: *BBI.BB); |
581 | |
582 | Change |= RetVal; |
583 | |
584 | NumIfCvts = NumSimple + NumSimpleFalse + NumTriangle + NumTriangleRev + |
585 | NumTriangleFalse + NumTriangleFRev + NumDiamonds; |
586 | if (IfCvtLimit != -1 && (int)NumIfCvts >= IfCvtLimit) |
587 | break; |
588 | } |
589 | |
590 | if (!Change) |
591 | break; |
592 | MadeChange |= Change; |
593 | } |
594 | |
595 | Tokens.clear(); |
596 | BBAnalysis.clear(); |
597 | |
598 | if (MadeChange && IfCvtBranchFold) { |
599 | BranchFolder BF(false, false, MBFI, *MBPI, PSI); |
600 | BF.OptimizeFunction(MF, tii: TII, tri: MF.getSubtarget().getRegisterInfo()); |
601 | } |
602 | |
603 | MadeChange |= BFChange; |
604 | return MadeChange; |
605 | } |
606 | |
607 | /// BB has a fallthrough. Find its 'false' successor given its 'true' successor. |
608 | static MachineBasicBlock *findFalseBlock(MachineBasicBlock *BB, |
609 | MachineBasicBlock *TrueBB) { |
610 | for (MachineBasicBlock *SuccBB : BB->successors()) { |
611 | if (SuccBB != TrueBB) |
612 | return SuccBB; |
613 | } |
614 | return nullptr; |
615 | } |
616 | |
617 | /// Reverse the condition of the end of the block branch. Swap block's 'true' |
618 | /// and 'false' successors. |
619 | bool IfConverter::reverseBranchCondition(BBInfo &BBI) const { |
620 | DebugLoc dl; // FIXME: this is nowhere |
621 | if (!TII->reverseBranchCondition(Cond&: BBI.BrCond)) { |
622 | TII->removeBranch(MBB&: *BBI.BB); |
623 | TII->insertBranch(MBB&: *BBI.BB, TBB: BBI.FalseBB, FBB: BBI.TrueBB, Cond: BBI.BrCond, DL: dl); |
624 | std::swap(a&: BBI.TrueBB, b&: BBI.FalseBB); |
625 | return true; |
626 | } |
627 | return false; |
628 | } |
629 | |
630 | /// Returns the next block in the function blocks ordering. If it is the end, |
631 | /// returns NULL. |
632 | static inline MachineBasicBlock *getNextBlock(MachineBasicBlock &MBB) { |
633 | MachineFunction::iterator I = MBB.getIterator(); |
634 | MachineFunction::iterator E = MBB.getParent()->end(); |
635 | if (++I == E) |
636 | return nullptr; |
637 | return &*I; |
638 | } |
639 | |
640 | /// Returns true if the 'true' block (along with its predecessor) forms a valid |
641 | /// simple shape for ifcvt. It also returns the number of instructions that the |
642 | /// ifcvt would need to duplicate if performed in Dups. |
643 | bool IfConverter::ValidSimple(BBInfo &TrueBBI, unsigned &Dups, |
644 | BranchProbability Prediction) const { |
645 | Dups = 0; |
646 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
647 | return false; |
648 | |
649 | if (TrueBBI.IsBrAnalyzable) |
650 | return false; |
651 | |
652 | if (TrueBBI.BB->pred_size() > 1) { |
653 | if (TrueBBI.CannotBeCopied || |
654 | !TII->isProfitableToDupForIfCvt(MBB&: *TrueBBI.BB, NumCycles: TrueBBI.NonPredSize, |
655 | Probability: Prediction)) |
656 | return false; |
657 | Dups = TrueBBI.NonPredSize; |
658 | } |
659 | |
660 | return true; |
661 | } |
662 | |
663 | /// Returns true if the 'true' and 'false' blocks (along with their common |
664 | /// predecessor) forms a valid triangle shape for ifcvt. If 'FalseBranch' is |
665 | /// true, it checks if 'true' block's false branch branches to the 'false' block |
666 | /// rather than the other way around. It also returns the number of instructions |
667 | /// that the ifcvt would need to duplicate if performed in 'Dups'. |
668 | bool IfConverter::ValidTriangle(BBInfo &TrueBBI, BBInfo &FalseBBI, |
669 | bool FalseBranch, unsigned &Dups, |
670 | BranchProbability Prediction) const { |
671 | Dups = 0; |
672 | if (TrueBBI.BB == FalseBBI.BB) |
673 | return false; |
674 | |
675 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone) |
676 | return false; |
677 | |
678 | if (TrueBBI.BB->pred_size() > 1) { |
679 | if (TrueBBI.CannotBeCopied) |
680 | return false; |
681 | |
682 | unsigned Size = TrueBBI.NonPredSize; |
683 | if (TrueBBI.IsBrAnalyzable) { |
684 | if (TrueBBI.TrueBB && TrueBBI.BrCond.empty()) |
685 | // Ends with an unconditional branch. It will be removed. |
686 | --Size; |
687 | else { |
688 | MachineBasicBlock *FExit = FalseBranch |
689 | ? TrueBBI.TrueBB : TrueBBI.FalseBB; |
690 | if (FExit) |
691 | // Require a conditional branch |
692 | ++Size; |
693 | } |
694 | } |
695 | if (!TII->isProfitableToDupForIfCvt(MBB&: *TrueBBI.BB, NumCycles: Size, Probability: Prediction)) |
696 | return false; |
697 | Dups = Size; |
698 | } |
699 | |
700 | MachineBasicBlock *TExit = FalseBranch ? TrueBBI.FalseBB : TrueBBI.TrueBB; |
701 | if (!TExit && blockAlwaysFallThrough(BBI&: TrueBBI)) { |
702 | MachineFunction::iterator I = TrueBBI.BB->getIterator(); |
703 | if (++I == TrueBBI.BB->getParent()->end()) |
704 | return false; |
705 | TExit = &*I; |
706 | } |
707 | return TExit && TExit == FalseBBI.BB; |
708 | } |
709 | |
710 | /// Count duplicated instructions and move the iterators to show where they |
711 | /// are. |
712 | /// @param TIB True Iterator Begin |
713 | /// @param FIB False Iterator Begin |
714 | /// These two iterators initially point to the first instruction of the two |
715 | /// blocks, and finally point to the first non-shared instruction. |
716 | /// @param TIE True Iterator End |
717 | /// @param FIE False Iterator End |
718 | /// These two iterators initially point to End() for the two blocks() and |
719 | /// finally point to the first shared instruction in the tail. |
720 | /// Upon return [TIB, TIE), and [FIB, FIE) mark the un-duplicated portions of |
721 | /// two blocks. |
722 | /// @param Dups1 count of duplicated instructions at the beginning of the 2 |
723 | /// blocks. |
724 | /// @param Dups2 count of duplicated instructions at the end of the 2 blocks. |
725 | /// @param SkipUnconditionalBranches if true, Don't make sure that |
726 | /// unconditional branches at the end of the blocks are the same. True is |
727 | /// passed when the blocks are analyzable to allow for fallthrough to be |
728 | /// handled. |
729 | /// @return false if the shared portion prevents if conversion. |
730 | bool IfConverter::CountDuplicatedInstructions( |
731 | MachineBasicBlock::iterator &TIB, |
732 | MachineBasicBlock::iterator &FIB, |
733 | MachineBasicBlock::iterator &TIE, |
734 | MachineBasicBlock::iterator &FIE, |
735 | unsigned &Dups1, unsigned &Dups2, |
736 | MachineBasicBlock &TBB, MachineBasicBlock &FBB, |
737 | bool SkipUnconditionalBranches) const { |
738 | while (TIB != TIE && FIB != FIE) { |
739 | // Skip dbg_value instructions. These do not count. |
740 | TIB = skipDebugInstructionsForward(It: TIB, End: TIE, SkipPseudoOp: false); |
741 | FIB = skipDebugInstructionsForward(It: FIB, End: FIE, SkipPseudoOp: false); |
742 | if (TIB == TIE || FIB == FIE) |
743 | break; |
744 | if (!TIB->isIdenticalTo(Other: *FIB)) |
745 | break; |
746 | // A pred-clobbering instruction in the shared portion prevents |
747 | // if-conversion. |
748 | std::vector<MachineOperand> PredDefs; |
749 | if (TII->ClobbersPredicate(MI&: *TIB, Pred&: PredDefs, SkipDead: false)) |
750 | return false; |
751 | // If we get all the way to the branch instructions, don't count them. |
752 | if (!TIB->isBranch()) |
753 | ++Dups1; |
754 | ++TIB; |
755 | ++FIB; |
756 | } |
757 | |
758 | // Check for already containing all of the block. |
759 | if (TIB == TIE || FIB == FIE) |
760 | return true; |
761 | // Now, in preparation for counting duplicate instructions at the ends of the |
762 | // blocks, switch to reverse_iterators. Note that getReverse() returns an |
763 | // iterator that points to the same instruction, unlike std::reverse_iterator. |
764 | // We have to do our own shifting so that we get the same range. |
765 | MachineBasicBlock::reverse_iterator RTIE = std::next(x: TIE.getReverse()); |
766 | MachineBasicBlock::reverse_iterator RFIE = std::next(x: FIE.getReverse()); |
767 | const MachineBasicBlock::reverse_iterator RTIB = std::next(x: TIB.getReverse()); |
768 | const MachineBasicBlock::reverse_iterator RFIB = std::next(x: FIB.getReverse()); |
769 | |
770 | if (!TBB.succ_empty() || !FBB.succ_empty()) { |
771 | if (SkipUnconditionalBranches) { |
772 | while (RTIE != RTIB && RTIE->isUnconditionalBranch()) |
773 | ++RTIE; |
774 | while (RFIE != RFIB && RFIE->isUnconditionalBranch()) |
775 | ++RFIE; |
776 | } |
777 | } |
778 | |
779 | // Count duplicate instructions at the ends of the blocks. |
780 | while (RTIE != RTIB && RFIE != RFIB) { |
781 | // Skip dbg_value instructions. These do not count. |
782 | // Note that these are reverse iterators going forward. |
783 | RTIE = skipDebugInstructionsForward(It: RTIE, End: RTIB, SkipPseudoOp: false); |
784 | RFIE = skipDebugInstructionsForward(It: RFIE, End: RFIB, SkipPseudoOp: false); |
785 | if (RTIE == RTIB || RFIE == RFIB) |
786 | break; |
787 | if (!RTIE->isIdenticalTo(Other: *RFIE)) |
788 | break; |
789 | // We have to verify that any branch instructions are the same, and then we |
790 | // don't count them toward the # of duplicate instructions. |
791 | if (!RTIE->isBranch()) |
792 | ++Dups2; |
793 | ++RTIE; |
794 | ++RFIE; |
795 | } |
796 | TIE = std::next(x: RTIE.getReverse()); |
797 | FIE = std::next(x: RFIE.getReverse()); |
798 | return true; |
799 | } |
800 | |
801 | /// RescanInstructions - Run ScanInstructions on a pair of blocks. |
802 | /// @param TIB - True Iterator Begin, points to first non-shared instruction |
803 | /// @param FIB - False Iterator Begin, points to first non-shared instruction |
804 | /// @param TIE - True Iterator End, points past last non-shared instruction |
805 | /// @param FIE - False Iterator End, points past last non-shared instruction |
