1 | //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Pass to verify generated machine code. The following is checked: |
10 | // |
11 | // Operand counts: All explicit operands must be present. |
12 | // |
13 | // Register classes: All physical and virtual register operands must be |
14 | // compatible with the register class required by the instruction descriptor. |
15 | // |
16 | // Register live intervals: Registers must be defined only once, and must be |
17 | // defined before use. |
18 | // |
19 | // The machine code verifier is enabled with the command-line option |
20 | // -verify-machineinstrs. |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "llvm/CodeGen/MachineVerifier.h" |
24 | #include "llvm/ADT/BitVector.h" |
25 | #include "llvm/ADT/DenseMap.h" |
26 | #include "llvm/ADT/DenseSet.h" |
27 | #include "llvm/ADT/DepthFirstIterator.h" |
28 | #include "llvm/ADT/PostOrderIterator.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/SetOperations.h" |
31 | #include "llvm/ADT/SmallPtrSet.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/StringRef.h" |
34 | #include "llvm/ADT/Twine.h" |
35 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
36 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
37 | #include "llvm/CodeGen/LiveInterval.h" |
38 | #include "llvm/CodeGen/LiveIntervals.h" |
39 | #include "llvm/CodeGen/LiveRangeCalc.h" |
40 | #include "llvm/CodeGen/LiveStacks.h" |
41 | #include "llvm/CodeGen/LiveVariables.h" |
42 | #include "llvm/CodeGen/MachineBasicBlock.h" |
43 | #include "llvm/CodeGen/MachineConvergenceVerifier.h" |
44 | #include "llvm/CodeGen/MachineDominators.h" |
45 | #include "llvm/CodeGen/MachineFrameInfo.h" |
46 | #include "llvm/CodeGen/MachineFunction.h" |
47 | #include "llvm/CodeGen/MachineFunctionPass.h" |
48 | #include "llvm/CodeGen/MachineInstr.h" |
49 | #include "llvm/CodeGen/MachineInstrBundle.h" |
50 | #include "llvm/CodeGen/MachineMemOperand.h" |
51 | #include "llvm/CodeGen/MachineOperand.h" |
52 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
53 | #include "llvm/CodeGen/PseudoSourceValue.h" |
54 | #include "llvm/CodeGen/RegisterBank.h" |
55 | #include "llvm/CodeGen/RegisterBankInfo.h" |
56 | #include "llvm/CodeGen/SlotIndexes.h" |
57 | #include "llvm/CodeGen/StackMaps.h" |
58 | #include "llvm/CodeGen/TargetInstrInfo.h" |
59 | #include "llvm/CodeGen/TargetLowering.h" |
60 | #include "llvm/CodeGen/TargetOpcodes.h" |
61 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
62 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
63 | #include "llvm/CodeGenTypes/LowLevelType.h" |
64 | #include "llvm/IR/BasicBlock.h" |
65 | #include "llvm/IR/Constants.h" |
66 | #include "llvm/IR/EHPersonalities.h" |
67 | #include "llvm/IR/Function.h" |
68 | #include "llvm/IR/InlineAsm.h" |
69 | #include "llvm/IR/Instructions.h" |
70 | #include "llvm/InitializePasses.h" |
71 | #include "llvm/MC/LaneBitmask.h" |
72 | #include "llvm/MC/MCAsmInfo.h" |
73 | #include "llvm/MC/MCDwarf.h" |
74 | #include "llvm/MC/MCInstrDesc.h" |
75 | #include "llvm/MC/MCRegisterInfo.h" |
76 | #include "llvm/MC/MCTargetOptions.h" |
77 | #include "llvm/Pass.h" |
78 | #include "llvm/Support/Casting.h" |
79 | #include "llvm/Support/ErrorHandling.h" |
80 | #include "llvm/Support/MathExtras.h" |
81 | #include "llvm/Support/ModRef.h" |
82 | #include "llvm/Support/raw_ostream.h" |
83 | #include "llvm/Target/TargetMachine.h" |
84 | #include <algorithm> |
85 | #include <cassert> |
86 | #include <cstddef> |
87 | #include <cstdint> |
88 | #include <iterator> |
89 | #include <string> |
90 | #include <utility> |
91 | |
92 | using namespace llvm; |
93 | |
94 | namespace { |
95 | |
96 | struct MachineVerifier { |
97 | MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b) |
98 | : MFAM(&MFAM), Banner(b) {} |
99 | |
100 | MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} |
101 | |
102 | MachineVerifier(const char *b, LiveVariables *LiveVars, |
103 | LiveIntervals *LiveInts, LiveStacks *LiveStks, |
104 | SlotIndexes *Indexes) |
105 | : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks), |
106 | Indexes(Indexes) {} |
107 | |
108 | unsigned verify(const MachineFunction &MF); |
109 | |
110 | MachineFunctionAnalysisManager *MFAM = nullptr; |
111 | Pass *const PASS = nullptr; |
112 | const char *Banner; |
113 | const MachineFunction *MF = nullptr; |
114 | const TargetMachine *TM = nullptr; |
115 | const TargetInstrInfo *TII = nullptr; |
116 | const TargetRegisterInfo *TRI = nullptr; |
117 | const MachineRegisterInfo *MRI = nullptr; |
118 | const RegisterBankInfo *RBI = nullptr; |
119 | |
120 | unsigned foundErrors = 0; |
121 | |
122 | // Avoid querying the MachineFunctionProperties for each operand. |
123 | bool isFunctionRegBankSelected = false; |
124 | bool isFunctionSelected = false; |
125 | bool isFunctionTracksDebugUserValues = false; |
126 | |
127 | using RegVector = SmallVector<Register, 16>; |
128 | using RegMaskVector = SmallVector<const uint32_t *, 4>; |
129 | using RegSet = DenseSet<Register>; |
130 | using RegMap = DenseMap<Register, const MachineInstr *>; |
131 | using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; |
132 | |
133 | const MachineInstr *FirstNonPHI = nullptr; |
134 | const MachineInstr *FirstTerminator = nullptr; |
135 | BlockSet FunctionBlocks; |
136 | |
137 | BitVector regsReserved; |
138 | RegSet regsLive; |
139 | RegVector regsDefined, regsDead, regsKilled; |
140 | RegMaskVector regMasks; |
141 | |
142 | SlotIndex lastIndex; |
143 | |
144 | // Add Reg and any sub-registers to RV |
145 | void addRegWithSubRegs(RegVector &RV, Register Reg) { |
146 | RV.push_back(Elt: Reg); |
147 | if (Reg.isPhysical()) |
148 | append_range(C&: RV, R: TRI->subregs(Reg: Reg.asMCReg())); |
149 | } |
150 | |
151 | struct BBInfo { |
152 | // Is this MBB reachable from the MF entry point? |
153 | bool reachable = false; |
154 | |
155 | // Vregs that must be live in because they are used without being |
156 | // defined. Map value is the user. vregsLiveIn doesn't include regs |
157 | // that only are used by PHI nodes. |
158 | RegMap vregsLiveIn; |
159 | |
160 | // Regs killed in MBB. They may be defined again, and will then be in both |
161 | // regsKilled and regsLiveOut. |
162 | RegSet regsKilled; |
163 | |
164 | // Regs defined in MBB and live out. Note that vregs passing through may |
165 | // be live out without being mentioned here. |
166 | RegSet regsLiveOut; |
167 | |
168 | // Vregs that pass through MBB untouched. This set is disjoint from |
169 | // regsKilled and regsLiveOut. |
170 | RegSet vregsPassed; |
171 | |
172 | // Vregs that must pass through MBB because they are needed by a successor |
173 | // block. This set is disjoint from regsLiveOut. |
174 | RegSet vregsRequired; |
175 | |
176 | // Set versions of block's predecessor and successor lists. |
177 | BlockSet Preds, Succs; |
178 | |
179 | BBInfo() = default; |
180 | |
181 | // Add register to vregsRequired if it belongs there. Return true if |
182 | // anything changed. |
183 | bool addRequired(Register Reg) { |
184 | if (!Reg.isVirtual()) |
185 | return false; |
186 | if (regsLiveOut.count(V: Reg)) |
187 | return false; |
188 | return vregsRequired.insert(V: Reg).second; |
189 | } |
190 | |
191 | // Same for a full set. |
192 | bool addRequired(const RegSet &RS) { |
193 | bool Changed = false; |
194 | for (Register Reg : RS) |
195 | Changed |= addRequired(Reg); |
196 | return Changed; |
197 | } |
198 | |
199 | // Same for a full map. |
200 | bool addRequired(const RegMap &RM) { |
201 | bool Changed = false; |
202 | for (const auto &I : RM) |
203 | Changed |= addRequired(Reg: I.first); |
204 | return Changed; |
205 | } |
206 | |
207 | // Live-out registers are either in regsLiveOut or vregsPassed. |
208 | bool isLiveOut(Register Reg) const { |
209 | return regsLiveOut.count(V: Reg) || vregsPassed.count(V: Reg); |
210 | } |
211 | }; |
212 | |
213 | // Extra register info per MBB. |
214 | DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; |
215 | |
216 | bool isReserved(Register Reg) { |
217 | return Reg.id() < regsReserved.size() && regsReserved.test(Idx: Reg.id()); |
218 | } |
219 | |
220 | bool isAllocatable(Register Reg) const { |
221 | return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(RegNo: Reg) && |
222 | !regsReserved.test(Idx: Reg.id()); |
223 | } |
224 | |
225 | // Analysis information if available |
226 | LiveVariables *LiveVars = nullptr; |
227 | LiveIntervals *LiveInts = nullptr; |
228 | LiveStacks *LiveStks = nullptr; |
229 | SlotIndexes *Indexes = nullptr; |
230 | |
231 | // This is calculated only when trying to verify convergence control tokens. |
232 | // Similar to the LLVM IR verifier, we calculate this locally instead of |
233 | // relying on the pass manager. |
234 | MachineDominatorTree DT; |
235 | |
236 | void visitMachineFunctionBefore(); |
237 | void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); |
238 | void visitMachineBundleBefore(const MachineInstr *MI); |
239 | |
240 | /// Verify that all of \p MI's virtual register operands are scalars. |
241 | /// \returns True if all virtual register operands are scalar. False |
242 | /// otherwise. |
243 | bool verifyAllRegOpsScalar(const MachineInstr &MI, |
244 | const MachineRegisterInfo &MRI); |
245 | bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); |
246 | |
247 | bool verifyGIntrinsicSideEffects(const MachineInstr *MI); |
248 | bool verifyGIntrinsicConvergence(const MachineInstr *MI); |
249 | void verifyPreISelGenericInstruction(const MachineInstr *MI); |
250 | |
251 | void visitMachineInstrBefore(const MachineInstr *MI); |
252 | void visitMachineOperand(const MachineOperand *MO, unsigned MONum); |
253 | void visitMachineBundleAfter(const MachineInstr *MI); |
254 | void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); |
255 | void visitMachineFunctionAfter(); |
256 | |
257 | void report(const char *msg, const MachineFunction *MF); |
258 | void report(const char *msg, const MachineBasicBlock *MBB); |
259 | void report(const char *msg, const MachineInstr *MI); |
260 | void report(const char *msg, const MachineOperand *MO, unsigned MONum, |
261 | LLT MOVRegType = LLT{}); |
262 | void report(const Twine &Msg, const MachineInstr *MI); |
263 | |
264 | void report_context(const LiveInterval &LI) const; |
265 | void report_context(const LiveRange &LR, Register VRegUnit, |
266 | LaneBitmask LaneMask) const; |
267 | void report_context(const LiveRange::Segment &S) const; |
268 | void report_context(const VNInfo &VNI) const; |
269 | void report_context(SlotIndex Pos) const; |
270 | void report_context(MCPhysReg PhysReg) const; |
271 | void report_context_liverange(const LiveRange &LR) const; |
272 | void report_context_lanemask(LaneBitmask LaneMask) const; |
273 | void report_context_vreg(Register VReg) const; |
274 | void report_context_vreg_regunit(Register VRegOrUnit) const; |
275 | |
276 | void verifyInlineAsm(const MachineInstr *MI); |
277 | |
278 | void checkLiveness(const MachineOperand *MO, unsigned MONum); |
279 | void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, |
280 | SlotIndex UseIdx, const LiveRange &LR, |
281 | Register VRegOrUnit, |
282 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
283 | void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, |
284 | SlotIndex DefIdx, const LiveRange &LR, |
285 | Register VRegOrUnit, bool SubRangeCheck = false, |
286 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
287 | |
288 | void markReachable(const MachineBasicBlock *MBB); |
289 | void calcRegsPassed(); |
290 | void checkPHIOps(const MachineBasicBlock &MBB); |
291 | |
292 | void calcRegsRequired(); |
293 | void verifyLiveVariables(); |
294 | void verifyLiveIntervals(); |
295 | void verifyLiveInterval(const LiveInterval&); |
296 | void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, |
297 | LaneBitmask); |
298 | void verifyLiveRangeSegment(const LiveRange &, |
299 | const LiveRange::const_iterator I, Register, |
300 | LaneBitmask); |
301 | void verifyLiveRange(const LiveRange &, Register, |
302 | LaneBitmask LaneMask = LaneBitmask::getNone()); |
303 | |
304 | void verifyStackFrame(); |
305 | |
306 | void verifySlotIndexes() const; |
307 | void verifyProperties(const MachineFunction &MF); |
308 | }; |
309 | |
310 | struct MachineVerifierLegacyPass : public MachineFunctionPass { |
311 | static char ID; // Pass ID, replacement for typeid |
312 | |
313 | const std::string Banner; |
314 | |
315 | MachineVerifierLegacyPass(std::string banner = std::string()) |
316 | : MachineFunctionPass(ID), Banner(std::move(banner)) { |
317 | initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); |
318 | } |
319 | |
320 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
321 | AU.addUsedIfAvailable<LiveStacks>(); |
322 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
323 | AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); |
324 | AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); |
325 | AU.setPreservesAll(); |
326 | MachineFunctionPass::getAnalysisUsage(AU); |
327 | } |
328 | |
329 | bool runOnMachineFunction(MachineFunction &MF) override { |
330 | // Skip functions that have known verification problems. |
331 | // FIXME: Remove this mechanism when all problematic passes have been |
332 | // fixed. |
333 | if (MF.getProperties().hasProperty( |
334 | P: MachineFunctionProperties::Property::FailsVerification)) |
335 | return false; |
336 | |
337 | unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); |
338 | if (FoundErrors) |
339 | report_fatal_error(reason: "Found " +Twine(FoundErrors)+" machine code errors." ); |
340 | return false; |
341 | } |
342 | }; |
343 | |
344 | } // end anonymous namespace |
345 | |
346 | PreservedAnalyses |
347 | MachineVerifierPass::run(MachineFunction &MF, |
348 | MachineFunctionAnalysisManager &MFAM) { |
349 | // Skip functions that have known verification problems. |
350 | // FIXME: Remove this mechanism when all problematic passes have been |
351 | // fixed. |
352 | if (MF.getProperties().hasProperty( |
353 | P: MachineFunctionProperties::Property::FailsVerification)) |
354 | return PreservedAnalyses::all(); |
355 | unsigned FoundErrors = MachineVerifier(MFAM, Banner.c_str()).verify(MF); |
356 | if (FoundErrors) |
357 | report_fatal_error(reason: "Found " + Twine(FoundErrors) + " machine code errors." ); |
358 | return PreservedAnalyses::all(); |
359 | } |
360 | |
361 | char MachineVerifierLegacyPass::ID = 0; |
362 | |
363 | INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier" , |
364 | "Verify generated machine code" , false, false) |
365 | |
366 | FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { |
367 | return new MachineVerifierLegacyPass(Banner); |
368 | } |
369 | |
370 | void llvm::verifyMachineFunction(const std::string &Banner, |
371 | const MachineFunction &MF) { |
372 | // TODO: Use MFAM after porting below analyses. |
373 | // LiveVariables *LiveVars; |
374 | // LiveIntervals *LiveInts; |