806 | /// @param TrueBBI - BBInfo to update for the true block. |
807 | /// @param FalseBBI - BBInfo to update for the false block. |
808 | /// @returns - false if either block cannot be predicated or if both blocks end |
809 | /// with a predicate-clobbering instruction. |
810 | bool IfConverter::RescanInstructions( |
811 | MachineBasicBlock::iterator &TIB, MachineBasicBlock::iterator &FIB, |
812 | MachineBasicBlock::iterator &TIE, MachineBasicBlock::iterator &FIE, |
813 | BBInfo &TrueBBI, BBInfo &FalseBBI) const { |
814 | bool BranchUnpredicable = true; |
815 | TrueBBI.IsUnpredicable = FalseBBI.IsUnpredicable = false; |
816 | ScanInstructions(BBI&: TrueBBI, Begin&: TIB, End&: TIE, BranchUnpredicable); |
817 | if (TrueBBI.IsUnpredicable) |
818 | return false; |
819 | ScanInstructions(BBI&: FalseBBI, Begin&: FIB, End&: FIE, BranchUnpredicable); |
820 | if (FalseBBI.IsUnpredicable) |
821 | return false; |
822 | if (TrueBBI.ClobbersPred && FalseBBI.ClobbersPred) |
823 | return false; |
824 | return true; |
825 | } |
826 | |
827 | #ifndef NDEBUG |
828 | static void verifySameBranchInstructions( |
829 | MachineBasicBlock *MBB1, |
830 | MachineBasicBlock *MBB2) { |
831 | const MachineBasicBlock::reverse_iterator B1 = MBB1->rend(); |
832 | const MachineBasicBlock::reverse_iterator B2 = MBB2->rend(); |
833 | MachineBasicBlock::reverse_iterator E1 = MBB1->rbegin(); |
834 | MachineBasicBlock::reverse_iterator E2 = MBB2->rbegin(); |
835 | while (E1 != B1 && E2 != B2) { |
836 | skipDebugInstructionsForward(E1, B1, false); |
837 | skipDebugInstructionsForward(E2, B2, false); |
838 | if (E1 == B1 && E2 == B2) |
839 | break; |
840 | |
841 | if (E1 == B1) { |
842 | assert(!E2->isBranch() && "Branch mis-match, one block is empty." ); |
843 | break; |
844 | } |
845 | if (E2 == B2) { |
846 | assert(!E1->isBranch() && "Branch mis-match, one block is empty." ); |
847 | break; |
848 | } |
849 | |
850 | if (E1->isBranch() || E2->isBranch()) |
851 | assert(E1->isIdenticalTo(*E2) && |
852 | "Branch mis-match, branch instructions don't match." ); |
853 | else |
854 | break; |
855 | ++E1; |
856 | ++E2; |
857 | } |
858 | } |
859 | #endif |
860 | |
861 | /// ValidForkedDiamond - Returns true if the 'true' and 'false' blocks (along |
862 | /// with their common predecessor) form a diamond if a common tail block is |
863 | /// extracted. |
864 | /// While not strictly a diamond, this pattern would form a diamond if |
865 | /// tail-merging had merged the shared tails. |
866 | /// EBB |
867 | /// _/ \_ |
868 | /// | | |
869 | /// TBB FBB |
870 | /// / \ / \ |
871 | /// FalseBB TrueBB FalseBB |
872 | /// Currently only handles analyzable branches. |
873 | /// Specifically excludes actual diamonds to avoid overlap. |
874 | bool IfConverter::ValidForkedDiamond( |
875 | BBInfo &TrueBBI, BBInfo &FalseBBI, |
876 | unsigned &Dups1, unsigned &Dups2, |
877 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { |
878 | Dups1 = Dups2 = 0; |
879 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || |
880 | FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) |
881 | return false; |
882 | |
883 | if (!TrueBBI.IsBrAnalyzable || !FalseBBI.IsBrAnalyzable) |
884 | return false; |
885 | // Don't IfConvert blocks that can't be folded into their predecessor. |
886 | if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) |
887 | return false; |
888 | |
889 | // This function is specifically looking for conditional tails, as |
890 | // unconditional tails are already handled by the standard diamond case. |
891 | if (TrueBBI.BrCond.size() == 0 || |
892 | FalseBBI.BrCond.size() == 0) |
893 | return false; |
894 | |
895 | MachineBasicBlock *TT = TrueBBI.TrueBB; |
896 | MachineBasicBlock *TF = TrueBBI.FalseBB; |
897 | MachineBasicBlock *FT = FalseBBI.TrueBB; |
898 | MachineBasicBlock *FF = FalseBBI.FalseBB; |
899 | |
900 | if (!TT) |
901 | TT = getNextBlock(MBB&: *TrueBBI.BB); |
902 | if (!TF) |
903 | TF = getNextBlock(MBB&: *TrueBBI.BB); |
904 | if (!FT) |
905 | FT = getNextBlock(MBB&: *FalseBBI.BB); |
906 | if (!FF) |
907 | FF = getNextBlock(MBB&: *FalseBBI.BB); |
908 | |
909 | if (!TT || !TF) |
910 | return false; |
911 | |
912 | // Check successors. If they don't match, bail. |
913 | if (!((TT == FT && TF == FF) || (TF == FT && TT == FF))) |
914 | return false; |
915 | |
916 | bool FalseReversed = false; |
917 | if (TF == FT && TT == FF) { |
918 | // If the branches are opposing, but we can't reverse, don't do it. |
919 | if (!FalseBBI.IsBrReversible) |
920 | return false; |
921 | FalseReversed = true; |
922 | reverseBranchCondition(BBI&: FalseBBI); |
923 | } |
924 | auto UnReverseOnExit = make_scope_exit(F: [&]() { |
925 | if (FalseReversed) |
926 | reverseBranchCondition(BBI&: FalseBBI); |
927 | }); |
928 | |
929 | // Count duplicate instructions at the beginning of the true and false blocks. |
930 | MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); |
931 | MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); |
932 | MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); |
933 | MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); |
934 | if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
935 | TBB&: *TrueBBI.BB, FBB&: *FalseBBI.BB, |
936 | /* SkipUnconditionalBranches */ true)) |
937 | return false; |
938 | |
939 | TrueBBICalc.BB = TrueBBI.BB; |
940 | FalseBBICalc.BB = FalseBBI.BB; |
941 | TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; |
942 | FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; |
943 | if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBI&: TrueBBICalc, FalseBBI&: FalseBBICalc)) |
944 | return false; |
945 | |
946 | // The size is used to decide whether to if-convert, and the shared portions |
947 | // are subtracted off. Because of the subtraction, we just use the size that |
948 | // was calculated by the original ScanInstructions, as it is correct. |
949 | TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; |
950 | FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; |
951 | return true; |
952 | } |
953 | |
954 | /// ValidDiamond - Returns true if the 'true' and 'false' blocks (along |
955 | /// with their common predecessor) forms a valid diamond shape for ifcvt. |
956 | bool IfConverter::ValidDiamond( |
957 | BBInfo &TrueBBI, BBInfo &FalseBBI, |
958 | unsigned &Dups1, unsigned &Dups2, |
959 | BBInfo &TrueBBICalc, BBInfo &FalseBBICalc) const { |
960 | Dups1 = Dups2 = 0; |
961 | if (TrueBBI.IsBeingAnalyzed || TrueBBI.IsDone || |
962 | FalseBBI.IsBeingAnalyzed || FalseBBI.IsDone) |
963 | return false; |
964 | |
965 | // If the True and False BBs are equal we're dealing with a degenerate case |
966 | // that we don't treat as a diamond. |
967 | if (TrueBBI.BB == FalseBBI.BB) |
968 | return false; |
969 | |
970 | MachineBasicBlock *TT = TrueBBI.TrueBB; |
971 | MachineBasicBlock *FT = FalseBBI.TrueBB; |
972 | |
973 | if (!TT && blockAlwaysFallThrough(BBI&: TrueBBI)) |
974 | TT = getNextBlock(MBB&: *TrueBBI.BB); |
975 | if (!FT && blockAlwaysFallThrough(BBI&: FalseBBI)) |
976 | FT = getNextBlock(MBB&: *FalseBBI.BB); |
977 | if (TT != FT) |
978 | return false; |
979 | if (!TT && (TrueBBI.IsBrAnalyzable || FalseBBI.IsBrAnalyzable)) |
980 | return false; |
981 | if (TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) |
982 | return false; |
983 | |
984 | // FIXME: Allow true block to have an early exit? |
985 | if (TrueBBI.FalseBB || FalseBBI.FalseBB) |
986 | return false; |
987 | |
988 | // Count duplicate instructions at the beginning and end of the true and |
989 | // false blocks. |
990 | // Skip unconditional branches only if we are considering an analyzable |
991 | // diamond. Otherwise the branches must be the same. |
992 | bool SkipUnconditionalBranches = |
993 | TrueBBI.IsBrAnalyzable && FalseBBI.IsBrAnalyzable; |
994 | MachineBasicBlock::iterator TIB = TrueBBI.BB->begin(); |
995 | MachineBasicBlock::iterator FIB = FalseBBI.BB->begin(); |
996 | MachineBasicBlock::iterator TIE = TrueBBI.BB->end(); |
997 | MachineBasicBlock::iterator FIE = FalseBBI.BB->end(); |
998 | if(!CountDuplicatedInstructions(TIB, FIB, TIE, FIE, Dups1, Dups2, |
999 | TBB&: *TrueBBI.BB, FBB&: *FalseBBI.BB, |
1000 | SkipUnconditionalBranches)) |
1001 | return false; |
1002 | |
1003 | TrueBBICalc.BB = TrueBBI.BB; |
1004 | FalseBBICalc.BB = FalseBBI.BB; |
1005 | TrueBBICalc.IsBrAnalyzable = TrueBBI.IsBrAnalyzable; |
1006 | FalseBBICalc.IsBrAnalyzable = FalseBBI.IsBrAnalyzable; |
1007 | if (!RescanInstructions(TIB, FIB, TIE, FIE, TrueBBI&: TrueBBICalc, FalseBBI&: FalseBBICalc)) |
1008 | return false; |
1009 | // The size is used to decide whether to if-convert, and the shared portions |
1010 | // are subtracted off. Because of the subtraction, we just use the size that |
1011 | // was calculated by the original ScanInstructions, as it is correct. |
1012 | TrueBBICalc.NonPredSize = TrueBBI.NonPredSize; |
1013 | FalseBBICalc.NonPredSize = FalseBBI.NonPredSize; |
1014 | return true; |
1015 | } |
1016 | |
1017 | /// AnalyzeBranches - Look at the branches at the end of a block to determine if |
1018 | /// the block is predicable. |
1019 | void IfConverter::AnalyzeBranches(BBInfo &BBI) { |
1020 | if (BBI.IsDone) |
1021 | return; |
1022 | |
1023 | BBI.TrueBB = BBI.FalseBB = nullptr; |
1024 | BBI.BrCond.clear(); |
1025 | BBI.IsBrAnalyzable = |
1026 | !TII->analyzeBranch(MBB&: *BBI.BB, TBB&: BBI.TrueBB, FBB&: BBI.FalseBB, Cond&: BBI.BrCond); |
1027 | if (!BBI.IsBrAnalyzable) { |
1028 | BBI.TrueBB = nullptr; |
1029 | BBI.FalseBB = nullptr; |
1030 | BBI.BrCond.clear(); |
1031 | } |
1032 | |
1033 | SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1034 | BBI.IsBrReversible = (RevCond.size() == 0) || |
1035 | !TII->reverseBranchCondition(Cond&: RevCond); |
1036 | BBI.HasFallThrough = BBI.IsBrAnalyzable && BBI.FalseBB == nullptr; |
1037 | |
1038 | if (BBI.BrCond.size()) { |
1039 | // No false branch. This BB must end with a conditional branch and a |
1040 | // fallthrough. |
1041 | if (!BBI.FalseBB) |
1042 | BBI.FalseBB = findFalseBlock(BB: BBI.BB, TrueBB: BBI.TrueBB); |
1043 | if (!BBI.FalseBB) { |
1044 | // Malformed bcc? True and false blocks are the same? |
1045 | BBI.IsUnpredicable = true; |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | /// ScanInstructions - Scan all the instructions in the block to determine if |
1051 | /// the block is predicable. In most cases, that means all the instructions |
1052 | /// in the block are isPredicable(). Also checks if the block contains any |
1053 | /// instruction which can clobber a predicate (e.g. condition code register). |
1054 | /// If so, the block is not predicable unless it's the last instruction. |
1055 | void IfConverter::ScanInstructions(BBInfo &BBI, |
1056 | MachineBasicBlock::iterator &Begin, |
1057 | MachineBasicBlock::iterator &End, |
1058 | bool BranchUnpredicable) const { |
1059 | if (BBI.IsDone || BBI.IsUnpredicable) |
1060 | return; |
1061 | |
1062 | bool AlreadyPredicated = !BBI.Predicate.empty(); |
1063 | |
1064 | BBI.NonPredSize = 0; |
1065 | BBI.ExtraCost = 0; |
1066 | BBI.ExtraCost2 = 0; |
1067 | BBI.ClobbersPred = false; |
1068 | for (MachineInstr &MI : make_range(x: Begin, y: End)) { |
1069 | if (MI.isDebugInstr()) |
1070 | continue; |
1071 | |
1072 | // It's unsafe to duplicate convergent instructions in this context, so set |
1073 | // BBI.CannotBeCopied to true if MI is convergent. To see why, consider the |
1074 | // following CFG, which is subject to our "simple" transformation. |
1075 | // |
1076 | // BB0 // if (c1) goto BB1; else goto BB2; |
1077 | // / \ |
1078 | // BB1 | |
1079 | // | BB2 // if (c2) goto TBB; else goto FBB; |
1080 | // | / | |
1081 | // | / | |
1082 | // TBB | |
1083 | // | | |
1084 | // | FBB |
1085 | // | |
1086 | // exit |
1087 | // |
1088 | // Suppose we want to move TBB's contents up into BB1 and BB2 (in BB1 they'd |
1089 | // be unconditional, and in BB2, they'd be predicated upon c2), and suppose |
1090 | // TBB contains a convergent instruction. This is safe iff doing so does |
1091 | // not add a control-flow dependency to the convergent instruction -- i.e., |
1092 | // it's safe iff the set of control flows that leads us to the convergent |
1093 | // instruction does not get smaller after the transformation. |
1094 | // |
1095 | // Originally we executed TBB if c1 || c2. After the transformation, there |
1096 | // are two copies of TBB's instructions. We get to the first if c1, and we |
1097 | // get to the second if !c1 && c2. |
1098 | // |
1099 | // There are clearly fewer ways to satisfy the condition "c1" than |
1100 | // "c1 || c2". Since we've shrunk the set of control flows which lead to |
1101 | // our convergent instruction, the transformation is unsafe. |
1102 | if (MI.isNotDuplicable() || MI.isConvergent()) |
1103 | BBI.CannotBeCopied = true; |
1104 | |
1105 | bool isPredicated = TII->isPredicated(MI); |
1106 | bool isCondBr = BBI.IsBrAnalyzable && MI.isConditionalBranch(); |
1107 | |
1108 | if (BranchUnpredicable && MI.isBranch()) { |
1109 | BBI.IsUnpredicable = true; |
1110 | return; |
1111 | } |
1112 | |
1113 | // A conditional branch is not predicable, but it may be eliminated. |
1114 | if (isCondBr) |
1115 | continue; |
1116 | |
1117 | if (!isPredicated) { |
1118 | BBI.NonPredSize++; |
1119 | unsigned = TII->getPredicationCost(MI); |
1120 | unsigned NumCycles = SchedModel.computeInstrLatency(MI: &MI, UseDefaultDefLatency: false); |
1121 | if (NumCycles > 1) |
1122 | BBI.ExtraCost += NumCycles-1; |
1123 | BBI.ExtraCost2 += ExtraPredCost; |
1124 | } else if (!AlreadyPredicated) { |
1125 | // FIXME: This instruction is already predicated before the |
1126 | // if-conversion pass. It's probably something like a conditional move. |
1127 | // Mark this block unpredicable for now. |
1128 | BBI.IsUnpredicable = true; |
1129 | return; |
1130 | } |
1131 | |
1132 | if (BBI.ClobbersPred && !isPredicated) { |
1133 | // Predicate modification instruction should end the block (except for |
1134 | // already predicated instructions and end of block branches). |
1135 | // Predicate may have been modified, the subsequent (currently) |
1136 | // unpredicated instructions cannot be correctly predicated. |
1137 | BBI.IsUnpredicable = true; |
1138 | return; |
1139 | } |
1140 | |
1141 | // FIXME: Make use of PredDefs? e.g. ADDC, SUBC sets predicates but are |
1142 | // still potentially predicable. |
1143 | std::vector<MachineOperand> PredDefs; |
1144 | if (TII->ClobbersPredicate(MI, Pred&: PredDefs, SkipDead: true)) |
1145 | BBI.ClobbersPred = true; |
1146 | |
1147 | if (!TII->isPredicable(MI)) { |
1148 | BBI.IsUnpredicable = true; |
1149 | return; |
1150 | } |
1151 | } |
1152 | } |
1153 | |
1154 | /// Determine if the block is a suitable candidate to be predicated by the |
1155 | /// specified predicate. |
1156 | /// @param BBI BBInfo for the block to check |
1157 | /// @param Pred Predicate array for the branch that leads to BBI |
1158 | /// @param isTriangle true if the Analysis is for a triangle |
1159 | /// @param RevBranch true if Reverse(Pred) leads to BBI (e.g. BBI is the false |
1160 | /// case |
1161 | /// @param hasCommonTail true if BBI shares a tail with a sibling block that |
1162 | /// contains any instruction that would make the block unpredicable. |
1163 | bool IfConverter::FeasibilityAnalysis(BBInfo &BBI, |
1164 | SmallVectorImpl<MachineOperand> &Pred, |
1165 | bool isTriangle, bool RevBranch, |
1166 | bool hasCommonTail) { |
1167 | // If the block is dead or unpredicable, then it cannot be predicated. |
1168 | // Two blocks may share a common unpredicable tail, but this doesn't prevent |
1169 | // them from being if-converted. The non-shared portion is assumed to have |
1170 | // been checked |
1171 | if (BBI.IsDone || (BBI.IsUnpredicable && !hasCommonTail)) |
1172 | return false; |
1173 | |
1174 | // If it is already predicated but we couldn't analyze its terminator, the |
1175 | // latter might fallthrough, but we can't determine where to. |
1176 | // Conservatively avoid if-converting again. |
1177 | if (BBI.Predicate.size() && !BBI.IsBrAnalyzable) |
1178 | return false; |
1179 | |
1180 | // If it is already predicated, check if the new predicate subsumes |
1181 | // its predicate. |
1182 | if (BBI.Predicate.size() && !TII->SubsumesPredicate(Pred1: Pred, Pred2: BBI.Predicate)) |
1183 | return false; |
1184 | |
1185 | if (!hasCommonTail && BBI.BrCond.size()) { |
1186 | if (!isTriangle) |
1187 | return false; |
1188 | |
1189 | // Test predicate subsumption. |
1190 | SmallVector<MachineOperand, 4> RevPred(Pred.begin(), Pred.end()); |
1191 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1192 | if (RevBranch) { |
1193 | if (TII->reverseBranchCondition(Cond)) |
1194 | return false; |
1195 | } |
1196 | if (TII->reverseBranchCondition(Cond&: RevPred) || |
1197 | !TII->SubsumesPredicate(Pred1: Cond, Pred2: RevPred)) |
1198 | return false; |
1199 | } |
1200 | |
1201 | return true; |
1202 | } |
1203 | |
1204 | /// Analyze the structure of the sub-CFG starting from the specified block. |
1205 | /// Record its successors and whether it looks like an if-conversion candidate. |
1206 | void IfConverter::AnalyzeBlock( |
1207 | MachineBasicBlock &MBB, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { |
1208 | struct BBState { |
1209 | BBState(MachineBasicBlock &MBB) : MBB(&MBB) {} |
1210 | MachineBasicBlock *MBB; |
1211 | |
1212 | /// This flag is true if MBB's successors have been analyzed. |
1213 | bool SuccsAnalyzed = false; |
1214 | }; |
1215 | |
1216 | // Push MBB to the stack. |
1217 | SmallVector<BBState, 16> BBStack(1, MBB); |
1218 | |
1219 | while (!BBStack.empty()) { |
1220 | BBState &State = BBStack.back(); |
1221 | MachineBasicBlock *BB = State.MBB; |
1222 | BBInfo &BBI = BBAnalysis[BB->getNumber()]; |
1223 | |
1224 | if (!State.SuccsAnalyzed) { |
1225 | if (BBI.IsAnalyzed || BBI.IsBeingAnalyzed) { |
1226 | BBStack.pop_back(); |
1227 | continue; |
1228 | } |
1229 | |
1230 | BBI.BB = BB; |
1231 | BBI.IsBeingAnalyzed = true; |
1232 | |
1233 | AnalyzeBranches(BBI); |
1234 | MachineBasicBlock::iterator Begin = BBI.BB->begin(); |
1235 | MachineBasicBlock::iterator End = BBI.BB->end(); |
1236 | ScanInstructions(BBI, Begin, End); |
1237 | |
1238 | // Unanalyzable or ends with fallthrough or unconditional branch, or if is |
1239 | // not considered for ifcvt anymore. |
1240 | if (!BBI.IsBrAnalyzable || BBI.BrCond.empty() || BBI.IsDone) { |
1241 | BBI.IsBeingAnalyzed = false; |
1242 | BBI.IsAnalyzed = true; |
1243 | BBStack.pop_back(); |
1244 | continue; |
1245 | } |
1246 | |
1247 | // Do not ifcvt if either path is a back edge to the entry block. |
1248 | if (BBI.TrueBB == BB || BBI.FalseBB == BB) { |
1249 | BBI.IsBeingAnalyzed = false; |
1250 | BBI.IsAnalyzed = true; |
1251 | BBStack.pop_back(); |
1252 | continue; |
1253 | } |
1254 | |
1255 | // Do not ifcvt if true and false fallthrough blocks are the same. |
1256 | if (!BBI.FalseBB) { |
1257 | BBI.IsBeingAnalyzed = false; |
1258 | BBI.IsAnalyzed = true; |
1259 | BBStack.pop_back(); |
1260 | continue; |
1261 | } |
1262 | |
1263 | // Push the False and True blocks to the stack. |