375 | // LiveStacks *LiveStks; |
376 | // SlotIndexes *Indexes; |
377 | unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); |
378 | if (FoundErrors) |
379 | report_fatal_error(reason: "Found " + Twine(FoundErrors) + " machine code errors." ); |
380 | } |
381 | |
382 | bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) |
383 | const { |
384 | MachineFunction &MF = const_cast<MachineFunction&>(*this); |
385 | unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); |
386 | if (AbortOnErrors && FoundErrors) |
387 | report_fatal_error(reason: "Found " +Twine(FoundErrors)+" machine code errors." ); |
388 | return FoundErrors == 0; |
389 | } |
390 | |
391 | bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, |
392 | const char *Banner, bool AbortOnErrors) const { |
393 | MachineFunction &MF = const_cast<MachineFunction &>(*this); |
394 | unsigned FoundErrors = |
395 | MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF); |
396 | if (AbortOnErrors && FoundErrors) |
397 | report_fatal_error(reason: "Found " + Twine(FoundErrors) + " machine code errors." ); |
398 | return FoundErrors == 0; |
399 | } |
400 | |
401 | void MachineVerifier::verifySlotIndexes() const { |
402 | if (Indexes == nullptr) |
403 | return; |
404 | |
405 | // Ensure the IdxMBB list is sorted by slot indexes. |
406 | SlotIndex Last; |
407 | for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), |
408 | E = Indexes->MBBIndexEnd(); I != E; ++I) { |
409 | assert(!Last.isValid() || I->first > Last); |
410 | Last = I->first; |
411 | } |
412 | } |
413 | |
414 | void MachineVerifier::verifyProperties(const MachineFunction &MF) { |
415 | // If a pass has introduced virtual registers without clearing the |
416 | // NoVRegs property (or set it without allocating the vregs) |
417 | // then report an error. |
418 | if (MF.getProperties().hasProperty( |
419 | P: MachineFunctionProperties::Property::NoVRegs) && |
420 | MRI->getNumVirtRegs()) |
421 | report(msg: "Function has NoVRegs property but there are VReg operands" , MF: &MF); |
422 | } |
423 | |
424 | unsigned MachineVerifier::verify(const MachineFunction &MF) { |
425 | foundErrors = 0; |
426 | |
427 | this->MF = &MF; |
428 | TM = &MF.getTarget(); |
429 | TII = MF.getSubtarget().getInstrInfo(); |
430 | TRI = MF.getSubtarget().getRegisterInfo(); |
431 | RBI = MF.getSubtarget().getRegBankInfo(); |
432 | MRI = &MF.getRegInfo(); |
433 | |
434 | const bool isFunctionFailedISel = MF.getProperties().hasProperty( |
435 | P: MachineFunctionProperties::Property::FailedISel); |
436 | |
437 | // If we're mid-GlobalISel and we already triggered the fallback path then |
438 | // it's expected that the MIR is somewhat broken but that's ok since we'll |
439 | // reset it and clear the FailedISel attribute in ResetMachineFunctions. |
440 | if (isFunctionFailedISel) |
441 | return foundErrors; |
442 | |
443 | isFunctionRegBankSelected = MF.getProperties().hasProperty( |
444 | P: MachineFunctionProperties::Property::RegBankSelected); |
445 | isFunctionSelected = MF.getProperties().hasProperty( |
446 | P: MachineFunctionProperties::Property::Selected); |
447 | isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( |
448 | P: MachineFunctionProperties::Property::TracksDebugUserValues); |
449 | |
450 | if (PASS) { |
451 | auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
452 | LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
453 | // We don't want to verify LiveVariables if LiveIntervals is available. |
454 | auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
455 | if (!LiveInts) |
456 | LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; |
457 | LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); |
458 | auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); |
459 | Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; |
460 | } |
461 | if (MFAM) { |
462 | MachineFunction &Func = const_cast<MachineFunction &>(MF); |
463 | LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(IR&: Func); |
464 | if (!LiveInts) |
465 | LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(IR&: Func); |
466 | // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); |
467 | Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(IR&: Func); |
468 | } |
469 | |
470 | verifySlotIndexes(); |
471 | |
472 | verifyProperties(MF); |
473 | |
474 | visitMachineFunctionBefore(); |
475 | for (const MachineBasicBlock &MBB : MF) { |
476 | visitMachineBasicBlockBefore(MBB: &MBB); |
477 | // Keep track of the current bundle header. |
478 | const MachineInstr *CurBundle = nullptr; |
479 | // Do we expect the next instruction to be part of the same bundle? |
480 | bool InBundle = false; |
481 | |
482 | for (const MachineInstr &MI : MBB.instrs()) { |
483 | if (MI.getParent() != &MBB) { |
484 | report(msg: "Bad instruction parent pointer" , MBB: &MBB); |
485 | errs() << "Instruction: " << MI; |
486 | continue; |
487 | } |
488 | |
489 | // Check for consistent bundle flags. |
490 | if (InBundle && !MI.isBundledWithPred()) |
491 | report(msg: "Missing BundledPred flag, " |
492 | "BundledSucc was set on predecessor" , |
493 | MI: &MI); |
494 | if (!InBundle && MI.isBundledWithPred()) |
495 | report(msg: "BundledPred flag is set, " |
496 | "but BundledSucc not set on predecessor" , |
497 | MI: &MI); |
498 | |
499 | // Is this a bundle header? |
500 | if (!MI.isInsideBundle()) { |
501 | if (CurBundle) |
502 | visitMachineBundleAfter(MI: CurBundle); |
503 | CurBundle = &MI; |
504 | visitMachineBundleBefore(MI: CurBundle); |
505 | } else if (!CurBundle) |
506 | report(msg: "No bundle header" , MI: &MI); |
507 | visitMachineInstrBefore(MI: &MI); |
508 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
509 | const MachineOperand &Op = MI.getOperand(i: I); |
510 | if (Op.getParent() != &MI) { |
511 | // Make sure to use correct addOperand / removeOperand / ChangeTo |
512 | // functions when replacing operands of a MachineInstr. |
513 | report(msg: "Instruction has operand with wrong parent set" , MI: &MI); |
514 | } |
515 | |
516 | visitMachineOperand(MO: &Op, MONum: I); |
517 | } |
518 | |
519 | // Was this the last bundled instruction? |
520 | InBundle = MI.isBundledWithSucc(); |
521 | } |
522 | if (CurBundle) |
523 | visitMachineBundleAfter(MI: CurBundle); |
524 | if (InBundle) |
525 | report(msg: "BundledSucc flag set on last instruction in block" , MI: &MBB.back()); |
526 | visitMachineBasicBlockAfter(MBB: &MBB); |
527 | } |
528 | visitMachineFunctionAfter(); |
529 | |
530 | // Clean up. |
531 | regsLive.clear(); |
532 | regsDefined.clear(); |
533 | regsDead.clear(); |
534 | regsKilled.clear(); |
535 | regMasks.clear(); |
536 | MBBInfoMap.clear(); |
537 | |
538 | return foundErrors; |
539 | } |
540 | |
541 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { |
542 | assert(MF); |
543 | errs() << '\n'; |
544 | if (!foundErrors++) { |
545 | if (Banner) |
546 | errs() << "# " << Banner << '\n'; |
547 | if (LiveInts != nullptr) |
548 | LiveInts->print(O&: errs()); |
549 | else |
550 | MF->print(OS&: errs(), Indexes); |
551 | } |
552 | errs() << "*** Bad machine code: " << msg << " ***\n" |
553 | << "- function: " << MF->getName() << "\n" ; |
554 | } |
555 | |
556 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { |
557 | assert(MBB); |
558 | report(msg, MF: MBB->getParent()); |
559 | errs() << "- basic block: " << printMBBReference(MBB: *MBB) << ' ' |
560 | << MBB->getName() << " (" << (const void *)MBB << ')'; |
561 | if (Indexes) |
562 | errs() << " [" << Indexes->getMBBStartIdx(mbb: MBB) |
563 | << ';' << Indexes->getMBBEndIdx(mbb: MBB) << ')'; |
564 | errs() << '\n'; |
565 | } |
566 | |
567 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { |
568 | assert(MI); |
569 | report(msg, MBB: MI->getParent()); |
570 | errs() << "- instruction: " ; |
571 | if (Indexes && Indexes->hasIndex(instr: *MI)) |
572 | errs() << Indexes->getInstructionIndex(MI: *MI) << '\t'; |
573 | MI->print(OS&: errs(), /*IsStandalone=*/true); |
574 | } |
575 | |
576 | void MachineVerifier::report(const char *msg, const MachineOperand *MO, |
577 | unsigned MONum, LLT MOVRegType) { |
578 | assert(MO); |
579 | report(msg, MI: MO->getParent()); |
580 | errs() << "- operand " << MONum << ": " ; |
581 | MO->print(os&: errs(), TypeToPrint: MOVRegType, TRI); |
582 | errs() << "\n" ; |
583 | } |
584 | |
585 | void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { |
586 | report(msg: Msg.str().c_str(), MI); |
587 | } |
588 | |
589 | void MachineVerifier::report_context(SlotIndex Pos) const { |
590 | errs() << "- at: " << Pos << '\n'; |
591 | } |
592 | |
593 | void MachineVerifier::report_context(const LiveInterval &LI) const { |
594 | errs() << "- interval: " << LI << '\n'; |
595 | } |
596 | |
597 | void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, |
598 | LaneBitmask LaneMask) const { |
599 | report_context_liverange(LR); |
600 | report_context_vreg_regunit(VRegOrUnit: VRegUnit); |
601 | if (LaneMask.any()) |
602 | report_context_lanemask(LaneMask); |
603 | } |
604 | |
605 | void MachineVerifier::report_context(const LiveRange::Segment &S) const { |
606 | errs() << "- segment: " << S << '\n'; |
607 | } |
608 | |
609 | void MachineVerifier::report_context(const VNInfo &VNI) const { |
610 | errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n" ; |
611 | } |
612 | |
613 | void MachineVerifier::report_context_liverange(const LiveRange &LR) const { |
614 | errs() << "- liverange: " << LR << '\n'; |
615 | } |
616 | |
617 | void MachineVerifier::report_context(MCPhysReg PReg) const { |
618 | errs() << "- p. register: " << printReg(Reg: PReg, TRI) << '\n'; |
619 | } |
620 | |
621 | void MachineVerifier::report_context_vreg(Register VReg) const { |
622 | errs() << "- v. register: " << printReg(Reg: VReg, TRI) << '\n'; |
623 | } |
624 | |
625 | void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { |
626 | if (VRegOrUnit.isVirtual()) { |
627 | report_context_vreg(VReg: VRegOrUnit); |
628 | } else { |
629 | errs() << "- regunit: " << printRegUnit(Unit: VRegOrUnit, TRI) << '\n'; |
630 | } |
631 | } |
632 | |
633 | void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { |
634 | errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; |
635 | } |
636 | |
637 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { |
638 | BBInfo &MInfo = MBBInfoMap[MBB]; |
639 | if (!MInfo.reachable) { |
640 | MInfo.reachable = true; |
641 | for (const MachineBasicBlock *Succ : MBB->successors()) |
642 | markReachable(MBB: Succ); |
643 | } |
644 | } |
645 | |
646 | void MachineVerifier::visitMachineFunctionBefore() { |
647 | lastIndex = SlotIndex(); |
648 | regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() |
649 | : TRI->getReservedRegs(MF: *MF); |
650 | |
651 | if (!MF->empty()) |
652 | markReachable(MBB: &MF->front()); |
653 | |
654 | // Build a set of the basic blocks in the function. |
655 | FunctionBlocks.clear(); |
656 | for (const auto &MBB : *MF) { |
657 | FunctionBlocks.insert(Ptr: &MBB); |
658 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
659 | |
660 | MInfo.Preds.insert(I: MBB.pred_begin(), E: MBB.pred_end()); |
661 | if (MInfo.Preds.size() != MBB.pred_size()) |
662 | report(msg: "MBB has duplicate entries in its predecessor list." , MBB: &MBB); |
663 | |
664 | MInfo.Succs.insert(I: MBB.succ_begin(), E: MBB.succ_end()); |
665 | if (MInfo.Succs.size() != MBB.succ_size()) |
666 | report(msg: "MBB has duplicate entries in its successor list." , MBB: &MBB); |
667 | } |
668 | |
669 | // Check that the register use lists are sane. |
670 | MRI->verifyUseLists(); |
671 | |
672 | if (!MF->empty()) |
673 | verifyStackFrame(); |
674 | } |
675 | |
676 | void |
677 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { |
678 | FirstTerminator = nullptr; |
679 | FirstNonPHI = nullptr; |
680 | |
681 | if (!MF->getProperties().hasProperty( |
682 | P: MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { |
683 | // If this block has allocatable physical registers live-in, check that |
684 | // it is an entry block or landing pad. |
685 | for (const auto &LI : MBB->liveins()) { |
686 | if (isAllocatable(Reg: LI.PhysReg) && !MBB->isEHPad() && |
687 | MBB->getIterator() != MBB->getParent()->begin() && |
688 | !MBB->isInlineAsmBrIndirectTarget()) { |
689 | report(msg: "MBB has allocatable live-in, but isn't entry, landing-pad, or " |
690 | "inlineasm-br-indirect-target." , |
691 | MBB); |
692 | report_context(PReg: LI.PhysReg); |
693 | } |
694 | } |
695 | } |
696 | |
697 | if (MBB->isIRBlockAddressTaken()) { |
698 | if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) |
699 | report(msg: "ir-block-address-taken is associated with basic block not used by " |
700 | "a blockaddress." , |
701 | MBB); |
702 | } |
703 | |
704 | // Count the number of landing pad successors. |
705 | SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; |
706 | for (const auto *succ : MBB->successors()) { |
707 | if (succ->isEHPad()) |
708 | LandingPadSuccs.insert(Ptr: succ); |
709 | if (!FunctionBlocks.count(Ptr: succ)) |
710 | report(msg: "MBB has successor that isn't part of the function." , MBB); |
711 | if (!MBBInfoMap[succ].Preds.count(Ptr: MBB)) { |
712 | report(msg: "Inconsistent CFG" , MBB); |
713 | errs() << "MBB is not in the predecessor list of the successor " |
714 | << printMBBReference(MBB: *succ) << ".\n" ; |
715 | } |
716 | } |
717 | |
718 | // Check the predecessor list. |
719 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
720 | if (!FunctionBlocks.count(Ptr: Pred)) |
721 | report(msg: "MBB has predecessor that isn't part of the function." , MBB); |
722 | if (!MBBInfoMap[Pred].Succs.count(Ptr: MBB)) { |
723 | report(msg: "Inconsistent CFG" , MBB); |
724 | errs() << "MBB is not in the successor list of the predecessor " |
725 | << printMBBReference(MBB: *Pred) << ".\n" ; |
726 | } |
727 | } |
728 | |
729 | const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); |
730 | const BasicBlock *BB = MBB->getBasicBlock(); |
731 | const Function &F = MF->getFunction(); |
732 | if (LandingPadSuccs.size() > 1 && |
733 | !(AsmInfo && |
734 | AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && |
735 | BB && isa<SwitchInst>(Val: BB->getTerminator())) && |
736 | !isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F.getPersonalityFn()))) |
737 | report(msg: "MBB has more than one landing pad successor" , MBB); |
738 | |
739 | // Call analyzeBranch. If it succeeds, there several more conditions to check. |
740 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
741 | SmallVector<MachineOperand, 4> Cond; |
742 | if (!TII->analyzeBranch(MBB&: *const_cast<MachineBasicBlock *>(MBB), TBB, FBB, |
743 | Cond)) { |
744 | // Ok, analyzeBranch thinks it knows what's going on with this block. Let's |
745 | // check whether its answers match up with reality. |
746 | if (!TBB && !FBB) { |
747 | // Block falls through to its successor. |
748 | if (!MBB->empty() && MBB->back().isBarrier() && |
749 | !TII->isPredicated(MI: MBB->back())) { |