1264 | State.SuccsAnalyzed = true; |
1265 | BBStack.push_back(Elt: *BBI.FalseBB); |
1266 | BBStack.push_back(Elt: *BBI.TrueBB); |
1267 | continue; |
1268 | } |
1269 | |
1270 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1271 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1272 | |
1273 | if (TrueBBI.IsDone && FalseBBI.IsDone) { |
1274 | BBI.IsBeingAnalyzed = false; |
1275 | BBI.IsAnalyzed = true; |
1276 | BBStack.pop_back(); |
1277 | continue; |
1278 | } |
1279 | |
1280 | SmallVector<MachineOperand, 4> |
1281 | RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1282 | bool CanRevCond = !TII->reverseBranchCondition(Cond&: RevCond); |
1283 | |
1284 | unsigned Dups = 0; |
1285 | unsigned Dups2 = 0; |
1286 | bool TNeedSub = !TrueBBI.Predicate.empty(); |
1287 | bool FNeedSub = !FalseBBI.Predicate.empty(); |
1288 | bool Enqueued = false; |
1289 | |
1290 | BranchProbability Prediction = MBPI->getEdgeProbability(Src: BB, Dst: TrueBBI.BB); |
1291 | |
1292 | if (CanRevCond) { |
1293 | BBInfo TrueBBICalc, FalseBBICalc; |
1294 | auto feasibleDiamond = [&](bool Forked) { |
1295 | bool MeetsSize = MeetIfcvtSizeLimit(TBBInfo&: TrueBBICalc, FBBInfo&: FalseBBICalc, CommBB&: *BB, |
1296 | Dups: Dups + Dups2, Prediction, Forked); |
1297 | bool TrueFeasible = FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, |
1298 | /* IsTriangle */ isTriangle: false, /* RevCond */ RevBranch: false, |
1299 | /* hasCommonTail */ true); |
1300 | bool FalseFeasible = FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, |
1301 | /* IsTriangle */ isTriangle: false, /* RevCond */ RevBranch: false, |
1302 | /* hasCommonTail */ true); |
1303 | return MeetsSize && TrueFeasible && FalseFeasible; |
1304 | }; |
1305 | |
1306 | if (ValidDiamond(TrueBBI, FalseBBI, Dups1&: Dups, Dups2, |
1307 | TrueBBICalc, FalseBBICalc)) { |
1308 | if (feasibleDiamond(false)) { |
1309 | // Diamond: |
1310 | // EBB |
1311 | // / \_ |
1312 | // | | |
1313 | // TBB FBB |
1314 | // \ / |
1315 | // TailBB |
1316 | // Note TailBB can be empty. |
1317 | Tokens.push_back(x: std::make_unique<IfcvtToken>( |
1318 | args&: BBI, args: ICDiamond, args: TNeedSub | FNeedSub, args&: Dups, args&: Dups2, |
1319 | args: (bool) TrueBBICalc.ClobbersPred, args: (bool) FalseBBICalc.ClobbersPred)); |
1320 | Enqueued = true; |
1321 | } |
1322 | } else if (ValidForkedDiamond(TrueBBI, FalseBBI, Dups1&: Dups, Dups2, |
1323 | TrueBBICalc, FalseBBICalc)) { |
1324 | if (feasibleDiamond(true)) { |
1325 | // ForkedDiamond: |
1326 | // if TBB and FBB have a common tail that includes their conditional |
1327 | // branch instructions, then we can If Convert this pattern. |
1328 | // EBB |
1329 | // _/ \_ |
1330 | // | | |
1331 | // TBB FBB |
1332 | // / \ / \ |
1333 | // FalseBB TrueBB FalseBB |
1334 | // |
1335 | Tokens.push_back(x: std::make_unique<IfcvtToken>( |
1336 | args&: BBI, args: ICForkedDiamond, args: TNeedSub | FNeedSub, args&: Dups, args&: Dups2, |
1337 | args: (bool) TrueBBICalc.ClobbersPred, args: (bool) FalseBBICalc.ClobbersPred)); |
1338 | Enqueued = true; |
1339 | } |
1340 | } |
1341 | } |
1342 | |
1343 | if (ValidTriangle(TrueBBI, FalseBBI, FalseBranch: false, Dups, Prediction) && |
1344 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1345 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1346 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, isTriangle: true)) { |
1347 | // Triangle: |
1348 | // EBB |
1349 | // | \_ |
1350 | // | | |
1351 | // | TBB |
1352 | // | / |
1353 | // FBB |
1354 | Tokens.push_back( |
1355 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangle, args&: TNeedSub, args&: Dups)); |
1356 | Enqueued = true; |
1357 | } |
1358 | |
1359 | if (ValidTriangle(TrueBBI, FalseBBI, FalseBranch: true, Dups, Prediction) && |
1360 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1361 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1362 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond, isTriangle: true, RevBranch: true)) { |
1363 | Tokens.push_back( |
1364 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleRev, args&: TNeedSub, args&: Dups)); |
1365 | Enqueued = true; |
1366 | } |
1367 | |
1368 | if (ValidSimple(TrueBBI, Dups, Prediction) && |
1369 | MeetIfcvtSizeLimit(BB&: *TrueBBI.BB, Cycle: TrueBBI.NonPredSize + TrueBBI.ExtraCost, |
1370 | Extra: TrueBBI.ExtraCost2, Prediction) && |
1371 | FeasibilityAnalysis(BBI&: TrueBBI, Pred&: BBI.BrCond)) { |
1372 | // Simple (split, no rejoin): |
1373 | // EBB |
1374 | // | \_ |
1375 | // | | |
1376 | // | TBB---> exit |
1377 | // | |
1378 | // FBB |
1379 | Tokens.push_back( |
1380 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICSimple, args&: TNeedSub, args&: Dups)); |
1381 | Enqueued = true; |
1382 | } |
1383 | |
1384 | if (CanRevCond) { |
1385 | // Try the other path... |
1386 | if (ValidTriangle(TrueBBI&: FalseBBI, FalseBBI&: TrueBBI, FalseBranch: false, Dups, |
1387 | Prediction: Prediction.getCompl()) && |
1388 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1389 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1390 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1391 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, isTriangle: true)) { |
1392 | Tokens.push_back(x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleFalse, |
1393 | args&: FNeedSub, args&: Dups)); |
1394 | Enqueued = true; |
1395 | } |
1396 | |
1397 | if (ValidTriangle(TrueBBI&: FalseBBI, FalseBBI&: TrueBBI, FalseBranch: true, Dups, |
1398 | Prediction: Prediction.getCompl()) && |
1399 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1400 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1401 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1402 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond, isTriangle: true, RevBranch: true)) { |
1403 | Tokens.push_back( |
1404 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICTriangleFRev, args&: FNeedSub, args&: Dups)); |
1405 | Enqueued = true; |
1406 | } |
1407 | |
1408 | if (ValidSimple(TrueBBI&: FalseBBI, Dups, Prediction: Prediction.getCompl()) && |
1409 | MeetIfcvtSizeLimit(BB&: *FalseBBI.BB, |
1410 | Cycle: FalseBBI.NonPredSize + FalseBBI.ExtraCost, |
1411 | Extra: FalseBBI.ExtraCost2, Prediction: Prediction.getCompl()) && |
1412 | FeasibilityAnalysis(BBI&: FalseBBI, Pred&: RevCond)) { |
1413 | Tokens.push_back( |
1414 | x: std::make_unique<IfcvtToken>(args&: BBI, args: ICSimpleFalse, args&: FNeedSub, args&: Dups)); |
1415 | Enqueued = true; |
1416 | } |
1417 | } |
1418 | |
1419 | BBI.IsEnqueued = Enqueued; |
1420 | BBI.IsBeingAnalyzed = false; |
1421 | BBI.IsAnalyzed = true; |
1422 | BBStack.pop_back(); |
1423 | } |
1424 | } |
1425 | |
1426 | /// Analyze all blocks and find entries for all if-conversion candidates. |
1427 | void IfConverter::AnalyzeBlocks( |
1428 | MachineFunction &MF, std::vector<std::unique_ptr<IfcvtToken>> &Tokens) { |
1429 | for (MachineBasicBlock &MBB : MF) |
1430 | AnalyzeBlock(MBB, Tokens); |
1431 | |
1432 | // Sort to favor more complex ifcvt scheme. |
1433 | llvm::stable_sort(Range&: Tokens, C: IfcvtTokenCmp); |
1434 | } |
1435 | |
1436 | /// Returns true either if ToMBB is the next block after MBB or that all the |
1437 | /// intervening blocks are empty (given MBB can fall through to its next block). |
1438 | static bool canFallThroughTo(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB) { |
1439 | MachineFunction::iterator PI = MBB.getIterator(); |
1440 | MachineFunction::iterator I = std::next(x: PI); |
1441 | MachineFunction::iterator TI = ToMBB.getIterator(); |
1442 | MachineFunction::iterator E = MBB.getParent()->end(); |
1443 | while (I != TI) { |
1444 | // Check isSuccessor to avoid case where the next block is empty, but |
1445 | // it's not a successor. |
1446 | if (I == E || !I->empty() || !PI->isSuccessor(MBB: &*I)) |
1447 | return false; |
1448 | PI = I++; |
1449 | } |
1450 | // Finally see if the last I is indeed a successor to PI. |
1451 | return PI->isSuccessor(MBB: &*I); |
1452 | } |
1453 | |
1454 | /// Invalidate predecessor BB info so it would be re-analyzed to determine if it |
1455 | /// can be if-converted. If predecessor is already enqueued, dequeue it! |
1456 | void IfConverter::InvalidatePreds(MachineBasicBlock &MBB) { |
1457 | for (const MachineBasicBlock *Predecessor : MBB.predecessors()) { |
1458 | BBInfo &PBBI = BBAnalysis[Predecessor->getNumber()]; |
1459 | if (PBBI.IsDone || PBBI.BB == &MBB) |
1460 | continue; |
1461 | PBBI.IsAnalyzed = false; |
1462 | PBBI.IsEnqueued = false; |
1463 | } |
1464 | } |
1465 | |
1466 | /// Inserts an unconditional branch from \p MBB to \p ToMBB. |
1467 | static void InsertUncondBranch(MachineBasicBlock &MBB, MachineBasicBlock &ToMBB, |
1468 | const TargetInstrInfo *TII) { |
1469 | DebugLoc dl; // FIXME: this is nowhere |
1470 | SmallVector<MachineOperand, 0> NoCond; |
1471 | TII->insertBranch(MBB, TBB: &ToMBB, FBB: nullptr, Cond: NoCond, DL: dl); |
1472 | } |
1473 | |
1474 | /// Behaves like LiveRegUnits::StepForward() but also adds implicit uses to all |
1475 | /// values defined in MI which are also live/used by MI. |
1476 | static void UpdatePredRedefs(MachineInstr &MI, LivePhysRegs &Redefs) { |
1477 | const TargetRegisterInfo *TRI = MI.getMF()->getSubtarget().getRegisterInfo(); |
1478 | |
1479 | // Before stepping forward past MI, remember which regs were live |
1480 | // before MI. This is needed to set the Undef flag only when reg is |
1481 | // dead. |
1482 | SparseSet<MCPhysReg, identity<MCPhysReg>> LiveBeforeMI; |
1483 | LiveBeforeMI.setUniverse(TRI->getNumRegs()); |