750 | report(msg: "MBB exits via unconditional fall-through but ends with a " |
751 | "barrier instruction!" , MBB); |
752 | } |
753 | if (!Cond.empty()) { |
754 | report(msg: "MBB exits via unconditional fall-through but has a condition!" , |
755 | MBB); |
756 | } |
757 | } else if (TBB && !FBB && Cond.empty()) { |
758 | // Block unconditionally branches somewhere. |
759 | if (MBB->empty()) { |
760 | report(msg: "MBB exits via unconditional branch but doesn't contain " |
761 | "any instructions!" , MBB); |
762 | } else if (!MBB->back().isBarrier()) { |
763 | report(msg: "MBB exits via unconditional branch but doesn't end with a " |
764 | "barrier instruction!" , MBB); |
765 | } else if (!MBB->back().isTerminator()) { |
766 | report(msg: "MBB exits via unconditional branch but the branch isn't a " |
767 | "terminator instruction!" , MBB); |
768 | } |
769 | } else if (TBB && !FBB && !Cond.empty()) { |
770 | // Block conditionally branches somewhere, otherwise falls through. |
771 | if (MBB->empty()) { |
772 | report(msg: "MBB exits via conditional branch/fall-through but doesn't " |
773 | "contain any instructions!" , MBB); |
774 | } else if (MBB->back().isBarrier()) { |
775 | report(msg: "MBB exits via conditional branch/fall-through but ends with a " |
776 | "barrier instruction!" , MBB); |
777 | } else if (!MBB->back().isTerminator()) { |
778 | report(msg: "MBB exits via conditional branch/fall-through but the branch " |
779 | "isn't a terminator instruction!" , MBB); |
780 | } |
781 | } else if (TBB && FBB) { |
782 | // Block conditionally branches somewhere, otherwise branches |
783 | // somewhere else. |
784 | if (MBB->empty()) { |
785 | report(msg: "MBB exits via conditional branch/branch but doesn't " |
786 | "contain any instructions!" , MBB); |
787 | } else if (!MBB->back().isBarrier()) { |
788 | report(msg: "MBB exits via conditional branch/branch but doesn't end with a " |
789 | "barrier instruction!" , MBB); |
790 | } else if (!MBB->back().isTerminator()) { |
791 | report(msg: "MBB exits via conditional branch/branch but the branch " |
792 | "isn't a terminator instruction!" , MBB); |
793 | } |
794 | if (Cond.empty()) { |
795 | report(msg: "MBB exits via conditional branch/branch but there's no " |
796 | "condition!" , MBB); |
797 | } |
798 | } else { |
799 | report(msg: "analyzeBranch returned invalid data!" , MBB); |
800 | } |
801 | |
802 | // Now check that the successors match up with the answers reported by |
803 | // analyzeBranch. |
804 | if (TBB && !MBB->isSuccessor(MBB: TBB)) |
805 | report(msg: "MBB exits via jump or conditional branch, but its target isn't a " |
806 | "CFG successor!" , |
807 | MBB); |
808 | if (FBB && !MBB->isSuccessor(MBB: FBB)) |
809 | report(msg: "MBB exits via conditional branch, but its target isn't a CFG " |
810 | "successor!" , |
811 | MBB); |
812 | |
813 | // There might be a fallthrough to the next block if there's either no |
814 | // unconditional true branch, or if there's a condition, and one of the |
815 | // branches is missing. |
816 | bool Fallthrough = !TBB || (!Cond.empty() && !FBB); |
817 | |
818 | // A conditional fallthrough must be an actual CFG successor, not |
819 | // unreachable. (Conversely, an unconditional fallthrough might not really |
820 | // be a successor, because the block might end in unreachable.) |
821 | if (!Cond.empty() && !FBB) { |
822 | MachineFunction::const_iterator MBBI = std::next(x: MBB->getIterator()); |
823 | if (MBBI == MF->end()) { |
824 | report(msg: "MBB conditionally falls through out of function!" , MBB); |
825 | } else if (!MBB->isSuccessor(MBB: &*MBBI)) |
826 | report(msg: "MBB exits via conditional branch/fall-through but the CFG " |
827 | "successors don't match the actual successors!" , |
828 | MBB); |
829 | } |
830 | |
831 | // Verify that there aren't any extra un-accounted-for successors. |
832 | for (const MachineBasicBlock *SuccMBB : MBB->successors()) { |
833 | // If this successor is one of the branch targets, it's okay. |
834 | if (SuccMBB == TBB || SuccMBB == FBB) |
835 | continue; |
836 | // If we might have a fallthrough, and the successor is the fallthrough |
837 | // block, that's also ok. |
838 | if (Fallthrough && SuccMBB == MBB->getNextNode()) |
839 | continue; |
840 | // Also accept successors which are for exception-handling or might be |
841 | // inlineasm_br targets. |
842 | if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) |
843 | continue; |
844 | report(msg: "MBB has unexpected successors which are not branch targets, " |
845 | "fallthrough, EHPads, or inlineasm_br targets." , |
846 | MBB); |
847 | } |
848 | } |
849 | |
850 | regsLive.clear(); |
851 | if (MRI->tracksLiveness()) { |
852 | for (const auto &LI : MBB->liveins()) { |
853 | if (!Register::isPhysicalRegister(Reg: LI.PhysReg)) { |
854 | report(msg: "MBB live-in list contains non-physical register" , MBB); |
855 | continue; |
856 | } |
857 | for (const MCPhysReg &SubReg : TRI->subregs_inclusive(Reg: LI.PhysReg)) |
858 | regsLive.insert(V: SubReg); |
859 | } |
860 | } |
861 | |
862 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
863 | BitVector PR = MFI.getPristineRegs(MF: *MF); |
864 | for (unsigned I : PR.set_bits()) { |
865 | for (const MCPhysReg &SubReg : TRI->subregs_inclusive(Reg: I)) |
866 | regsLive.insert(V: SubReg); |
867 | } |
868 | |
869 | regsKilled.clear(); |
870 | regsDefined.clear(); |
871 | |
872 | if (Indexes) |
873 | lastIndex = Indexes->getMBBStartIdx(mbb: MBB); |
874 | } |
875 | |
876 | // This function gets called for all bundle headers, including normal |
877 | // stand-alone unbundled instructions. |
878 | void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { |
879 | if (Indexes && Indexes->hasIndex(instr: *MI)) { |
880 | SlotIndex idx = Indexes->getInstructionIndex(MI: *MI); |
881 | if (!(idx > lastIndex)) { |
882 | report(msg: "Instruction index out of order" , MI); |
883 | errs() << "Last instruction was at " << lastIndex << '\n'; |
884 | } |
885 | lastIndex = idx; |
886 | } |
887 | |
888 | // Ensure non-terminators don't follow terminators. |
889 | if (MI->isTerminator()) { |
890 | if (!FirstTerminator) |
891 | FirstTerminator = MI; |
892 | } else if (FirstTerminator) { |
893 | // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to |
894 | // precede non-terminators. |
895 | if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { |
896 | report(msg: "Non-terminator instruction after the first terminator" , MI); |
897 | errs() << "First terminator was:\t" << *FirstTerminator; |
898 | } |
899 | } |
900 | } |
901 | |
902 | // The operands on an INLINEASM instruction must follow a template. |
903 | // Verify that the flag operands make sense. |
904 | void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { |
905 | // The first two operands on INLINEASM are the asm string and global flags. |
906 | if (MI->getNumOperands() < 2) { |
907 | report(msg: "Too few operands on inline asm" , MI); |
908 | return; |
909 | } |
910 | if (!MI->getOperand(i: 0).isSymbol()) |
911 | report(msg: "Asm string must be an external symbol" , MI); |
912 | if (!MI->getOperand(i: 1).isImm()) |
913 | report(msg: "Asm flags must be an immediate" , MI); |
914 | // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, |
915 | // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, |
916 | // and Extra_IsConvergent = 32. |
917 | if (!isUInt<6>(x: MI->getOperand(i: 1).getImm())) |
918 | report(msg: "Unknown asm flags" , MO: &MI->getOperand(i: 1), MONum: 1); |
919 | |
920 | static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed" ); |
921 | |
922 | unsigned OpNo = InlineAsm::MIOp_FirstOperand; |
923 | unsigned NumOps; |
924 | for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { |
925 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
926 | // There may be implicit ops after the fixed operands. |
927 | if (!MO.isImm()) |
928 | break; |
929 | const InlineAsm::Flag F(MO.getImm()); |
930 | NumOps = 1 + F.getNumOperandRegisters(); |
931 | } |
932 | |
933 | if (OpNo > MI->getNumOperands()) |
934 | report(msg: "Missing operands in last group" , MI); |
935 | |
936 | // An optional MDNode follows the groups. |
937 | if (OpNo < MI->getNumOperands() && MI->getOperand(i: OpNo).isMetadata()) |
938 | ++OpNo; |
939 | |
940 | // All trailing operands must be implicit registers. |
941 | for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { |
942 | const MachineOperand &MO = MI->getOperand(i: OpNo); |
943 | if (!MO.isReg() || !MO.isImplicit()) |
944 | report(msg: "Expected implicit register after groups" , MO: &MO, MONum: OpNo); |
945 | } |
946 | |
947 | if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { |
948 | const MachineBasicBlock *MBB = MI->getParent(); |
949 | |
950 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); |
951 | i != e; ++i) { |
952 | const MachineOperand &MO = MI->getOperand(i); |
953 | |
954 | if (!MO.isMBB()) |
955 | continue; |
956 | |
957 | // Check the successor & predecessor lists look ok, assume they are |
958 | // not. Find the indirect target without going through the successors. |
959 | const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); |
960 | if (!IndirectTargetMBB) { |
961 | report(msg: "INLINEASM_BR indirect target does not exist" , MO: &MO, MONum: i); |
962 | break; |
963 | } |
964 | |
965 | if (!MBB->isSuccessor(MBB: IndirectTargetMBB)) |
966 | report(msg: "INLINEASM_BR indirect target missing from successor list" , MO: &MO, |
967 | MONum: i); |
968 | |
969 | if (!IndirectTargetMBB->isPredecessor(MBB)) |
970 | report(msg: "INLINEASM_BR indirect target predecessor list missing parent" , |
971 | MO: &MO, MONum: i); |
972 | } |
973 | } |
974 | } |
975 | |
976 | bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, |
977 | const MachineRegisterInfo &MRI) { |
978 | if (none_of(Range: MI.explicit_operands(), P: [&MRI](const MachineOperand &Op) { |
979 | if (!Op.isReg()) |
980 | return false; |
981 | const auto Reg = Op.getReg(); |
982 | if (Reg.isPhysical()) |
983 | return false; |
984 | return !MRI.getType(Reg).isScalar(); |
985 | })) |
986 | return true; |
987 | report(msg: "All register operands must have scalar types" , MI: &MI); |
988 | return false; |
989 | } |
990 | |
991 | /// Check that types are consistent when two operands need to have the same |
992 | /// number of vector elements. |
993 | /// \return true if the types are valid. |
994 | bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, |
995 | const MachineInstr *MI) { |
996 | if (Ty0.isVector() != Ty1.isVector()) { |
997 | report(msg: "operand types must be all-vector or all-scalar" , MI); |
998 | // Generally we try to report as many issues as possible at once, but in |
999 | // this case it's not clear what should we be comparing the size of the |
1000 | // scalar with: the size of the whole vector or its lane. Instead of |
1001 | // making an arbitrary choice and emitting not so helpful message, let's |
1002 | // avoid the extra noise and stop here. |
1003 | return false; |
1004 | } |
1005 | |
1006 | if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { |
1007 | report(msg: "operand types must preserve number of vector elements" , MI); |
1008 | return false; |
1009 | } |
1010 | |
1011 | return true; |
1012 | } |
1013 | |
1014 | bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { |
1015 | auto Opcode = MI->getOpcode(); |
1016 | bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || |
1017 | Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; |
1018 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
1019 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
1020 | AttributeList Attrs = Intrinsic::getAttributes( |
1021 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
1022 | bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); |
1023 | if (NoSideEffects && DeclHasSideEffects) { |
1024 | report(Msg: Twine(TII->getName(Opcode), |
1025 | " used with intrinsic that accesses memory" ), |
1026 | MI); |
1027 | return false; |
1028 | } |
1029 | if (!NoSideEffects && !DeclHasSideEffects) { |
1030 | report(Msg: Twine(TII->getName(Opcode), " used with readnone intrinsic" ), MI); |
1031 | return false; |
1032 | } |
1033 | } |
1034 | |
1035 | return true; |
1036 | } |
1037 | |
1038 | bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { |
1039 | auto Opcode = MI->getOpcode(); |
1040 | bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || |
1041 | Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; |
1042 | unsigned IntrID = cast<GIntrinsic>(Val: MI)->getIntrinsicID(); |
1043 | if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { |
1044 | AttributeList Attrs = Intrinsic::getAttributes( |
1045 | C&: MF->getFunction().getContext(), id: static_cast<Intrinsic::ID>(IntrID)); |
1046 | bool DeclIsConvergent = Attrs.hasFnAttr(Kind: Attribute::Convergent); |
1047 | if (NotConvergent && DeclIsConvergent) { |
1048 | report(Msg: Twine(TII->getName(Opcode), " used with a convergent intrinsic" ), |
1049 | MI); |
1050 | return false; |
1051 | } |
1052 | if (!NotConvergent && !DeclIsConvergent) { |
1053 | report( |
1054 | Msg: Twine(TII->getName(Opcode), " used with a non-convergent intrinsic" ), |
1055 | MI); |
1056 | return false; |
1057 | } |
1058 | } |
1059 | |
1060 | return true; |
1061 | } |
1062 | |
1063 | void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { |
1064 | if (isFunctionSelected) |
1065 | report(msg: "Unexpected generic instruction in a Selected function" , MI); |
1066 | |
1067 | const MCInstrDesc &MCID = MI->getDesc(); |
1068 | unsigned NumOps = MI->getNumOperands(); |
1069 | |
1070 | // Branches must reference a basic block if they are not indirect |
1071 | if (MI->isBranch() && !MI->isIndirectBranch()) { |
1072 | bool HasMBB = false; |
1073 | for (const MachineOperand &Op : MI->operands()) { |
1074 | if (Op.isMBB()) { |
1075 | HasMBB = true; |
1076 | break; |
1077 | } |
1078 | } |
1079 | |
1080 | if (!HasMBB) { |
1081 | report(msg: "Branch instruction is missing a basic block operand or " |
1082 | "isIndirectBranch property" , |
1083 | MI); |
1084 | } |
1085 | } |
1086 | |
1087 | // Check types. |
1088 | SmallVector<LLT, 4> Types; |
1089 | for (unsigned I = 0, E = std::min(a: MCID.getNumOperands(), b: NumOps); |
1090 | I != E; ++I) { |
1091 | if (!MCID.operands()[I].isGenericType()) |
1092 | continue; |
1093 | // Generic instructions specify type equality constraints between some of |
1094 | // their operands. Make sure these are consistent. |
1095 | size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); |
1096 | Types.resize(N: std::max(a: TypeIdx + 1, b: Types.size())); |
1097 | |
1098 | const MachineOperand *MO = &MI->getOperand(i: I); |
1099 | if (!MO->isReg()) { |
1100 | report(msg: "generic instruction must use register operands" , MI); |
1101 | continue; |
1102 | } |
1103 | |
1104 | LLT OpTy = MRI->getType(Reg: MO->getReg()); |
1105 | // Don't report a type mismatch if there is no actual mismatch, only a |