1484 | for (unsigned Reg : Redefs) |
1485 | LiveBeforeMI.insert(Val: Reg); |
1486 | |
1487 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Clobbers; |
1488 | Redefs.stepForward(MI, Clobbers); |
1489 | |
1490 | // Now add the implicit uses for each of the clobbered values. |
1491 | for (auto Clobber : Clobbers) { |
1492 | // FIXME: Const cast here is nasty, but better than making StepForward |
1493 | // take a mutable instruction instead of const. |
1494 | unsigned Reg = Clobber.first; |
1495 | MachineOperand &Op = const_cast<MachineOperand&>(*Clobber.second); |
1496 | MachineInstr *OpMI = Op.getParent(); |
1497 | MachineInstrBuilder MIB(*OpMI->getMF(), OpMI); |
1498 | if (Op.isRegMask()) { |
1499 | // First handle regmasks. They clobber any entries in the mask which |
1500 | // means that we need a def for those registers. |
1501 | if (LiveBeforeMI.count(Key: Reg)) |
1502 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
1503 | |
1504 | // We also need to add an implicit def of this register for the later |
1505 | // use to read from. |
1506 | // For the register allocator to have allocated a register clobbered |
1507 | // by the call which is used later, it must be the case that |
1508 | // the call doesn't return. |
1509 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit | RegState::Define); |
1510 | continue; |
1511 | } |
1512 | if (any_of(Range: TRI->subregs_inclusive(Reg), |
1513 | P: [&](MCPhysReg S) { return LiveBeforeMI.count(Key: S); })) |
1514 | MIB.addReg(RegNo: Reg, flags: RegState::Implicit); |
1515 | } |
1516 | } |
1517 | |
1518 | /// If convert a simple (split, no rejoin) sub-CFG. |
1519 | bool IfConverter::IfConvertSimple(BBInfo &BBI, IfcvtKind Kind) { |
1520 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1521 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1522 | BBInfo *CvtBBI = &TrueBBI; |
1523 | BBInfo *NextBBI = &FalseBBI; |
1524 | |
1525 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1526 | if (Kind == ICSimpleFalse) |
1527 | std::swap(a&: CvtBBI, b&: NextBBI); |
1528 | |
1529 | MachineBasicBlock &CvtMBB = *CvtBBI->BB; |
1530 | MachineBasicBlock &NextMBB = *NextBBI->BB; |
1531 | if (CvtBBI->IsDone || |
1532 | (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { |
1533 | // Something has changed. It's no longer safe to predicate this block. |
1534 | BBI.IsAnalyzed = false; |
1535 | CvtBBI->IsAnalyzed = false; |
1536 | return false; |
1537 | } |
1538 | |
1539 | if (CvtMBB.hasAddressTaken()) |
1540 | // Conservatively abort if-conversion if BB's address is taken. |
1541 | return false; |
1542 | |
1543 | if (Kind == ICSimpleFalse) |
1544 | if (TII->reverseBranchCondition(Cond)) |
1545 | llvm_unreachable("Unable to reverse branch condition!" ); |
1546 | |
1547 | Redefs.init(TRI: *TRI); |
1548 | |
1549 | if (MRI->tracksLiveness()) { |
1550 | // Initialize liveins to the first BB. These are potentially redefined by |
1551 | // predicated instructions. |
1552 | Redefs.addLiveInsNoPristines(MBB: CvtMBB); |
1553 | Redefs.addLiveInsNoPristines(MBB: NextMBB); |
1554 | } |
1555 | |
1556 | // Remove the branches from the entry so we can add the contents of the true |
1557 | // block to it. |
1558 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1559 | |
1560 | if (CvtMBB.pred_size() > 1) { |
1561 | // Copy instructions in the true block, predicate them, and add them to |
1562 | // the entry block. |
1563 | CopyAndPredicateBlock(ToBBI&: BBI, FromBBI&: *CvtBBI, Cond); |
1564 | |
1565 | // Keep the CFG updated. |
1566 | BBI.BB->removeSuccessor(Succ: &CvtMBB, NormalizeSuccProbs: true); |
1567 | } else { |
1568 | // Predicate the instructions in the true block. |
1569 | PredicateBlock(BBI&: *CvtBBI, E: CvtMBB.end(), Cond); |
1570 | |
1571 | // Merge converted block into entry block. The BB to Cvt edge is removed |
1572 | // by MergeBlocks. |
1573 | MergeBlocks(ToBBI&: BBI, FromBBI&: *CvtBBI); |
1574 | } |
1575 | |
1576 | bool IterIfcvt = true; |
1577 | if (!canFallThroughTo(MBB&: *BBI.BB, ToMBB&: NextMBB)) { |
1578 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: NextMBB, TII); |
1579 | BBI.HasFallThrough = false; |
1580 | // Now ifcvt'd block will look like this: |
1581 | // BB: |
1582 | // ... |
1583 | // t, f = cmp |
1584 | // if t op |
1585 | // b BBf |
1586 | // |
1587 | // We cannot further ifcvt this block because the unconditional branch |
1588 | // will have to be predicated on the new condition, that will not be |
1589 | // available if cmp executes. |
1590 | IterIfcvt = false; |
1591 | } |
1592 | |
1593 | // Update block info. BB can be iteratively if-converted. |
1594 | if (!IterIfcvt) |
1595 | BBI.IsDone = true; |
1596 | InvalidatePreds(MBB&: *BBI.BB); |
1597 | CvtBBI->IsDone = true; |
1598 | |
1599 | // FIXME: Must maintain LiveIns. |
1600 | return true; |
1601 | } |
1602 | |
1603 | /// If convert a triangle sub-CFG. |
1604 | bool IfConverter::IfConvertTriangle(BBInfo &BBI, IfcvtKind Kind) { |
1605 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1606 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1607 | BBInfo *CvtBBI = &TrueBBI; |
1608 | BBInfo *NextBBI = &FalseBBI; |
1609 | DebugLoc dl; // FIXME: this is nowhere |
1610 | |
1611 | SmallVector<MachineOperand, 4> Cond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1612 | if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
1613 | std::swap(a&: CvtBBI, b&: NextBBI); |
1614 | |
1615 | MachineBasicBlock &CvtMBB = *CvtBBI->BB; |
1616 | MachineBasicBlock &NextMBB = *NextBBI->BB; |
1617 | if (CvtBBI->IsDone || |
1618 | (CvtBBI->CannotBeCopied && CvtMBB.pred_size() > 1)) { |
1619 | // Something has changed. It's no longer safe to predicate this block. |
1620 | BBI.IsAnalyzed = false; |
1621 | CvtBBI->IsAnalyzed = false; |
1622 | return false; |
1623 | } |
1624 | |
1625 | if (CvtMBB.hasAddressTaken()) |
1626 | // Conservatively abort if-conversion if BB's address is taken. |
1627 | return false; |
1628 | |
1629 | if (Kind == ICTriangleFalse || Kind == ICTriangleFRev) |
1630 | if (TII->reverseBranchCondition(Cond)) |
1631 | llvm_unreachable("Unable to reverse branch condition!" ); |
1632 | |
1633 | if (Kind == ICTriangleRev || Kind == ICTriangleFRev) { |
1634 | if (reverseBranchCondition(BBI&: *CvtBBI)) { |
1635 | // BB has been changed, modify its predecessors (except for this |
1636 | // one) so they don't get ifcvt'ed based on bad intel. |
1637 | for (MachineBasicBlock *PBB : CvtMBB.predecessors()) { |
1638 | if (PBB == BBI.BB) |
1639 | continue; |
1640 | BBInfo &PBBI = BBAnalysis[PBB->getNumber()]; |
1641 | if (PBBI.IsEnqueued) { |
1642 | PBBI.IsAnalyzed = false; |
1643 | PBBI.IsEnqueued = false; |
1644 | } |
1645 | } |
1646 | } |
1647 | } |
1648 | |
1649 | // Initialize liveins to the first BB. These are potentially redefined by |
1650 | // predicated instructions. |
1651 | Redefs.init(TRI: *TRI); |
1652 | if (MRI->tracksLiveness()) { |
1653 | Redefs.addLiveInsNoPristines(MBB: CvtMBB); |
1654 | Redefs.addLiveInsNoPristines(MBB: NextMBB); |
1655 | } |
1656 | |
1657 | bool HasEarlyExit = CvtBBI->FalseBB != nullptr; |
1658 | BranchProbability CvtNext, CvtFalse, BBNext, BBCvt; |
1659 | |
1660 | if (HasEarlyExit) { |
1661 | // Get probabilities before modifying CvtMBB and BBI.BB. |
1662 | CvtNext = MBPI->getEdgeProbability(Src: &CvtMBB, Dst: &NextMBB); |
1663 | CvtFalse = MBPI->getEdgeProbability(Src: &CvtMBB, Dst: CvtBBI->FalseBB); |
1664 | BBNext = MBPI->getEdgeProbability(Src: BBI.BB, Dst: &NextMBB); |
1665 | BBCvt = MBPI->getEdgeProbability(Src: BBI.BB, Dst: &CvtMBB); |
1666 | } |
1667 | |
1668 | // Remove the branches from the entry so we can add the contents of the true |
1669 | // block to it. |
1670 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1671 | |
1672 | if (CvtMBB.pred_size() > 1) { |
1673 | // Copy instructions in the true block, predicate them, and add them to |
1674 | // the entry block. |
1675 | CopyAndPredicateBlock(ToBBI&: BBI, FromBBI&: *CvtBBI, Cond, IgnoreBr: true); |
1676 | } else { |
1677 | // Predicate the 'true' block after removing its branch. |
1678 | CvtBBI->NonPredSize -= TII->removeBranch(MBB&: CvtMBB); |
1679 | PredicateBlock(BBI&: *CvtBBI, E: CvtMBB.end(), Cond); |
1680 | |
1681 | // Now merge the entry of the triangle with the true block. |
1682 | MergeBlocks(ToBBI&: BBI, FromBBI&: *CvtBBI, AddEdges: false); |
1683 | } |
1684 | |
1685 | // Keep the CFG updated. |
1686 | BBI.BB->removeSuccessor(Succ: &CvtMBB, NormalizeSuccProbs: true); |
1687 | |
1688 | // If 'true' block has a 'false' successor, add an exit branch to it. |
1689 | if (HasEarlyExit) { |
1690 | SmallVector<MachineOperand, 4> RevCond(CvtBBI->BrCond.begin(), |
1691 | CvtBBI->BrCond.end()); |
1692 | if (TII->reverseBranchCondition(Cond&: RevCond)) |
1693 | llvm_unreachable("Unable to reverse branch condition!" ); |
1694 | |
1695 | // Update the edge probability for both CvtBBI->FalseBB and NextBBI. |
1696 | // NewNext = New_Prob(BBI.BB, NextMBB) = |
1697 | // Prob(BBI.BB, NextMBB) + |
1698 | // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, NextMBB) |
1699 | // NewFalse = New_Prob(BBI.BB, CvtBBI->FalseBB) = |
1700 | // Prob(BBI.BB, CvtMBB) * Prob(CvtMBB, CvtBBI->FalseBB) |
1701 | auto NewTrueBB = getNextBlock(MBB&: *BBI.BB); |
1702 | auto NewNext = BBNext + BBCvt * CvtNext; |
1703 | auto NewTrueBBIter = find(Range: BBI.BB->successors(), Val: NewTrueBB); |
1704 | if (NewTrueBBIter != BBI.BB->succ_end()) |
1705 | BBI.BB->setSuccProbability(I: NewTrueBBIter, Prob: NewNext); |
1706 | |
1707 | auto NewFalse = BBCvt * CvtFalse; |