1106 | // type missing, to reduce noise: |
1107 | if (OpTy.isValid()) { |
1108 | // Only the first valid type for a type index will be printed: don't |
1109 | // overwrite it later so it's always clear which type was expected: |
1110 | if (!Types[TypeIdx].isValid()) |
1111 | Types[TypeIdx] = OpTy; |
1112 | else if (Types[TypeIdx] != OpTy) |
1113 | report(msg: "Type mismatch in generic instruction" , MO, MONum: I, MOVRegType: OpTy); |
1114 | } else { |
1115 | // Generic instructions must have types attached to their operands. |
1116 | report(msg: "Generic instruction is missing a virtual register type" , MO, MONum: I); |
1117 | } |
1118 | } |
1119 | |
1120 | // Generic opcodes must not have physical register operands. |
1121 | for (unsigned I = 0; I < MI->getNumOperands(); ++I) { |
1122 | const MachineOperand *MO = &MI->getOperand(i: I); |
1123 | if (MO->isReg() && MO->getReg().isPhysical()) |
1124 | report(msg: "Generic instruction cannot have physical register" , MO, MONum: I); |
1125 | } |
1126 | |
1127 | // Avoid out of bounds in checks below. This was already reported earlier. |
1128 | if (MI->getNumOperands() < MCID.getNumOperands()) |
1129 | return; |
1130 | |
1131 | StringRef ErrorInfo; |
1132 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
1133 | report(msg: ErrorInfo.data(), MI); |
1134 | |
1135 | // Verify properties of various specific instruction types |
1136 | unsigned Opc = MI->getOpcode(); |
1137 | switch (Opc) { |
1138 | case TargetOpcode::G_ASSERT_SEXT: |
1139 | case TargetOpcode::G_ASSERT_ZEXT: { |
1140 | std::string OpcName = |
1141 | Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT" ; |
1142 | if (!MI->getOperand(i: 2).isImm()) { |
1143 | report(Msg: Twine(OpcName, " expects an immediate operand #2" ), MI); |
1144 | break; |
1145 | } |
1146 | |
1147 | Register Dst = MI->getOperand(i: 0).getReg(); |
1148 | Register Src = MI->getOperand(i: 1).getReg(); |
1149 | LLT SrcTy = MRI->getType(Reg: Src); |
1150 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
1151 | if (Imm <= 0) { |
1152 | report(Msg: Twine(OpcName, " size must be >= 1" ), MI); |
1153 | break; |
1154 | } |
1155 | |
1156 | if (Imm >= SrcTy.getScalarSizeInBits()) { |
1157 | report(Msg: Twine(OpcName, " size must be less than source bit width" ), MI); |
1158 | break; |
1159 | } |
1160 | |
1161 | const RegisterBank *SrcRB = RBI->getRegBank(Reg: Src, MRI: *MRI, TRI: *TRI); |
1162 | const RegisterBank *DstRB = RBI->getRegBank(Reg: Dst, MRI: *MRI, TRI: *TRI); |
1163 | |
1164 | // Allow only the source bank to be set. |
1165 | if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { |
1166 | report(Msg: Twine(OpcName, " cannot change register bank" ), MI); |
1167 | break; |
1168 | } |
1169 | |
1170 | // Don't allow a class change. Do allow member class->regbank. |
1171 | const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Reg: Dst); |
1172 | if (DstRC && DstRC != MRI->getRegClassOrNull(Reg: Src)) { |
1173 | report( |
1174 | Msg: Twine(OpcName, " source and destination register classes must match" ), |
1175 | MI); |
1176 | break; |
1177 | } |
1178 | |
1179 | break; |
1180 | } |
1181 | |
1182 | case TargetOpcode::G_CONSTANT: |
1183 | case TargetOpcode::G_FCONSTANT: { |
1184 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1185 | if (DstTy.isVector()) |
1186 | report(msg: "Instruction cannot use a vector result type" , MI); |
1187 | |
1188 | if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { |
1189 | if (!MI->getOperand(i: 1).isCImm()) { |
1190 | report(msg: "G_CONSTANT operand must be cimm" , MI); |
1191 | break; |
1192 | } |
1193 | |
1194 | const ConstantInt *CI = MI->getOperand(i: 1).getCImm(); |
1195 | if (CI->getBitWidth() != DstTy.getSizeInBits()) |
1196 | report(msg: "inconsistent constant size" , MI); |
1197 | } else { |
1198 | if (!MI->getOperand(i: 1).isFPImm()) { |
1199 | report(msg: "G_FCONSTANT operand must be fpimm" , MI); |
1200 | break; |
1201 | } |
1202 | const ConstantFP *CF = MI->getOperand(i: 1).getFPImm(); |
1203 | |
1204 | if (APFloat::getSizeInBits(Sem: CF->getValueAPF().getSemantics()) != |
1205 | DstTy.getSizeInBits()) { |
1206 | report(msg: "inconsistent constant size" , MI); |
1207 | } |
1208 | } |
1209 | |
1210 | break; |
1211 | } |
1212 | case TargetOpcode::G_LOAD: |
1213 | case TargetOpcode::G_STORE: |
1214 | case TargetOpcode::G_ZEXTLOAD: |
1215 | case TargetOpcode::G_SEXTLOAD: { |
1216 | LLT ValTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1217 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1218 | if (!PtrTy.isPointer()) |
1219 | report(msg: "Generic memory instruction must access a pointer" , MI); |
1220 | |
1221 | // Generic loads and stores must have a single MachineMemOperand |
1222 | // describing that access. |
1223 | if (!MI->hasOneMemOperand()) { |
1224 | report(msg: "Generic instruction accessing memory must have one mem operand" , |
1225 | MI); |
1226 | } else { |
1227 | const MachineMemOperand &MMO = **MI->memoperands_begin(); |
1228 | if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || |
1229 | MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { |
1230 | if (TypeSize::isKnownGE(LHS: MMO.getSizeInBits().getValue(), |
1231 | RHS: ValTy.getSizeInBits())) |
1232 | report(msg: "Generic extload must have a narrower memory type" , MI); |
1233 | } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { |
1234 | if (TypeSize::isKnownGT(LHS: MMO.getSize().getValue(), |
1235 | RHS: ValTy.getSizeInBytes())) |
1236 | report(msg: "load memory size cannot exceed result size" , MI); |
1237 | } else if (MI->getOpcode() == TargetOpcode::G_STORE) { |
1238 | if (TypeSize::isKnownLT(LHS: ValTy.getSizeInBytes(), |
1239 | RHS: MMO.getSize().getValue())) |
1240 | report(msg: "store memory size cannot exceed value size" , MI); |
1241 | } |
1242 | |
1243 | const AtomicOrdering Order = MMO.getSuccessOrdering(); |
1244 | if (Opc == TargetOpcode::G_STORE) { |
1245 | if (Order == AtomicOrdering::Acquire || |
1246 | Order == AtomicOrdering::AcquireRelease) |
1247 | report(msg: "atomic store cannot use acquire ordering" , MI); |
1248 | |
1249 | } else { |
1250 | if (Order == AtomicOrdering::Release || |
1251 | Order == AtomicOrdering::AcquireRelease) |
1252 | report(msg: "atomic load cannot use release ordering" , MI); |
1253 | } |
1254 | } |
1255 | |
1256 | break; |
1257 | } |
1258 | case TargetOpcode::G_PHI: { |
1259 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1260 | if (!DstTy.isValid() || !all_of(Range: drop_begin(RangeOrContainer: MI->operands()), |
1261 | P: [this, &DstTy](const MachineOperand &MO) { |
1262 | if (!MO.isReg()) |
1263 | return true; |
1264 | LLT Ty = MRI->getType(Reg: MO.getReg()); |
1265 | if (!Ty.isValid() || (Ty != DstTy)) |
1266 | return false; |
1267 | return true; |
1268 | })) |
1269 | report(msg: "Generic Instruction G_PHI has operands with incompatible/missing " |
1270 | "types" , |
1271 | MI); |
1272 | break; |
1273 | } |
1274 | case TargetOpcode::G_BITCAST: { |
1275 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1276 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1277 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1278 | break; |
1279 | |
1280 | if (SrcTy.isPointer() != DstTy.isPointer()) |
1281 | report(msg: "bitcast cannot convert between pointers and other types" , MI); |
1282 | |
1283 | if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) |
1284 | report(msg: "bitcast sizes must match" , MI); |
1285 | |
1286 | if (SrcTy == DstTy) |
1287 | report(msg: "bitcast must change the type" , MI); |
1288 | |
1289 | break; |
1290 | } |
1291 | case TargetOpcode::G_INTTOPTR: |
1292 | case TargetOpcode::G_PTRTOINT: |
1293 | case TargetOpcode::G_ADDRSPACE_CAST: { |
1294 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1295 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1296 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1297 | break; |
1298 | |
1299 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
1300 | |
1301 | DstTy = DstTy.getScalarType(); |
1302 | SrcTy = SrcTy.getScalarType(); |
1303 | |
1304 | if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { |
1305 | if (!DstTy.isPointer()) |
1306 | report(msg: "inttoptr result type must be a pointer" , MI); |
1307 | if (SrcTy.isPointer()) |
1308 | report(msg: "inttoptr source type must not be a pointer" , MI); |
1309 | } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { |
1310 | if (!SrcTy.isPointer()) |
1311 | report(msg: "ptrtoint source type must be a pointer" , MI); |
1312 | if (DstTy.isPointer()) |
1313 | report(msg: "ptrtoint result type must not be a pointer" , MI); |
1314 | } else { |
1315 | assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); |
1316 | if (!SrcTy.isPointer() || !DstTy.isPointer()) |
1317 | report(msg: "addrspacecast types must be pointers" , MI); |
1318 | else { |
1319 | if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) |
1320 | report(msg: "addrspacecast must convert different address spaces" , MI); |
1321 | } |
1322 | } |
1323 | |
1324 | break; |
1325 | } |
1326 | case TargetOpcode::G_PTR_ADD: { |
1327 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1328 | LLT PtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1329 | LLT OffsetTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1330 | if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) |
1331 | break; |
1332 | |
1333 | if (!PtrTy.isPointerOrPointerVector()) |
1334 | report(msg: "gep first operand must be a pointer" , MI); |
1335 | |
1336 | if (OffsetTy.isPointerOrPointerVector()) |
1337 | report(msg: "gep offset operand must not be a pointer" , MI); |
1338 | |
1339 | if (PtrTy.isPointerOrPointerVector()) { |
1340 | const DataLayout &DL = MF->getDataLayout(); |
1341 | unsigned AS = PtrTy.getAddressSpace(); |
1342 | unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; |
1343 | if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { |
1344 | report(msg: "gep offset operand must match index size for address space" , |
1345 | MI); |
1346 | } |
1347 | } |
1348 | |
1349 | // TODO: Is the offset allowed to be a scalar with a vector? |
1350 | break; |
1351 | } |
1352 | case TargetOpcode::G_PTRMASK: { |
1353 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1354 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1355 | LLT MaskTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1356 | if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) |
1357 | break; |
1358 | |
1359 | if (!DstTy.isPointerOrPointerVector()) |
1360 | report(msg: "ptrmask result type must be a pointer" , MI); |
1361 | |
1362 | if (!MaskTy.getScalarType().isScalar()) |
1363 | report(msg: "ptrmask mask type must be an integer" , MI); |
1364 | |
1365 | verifyVectorElementMatch(Ty0: DstTy, Ty1: MaskTy, MI); |
1366 | break; |
1367 | } |
1368 | case TargetOpcode::G_SEXT: |
1369 | case TargetOpcode::G_ZEXT: |
1370 | case TargetOpcode::G_ANYEXT: |
1371 | case TargetOpcode::G_TRUNC: |
1372 | case TargetOpcode::G_FPEXT: |
1373 | case TargetOpcode::G_FPTRUNC: { |
1374 | // Number of operands and presense of types is already checked (and |
1375 | // reported in case of any issues), so no need to report them again. As |
1376 | // we're trying to report as many issues as possible at once, however, the |
1377 | // instructions aren't guaranteed to have the right number of operands or |
1378 | // types attached to them at this point |
1379 | assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}" ); |
1380 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1381 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1382 | if (!DstTy.isValid() || !SrcTy.isValid()) |
1383 | break; |
1384 | |
1385 | if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) |
1386 | report(msg: "Generic extend/truncate can not operate on pointers" , MI); |
1387 | |
1388 | verifyVectorElementMatch(Ty0: DstTy, Ty1: SrcTy, MI); |
1389 | |
1390 | unsigned DstSize = DstTy.getScalarSizeInBits(); |
1391 | unsigned SrcSize = SrcTy.getScalarSizeInBits(); |
1392 | switch (MI->getOpcode()) { |
1393 | default: |
1394 | if (DstSize <= SrcSize) |
1395 | report(msg: "Generic extend has destination type no larger than source" , MI); |
1396 | break; |
1397 | case TargetOpcode::G_TRUNC: |
1398 | case TargetOpcode::G_FPTRUNC: |
1399 | if (DstSize >= SrcSize) |
1400 | report(msg: "Generic truncate has destination type no smaller than source" , |
1401 | MI); |
1402 | break; |
1403 | } |
1404 | break; |
1405 | } |
1406 | case TargetOpcode::G_SELECT: { |
1407 | LLT SelTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1408 | LLT CondTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1409 | if (!SelTy.isValid() || !CondTy.isValid()) |
1410 | break; |
1411 | |
1412 | // Scalar condition select on a vector is valid. |
1413 | if (CondTy.isVector()) |
1414 | verifyVectorElementMatch(Ty0: SelTy, Ty1: CondTy, MI); |
1415 | break; |
1416 | } |
1417 | case TargetOpcode::G_MERGE_VALUES: { |
1418 | // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, |
1419 | // e.g. s2N = MERGE sN, sN |
1420 | // Merging multiple scalars into a vector is not allowed, should use |
1421 | // G_BUILD_VECTOR for that. |
1422 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1423 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1424 | if (DstTy.isVector() || SrcTy.isVector()) |
1425 | report(msg: "G_MERGE_VALUES cannot operate on vectors" , MI); |
1426 | |
1427 | const unsigned NumOps = MI->getNumOperands(); |
1428 | if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) |
1429 | report(msg: "G_MERGE_VALUES result size is inconsistent" , MI); |
1430 | |
1431 | for (unsigned I = 2; I != NumOps; ++I) { |
1432 | if (MRI->getType(Reg: MI->getOperand(i: I).getReg()) != SrcTy) |
1433 | report(msg: "G_MERGE_VALUES source types do not match" , MI); |
1434 | } |
1435 | |
1436 | break; |
1437 | } |
1438 | case TargetOpcode::G_UNMERGE_VALUES: { |
1439 | unsigned NumDsts = MI->getNumOperands() - 1; |
1440 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1441 | for (unsigned i = 1; i < NumDsts; ++i) { |
1442 | if (MRI->getType(Reg: MI->getOperand(i).getReg()) != DstTy) { |
1443 | report(msg: "G_UNMERGE_VALUES destination types do not match" , MI); |
1444 | break; |
1445 | } |
1446 | } |
1447 | |
1448 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: NumDsts).getReg()); |
1449 | if (DstTy.isVector()) { |
1450 | // This case is the converse of G_CONCAT_VECTORS. |
1451 | if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || |
1452 | SrcTy.isScalableVector() != DstTy.isScalableVector() || |
1453 | SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
1454 | report(msg: "G_UNMERGE_VALUES source operand does not match vector " |
1455 | "destination operands" , |
1456 | MI); |
1457 | } else if (SrcTy.isVector()) { |
1458 | // This case is the converse of G_BUILD_VECTOR, but relaxed to allow |
1459 | // mismatched types as long as the total size matches: |
1460 | // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) |
1461 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) |
1462 | report(msg: "G_UNMERGE_VALUES vector source operand does not match scalar " |
1463 | "destination operands" , |
1464 | MI); |
1465 | } else { |
1466 | // This case is the converse of G_MERGE_VALUES. |
1467 | if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { |
1468 | report(msg: "G_UNMERGE_VALUES scalar source operand does not match scalar " |
1469 | "destination operands" , |
1470 | MI); |
1471 | } |
1472 | } |
1473 | break; |
1474 | } |
1475 | case TargetOpcode::G_BUILD_VECTOR: { |
1476 | // Source types must be scalars, dest type a vector. Total size of scalars |
1477 | // must match the dest vector size. |
1478 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1479 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1480 | if (!DstTy.isVector() || SrcEltTy.isVector()) { |
1481 | report(msg: "G_BUILD_VECTOR must produce a vector from scalar operands" , MI); |
1482 | break; |
1483 | } |
1484 | |
1485 | if (DstTy.getElementType() != SrcEltTy) |
1486 | report(msg: "G_BUILD_VECTOR result element type must match source type" , MI); |
1487 | |
1488 | if (DstTy.getNumElements() != MI->getNumOperands() - 1) |
1489 | report(msg: "G_BUILD_VECTOR must have an operand for each elemement" , MI); |
1490 | |
1491 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1492 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1493 | report(msg: "G_BUILD_VECTOR source operand types are not homogeneous" , MI); |
1494 | |
1495 | break; |
1496 | } |
1497 | case TargetOpcode::G_BUILD_VECTOR_TRUNC: { |
1498 | // Source types must be scalars, dest type a vector. Scalar types must be |
1499 | // larger than the dest vector elt type, as this is a truncating operation. |
1500 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1501 | LLT SrcEltTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1502 | if (!DstTy.isVector() || SrcEltTy.isVector()) |
1503 | report(msg: "G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands" , |
1504 | MI); |
1505 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1506 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1507 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not homogeneous" , |
1508 | MI); |
1509 | if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) |
1510 | report(msg: "G_BUILD_VECTOR_TRUNC source operand types are not larger than " |
1511 | "dest elt type" , |
1512 | MI); |
1513 | break; |
1514 | } |
1515 | case TargetOpcode::G_CONCAT_VECTORS: { |
1516 | // Source types should be vectors, and total size should match the dest |
1517 | // vector size. |
1518 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1519 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1520 | if (!DstTy.isVector() || !SrcTy.isVector()) |
1521 | report(msg: "G_CONCAT_VECTOR requires vector source and destination operands" , |
1522 | MI); |
1523 | |
1524 | if (MI->getNumOperands() < 3) |
1525 | report(msg: "G_CONCAT_VECTOR requires at least 2 source operands" , MI); |
1526 | |
1527 | for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 2)) |
1528 | if (MRI->getType(Reg: MI->getOperand(i: 1).getReg()) != MRI->getType(Reg: MO.getReg())) |
1529 | report(msg: "G_CONCAT_VECTOR source operand types are not homogeneous" , MI); |
1530 | if (DstTy.getElementCount() != |
1531 | SrcTy.getElementCount() * (MI->getNumOperands() - 1)) |
1532 | report(msg: "G_CONCAT_VECTOR num dest and source elements should match" , MI); |
1533 | break; |
1534 | } |
1535 | case TargetOpcode::G_ICMP: |
1536 | case TargetOpcode::G_FCMP: { |
1537 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1538 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1539 | |
1540 | if ((DstTy.isVector() != SrcTy.isVector()) || |
1541 | (DstTy.isVector() && |
1542 | DstTy.getElementCount() != SrcTy.getElementCount())) |
1543 | report(msg: "Generic vector icmp/fcmp must preserve number of lanes" , MI); |
1544 | |
1545 | break; |
1546 | } |
1547 | case TargetOpcode::G_SCMP: |
1548 | case TargetOpcode::G_UCMP: { |
1549 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1550 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1551 | LLT SrcTy2 = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1552 | |
1553 | if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { |
1554 | report(msg: "Generic scmp/ucmp does not support pointers as operands" , MI); |
1555 | break; |
1556 | } |
1557 | |
1558 | if (DstTy.isPointerOrPointerVector()) { |
1559 | report(msg: "Generic scmp/ucmp does not support pointers as a result" , MI); |
1560 | break; |
1561 | } |
1562 | |
1563 | if ((DstTy.isVector() != SrcTy.isVector()) || |
1564 | (DstTy.isVector() && |
1565 | DstTy.getElementCount() != SrcTy.getElementCount())) { |
1566 | report(msg: "Generic vector scmp/ucmp must preserve number of lanes" , MI); |
1567 | break; |
1568 | } |
1569 | |
1570 | if (SrcTy != SrcTy2) { |
1571 | report(msg: "Generic scmp/ucmp must have same input types" , MI); |
1572 | break; |
1573 | } |
1574 | |
1575 | break; |
1576 | } |
1577 | case TargetOpcode::G_EXTRACT: { |
1578 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
1579 | if (!SrcOp.isReg()) { |
1580 | report(msg: "extract source must be a register" , MI); |
1581 | break; |
1582 | } |
1583 | |
1584 | const MachineOperand &OffsetOp = MI->getOperand(i: 2); |
1585 | if (!OffsetOp.isImm()) { |
1586 | report(msg: "extract offset must be a constant" , MI); |
1587 | break; |
1588 | } |
1589 | |
1590 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
1591 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
1592 | if (SrcSize == DstSize) |
1593 | report(msg: "extract source must be larger than result" , MI); |
1594 | |
1595 | if (DstSize + OffsetOp.getImm() > SrcSize) |
1596 | report(msg: "extract reads past end of register" , MI); |
1597 | break; |
1598 | } |
1599 | case TargetOpcode::G_INSERT: { |
1600 | const MachineOperand &SrcOp = MI->getOperand(i: 2); |
1601 | if (!SrcOp.isReg()) { |
1602 | report(msg: "insert source must be a register" , MI); |
1603 | break; |
1604 | } |
1605 | |
1606 | const MachineOperand &OffsetOp = MI->getOperand(i: 3); |
1607 | if (!OffsetOp.isImm()) { |
1608 | report(msg: "insert offset must be a constant" , MI); |
1609 | break; |
1610 | } |
1611 | |
1612 | unsigned DstSize = MRI->getType(Reg: MI->getOperand(i: 0).getReg()).getSizeInBits(); |
1613 | unsigned SrcSize = MRI->getType(Reg: SrcOp.getReg()).getSizeInBits(); |
1614 | |
1615 | if (DstSize <= SrcSize) |
1616 | report(msg: "inserted size must be smaller than total register" , MI); |
1617 | |
1618 | if (SrcSize + OffsetOp.getImm() > DstSize) |
1619 | report(msg: "insert writes past end of register" , MI); |
1620 | |
1621 | break; |
1622 | } |
1623 | case TargetOpcode::G_JUMP_TABLE: { |
1624 | if (!MI->getOperand(i: 1).isJTI()) |
1625 | report(msg: "G_JUMP_TABLE source operand must be a jump table index" , MI); |
1626 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1627 | if (!DstTy.isPointer()) |
1628 | report(msg: "G_JUMP_TABLE dest operand must have a pointer type" , MI); |
1629 | break; |
1630 | } |
1631 | case TargetOpcode::G_BRJT: { |
1632 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
1633 | report(msg: "G_BRJT src operand 0 must be a pointer type" , MI); |
1634 | |
1635 | if (!MI->getOperand(i: 1).isJTI()) |
1636 | report(msg: "G_BRJT src operand 1 must be a jump table index" , MI); |
1637 | |
1638 | const auto &IdxOp = MI->getOperand(i: 2); |
1639 | if (!IdxOp.isReg() || MRI->getType(Reg: IdxOp.getReg()).isPointer()) |
1640 | report(msg: "G_BRJT src operand 2 must be a scalar reg type" , MI); |
1641 | break; |
1642 | } |
1643 | case TargetOpcode::G_INTRINSIC: |
1644 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
1645 | case TargetOpcode::G_INTRINSIC_CONVERGENT: |
1646 | case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { |
1647 | // TODO: Should verify number of def and use operands, but the current |
1648 | // interface requires passing in IR types for mangling. |
1649 | const MachineOperand &IntrIDOp = MI->getOperand(i: MI->getNumExplicitDefs()); |
1650 | if (!IntrIDOp.isIntrinsicID()) { |
1651 | report(msg: "G_INTRINSIC first src operand must be an intrinsic ID" , MI); |
1652 | break; |
1653 | } |
1654 | |
1655 | if (!verifyGIntrinsicSideEffects(MI)) |
1656 | break; |
1657 | if (!verifyGIntrinsicConvergence(MI)) |
1658 | break; |
1659 | |
1660 | break; |
1661 | } |
1662 | case TargetOpcode::G_SEXT_INREG: { |
1663 | if (!MI->getOperand(i: 2).isImm()) { |
1664 | report(msg: "G_SEXT_INREG expects an immediate operand #2" , MI); |
1665 | break; |
1666 | } |
1667 | |
1668 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1669 | int64_t Imm = MI->getOperand(i: 2).getImm(); |
1670 | if (Imm <= 0) |
1671 | report(msg: "G_SEXT_INREG size must be >= 1" , MI); |
1672 | if (Imm >= SrcTy.getScalarSizeInBits()) |
1673 | report(msg: "G_SEXT_INREG size must be less than source bit width" , MI); |
1674 | break; |
1675 | } |
1676 | case TargetOpcode::G_BSWAP: { |
1677 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1678 | if (DstTy.getScalarSizeInBits() % 16 != 0) |
1679 | report(msg: "G_BSWAP size must be a multiple of 16 bits" , MI); |
1680 | break; |
1681 | } |
1682 | case TargetOpcode::G_VSCALE: { |
1683 | if (!MI->getOperand(i: 1).isCImm()) { |
1684 | report(msg: "G_VSCALE operand must be cimm" , MI); |
1685 | break; |
1686 | } |
1687 | if (MI->getOperand(i: 1).getCImm()->isZero()) { |
1688 | report(msg: "G_VSCALE immediate cannot be zero" , MI); |
1689 | break; |
1690 | } |
1691 | break; |
1692 | } |
1693 | case TargetOpcode::G_INSERT_SUBVECTOR: { |
1694 | const MachineOperand &Src0Op = MI->getOperand(i: 1); |
1695 | if (!Src0Op.isReg()) { |
1696 | report(msg: "G_INSERT_SUBVECTOR first source must be a register" , MI); |
1697 | break; |
1698 | } |
1699 | |
1700 | const MachineOperand &Src1Op = MI->getOperand(i: 2); |
1701 | if (!Src1Op.isReg()) { |
1702 | report(msg: "G_INSERT_SUBVECTOR second source must be a register" , MI); |
1703 | break; |
1704 | } |
1705 | |
1706 | const MachineOperand &IndexOp = MI->getOperand(i: 3); |
1707 | if (!IndexOp.isImm()) { |
1708 | report(msg: "G_INSERT_SUBVECTOR index must be an immediate" , MI); |
1709 | break; |
1710 | } |
1711 | |
1712 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1713 | LLT Src0Ty = MRI->getType(Reg: Src0Op.getReg()); |
1714 | LLT Src1Ty = MRI->getType(Reg: Src1Op.getReg()); |
1715 | |
1716 | if (!DstTy.isVector()) { |
1717 | report(msg: "Destination type must be a vector" , MI); |
1718 | break; |
1719 | } |
1720 | |
1721 | if (!Src0Ty.isVector()) { |
1722 | report(msg: "First source must be a vector" , MI); |
1723 | break; |
1724 | } |
1725 | |
1726 | if (!Src1Ty.isVector()) { |
1727 | report(msg: "Second source must be a vector" , MI); |
1728 | break; |
1729 | } |
1730 | |
1731 | if (DstTy != Src0Ty) { |
1732 | report(msg: "Destination type must match the first source vector type" , MI); |
1733 | break; |
1734 | } |
1735 | |
1736 | if (Src0Ty.getElementType() != Src1Ty.getElementType()) { |
1737 | report(msg: "Element type of source vectors must be the same" , MI); |
1738 | break; |
1739 | } |
1740 | |
1741 | if (IndexOp.getImm() != 0 && |
1742 | Src1Ty.getElementCount().getKnownMinValue() % IndexOp.getImm() != 0) { |
1743 | report(msg: "Index must be a multiple of the second source vector's " |
1744 | "minimum vector length" , |
1745 | MI); |
1746 | break; |
1747 | } |
1748 | break; |
1749 | } |
1750 | case TargetOpcode::G_EXTRACT_SUBVECTOR: { |
1751 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
1752 | if (!SrcOp.isReg()) { |
1753 | report(msg: "G_EXTRACT_SUBVECTOR first source must be a register" , MI); |
1754 | break; |
1755 | } |
1756 | |
1757 | const MachineOperand &IndexOp = MI->getOperand(i: 2); |
1758 | if (!IndexOp.isImm()) { |
1759 | report(msg: "G_EXTRACT_SUBVECTOR index must be an immediate" , MI); |
1760 | break; |
1761 | } |
1762 | |
1763 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1764 | LLT SrcTy = MRI->getType(Reg: SrcOp.getReg()); |
1765 | |
1766 | if (!DstTy.isVector()) { |
1767 | report(msg: "Destination type must be a vector" , MI); |
1768 | break; |
1769 | } |
1770 | |
1771 | if (!SrcTy.isVector()) { |
1772 | report(msg: "First source must be a vector" , MI); |
1773 | break; |
1774 | } |
1775 | |
1776 | if (DstTy.getElementType() != SrcTy.getElementType()) { |
1777 | report(msg: "Element type of vectors must be the same" , MI); |
1778 | break; |
1779 | } |
1780 | |
1781 | if (IndexOp.getImm() != 0 && |
1782 | SrcTy.getElementCount().getKnownMinValue() % IndexOp.getImm() != 0) { |
1783 | report(msg: "Index must be a multiple of the source vector's minimum vector " |
1784 | "length" , |
1785 | MI); |
1786 | break; |
1787 | } |
1788 | |
1789 | break; |
1790 | } |
1791 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
1792 | const MachineOperand &MaskOp = MI->getOperand(i: 3); |
1793 | if (!MaskOp.isShuffleMask()) { |
1794 | report(msg: "Incorrect mask operand type for G_SHUFFLE_VECTOR" , MI); |
1795 | break; |
1796 | } |
1797 | |
1798 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1799 | LLT Src0Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1800 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1801 | |
1802 | if (Src0Ty != Src1Ty) |
1803 | report(msg: "Source operands must be the same type" , MI); |
1804 | |
1805 | if (Src0Ty.getScalarType() != DstTy.getScalarType()) |
1806 | report(msg: "G_SHUFFLE_VECTOR cannot change element type" , MI); |
1807 | |
1808 | // Don't check that all operands are vector because scalars are used in |
1809 | // place of 1 element vectors. |
1810 | int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; |
1811 | int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; |
1812 | |
1813 | ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); |
1814 | |
1815 | if (static_cast<int>(MaskIdxes.size()) != DstNumElts) |
1816 | report(msg: "Wrong result type for shufflemask" , MI); |
1817 | |
1818 | for (int Idx : MaskIdxes) { |
1819 | if (Idx < 0) |
1820 | continue; |
1821 | |
1822 | if (Idx >= 2 * SrcNumElts) |
1823 | report(msg: "Out of bounds shuffle index" , MI); |
1824 | } |
1825 | |
1826 | break; |
1827 | } |
1828 | |
1829 | case TargetOpcode::G_SPLAT_VECTOR: { |
1830 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1831 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1832 | |
1833 | if (!DstTy.isScalableVector()) { |
1834 | report(msg: "Destination type must be a scalable vector" , MI); |
1835 | break; |
1836 | } |
1837 | |
1838 | if (!SrcTy.isScalar()) { |
1839 | report(msg: "Source type must be a scalar" , MI); |
1840 | break; |
1841 | } |
1842 | |
1843 | if (TypeSize::isKnownGT(LHS: DstTy.getElementType().getSizeInBits(), |
1844 | RHS: SrcTy.getSizeInBits())) { |
1845 | report(msg: "Element type of the destination must be the same size or smaller " |
1846 | "than the source type" , |
1847 | MI); |
1848 | break; |
1849 | } |