1708 | TII->insertBranch(MBB&: *BBI.BB, TBB: CvtBBI->FalseBB, FBB: nullptr, Cond: RevCond, DL: dl); |
1709 | BBI.BB->addSuccessor(Succ: CvtBBI->FalseBB, Prob: NewFalse); |
1710 | } |
1711 | |
1712 | // Merge in the 'false' block if the 'false' block has no other |
1713 | // predecessors. Otherwise, add an unconditional branch to 'false'. |
1714 | bool FalseBBDead = false; |
1715 | bool IterIfcvt = true; |
1716 | bool isFallThrough = canFallThroughTo(MBB&: *BBI.BB, ToMBB&: NextMBB); |
1717 | if (!isFallThrough) { |
1718 | // Only merge them if the true block does not fallthrough to the false |
1719 | // block. By not merging them, we make it possible to iteratively |
1720 | // ifcvt the blocks. |
1721 | if (!HasEarlyExit && |
1722 | NextMBB.pred_size() == 1 && !NextBBI->HasFallThrough && |
1723 | !NextMBB.hasAddressTaken()) { |
1724 | MergeBlocks(ToBBI&: BBI, FromBBI&: *NextBBI); |
1725 | FalseBBDead = true; |
1726 | } else { |
1727 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: NextMBB, TII); |
1728 | BBI.HasFallThrough = false; |
1729 | } |
1730 | // Mixed predicated and unpredicated code. This cannot be iteratively |
1731 | // predicated. |
1732 | IterIfcvt = false; |
1733 | } |
1734 | |
1735 | // Update block info. BB can be iteratively if-converted. |
1736 | if (!IterIfcvt) |
1737 | BBI.IsDone = true; |
1738 | InvalidatePreds(MBB&: *BBI.BB); |
1739 | CvtBBI->IsDone = true; |
1740 | if (FalseBBDead) |
1741 | NextBBI->IsDone = true; |
1742 | |
1743 | // FIXME: Must maintain LiveIns. |
1744 | return true; |
1745 | } |
1746 | |
1747 | /// Common code shared between diamond conversions. |
1748 | /// \p BBI, \p TrueBBI, and \p FalseBBI form the diamond shape. |
1749 | /// \p NumDups1 - number of shared instructions at the beginning of \p TrueBBI |
1750 | /// and FalseBBI |
1751 | /// \p NumDups2 - number of shared instructions at the end of \p TrueBBI |
1752 | /// and \p FalseBBI |
1753 | /// \p RemoveBranch - Remove the common branch of the two blocks before |
1754 | /// predicating. Only false for unanalyzable fallthrough |
1755 | /// cases. The caller will replace the branch if necessary. |
1756 | /// \p MergeAddEdges - Add successor edges when merging blocks. Only false for |
1757 | /// unanalyzable fallthrough |
1758 | bool IfConverter::IfConvertDiamondCommon( |
1759 | BBInfo &BBI, BBInfo &TrueBBI, BBInfo &FalseBBI, |
1760 | unsigned NumDups1, unsigned NumDups2, |
1761 | bool TClobbersPred, bool FClobbersPred, |
1762 | bool RemoveBranch, bool MergeAddEdges) { |
1763 | |
1764 | if (TrueBBI.IsDone || FalseBBI.IsDone || |
1765 | TrueBBI.BB->pred_size() > 1 || FalseBBI.BB->pred_size() > 1) { |
1766 | // Something has changed. It's no longer safe to predicate these blocks. |
1767 | BBI.IsAnalyzed = false; |
1768 | TrueBBI.IsAnalyzed = false; |
1769 | FalseBBI.IsAnalyzed = false; |
1770 | return false; |
1771 | } |
1772 | |
1773 | if (TrueBBI.BB->hasAddressTaken() || FalseBBI.BB->hasAddressTaken()) |
1774 | // Conservatively abort if-conversion if either BB has its address taken. |
1775 | return false; |
1776 | |
1777 | // Put the predicated instructions from the 'true' block before the |
1778 | // instructions from the 'false' block, unless the true block would clobber |
1779 | // the predicate, in which case, do the opposite. |
1780 | BBInfo *BBI1 = &TrueBBI; |
1781 | BBInfo *BBI2 = &FalseBBI; |
1782 | SmallVector<MachineOperand, 4> RevCond(BBI.BrCond.begin(), BBI.BrCond.end()); |
1783 | if (TII->reverseBranchCondition(Cond&: RevCond)) |
1784 | llvm_unreachable("Unable to reverse branch condition!" ); |
1785 | SmallVector<MachineOperand, 4> *Cond1 = &BBI.BrCond; |
1786 | SmallVector<MachineOperand, 4> *Cond2 = &RevCond; |
1787 | |
1788 | // Figure out the more profitable ordering. |
1789 | bool DoSwap = false; |
1790 | if (TClobbersPred && !FClobbersPred) |
1791 | DoSwap = true; |
1792 | else if (!TClobbersPred && !FClobbersPred) { |
1793 | if (TrueBBI.NonPredSize > FalseBBI.NonPredSize) |
1794 | DoSwap = true; |
1795 | } else if (TClobbersPred && FClobbersPred) |
1796 | llvm_unreachable("Predicate info cannot be clobbered by both sides." ); |
1797 | if (DoSwap) { |
1798 | std::swap(a&: BBI1, b&: BBI2); |
1799 | std::swap(a&: Cond1, b&: Cond2); |
1800 | } |
1801 | |
1802 | // Remove the conditional branch from entry to the blocks. |
1803 | BBI.NonPredSize -= TII->removeBranch(MBB&: *BBI.BB); |
1804 | |
1805 | MachineBasicBlock &MBB1 = *BBI1->BB; |
1806 | MachineBasicBlock &MBB2 = *BBI2->BB; |
1807 | |
1808 | // Initialize the Redefs: |
1809 | // - BB2 live-in regs need implicit uses before being redefined by BB1 |
1810 | // instructions. |
1811 | // - BB1 live-out regs need implicit uses before being redefined by BB2 |
1812 | // instructions. We start with BB1 live-ins so we have the live-out regs |
1813 | // after tracking the BB1 instructions. |
1814 | Redefs.init(TRI: *TRI); |
1815 | if (MRI->tracksLiveness()) { |
1816 | Redefs.addLiveInsNoPristines(MBB: MBB1); |
1817 | Redefs.addLiveInsNoPristines(MBB: MBB2); |
1818 | } |
1819 | |
1820 | // Remove the duplicated instructions at the beginnings of both paths. |
1821 | // Skip dbg_value instructions. |
1822 | MachineBasicBlock::iterator DI1 = MBB1.getFirstNonDebugInstr(SkipPseudoOp: false); |
1823 | MachineBasicBlock::iterator DI2 = MBB2.getFirstNonDebugInstr(SkipPseudoOp: false); |
1824 | BBI1->NonPredSize -= NumDups1; |
1825 | BBI2->NonPredSize -= NumDups1; |
1826 | |
1827 | // Skip past the dups on each side separately since there may be |
1828 | // differing dbg_value entries. NumDups1 can include a "return" |
1829 | // instruction, if it's not marked as "branch". |
1830 | for (unsigned i = 0; i < NumDups1; ++DI1) { |
1831 | if (DI1 == MBB1.end()) |
1832 | break; |
1833 | if (!DI1->isDebugInstr()) |
1834 | ++i; |
1835 | } |
1836 | while (NumDups1 != 0) { |
1837 | // Since this instruction is going to be deleted, update call |
1838 | // site info state if the instruction is call instruction. |
1839 | if (DI2->shouldUpdateCallSiteInfo()) |
1840 | MBB2.getParent()->eraseCallSiteInfo(MI: &*DI2); |
1841 | |
1842 | ++DI2; |
1843 | if (DI2 == MBB2.end()) |
1844 | break; |
1845 | if (!DI2->isDebugInstr()) |
1846 | --NumDups1; |
1847 | } |
1848 | |
1849 | if (MRI->tracksLiveness()) { |
1850 | for (const MachineInstr &MI : make_range(x: MBB1.begin(), y: DI1)) { |
1851 | SmallVector<std::pair<MCPhysReg, const MachineOperand*>, 4> Dummy; |
1852 | Redefs.stepForward(MI, Clobbers&: Dummy); |
1853 | } |
1854 | } |
1855 | |
1856 | BBI.BB->splice(Where: BBI.BB->end(), Other: &MBB1, From: MBB1.begin(), To: DI1); |
1857 | MBB2.erase(I: MBB2.begin(), E: DI2); |
1858 | |
1859 | // The branches have been checked to match, so it is safe to remove the |
1860 | // branch in BB1 and rely on the copy in BB2. The complication is that |
1861 | // the blocks may end with a return instruction, which may or may not |
1862 | // be marked as "branch". If it's not, then it could be included in |
1863 | // "dups1", leaving the blocks potentially empty after moving the common |
1864 | // duplicates. |
1865 | #ifndef NDEBUG |
1866 | // Unanalyzable branches must match exactly. Check that now. |
1867 | if (!BBI1->IsBrAnalyzable) |
1868 | verifySameBranchInstructions(&MBB1, &MBB2); |
1869 | #endif |
1870 | // Remove duplicated instructions from the tail of MBB1: any branch |
1871 | // instructions, and the common instructions counted by NumDups2. |
1872 | DI1 = MBB1.end(); |
1873 | while (DI1 != MBB1.begin()) { |
1874 | MachineBasicBlock::iterator Prev = std::prev(x: DI1); |
1875 | if (!Prev->isBranch() && !Prev->isDebugInstr()) |
1876 | break; |
1877 | DI1 = Prev; |
1878 | } |
1879 | for (unsigned i = 0; i != NumDups2; ) { |
1880 | // NumDups2 only counted non-dbg_value instructions, so this won't |
1881 | // run off the head of the list. |
1882 | assert(DI1 != MBB1.begin()); |
1883 | |
1884 | --DI1; |
1885 | |
1886 | // Since this instruction is going to be deleted, update call |
1887 | // site info state if the instruction is call instruction. |
1888 | if (DI1->shouldUpdateCallSiteInfo()) |
1889 | MBB1.getParent()->eraseCallSiteInfo(MI: &*DI1); |
1890 | |
1891 | // skip dbg_value instructions |
1892 | if (!DI1->isDebugInstr()) |
1893 | ++i; |
1894 | } |
1895 | MBB1.erase(I: DI1, E: MBB1.end()); |
1896 | |
1897 | DI2 = BBI2->BB->end(); |
1898 | // The branches have been checked to match. Skip over the branch in the false |
1899 | // block so that we don't try to predicate it. |
1900 | if (RemoveBranch) |
1901 | BBI2->NonPredSize -= TII->removeBranch(MBB&: *BBI2->BB); |
1902 | else { |
1903 | // Make DI2 point to the end of the range where the common "tail" |
1904 | // instructions could be found. |
1905 | while (DI2 != MBB2.begin()) { |
1906 | MachineBasicBlock::iterator Prev = std::prev(x: DI2); |
1907 | if (!Prev->isBranch() && !Prev->isDebugInstr()) |
1908 | break; |
1909 | DI2 = Prev; |
1910 | } |
1911 | } |
1912 | while (NumDups2 != 0) { |
1913 | // NumDups2 only counted non-dbg_value instructions, so this won't |
1914 | // run off the head of the list. |
1915 | assert(DI2 != MBB2.begin()); |
1916 | --DI2; |
1917 | // skip dbg_value instructions |
1918 | if (!DI2->isDebugInstr()) |
1919 | --NumDups2; |
1920 | } |
1921 | |
1922 | // Remember which registers would later be defined by the false block. |
1923 | // This allows us not to predicate instructions in the true block that would |
1924 | // later be re-defined. That is, rather than |
1925 | // subeq r0, r1, #1 |
1926 | // addne r0, r1, #1 |
1927 | // generate: |
1928 | // sub r0, r1, #1 |