1850 | |
1851 | break; |
1852 | } |
1853 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
1854 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1855 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1856 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1857 | |
1858 | if (!DstTy.isScalar() && !DstTy.isPointer()) { |
1859 | report(msg: "Destination type must be a scalar or pointer" , MI); |
1860 | break; |
1861 | } |
1862 | |
1863 | if (!SrcTy.isVector()) { |
1864 | report(msg: "First source must be a vector" , MI); |
1865 | break; |
1866 | } |
1867 | |
1868 | auto TLI = MF->getSubtarget().getTargetLowering(); |
1869 | if (IdxTy.getSizeInBits() != |
1870 | TLI->getVectorIdxTy(DL: MF->getDataLayout()).getFixedSizeInBits()) { |
1871 | report(msg: "Index type must match VectorIdxTy" , MI); |
1872 | break; |
1873 | } |
1874 | |
1875 | break; |
1876 | } |
1877 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
1878 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1879 | LLT VecTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1880 | LLT ScaTy = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
1881 | LLT IdxTy = MRI->getType(Reg: MI->getOperand(i: 3).getReg()); |
1882 | |
1883 | if (!DstTy.isVector()) { |
1884 | report(msg: "Destination type must be a vector" , MI); |
1885 | break; |
1886 | } |
1887 | |
1888 | if (VecTy != DstTy) { |
1889 | report(msg: "Destination type and vector type must match" , MI); |
1890 | break; |
1891 | } |
1892 | |
1893 | if (!ScaTy.isScalar() && !ScaTy.isPointer()) { |
1894 | report(msg: "Inserted element must be a scalar or pointer" , MI); |
1895 | break; |
1896 | } |
1897 | |
1898 | auto TLI = MF->getSubtarget().getTargetLowering(); |
1899 | if (IdxTy.getSizeInBits() != |
1900 | TLI->getVectorIdxTy(DL: MF->getDataLayout()).getFixedSizeInBits()) { |
1901 | report(msg: "Index type must match VectorIdxTy" , MI); |
1902 | break; |
1903 | } |
1904 | |
1905 | break; |
1906 | } |
1907 | case TargetOpcode::G_DYN_STACKALLOC: { |
1908 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
1909 | const MachineOperand &AllocOp = MI->getOperand(i: 1); |
1910 | const MachineOperand &AlignOp = MI->getOperand(i: 2); |
1911 | |
1912 | if (!DstOp.isReg() || !MRI->getType(Reg: DstOp.getReg()).isPointer()) { |
1913 | report(msg: "dst operand 0 must be a pointer type" , MI); |
1914 | break; |
1915 | } |
1916 | |
1917 | if (!AllocOp.isReg() || !MRI->getType(Reg: AllocOp.getReg()).isScalar()) { |
1918 | report(msg: "src operand 1 must be a scalar reg type" , MI); |
1919 | break; |
1920 | } |
1921 | |
1922 | if (!AlignOp.isImm()) { |
1923 | report(msg: "src operand 2 must be an immediate type" , MI); |
1924 | break; |
1925 | } |
1926 | break; |
1927 | } |
1928 | case TargetOpcode::G_MEMCPY_INLINE: |
1929 | case TargetOpcode::G_MEMCPY: |
1930 | case TargetOpcode::G_MEMMOVE: { |
1931 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
1932 | if (MMOs.size() != 2) { |
1933 | report(msg: "memcpy/memmove must have 2 memory operands" , MI); |
1934 | break; |
1935 | } |
1936 | |
1937 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || |
1938 | (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { |
1939 | report(msg: "wrong memory operand types" , MI); |
1940 | break; |
1941 | } |
1942 | |
1943 | if (MMOs[0]->getSize() != MMOs[1]->getSize()) |
1944 | report(msg: "inconsistent memory operand sizes" , MI); |
1945 | |
1946 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1947 | LLT SrcPtrTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
1948 | |
1949 | if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { |
1950 | report(msg: "memory instruction operand must be a pointer" , MI); |
1951 | break; |
1952 | } |
1953 | |
1954 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
1955 | report(msg: "inconsistent store address space" , MI); |
1956 | if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) |
1957 | report(msg: "inconsistent load address space" , MI); |
1958 | |
1959 | if (Opc != TargetOpcode::G_MEMCPY_INLINE) |
1960 | if (!MI->getOperand(i: 3).isImm() || (MI->getOperand(i: 3).getImm() & ~1LL)) |
1961 | report(msg: "'tail' flag (operand 3) must be an immediate 0 or 1" , MI); |
1962 | |
1963 | break; |
1964 | } |
1965 | case TargetOpcode::G_BZERO: |
1966 | case TargetOpcode::G_MEMSET: { |
1967 | ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); |
1968 | std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero" ; |
1969 | if (MMOs.size() != 1) { |
1970 | report(Msg: Twine(Name, " must have 1 memory operand" ), MI); |
1971 | break; |
1972 | } |
1973 | |
1974 | if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { |
1975 | report(Msg: Twine(Name, " memory operand must be a store" ), MI); |
1976 | break; |
1977 | } |
1978 | |
1979 | LLT DstPtrTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
1980 | if (!DstPtrTy.isPointer()) { |
1981 | report(Msg: Twine(Name, " operand must be a pointer" ), MI); |
1982 | break; |
1983 | } |
1984 | |
1985 | if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) |
1986 | report(Msg: "inconsistent " + Twine(Name, " address space" ), MI); |
1987 | |
1988 | if (!MI->getOperand(i: MI->getNumOperands() - 1).isImm() || |
1989 | (MI->getOperand(i: MI->getNumOperands() - 1).getImm() & ~1LL)) |
1990 | report(msg: "'tail' flag (last operand) must be an immediate 0 or 1" , MI); |
1991 | |
1992 | break; |
1993 | } |
1994 | case TargetOpcode::G_UBSANTRAP: { |
1995 | const MachineOperand &KindOp = MI->getOperand(i: 0); |
1996 | if (!MI->getOperand(i: 0).isImm()) { |
1997 | report(msg: "Crash kind must be an immediate" , MO: &KindOp, MONum: 0); |
1998 | break; |
1999 | } |
2000 | int64_t Kind = MI->getOperand(i: 0).getImm(); |
2001 | if (!isInt<8>(x: Kind)) |
2002 | report(msg: "Crash kind must be 8 bit wide" , MO: &KindOp, MONum: 0); |
2003 | break; |
2004 | } |
2005 | case TargetOpcode::G_VECREDUCE_SEQ_FADD: |
2006 | case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { |
2007 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2008 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2009 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
2010 | if (!DstTy.isScalar()) |
2011 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
2012 | if (!Src1Ty.isScalar()) |
2013 | report(msg: "Sequential FADD/FMUL vector reduction requires a scalar 1st operand" , MI); |
2014 | if (!Src2Ty.isVector()) |
2015 | report(msg: "Sequential FADD/FMUL vector reduction must have a vector 2nd operand" , MI); |
2016 | break; |
2017 | } |
2018 | case TargetOpcode::G_VECREDUCE_FADD: |
2019 | case TargetOpcode::G_VECREDUCE_FMUL: |
2020 | case TargetOpcode::G_VECREDUCE_FMAX: |
2021 | case TargetOpcode::G_VECREDUCE_FMIN: |
2022 | case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
2023 | case TargetOpcode::G_VECREDUCE_FMINIMUM: |
2024 | case TargetOpcode::G_VECREDUCE_ADD: |
2025 | case TargetOpcode::G_VECREDUCE_MUL: |
2026 | case TargetOpcode::G_VECREDUCE_AND: |
2027 | case TargetOpcode::G_VECREDUCE_OR: |
2028 | case TargetOpcode::G_VECREDUCE_XOR: |
2029 | case TargetOpcode::G_VECREDUCE_SMAX: |
2030 | case TargetOpcode::G_VECREDUCE_SMIN: |
2031 | case TargetOpcode::G_VECREDUCE_UMAX: |
2032 | case TargetOpcode::G_VECREDUCE_UMIN: { |
2033 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2034 | if (!DstTy.isScalar()) |
2035 | report(msg: "Vector reduction requires a scalar destination type" , MI); |
2036 | break; |
2037 | } |
2038 | |
2039 | case TargetOpcode::G_SBFX: |
2040 | case TargetOpcode::G_UBFX: { |
2041 | LLT DstTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2042 | if (DstTy.isVector()) { |
2043 | report(msg: "Bitfield extraction is not supported on vectors" , MI); |
2044 | break; |
2045 | } |
2046 | break; |
2047 | } |
2048 | case TargetOpcode::G_SHL: |
2049 | case TargetOpcode::G_LSHR: |
2050 | case TargetOpcode::G_ASHR: |
2051 | case TargetOpcode::G_ROTR: |
2052 | case TargetOpcode::G_ROTL: { |
2053 | LLT Src1Ty = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2054 | LLT Src2Ty = MRI->getType(Reg: MI->getOperand(i: 2).getReg()); |
2055 | if (Src1Ty.isVector() != Src2Ty.isVector()) { |
2056 | report(msg: "Shifts and rotates require operands to be either all scalars or " |
2057 | "all vectors" , |
2058 | MI); |
2059 | break; |
2060 | } |
2061 | break; |
2062 | } |
2063 | case TargetOpcode::G_LLROUND: |
2064 | case TargetOpcode::G_LROUND: { |
2065 | verifyAllRegOpsScalar(MI: *MI, MRI: *MRI); |
2066 | break; |
2067 | } |
2068 | case TargetOpcode::G_IS_FPCLASS: { |
2069 | LLT DestTy = MRI->getType(Reg: MI->getOperand(i: 0).getReg()); |
2070 | LLT DestEltTy = DestTy.getScalarType(); |
2071 | if (!DestEltTy.isScalar()) { |
2072 | report(msg: "Destination must be a scalar or vector of scalars" , MI); |
2073 | break; |
2074 | } |
2075 | LLT SrcTy = MRI->getType(Reg: MI->getOperand(i: 1).getReg()); |
2076 | LLT SrcEltTy = SrcTy.getScalarType(); |
2077 | if (!SrcEltTy.isScalar()) { |
2078 | report(msg: "Source must be a scalar or vector of scalars" , MI); |
2079 | break; |
2080 | } |
2081 | if (!verifyVectorElementMatch(Ty0: DestTy, Ty1: SrcTy, MI)) |
2082 | break; |
2083 | const MachineOperand &TestMO = MI->getOperand(i: 2); |
2084 | if (!TestMO.isImm()) { |
2085 | report(msg: "floating-point class set (operand 2) must be an immediate" , MI); |
2086 | break; |
2087 | } |
2088 | int64_t Test = TestMO.getImm(); |
2089 | if (Test < 0 || Test > fcAllFlags) { |
2090 | report(msg: "Incorrect floating-point class set (operand 2)" , MI); |
2091 | break; |
2092 | } |
2093 | break; |
2094 | } |
2095 | case TargetOpcode::G_PREFETCH: { |
2096 | const MachineOperand &AddrOp = MI->getOperand(i: 0); |
2097 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) { |
2098 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 0); |
2099 | break; |
2100 | } |
2101 | const MachineOperand &RWOp = MI->getOperand(i: 1); |
2102 | if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { |
2103 | report(msg: "rw operand must be an immediate 0-1" , MO: &RWOp, MONum: 1); |
2104 | break; |
2105 | } |
2106 | const MachineOperand &LocalityOp = MI->getOperand(i: 2); |
2107 | if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { |
2108 | report(msg: "locality operand must be an immediate 0-3" , MO: &LocalityOp, MONum: 2); |
2109 | break; |
2110 | } |
2111 | const MachineOperand &CacheTypeOp = MI->getOperand(i: 3); |
2112 | if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { |
2113 | report(msg: "cache type operand must be an immediate 0-1" , MO: &CacheTypeOp, MONum: 3); |
2114 | break; |
2115 | } |
2116 | break; |
2117 | } |
2118 | case TargetOpcode::G_ASSERT_ALIGN: { |
2119 | if (MI->getOperand(i: 2).getImm() < 1) |
2120 | report(msg: "alignment immediate must be >= 1" , MI); |
2121 | break; |
2122 | } |
2123 | case TargetOpcode::G_CONSTANT_POOL: { |
2124 | if (!MI->getOperand(i: 1).isCPI()) |
2125 | report(msg: "Src operand 1 must be a constant pool index" , MI); |
2126 | if (!MRI->getType(Reg: MI->getOperand(i: 0).getReg()).isPointer()) |
2127 | report(msg: "Dst operand 0 must be a pointer" , MI); |
2128 | break; |
2129 | } |
2130 | case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { |
2131 | const MachineOperand &AddrOp = MI->getOperand(i: 1); |
2132 | if (!AddrOp.isReg() || !MRI->getType(Reg: AddrOp.getReg()).isPointer()) |
2133 | report(msg: "addr operand must be a pointer" , MO: &AddrOp, MONum: 1); |
2134 | break; |
2135 | } |
2136 | default: |
2137 | break; |
2138 | } |
2139 | } |
2140 | |
2141 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { |
2142 | const MCInstrDesc &MCID = MI->getDesc(); |
2143 | if (MI->getNumOperands() < MCID.getNumOperands()) { |
2144 | report(msg: "Too few operands" , MI); |
2145 | errs() << MCID.getNumOperands() << " operands expected, but " |
2146 | << MI->getNumOperands() << " given.\n" ; |
2147 | } |
2148 | |
2149 | if (MI->getFlag(Flag: MachineInstr::NoConvergent) && !MCID.isConvergent()) |
2150 | report(msg: "NoConvergent flag expected only on convergent instructions." , MI); |
2151 | |
2152 | if (MI->isPHI()) { |
2153 | if (MF->getProperties().hasProperty( |
2154 | P: MachineFunctionProperties::Property::NoPHIs)) |
2155 | report(msg: "Found PHI instruction with NoPHIs property set" , MI); |
2156 | |
2157 | if (FirstNonPHI) |
2158 | report(msg: "Found PHI instruction after non-PHI" , MI); |
2159 | } else if (FirstNonPHI == nullptr) |
2160 | FirstNonPHI = MI; |
2161 | |
2162 | // Check the tied operands. |
2163 | if (MI->isInlineAsm()) |
2164 | verifyInlineAsm(MI); |
2165 | |
2166 | // Check that unspillable terminators define a reg and have at most one use. |
2167 | if (TII->isUnspillableTerminator(MI)) { |
2168 | if (!MI->getOperand(i: 0).isReg() || !MI->getOperand(i: 0).isDef()) |
2169 | report(msg: "Unspillable Terminator does not define a reg" , MI); |
2170 | Register Def = MI->getOperand(i: 0).getReg(); |
2171 | if (Def.isVirtual() && |
2172 | !MF->getProperties().hasProperty( |
2173 | P: MachineFunctionProperties::Property::NoPHIs) && |
2174 | std::distance(first: MRI->use_nodbg_begin(RegNo: Def), last: MRI->use_nodbg_end()) > 1) |
2175 | report(msg: "Unspillable Terminator expected to have at most one use!" , MI); |
2176 | } |
2177 | |
2178 | // A fully-formed DBG_VALUE must have a location. Ignore partially formed |
2179 | // DBG_VALUEs: these are convenient to use in tests, but should never get |
2180 | // generated. |
2181 | if (MI->isDebugValue() && MI->getNumOperands() == 4) |
2182 | if (!MI->getDebugLoc()) |
2183 | report(msg: "Missing DebugLoc for debug instruction" , MI); |
2184 | |
2185 | // Meta instructions should never be the subject of debug value tracking, |
2186 | // they don't create a value in the output program at all. |
2187 | if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) |
2188 | report(msg: "Metadata instruction should not have a value tracking number" , MI); |
2189 | |
2190 | // Check the MachineMemOperands for basic consistency. |
2191 | for (MachineMemOperand *Op : MI->memoperands()) { |
2192 | if (Op->isLoad() && !MI->mayLoad()) |
2193 | report(msg: "Missing mayLoad flag" , MI); |
2194 | if (Op->isStore() && !MI->mayStore()) |
2195 | report(msg: "Missing mayStore flag" , MI); |
2196 | } |
2197 | |
2198 | // Debug values must not have a slot index. |
2199 | // Other instructions must have one, unless they are inside a bundle. |
2200 | if (LiveInts) { |
2201 | bool mapped = !LiveInts->isNotInMIMap(Instr: *MI); |
2202 | if (MI->isDebugOrPseudoInstr()) { |
2203 | if (mapped) |
2204 | report(msg: "Debug instruction has a slot index" , MI); |
2205 | } else if (MI->isInsideBundle()) { |
2206 | if (mapped) |
2207 | report(msg: "Instruction inside bundle has a slot index" , MI); |
2208 | } else { |
2209 | if (!mapped) |
2210 | report(msg: "Missing slot index" , MI); |
2211 | } |
2212 | } |
2213 | |
2214 | unsigned Opc = MCID.getOpcode(); |
2215 | if (isPreISelGenericOpcode(Opcode: Opc) || isPreISelGenericOptimizationHint(Opcode: Opc)) { |
2216 | verifyPreISelGenericInstruction(MI); |
2217 | return; |
2218 | } |
2219 | |
2220 | StringRef ErrorInfo; |
2221 | if (!TII->verifyInstruction(MI: *MI, ErrInfo&: ErrorInfo)) |
2222 | report(msg: ErrorInfo.data(), MI); |
2223 | |
2224 | // Verify properties of various specific instruction types |
2225 | switch (MI->getOpcode()) { |
2226 | case TargetOpcode::COPY: { |
2227 | const MachineOperand &DstOp = MI->getOperand(i: 0); |
2228 | const MachineOperand &SrcOp = MI->getOperand(i: 1); |
2229 | const Register SrcReg = SrcOp.getReg(); |
2230 | const Register DstReg = DstOp.getReg(); |
2231 | |
2232 | LLT DstTy = MRI->getType(Reg: DstReg); |
2233 | LLT SrcTy = MRI->getType(Reg: SrcReg); |
2234 | if (SrcTy.isValid() && DstTy.isValid()) { |
2235 | // If both types are valid, check that the types are the same. |
2236 | if (SrcTy != DstTy) { |
2237 | report(msg: "Copy Instruction is illegal with mismatching types" , MI); |
2238 | errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n" ; |
2239 | } |
2240 | |
2241 | break; |
2242 | } |
2243 | |
2244 | if (!SrcTy.isValid() && !DstTy.isValid()) |
2245 | break; |
2246 | |
2247 | // If we have only one valid type, this is likely a copy between a virtual |
2248 | // and physical register. |
2249 | TypeSize SrcSize = TRI->getRegSizeInBits(Reg: SrcReg, MRI: *MRI); |
2250 | TypeSize DstSize = TRI->getRegSizeInBits(Reg: DstReg, MRI: *MRI); |
2251 | if (SrcReg.isPhysical() && DstTy.isValid()) { |
2252 | const TargetRegisterClass *SrcRC = |
2253 | TRI->getMinimalPhysRegClassLLT(Reg: SrcReg, Ty: DstTy); |
2254 | if (SrcRC) |
2255 | SrcSize = TRI->getRegSizeInBits(RC: *SrcRC); |
2256 | } |
2257 | |
2258 | if (DstReg.isPhysical() && SrcTy.isValid()) { |
2259 | const TargetRegisterClass *DstRC = |
2260 | TRI->getMinimalPhysRegClassLLT(Reg: DstReg, Ty: SrcTy); |
2261 | if (DstRC) |
2262 | DstSize = TRI->getRegSizeInBits(RC: *DstRC); |
2263 | } |
2264 | |
2265 | // The next two checks allow COPY between physical and virtual registers, |
2266 | // when the virtual register has a scalable size and the physical register |
2267 | // has a fixed size. These checks allow COPY between *potentialy* mismatched |
2268 | // sizes. However, once RegisterBankSelection occurs, MachineVerifier should |
2269 | // be able to resolve a fixed size for the scalable vector, and at that |
2270 | // point this function will know for sure whether the sizes are mismatched |
2271 | // and correctly report a size mismatch. |
2272 | if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && |
2273 | !SrcSize.isScalable()) |
2274 | break; |
2275 | if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && |
2276 | !DstSize.isScalable()) |
2277 | break; |
2278 | |
2279 | if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { |
2280 | if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { |
2281 | report(msg: "Copy Instruction is illegal with mismatching sizes" , MI); |
2282 | errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize |
2283 | << "\n" ; |
2284 | } |
2285 | } |
2286 | break; |
2287 | } |
2288 | case TargetOpcode::STATEPOINT: { |
2289 | StatepointOpers SO(MI); |
2290 | if (!MI->getOperand(i: SO.getIDPos()).isImm() || |
2291 | !MI->getOperand(i: SO.getNBytesPos()).isImm() || |
2292 | !MI->getOperand(i: SO.getNCallArgsPos()).isImm()) { |
2293 | report(msg: "meta operands to STATEPOINT not constant!" , MI); |
2294 | break; |
2295 | } |
2296 | |
2297 | auto VerifyStackMapConstant = [&](unsigned Offset) { |
2298 | if (Offset >= MI->getNumOperands()) { |
2299 | report(msg: "stack map constant to STATEPOINT is out of range!" , MI); |
2300 | return; |
2301 | } |
2302 | if (!MI->getOperand(i: Offset - 1).isImm() || |
2303 | MI->getOperand(i: Offset - 1).getImm() != StackMaps::ConstantOp || |
2304 | !MI->getOperand(i: Offset).isImm()) |
2305 | report(msg: "stack map constant to STATEPOINT not well formed!" , MI); |
2306 | }; |
2307 | VerifyStackMapConstant(SO.getCCIdx()); |
2308 | VerifyStackMapConstant(SO.getFlagsIdx()); |
2309 | VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); |
2310 | VerifyStackMapConstant(SO.getNumGCPtrIdx()); |
2311 | VerifyStackMapConstant(SO.getNumAllocaIdx()); |
2312 | VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); |
2313 | |
2314 | // Verify that all explicit statepoint defs are tied to gc operands as |
2315 | // they are expected to be a relocation of gc operands. |
2316 | unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); |
2317 | unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; |
2318 | for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { |
2319 | unsigned UseOpIdx; |
2320 | if (!MI->isRegTiedToUseOperand(DefOpIdx: Idx, UseOpIdx: &UseOpIdx)) { |
2321 | report(msg: "STATEPOINT defs expected to be tied" , MI); |
2322 | break; |
2323 | } |
2324 | if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { |
2325 | report(msg: "STATEPOINT def tied to non-gc operand" , MI); |
2326 | break; |
2327 | } |
2328 | } |
2329 | |
2330 | // TODO: verify we have properly encoded deopt arguments |
2331 | } break; |
2332 | case TargetOpcode::INSERT_SUBREG: { |
2333 | unsigned InsertedSize; |
2334 | if (unsigned SubIdx = MI->getOperand(i: 2).getSubReg()) |
2335 | InsertedSize = TRI->getSubRegIdxSize(Idx: SubIdx); |
2336 | else |
2337 | InsertedSize = TRI->getRegSizeInBits(Reg: MI->getOperand(i: 2).getReg(), MRI: *MRI); |
2338 | unsigned SubRegSize = TRI->getSubRegIdxSize(Idx: MI->getOperand(i: 3).getImm()); |
2339 | if (SubRegSize < InsertedSize) { |
2340 | report(msg: "INSERT_SUBREG expected inserted value to have equal or lesser " |
2341 | "size than the subreg it was inserted into" , MI); |
2342 | break; |
2343 | } |
2344 | } break; |
2345 | case TargetOpcode::REG_SEQUENCE: { |
2346 | unsigned NumOps = MI->getNumOperands(); |
2347 | if (!(NumOps & 1)) { |
2348 | report(msg: "Invalid number of operands for REG_SEQUENCE" , MI); |
2349 | break; |
2350 | } |
2351 | |
2352 | for (unsigned I = 1; I != NumOps; I += 2) { |
2353 | const MachineOperand &RegOp = MI->getOperand(i: I); |
2354 | const MachineOperand &SubRegOp = MI->getOperand(i: I + 1); |
2355 | |
2356 | if (!RegOp.isReg()) |
2357 | report(msg: "Invalid register operand for REG_SEQUENCE" , MO: &RegOp, MONum: I); |
2358 | |
2359 | if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || |
2360 | SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { |
2361 | report(msg: "Invalid subregister index operand for REG_SEQUENCE" , |
2362 | MO: &SubRegOp, MONum: I + 1); |
2363 | } |
2364 | } |
2365 | |
2366 | Register DstReg = MI->getOperand(i: 0).getReg(); |
2367 | if (DstReg.isPhysical()) |
2368 | report(msg: "REG_SEQUENCE does not support physical register results" , MI); |
2369 | |
2370 | if (MI->getOperand(i: 0).getSubReg()) |
2371 | report(msg: "Invalid subreg result for REG_SEQUENCE" , MI); |
2372 | |
2373 | break; |
2374 | } |
2375 | } |
2376 | } |
2377 | |
2378 | void |
2379 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { |
2380 | const MachineInstr *MI = MO->getParent(); |
2381 | const MCInstrDesc &MCID = MI->getDesc(); |
2382 | unsigned NumDefs = MCID.getNumDefs(); |
2383 | if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) |
2384 | NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; |
2385 | |
2386 | // The first MCID.NumDefs operands must be explicit register defines |
2387 | if (MONum < NumDefs) { |
2388 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
2389 | if (!MO->isReg()) |
2390 | report(msg: "Explicit definition must be a register" , MO, MONum); |
2391 | else if (!MO->isDef() && !MCOI.isOptionalDef()) |
2392 | report(msg: "Explicit definition marked as use" , MO, MONum); |
2393 | else if (MO->isImplicit()) |
2394 | report(msg: "Explicit definition marked as implicit" , MO, MONum); |
2395 | } else if (MONum < MCID.getNumOperands()) { |
2396 | const MCOperandInfo &MCOI = MCID.operands()[MONum]; |
2397 | // Don't check if it's the last operand in a variadic instruction. See, |
2398 | // e.g., LDM_RET in the arm back end. Check non-variadic operands only. |
2399 | bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; |
2400 | if (!IsOptional) { |
2401 | if (MO->isReg()) { |
2402 | if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) |
2403 | report(msg: "Explicit operand marked as def" , MO, MONum); |
2404 | if (MO->isImplicit()) |
2405 | report(msg: "Explicit operand marked as implicit" , MO, MONum); |
2406 | } |
2407 | |
2408 | // Check that an instruction has register operands only as expected. |
2409 | if (MCOI.OperandType == MCOI::OPERAND_REGISTER && |
2410 | !MO->isReg() && !MO->isFI()) |
2411 | report(msg: "Expected a register operand." , MO, MONum); |
2412 | if (MO->isReg()) { |
2413 | if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || |
2414 | (MCOI.OperandType == MCOI::OPERAND_PCREL && |
2415 | !TII->isPCRelRegisterOperandLegal(MO: *MO))) |
2416 | report(msg: "Expected a non-register operand." , MO, MONum); |
2417 | } |
2418 | } |
2419 | |
2420 | int TiedTo = MCID.getOperandConstraint(OpNum: MONum, Constraint: MCOI::TIED_TO); |
2421 | if (TiedTo != -1) { |
2422 | if (!MO->isReg()) |
2423 | report(msg: "Tied use must be a register" , MO, MONum); |
2424 | else if (!MO->isTied()) |
2425 | report(msg: "Operand should be tied" , MO, MONum); |
2426 | else if (unsigned(TiedTo) != MI->findTiedOperandIdx(OpIdx: MONum)) |
2427 | report(msg: "Tied def doesn't match MCInstrDesc" , MO, MONum); |
2428 | else if (MO->getReg().isPhysical()) { |
2429 | const MachineOperand &MOTied = MI->getOperand(i: TiedTo); |
2430 | if (!MOTied.isReg()) |
2431 | report(msg: "Tied counterpart must be a register" , MO: &MOTied, MONum: TiedTo); |
2432 | else if (MOTied.getReg().isPhysical() && |
2433 | MO->getReg() != MOTied.getReg()) |
2434 | report(msg: "Tied physical registers must match." , MO: &MOTied, MONum: TiedTo); |
2435 | } |
2436 | } else if (MO->isReg() && MO->isTied()) |
2437 | report(msg: "Explicit operand should not be tied" , MO, MONum); |
2438 | } else if (!MI->isVariadic()) { |
2439 | // ARM adds %reg0 operands to indicate predicates. We'll allow that. |
2440 | if (!MO->isValidExcessOperand()) |
2441 | report(msg: "Extra explicit operand on non-variadic instruction" , MO, MONum); |
2442 | } |
2443 | |
2444 | switch (MO->getType()) { |
2445 | case MachineOperand::MO_Register: { |
2446 | // Verify debug flag on debug instructions. Check this first because reg0 |
2447 | // indicates an undefined debug value. |
2448 | if (MI->isDebugInstr() && MO->isUse()) { |
2449 | if (!MO->isDebug()) |
2450 | report(msg: "Register operand must be marked debug" , MO, MONum); |
2451 | } else if (MO->isDebug()) { |
2452 | report(msg: "Register operand must not be marked debug" , MO, MONum); |
2453 | } |
2454 | |
2455 | const Register Reg = MO->getReg(); |
2456 | if (!Reg) |
2457 | return; |
2458 | if (MRI->tracksLiveness() && !MI->isDebugInstr()) |
2459 | checkLiveness(MO, MONum); |
2460 | |
2461 | if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && |
2462 | MO->getReg().isVirtual()) // TODO: Apply to physregs too |
2463 | report(msg: "Undef virtual register def operands require a subregister" , MO, MONum); |
2464 | |
2465 | // Verify the consistency of tied operands. |
2466 | if (MO->isTied()) { |
2467 | unsigned OtherIdx = MI->findTiedOperandIdx(OpIdx: MONum); |
2468 | const MachineOperand &OtherMO = MI->getOperand(i: OtherIdx); |
2469 | if (!OtherMO.isReg()) |
2470 | report(msg: "Must be tied to a register" , MO, MONum); |
2471 | if (!OtherMO.isTied()) |
2472 | report(msg: "Missing tie flags on tied operand" , MO, MONum); |
2473 | if (MI->findTiedOperandIdx(OpIdx: OtherIdx) != MONum) |
2474 | report(msg: "Inconsistent tie links" , MO, MONum); |
2475 | if (MONum < MCID.getNumDefs()) { |
2476 | if (OtherIdx < MCID.getNumOperands()) { |
2477 | if (-1 == MCID.getOperandConstraint(OpNum: OtherIdx, Constraint: MCOI::TIED_TO)) |
2478 | report(msg: "Explicit def tied to explicit use without tie constraint" , |
2479 | MO, MONum); |
2480 | } else { |
2481 | if (!OtherMO.isImplicit()) |
2482 | report(msg: "Explicit def should be tied to implicit use" , MO, MONum); |
2483 | } |
2484 | } |
2485 | } |
2486 | |
2487 | // Verify two-address constraints after the twoaddressinstruction pass. |
2488 | // Both twoaddressinstruction pass and phi-node-elimination pass call |
2489 | // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification |
2490 | // after twoaddressinstruction pass not after phi-node-elimination pass. So |
2491 | // we shouldn't use the IsSSA as the condition, we should based on |
2492 | // TiedOpsRewritten property to verify two-address constraints, this |
2493 | // property will be set in twoaddressinstruction pass. |
2494 | unsigned DefIdx; |
2495 | if (MF->getProperties().hasProperty( |
2496 | P: MachineFunctionProperties::Property::TiedOpsRewritten) && |
2497 | MO->isUse() && MI->isRegTiedToDefOperand(UseOpIdx: MONum, DefOpIdx: &DefIdx) && |
2498 | Reg != MI->getOperand(i: DefIdx).getReg()) |
2499 | report(msg: "Two-address instruction operands must be identical" , MO, MONum); |
2500 | |
2501 | // Check register classes. |
2502 | unsigned SubIdx = MO->getSubReg(); |
2503 | |
2504 | if (Reg.isPhysical()) { |
2505 | if (SubIdx) { |
2506 | report(msg: "Illegal subregister index for physical register" , MO, MONum); |
2507 | return; |
2508 | } |
2509 | if (MONum < MCID.getNumOperands()) { |
2510 | if (const TargetRegisterClass *DRC = |
2511 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2512 | if (!DRC->contains(Reg)) { |
2513 | report(msg: "Illegal physical register for instruction" , MO, MONum); |
2514 | errs() << printReg(Reg, TRI) << " is not a " |
2515 | << TRI->getRegClassName(Class: DRC) << " register.\n" ; |
2516 | } |
2517 | } |
2518 | } |
2519 | if (MO->isRenamable()) { |
2520 | if (MRI->isReserved(PhysReg: Reg)) { |
2521 | report(msg: "isRenamable set on reserved register" , MO, MONum); |
2522 | return; |
2523 | } |
2524 | } |
2525 | } else { |
2526 | // Virtual register. |
2527 | const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); |
2528 | if (!RC) { |
2529 | // This is a generic virtual register. |
2530 | |
2531 | // Do not allow undef uses for generic virtual registers. This ensures |
2532 | // getVRegDef can never fail and return null on a generic register. |
2533 | // |
2534 | // FIXME: This restriction should probably be broadened to all SSA |
2535 | // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still |
2536 | // run on the SSA function just before phi elimination. |
2537 | if (MO->isUndef()) |
2538 | report(msg: "Generic virtual register use cannot be undef" , MO, MONum); |
2539 | |
2540 | // Debug value instruction is permitted to use undefined vregs. |
2541 | // This is a performance measure to skip the overhead of immediately |
2542 | // pruning unused debug operands. The final undef substitution occurs |
2543 | // when debug values are allocated in LDVImpl::handleDebugValue, so |