1929 | // addne r0, r1, #1 |
1930 | SmallSet<MCPhysReg, 4> RedefsByFalse; |
1931 | SmallSet<MCPhysReg, 4> ExtUses; |
1932 | if (TII->isProfitableToUnpredicate(TMBB&: MBB1, FMBB&: MBB2)) { |
1933 | for (const MachineInstr &FI : make_range(x: MBB2.begin(), y: DI2)) { |
1934 | if (FI.isDebugInstr()) |
1935 | continue; |
1936 | SmallVector<MCPhysReg, 4> Defs; |
1937 | for (const MachineOperand &MO : FI.operands()) { |
1938 | if (!MO.isReg()) |
1939 | continue; |
1940 | Register Reg = MO.getReg(); |
1941 | if (!Reg) |
1942 | continue; |
1943 | if (MO.isDef()) { |
1944 | Defs.push_back(Elt: Reg); |
1945 | } else if (!RedefsByFalse.count(V: Reg)) { |
1946 | // These are defined before ctrl flow reach the 'false' instructions. |
1947 | // They cannot be modified by the 'true' instructions. |
1948 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) |
1949 | ExtUses.insert(V: SubReg); |
1950 | } |
1951 | } |
1952 | |
1953 | for (MCPhysReg Reg : Defs) { |
1954 | if (!ExtUses.count(V: Reg)) { |
1955 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) |
1956 | RedefsByFalse.insert(V: SubReg); |
1957 | } |
1958 | } |
1959 | } |
1960 | } |
1961 | |
1962 | // Predicate the 'true' block. |
1963 | PredicateBlock(BBI&: *BBI1, E: MBB1.end(), Cond&: *Cond1, LaterRedefs: &RedefsByFalse); |
1964 | |
1965 | // After predicating BBI1, if there is a predicated terminator in BBI1 and |
1966 | // a non-predicated in BBI2, then we don't want to predicate the one from |
1967 | // BBI2. The reason is that if we merged these blocks, we would end up with |
1968 | // two predicated terminators in the same block. |
1969 | // Also, if the branches in MBB1 and MBB2 were non-analyzable, then don't |
1970 | // predicate them either. They were checked to be identical, and so the |
1971 | // same branch would happen regardless of which path was taken. |
1972 | if (!MBB2.empty() && (DI2 == MBB2.end())) { |
1973 | MachineBasicBlock::iterator BBI1T = MBB1.getFirstTerminator(); |
1974 | MachineBasicBlock::iterator BBI2T = MBB2.getFirstTerminator(); |
1975 | bool BB1Predicated = BBI1T != MBB1.end() && TII->isPredicated(MI: *BBI1T); |
1976 | bool BB2NonPredicated = BBI2T != MBB2.end() && !TII->isPredicated(MI: *BBI2T); |
1977 | if (BB2NonPredicated && (BB1Predicated || !BBI2->IsBrAnalyzable)) |
1978 | --DI2; |
1979 | } |
1980 | |
1981 | // Predicate the 'false' block. |
1982 | PredicateBlock(BBI&: *BBI2, E: DI2, Cond&: *Cond2); |
1983 | |
1984 | // Merge the true block into the entry of the diamond. |
1985 | MergeBlocks(ToBBI&: BBI, FromBBI&: *BBI1, AddEdges: MergeAddEdges); |
1986 | MergeBlocks(ToBBI&: BBI, FromBBI&: *BBI2, AddEdges: MergeAddEdges); |
1987 | return true; |
1988 | } |
1989 | |
1990 | /// If convert an almost-diamond sub-CFG where the true |
1991 | /// and false blocks share a common tail. |
1992 | bool IfConverter::IfConvertForkedDiamond( |
1993 | BBInfo &BBI, IfcvtKind Kind, |
1994 | unsigned NumDups1, unsigned NumDups2, |
1995 | bool TClobbersPred, bool FClobbersPred) { |
1996 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
1997 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
1998 | |
1999 | // Save the debug location for later. |
2000 | DebugLoc dl; |
2001 | MachineBasicBlock::iterator TIE = TrueBBI.BB->getFirstTerminator(); |
2002 | if (TIE != TrueBBI.BB->end()) |
2003 | dl = TIE->getDebugLoc(); |
2004 | // Removing branches from both blocks is safe, because we have already |
2005 | // determined that both blocks have the same branch instructions. The branch |
2006 | // will be added back at the end, unpredicated. |
2007 | if (!IfConvertDiamondCommon( |
2008 | BBI, TrueBBI, FalseBBI, |
2009 | NumDups1, NumDups2, |
2010 | TClobbersPred, FClobbersPred, |
2011 | /* RemoveBranch */ true, /* MergeAddEdges */ true)) |
2012 | return false; |
2013 | |
2014 | // Add back the branch. |
2015 | // Debug location saved above when removing the branch from BBI2 |
2016 | TII->insertBranch(MBB&: *BBI.BB, TBB: TrueBBI.TrueBB, FBB: TrueBBI.FalseBB, |
2017 | Cond: TrueBBI.BrCond, DL: dl); |
2018 | |
2019 | // Update block info. |
2020 | BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; |
2021 | InvalidatePreds(MBB&: *BBI.BB); |
2022 | |
2023 | // FIXME: Must maintain LiveIns. |
2024 | return true; |
2025 | } |
2026 | |
2027 | /// If convert a diamond sub-CFG. |
2028 | bool IfConverter::IfConvertDiamond(BBInfo &BBI, IfcvtKind Kind, |
2029 | unsigned NumDups1, unsigned NumDups2, |
2030 | bool TClobbersPred, bool FClobbersPred) { |
2031 | BBInfo &TrueBBI = BBAnalysis[BBI.TrueBB->getNumber()]; |
2032 | BBInfo &FalseBBI = BBAnalysis[BBI.FalseBB->getNumber()]; |
2033 | MachineBasicBlock *TailBB = TrueBBI.TrueBB; |
2034 | |
2035 | // True block must fall through or end with an unanalyzable terminator. |
2036 | if (!TailBB) { |
2037 | if (blockAlwaysFallThrough(BBI&: TrueBBI)) |
2038 | TailBB = FalseBBI.TrueBB; |
2039 | assert((TailBB || !TrueBBI.IsBrAnalyzable) && "Unexpected!" ); |
2040 | } |
2041 | |
2042 | if (!IfConvertDiamondCommon( |
2043 | BBI, TrueBBI, FalseBBI, |
2044 | NumDups1, NumDups2, |
2045 | TClobbersPred, FClobbersPred, |
2046 | /* RemoveBranch */ TrueBBI.IsBrAnalyzable, |
2047 | /* MergeAddEdges */ TailBB == nullptr)) |
2048 | return false; |
2049 | |
2050 | // If the if-converted block falls through or unconditionally branches into |
2051 | // the tail block, and the tail block does not have other predecessors, then |
2052 | // fold the tail block in as well. Otherwise, unless it falls through to the |
2053 | // tail, add a unconditional branch to it. |
2054 | if (TailBB) { |
2055 | // We need to remove the edges to the true and false blocks manually since |
2056 | // we didn't let IfConvertDiamondCommon update the CFG. |
2057 | BBI.BB->removeSuccessor(Succ: TrueBBI.BB); |
2058 | BBI.BB->removeSuccessor(Succ: FalseBBI.BB, NormalizeSuccProbs: true); |
2059 | |
2060 | BBInfo &TailBBI = BBAnalysis[TailBB->getNumber()]; |
2061 | bool CanMergeTail = !TailBBI.HasFallThrough && |
2062 | !TailBBI.BB->hasAddressTaken(); |
2063 | // The if-converted block can still have a predicated terminator |
2064 | // (e.g. a predicated return). If that is the case, we cannot merge |
2065 | // it with the tail block. |
2066 | MachineBasicBlock::const_iterator TI = BBI.BB->getFirstTerminator(); |
2067 | if (TI != BBI.BB->end() && TII->isPredicated(MI: *TI)) |
2068 | CanMergeTail = false; |
2069 | // There may still be a fall-through edge from BBI1 or BBI2 to TailBB; |
2070 | // check if there are any other predecessors besides those. |
2071 | unsigned NumPreds = TailBB->pred_size(); |
2072 | if (NumPreds > 1) |
2073 | CanMergeTail = false; |
2074 | else if (NumPreds == 1 && CanMergeTail) { |
2075 | MachineBasicBlock::pred_iterator PI = TailBB->pred_begin(); |
2076 | if (*PI != TrueBBI.BB && *PI != FalseBBI.BB) |
2077 | CanMergeTail = false; |
2078 | } |
2079 | if (CanMergeTail) { |
2080 | MergeBlocks(ToBBI&: BBI, FromBBI&: TailBBI); |
2081 | TailBBI.IsDone = true; |
2082 | } else { |
2083 | BBI.BB->addSuccessor(Succ: TailBB, Prob: BranchProbability::getOne()); |
2084 | InsertUncondBranch(MBB&: *BBI.BB, ToMBB&: *TailBB, TII); |
2085 | BBI.HasFallThrough = false; |
2086 | } |
2087 | } |
2088 | |
2089 | // Update block info. |
2090 | BBI.IsDone = TrueBBI.IsDone = FalseBBI.IsDone = true; |
2091 | InvalidatePreds(MBB&: *BBI.BB); |
2092 | |
2093 | // FIXME: Must maintain LiveIns. |
2094 | return true; |
2095 | } |
2096 | |
2097 | static bool MaySpeculate(const MachineInstr &MI, |
2098 | SmallSet<MCPhysReg, 4> &LaterRedefs) { |
2099 | bool SawStore = true; |
2100 | if (!MI.isSafeToMove(AA: nullptr, SawStore)) |
2101 | return false; |
2102 | |
2103 | for (const MachineOperand &MO : MI.operands()) { |
2104 | if (!MO.isReg()) |
2105 | continue; |
2106 | Register Reg = MO.getReg(); |
2107 | if (!Reg) |
2108 | continue; |
2109 | if (MO.isDef() && !LaterRedefs.count(V: Reg)) |
2110 | return false; |
2111 | } |
2112 | |
2113 | return true; |
2114 | } |
2115 | |
2116 | /// Predicate instructions from the start of the block to the specified end with |
2117 | /// the specified condition. |
2118 | void IfConverter::PredicateBlock(BBInfo &BBI, |
2119 | MachineBasicBlock::iterator E, |
2120 | SmallVectorImpl<MachineOperand> &Cond, |
2121 | SmallSet<MCPhysReg, 4> *LaterRedefs) { |
2122 | bool AnyUnpred = false; |
2123 | bool MaySpec = LaterRedefs != nullptr; |
2124 | for (MachineInstr &I : make_range(x: BBI.BB->begin(), y: E)) { |
2125 | if (I.isDebugInstr() || TII->isPredicated(MI: I)) |
2126 | continue; |
2127 | // It may be possible not to predicate an instruction if it's the 'true' |
2128 | // side of a diamond and the 'false' side may re-define the instruction's |
2129 | // defs. |
2130 | if (MaySpec && MaySpeculate(MI: I, LaterRedefs&: *LaterRedefs)) { |
2131 | AnyUnpred = true; |
2132 | continue; |
2133 | } |
2134 | // If any instruction is predicated, then every instruction after it must |
2135 | // be predicated. |
2136 | MaySpec = false; |
2137 | if (!TII->PredicateInstruction(MI&: I, Pred: Cond)) { |
2138 | #ifndef NDEBUG |
2139 | dbgs() << "Unable to predicate " << I << "!\n" ; |
2140 | #endif |
2141 | llvm_unreachable(nullptr); |
2142 | } |
2143 | |
2144 | // If the predicated instruction now redefines a register as the result of |
2145 | // if-conversion, add an implicit kill. |
2146 | UpdatePredRedefs(MI&: I, Redefs); |
2147 | } |
2148 | |
2149 | BBI.Predicate.append(in_start: Cond.begin(), in_end: Cond.end()); |
2150 | |
2151 | BBI.IsAnalyzed = false; |
2152 | BBI.NonPredSize = 0; |
2153 | |
2154 | ++NumIfConvBBs; |
2155 | if (AnyUnpred) |
2156 | ++NumUnpred; |
2157 | } |
2158 | |
2159 | /// Copy and predicate instructions from source BB to the destination block. |
2160 | /// Skip end of block branches if IgnoreBr is true. |
2161 | void IfConverter::CopyAndPredicateBlock(BBInfo &ToBBI, BBInfo &FromBBI, |
2162 | SmallVectorImpl<MachineOperand> &Cond, |
2163 | bool IgnoreBr) { |
2164 | MachineFunction &MF = *ToBBI.BB->getParent(); |
2165 | |
2166 | MachineBasicBlock &FromMBB = *FromBBI.BB; |
2167 | for (MachineInstr &I : FromMBB) { |
2168 | // Do not copy the end of the block branches. |
2169 | if (IgnoreBr && I.isBranch()) |
2170 | break; |
2171 | |
2172 | MachineInstr *MI = MF.CloneMachineInstr(Orig: &I); |
2173 | // Make a copy of the call site info. |
2174 | if (I.isCandidateForCallSiteEntry()) |
2175 | MF.copyCallSiteInfo(Old: &I, New: MI); |
2176 | |
2177 | ToBBI.BB->insert(I: ToBBI.BB->end(), MI); |
2178 | ToBBI.NonPredSize++; |
2179 | unsigned = TII->getPredicationCost(MI: I); |
2180 | unsigned NumCycles = SchedModel.computeInstrLatency(MI: &I, UseDefaultDefLatency: false); |
2181 | if (NumCycles > 1) |
2182 | ToBBI.ExtraCost += NumCycles-1; |
2183 | ToBBI.ExtraCost2 += ExtraPredCost; |
2184 | |
2185 | if (!TII->isPredicated(MI: I) && !MI->isDebugInstr()) { |
2186 | if (!TII->PredicateInstruction(MI&: *MI, Pred: Cond)) { |
2187 | #ifndef NDEBUG |
2188 | dbgs() << "Unable to predicate " << I << "!\n" ; |
2189 | #endif |
2190 | llvm_unreachable(nullptr); |
2191 | } |
2192 | } |
2193 | |
2194 | // If the predicated instruction now redefines a register as the result of |
2195 | // if-conversion, add an implicit kill. |
2196 | UpdatePredRedefs(MI&: *MI, Redefs); |
2197 | } |
2198 | |
2199 | if (!IgnoreBr) { |
2200 | std::vector<MachineBasicBlock *> Succs(FromMBB.succ_begin(), |
2201 | FromMBB.succ_end()); |
2202 | MachineBasicBlock *NBB = getNextBlock(MBB&: FromMBB); |
2203 | MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; |
2204 | |
2205 | for (MachineBasicBlock *Succ : Succs) { |
2206 | // Fallthrough edge can't be transferred. |
2207 | if (Succ == FallThrough) |
2208 | continue; |
2209 | ToBBI.BB->addSuccessor(Succ); |
2210 | } |
2211 | } |
2212 | |
2213 | ToBBI.Predicate.append(in_start: FromBBI.Predicate.begin(), in_end: FromBBI.Predicate.end()); |
2214 | ToBBI.Predicate.append(in_start: Cond.begin(), in_end: Cond.end()); |
2215 | |
2216 | ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
2217 | ToBBI.IsAnalyzed = false; |
2218 | |
2219 | ++NumDupBBs; |
2220 | } |
2221 | |
2222 | /// Move all instructions from FromBB to the end of ToBB. This will leave |
2223 | /// FromBB as an empty block, so remove all of its successor edges and move it |
2224 | /// to the end of the function. If AddEdges is true, i.e., when FromBBI's |
2225 | /// branch is being moved, add those successor edges to ToBBI and remove the old |
2226 | /// edge from ToBBI to FromBBI. |
2227 | void IfConverter::MergeBlocks(BBInfo &ToBBI, BBInfo &FromBBI, bool AddEdges) { |
2228 | MachineBasicBlock &FromMBB = *FromBBI.BB; |
2229 | assert(!FromMBB.hasAddressTaken() && |
2230 | "Removing a BB whose address is taken!" ); |
2231 | |
2232 | // If we're about to splice an INLINEASM_BR from FromBBI, we need to update |
2233 | // ToBBI's successor list accordingly. |
2234 | if (FromMBB.mayHaveInlineAsmBr()) |
2235 | for (MachineInstr &MI : FromMBB) |
2236 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
2237 | for (MachineOperand &MO : MI.operands()) |
2238 | if (MO.isMBB() && !ToBBI.BB->isSuccessor(MBB: MO.getMBB())) |
2239 | ToBBI.BB->addSuccessor(Succ: MO.getMBB(), Prob: BranchProbability::getZero()); |
2240 | |
2241 | // In case FromMBB contains terminators (e.g. return instruction), |
2242 | // first move the non-terminator instructions, then the terminators. |
2243 | MachineBasicBlock::iterator FromTI = FromMBB.getFirstTerminator(); |
2244 | MachineBasicBlock::iterator ToTI = ToBBI.BB->getFirstTerminator(); |
2245 | ToBBI.BB->splice(Where: ToTI, Other: &FromMBB, From: FromMBB.begin(), To: FromTI); |
2246 | |
2247 | // If FromBB has non-predicated terminator we should copy it at the end. |
2248 | if (FromTI != FromMBB.end() && !TII->isPredicated(MI: *FromTI)) |
2249 | ToTI = ToBBI.BB->end(); |
2250 | ToBBI.BB->splice(Where: ToTI, Other: &FromMBB, From: FromTI, To: FromMBB.end()); |
2251 | |
2252 | // Force normalizing the successors' probabilities of ToBBI.BB to convert all |
2253 | // unknown probabilities into known ones. |
2254 | // FIXME: This usage is too tricky and in the future we would like to |
2255 | // eliminate all unknown probabilities in MBB. |
2256 | if (ToBBI.IsBrAnalyzable) |
2257 | ToBBI.BB->normalizeSuccProbs(); |
2258 | |
2259 | SmallVector<MachineBasicBlock *, 4> FromSuccs(FromMBB.successors()); |
2260 | MachineBasicBlock *NBB = getNextBlock(MBB&: FromMBB); |
2261 | MachineBasicBlock *FallThrough = FromBBI.HasFallThrough ? NBB : nullptr; |
2262 | // The edge probability from ToBBI.BB to FromMBB, which is only needed when |
2263 | // AddEdges is true and FromMBB is a successor of ToBBI.BB. |
2264 | auto To2FromProb = BranchProbability::getZero(); |
2265 | if (AddEdges && ToBBI.BB->isSuccessor(MBB: &FromMBB)) { |
2266 | // Remove the old edge but remember the edge probability so we can calculate |
2267 | // the correct weights on the new edges being added further down. |
2268 | To2FromProb = MBPI->getEdgeProbability(Src: ToBBI.BB, Dst: &FromMBB); |
2269 | ToBBI.BB->removeSuccessor(Succ: &FromMBB); |
2270 | } |
2271 | |
2272 | for (MachineBasicBlock *Succ : FromSuccs) { |
2273 | // Fallthrough edge can't be transferred. |
2274 | if (Succ == FallThrough) { |
2275 | FromMBB.removeSuccessor(Succ); |
2276 | continue; |
2277 | } |
2278 | |
2279 | auto NewProb = BranchProbability::getZero(); |
2280 | if (AddEdges) { |
2281 | // Calculate the edge probability for the edge from ToBBI.BB to Succ, |
2282 | // which is a portion of the edge probability from FromMBB to Succ. The |
2283 | // portion ratio is the edge probability from ToBBI.BB to FromMBB (if |
2284 | // FromBBI is a successor of ToBBI.BB. See comment below for exception). |
2285 | NewProb = MBPI->getEdgeProbability(Src: &FromMBB, Dst: Succ); |
2286 | |
2287 | // To2FromProb is 0 when FromMBB is not a successor of ToBBI.BB. This |
2288 | // only happens when if-converting a diamond CFG and FromMBB is the |
2289 | // tail BB. In this case FromMBB post-dominates ToBBI.BB and hence we |
2290 | // could just use the probabilities on FromMBB's out-edges when adding |
2291 | // new successors. |
2292 | if (!To2FromProb.isZero()) |
2293 | NewProb *= To2FromProb; |
2294 | } |
2295 | |
2296 | FromMBB.removeSuccessor(Succ); |
2297 | |
2298 | if (AddEdges) { |
2299 | // If the edge from ToBBI.BB to Succ already exists, update the |
2300 | // probability of this edge by adding NewProb to it. An example is shown |
2301 | // below, in which A is ToBBI.BB and B is FromMBB. In this case we |
2302 | // don't have to set C as A's successor as it already is. We only need to |
2303 | // update the edge probability on A->C. Note that B will not be |
2304 | // immediately removed from A's successors. It is possible that B->D is |
2305 | // not removed either if D is a fallthrough of B. Later the edge A->D |
2306 | // (generated here) and B->D will be combined into one edge. To maintain |
2307 | // correct edge probability of this combined edge, we need to set the edge |
2308 | // probability of A->B to zero, which is already done above. The edge |
2309 | // probability on A->D is calculated by scaling the original probability |
2310 | // on A->B by the probability of B->D. |
2311 | // |
2312 | // Before ifcvt: After ifcvt (assume B->D is kept): |
2313 | // |
2314 | // A A |
2315 | // /| /|\ |
2316 | // / B / B| |
2317 | // | /| | || |
2318 | // |/ | | |/ |
2319 | // C D C D |
2320 | // |
2321 | if (ToBBI.BB->isSuccessor(MBB: Succ)) |
2322 | ToBBI.BB->setSuccProbability( |
2323 | I: find(Range: ToBBI.BB->successors(), Val: Succ), |
2324 | Prob: MBPI->getEdgeProbability(Src: ToBBI.BB, Dst: Succ) + NewProb); |
2325 | else |
2326 | ToBBI.BB->addSuccessor(Succ, Prob: NewProb); |
2327 | } |
2328 | } |
2329 | |
2330 | // Move the now empty FromMBB out of the way to the end of the function so |
2331 | // it doesn't interfere with fallthrough checks done by canFallThroughTo(). |
2332 | MachineBasicBlock *Last = &*FromMBB.getParent()->rbegin(); |
2333 | if (Last != &FromMBB) |
2334 | FromMBB.moveAfter(NewBefore: Last); |
2335 | |
2336 | // Normalize the probabilities of ToBBI.BB's successors with all adjustment |
2337 | // we've done above. |
2338 | if (ToBBI.IsBrAnalyzable && FromBBI.IsBrAnalyzable) |
2339 | ToBBI.BB->normalizeSuccProbs(); |
2340 | |
2341 | ToBBI.Predicate.append(in_start: FromBBI.Predicate.begin(), in_end: FromBBI.Predicate.end()); |
2342 | FromBBI.Predicate.clear(); |
2343 | |
2344 | ToBBI.NonPredSize += FromBBI.NonPredSize; |
2345 | ToBBI.ExtraCost += FromBBI.ExtraCost; |
2346 | ToBBI.ExtraCost2 += FromBBI.ExtraCost2; |
2347 | FromBBI.NonPredSize = 0; |
2348 | FromBBI.ExtraCost = 0; |
2349 | FromBBI.ExtraCost2 = 0; |
2350 | |
2351 | ToBBI.ClobbersPred |= FromBBI.ClobbersPred; |
2352 | ToBBI.HasFallThrough = FromBBI.HasFallThrough; |
2353 | ToBBI.IsAnalyzed = false; |
2354 | FromBBI.IsAnalyzed = false; |
2355 | } |
2356 | |
2357 | FunctionPass * |
2358 | llvm::createIfConverter(std::function<bool(const MachineFunction &)> Ftor) { |
2359 | return new IfConverter(std::move(Ftor)); |
2360 | } |
2361 | |