2544 | // these verifications always apply after this pass. |
2545 | if (isFunctionTracksDebugUserValues || !MO->isUse() || |
2546 | !MI->isDebugValue() || !MRI->def_empty(RegNo: Reg)) { |
2547 | // If we're post-Select, we can't have gvregs anymore. |
2548 | if (isFunctionSelected) { |
2549 | report(msg: "Generic virtual register invalid in a Selected function" , |
2550 | MO, MONum); |
2551 | return; |
2552 | } |
2553 | |
2554 | // The gvreg must have a type and it must not have a SubIdx. |
2555 | LLT Ty = MRI->getType(Reg); |
2556 | if (!Ty.isValid()) { |
2557 | report(msg: "Generic virtual register must have a valid type" , MO, |
2558 | MONum); |
2559 | return; |
2560 | } |
2561 | |
2562 | const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); |
2563 | const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); |
2564 | |
2565 | // If we're post-RegBankSelect, the gvreg must have a bank. |
2566 | if (!RegBank && isFunctionRegBankSelected) { |
2567 | report(msg: "Generic virtual register must have a bank in a " |
2568 | "RegBankSelected function" , |
2569 | MO, MONum); |
2570 | return; |
2571 | } |
2572 | |
2573 | // Make sure the register fits into its register bank if any. |
2574 | if (RegBank && Ty.isValid() && !Ty.isScalableVector() && |
2575 | RBI->getMaximumSize(RegBankID: RegBank->getID()) < Ty.getSizeInBits()) { |
2576 | report(msg: "Register bank is too small for virtual register" , MO, |
2577 | MONum); |
2578 | errs() << "Register bank " << RegBank->getName() << " too small(" |
2579 | << RBI->getMaximumSize(RegBankID: RegBank->getID()) << ") to fit " |
2580 | << Ty.getSizeInBits() << "-bits\n" ; |
2581 | return; |
2582 | } |
2583 | } |
2584 | |
2585 | if (SubIdx) { |
2586 | report(msg: "Generic virtual register does not allow subregister index" , MO, |
2587 | MONum); |
2588 | return; |
2589 | } |
2590 | |
2591 | // If this is a target specific instruction and this operand |
2592 | // has register class constraint, the virtual register must |
2593 | // comply to it. |
2594 | if (!isPreISelGenericOpcode(Opcode: MCID.getOpcode()) && |
2595 | MONum < MCID.getNumOperands() && |
2596 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2597 | report(msg: "Virtual register does not match instruction constraint" , MO, |
2598 | MONum); |
2599 | errs() << "Expect register class " |
2600 | << TRI->getRegClassName( |
2601 | Class: TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) |
2602 | << " but got nothing\n" ; |
2603 | return; |
2604 | } |
2605 | |
2606 | break; |
2607 | } |
2608 | if (SubIdx) { |
2609 | const TargetRegisterClass *SRC = |
2610 | TRI->getSubClassWithSubReg(RC, Idx: SubIdx); |
2611 | if (!SRC) { |
2612 | report(msg: "Invalid subregister index for virtual register" , MO, MONum); |
2613 | errs() << "Register class " << TRI->getRegClassName(Class: RC) |
2614 | << " does not support subreg index " << SubIdx << "\n" ; |
2615 | return; |
2616 | } |
2617 | if (RC != SRC) { |
2618 | report(msg: "Invalid register class for subregister index" , MO, MONum); |
2619 | errs() << "Register class " << TRI->getRegClassName(Class: RC) |
2620 | << " does not fully support subreg index " << SubIdx << "\n" ; |
2621 | return; |
2622 | } |
2623 | } |
2624 | if (MONum < MCID.getNumOperands()) { |
2625 | if (const TargetRegisterClass *DRC = |
2626 | TII->getRegClass(MCID, OpNum: MONum, TRI, MF: *MF)) { |
2627 | if (SubIdx) { |
2628 | const TargetRegisterClass *SuperRC = |
2629 | TRI->getLargestLegalSuperClass(RC, *MF); |
2630 | if (!SuperRC) { |
2631 | report(msg: "No largest legal super class exists." , MO, MONum); |
2632 | return; |
2633 | } |
2634 | DRC = TRI->getMatchingSuperRegClass(A: SuperRC, B: DRC, Idx: SubIdx); |
2635 | if (!DRC) { |
2636 | report(msg: "No matching super-reg register class." , MO, MONum); |
2637 | return; |
2638 | } |
2639 | } |
2640 | if (!RC->hasSuperClassEq(RC: DRC)) { |
2641 | report(msg: "Illegal virtual register for instruction" , MO, MONum); |
2642 | errs() << "Expected a " << TRI->getRegClassName(Class: DRC) |
2643 | << " register, but got a " << TRI->getRegClassName(Class: RC) |
2644 | << " register\n" ; |
2645 | } |
2646 | } |
2647 | } |
2648 | } |
2649 | break; |
2650 | } |
2651 | |
2652 | case MachineOperand::MO_RegisterMask: |
2653 | regMasks.push_back(Elt: MO->getRegMask()); |
2654 | break; |
2655 | |
2656 | case MachineOperand::MO_MachineBasicBlock: |
2657 | if (MI->isPHI() && !MO->getMBB()->isSuccessor(MBB: MI->getParent())) |
2658 | report(msg: "PHI operand is not in the CFG" , MO, MONum); |
2659 | break; |
2660 | |
2661 | case MachineOperand::MO_FrameIndex: |
2662 | if (LiveStks && LiveStks->hasInterval(Slot: MO->getIndex()) && |
2663 | LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
2664 | int FI = MO->getIndex(); |
2665 | LiveInterval &LI = LiveStks->getInterval(Slot: FI); |
2666 | SlotIndex Idx = LiveInts->getInstructionIndex(Instr: *MI); |
2667 | |
2668 | bool stores = MI->mayStore(); |
2669 | bool loads = MI->mayLoad(); |
2670 | // For a memory-to-memory move, we need to check if the frame |
2671 | // index is used for storing or loading, by inspecting the |
2672 | // memory operands. |
2673 | if (stores && loads) { |
2674 | for (auto *MMO : MI->memoperands()) { |
2675 | const PseudoSourceValue *PSV = MMO->getPseudoValue(); |
2676 | if (PSV == nullptr) continue; |
2677 | const FixedStackPseudoSourceValue *Value = |
2678 | dyn_cast<FixedStackPseudoSourceValue>(Val: PSV); |
2679 | if (Value == nullptr) continue; |
2680 | if (Value->getFrameIndex() != FI) continue; |
2681 | |
2682 | if (MMO->isStore()) |
2683 | loads = false; |
2684 | else |
2685 | stores = false; |
2686 | break; |
2687 | } |
2688 | if (loads == stores) |
2689 | report(msg: "Missing fixed stack memoperand." , MI); |
2690 | } |
2691 | if (loads && !LI.liveAt(index: Idx.getRegSlot(EC: true))) { |
2692 | report(msg: "Instruction loads from dead spill slot" , MO, MONum); |
2693 | errs() << "Live stack: " << LI << '\n'; |
2694 | } |
2695 | if (stores && !LI.liveAt(index: Idx.getRegSlot())) { |
2696 | report(msg: "Instruction stores to dead spill slot" , MO, MONum); |
2697 | errs() << "Live stack: " << LI << '\n'; |
2698 | } |
2699 | } |
2700 | break; |
2701 | |
2702 | case MachineOperand::MO_CFIIndex: |
2703 | if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) |
2704 | report(msg: "CFI instruction has invalid index" , MO, MONum); |
2705 | break; |
2706 | |
2707 | default: |
2708 | break; |
2709 | } |
2710 | } |
2711 | |
2712 | void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, |
2713 | unsigned MONum, SlotIndex UseIdx, |
2714 | const LiveRange &LR, |
2715 | Register VRegOrUnit, |
2716 | LaneBitmask LaneMask) { |
2717 | const MachineInstr *MI = MO->getParent(); |
2718 | LiveQueryResult LRQ = LR.Query(Idx: UseIdx); |
2719 | bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); |
2720 | // Check if we have a segment at the use, note however that we only need one |
2721 | // live subregister range, the others may be dead. |
2722 | if (!HasValue && LaneMask.none()) { |
2723 | report(msg: "No live segment at use" , MO, MONum); |
2724 | report_context_liverange(LR); |
2725 | report_context_vreg_regunit(VRegOrUnit); |
2726 | report_context(Pos: UseIdx); |
2727 | } |
2728 | if (MO->isKill() && !LRQ.isKill()) { |
2729 | report(msg: "Live range continues after kill flag" , MO, MONum); |
2730 | report_context_liverange(LR); |
2731 | report_context_vreg_regunit(VRegOrUnit); |
2732 | if (LaneMask.any()) |
2733 | report_context_lanemask(LaneMask); |
2734 | report_context(Pos: UseIdx); |
2735 | } |
2736 | } |
2737 | |
2738 | void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, |
2739 | unsigned MONum, SlotIndex DefIdx, |
2740 | const LiveRange &LR, |
2741 | Register VRegOrUnit, |
2742 | bool SubRangeCheck, |
2743 | LaneBitmask LaneMask) { |
2744 | if (const VNInfo *VNI = LR.getVNInfoAt(Idx: DefIdx)) { |
2745 | // The LR can correspond to the whole reg and its def slot is not obliged |
2746 | // to be the same as the MO' def slot. E.g. when we check here "normal" |
2747 | // subreg MO but there is other EC subreg MO in the same instruction so the |
2748 | // whole reg has EC def slot and differs from the currently checked MO' def |
2749 | // slot. For example: |
2750 | // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r |
2751 | // Check that there is an early-clobber def of the same superregister |
2752 | // somewhere is performed in visitMachineFunctionAfter() |
2753 | if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || |
2754 | !SlotIndex::isSameInstr(A: VNI->def, B: DefIdx) || |
2755 | (VNI->def != DefIdx && |
2756 | (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { |
2757 | report(msg: "Inconsistent valno->def" , MO, MONum); |
2758 | report_context_liverange(LR); |
2759 | report_context_vreg_regunit(VRegOrUnit); |
2760 | if (LaneMask.any()) |
2761 | report_context_lanemask(LaneMask); |
2762 | report_context(VNI: *VNI); |
2763 | report_context(Pos: DefIdx); |
2764 | } |
2765 | } else { |
2766 | report(msg: "No live segment at def" , MO, MONum); |
2767 | report_context_liverange(LR); |
2768 | report_context_vreg_regunit(VRegOrUnit); |
2769 | if (LaneMask.any()) |
2770 | report_context_lanemask(LaneMask); |
2771 | report_context(Pos: DefIdx); |
2772 | } |
2773 | // Check that, if the dead def flag is present, LiveInts agree. |
2774 | if (MO->isDead()) { |
2775 | LiveQueryResult LRQ = LR.Query(Idx: DefIdx); |
2776 | if (!LRQ.isDeadDef()) { |
2777 | assert(VRegOrUnit.isVirtual() && "Expecting a virtual register." ); |
2778 | // A dead subreg def only tells us that the specific subreg is dead. There |
2779 | // could be other non-dead defs of other subregs, or we could have other |
2780 | // parts of the register being live through the instruction. So unless we |
2781 | // are checking liveness for a subrange it is ok for the live range to |
2782 | // continue, given that we have a dead def of a subregister. |
2783 | if (SubRangeCheck || MO->getSubReg() == 0) { |
2784 | report(msg: "Live range continues after dead def flag" , MO, MONum); |
2785 | report_context_liverange(LR); |
2786 | report_context_vreg_regunit(VRegOrUnit); |
2787 | if (LaneMask.any()) |
2788 | report_context_lanemask(LaneMask); |
2789 | } |
2790 | } |
2791 | } |
2792 | } |
2793 | |
2794 | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { |
2795 | const MachineInstr *MI = MO->getParent(); |
2796 | const Register Reg = MO->getReg(); |
2797 | const unsigned SubRegIdx = MO->getSubReg(); |
2798 | |
2799 | const LiveInterval *LI = nullptr; |
2800 | if (LiveInts && Reg.isVirtual()) { |
2801 | if (LiveInts->hasInterval(Reg)) { |
2802 | LI = &LiveInts->getInterval(Reg); |
2803 | if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && |
2804 | !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(VReg: Reg)) |
2805 | report(msg: "Live interval for subreg operand has no subranges" , MO, MONum); |
2806 | } else { |
2807 | report(msg: "Virtual register has no live interval" , MO, MONum); |
2808 | } |
2809 | } |
2810 | |
2811 | // Both use and def operands can read a register. |
2812 | if (MO->readsReg()) { |
2813 | if (MO->isKill()) |
2814 | addRegWithSubRegs(RV&: regsKilled, Reg); |
2815 | |
2816 | // Check that LiveVars knows this kill (unless we are inside a bundle, in |
2817 | // which case we have already checked that LiveVars knows any kills on the |
2818 | // bundle header instead). |
2819 | if (LiveVars && Reg.isVirtual() && MO->isKill() && |
2820 | !MI->isBundledWithPred()) { |
2821 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
2822 | if (!is_contained(Range&: VI.Kills, Element: MI)) |
2823 | report(msg: "Kill missing from LiveVariables" , MO, MONum); |
2824 | } |
2825 | |
2826 | // Check LiveInts liveness and kill. |
2827 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
2828 | SlotIndex UseIdx; |
2829 | if (MI->isPHI()) { |
2830 | // PHI use occurs on the edge, so check for live out here instead. |
2831 | UseIdx = LiveInts->getMBBEndIdx( |
2832 | mbb: MI->getOperand(i: MONum + 1).getMBB()).getPrevSlot(); |
2833 | } else { |
2834 | UseIdx = LiveInts->getInstructionIndex(Instr: *MI); |
2835 | } |
2836 | // Check the cached regunit intervals. |
2837 | if (Reg.isPhysical() && !isReserved(Reg)) { |
2838 | for (MCRegUnit Unit : TRI->regunits(Reg: Reg.asMCReg())) { |
2839 | if (MRI->isReservedRegUnit(Unit)) |
2840 | continue; |
2841 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) |
2842 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LR, VRegOrUnit: Unit); |
2843 | } |
2844 | } |
2845 | |
2846 | if (Reg.isVirtual()) { |
2847 | // This is a virtual register interval. |
2848 | checkLivenessAtUse(MO, MONum, UseIdx, LR: *LI, VRegOrUnit: Reg); |
2849 | |
2850 | if (LI->hasSubRanges() && !MO->isDef()) { |
2851 | LaneBitmask MOMask = SubRegIdx != 0 |
2852 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
2853 | : MRI->getMaxLaneMaskForVReg(Reg); |
2854 | LaneBitmask LiveInMask; |
2855 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
2856 | if ((MOMask & SR.LaneMask).none()) |
2857 | continue; |
2858 | checkLivenessAtUse(MO, MONum, UseIdx, LR: SR, VRegOrUnit: Reg, LaneMask: SR.LaneMask); |
2859 | LiveQueryResult LRQ = SR.Query(Idx: UseIdx); |
2860 | if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) |
2861 | LiveInMask |= SR.LaneMask; |
2862 | } |
2863 | // At least parts of the register has to be live at the use. |
2864 | if ((LiveInMask & MOMask).none()) { |
2865 | report(msg: "No live subrange at use" , MO, MONum); |
2866 | report_context(LI: *LI); |
2867 | report_context(Pos: UseIdx); |
2868 | } |
2869 | // For PHIs all lanes should be live |
2870 | if (MI->isPHI() && LiveInMask != MOMask) { |
2871 | report(msg: "Not all lanes of PHI source live at use" , MO, MONum); |
2872 | report_context(LI: *LI); |
2873 | report_context(Pos: UseIdx); |
2874 | } |
2875 | } |
2876 | } |
2877 | } |
2878 | |
2879 | // Use of a dead register. |
2880 | if (!regsLive.count(V: Reg)) { |
2881 | if (Reg.isPhysical()) { |
2882 | // Reserved registers may be used even when 'dead'. |
2883 | bool Bad = !isReserved(Reg); |
2884 | // We are fine if just any subregister has a defined value. |
2885 | if (Bad) { |
2886 | |
2887 | for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { |
2888 | if (regsLive.count(V: SubReg)) { |
2889 | Bad = false; |
2890 | break; |
2891 | } |
2892 | } |
2893 | } |
2894 | // If there is an additional implicit-use of a super register we stop |
2895 | // here. By definition we are fine if the super register is not |
2896 | // (completely) dead, if the complete super register is dead we will |
2897 | // get a report for its operand. |
2898 | if (Bad) { |
2899 | for (const MachineOperand &MOP : MI->uses()) { |
2900 | if (!MOP.isReg() || !MOP.isImplicit()) |
2901 | continue; |
2902 | |
2903 | if (!MOP.getReg().isPhysical()) |
2904 | continue; |
2905 | |
2906 | if (llvm::is_contained(Range: TRI->subregs(Reg: MOP.getReg()), Element: Reg)) |
2907 | Bad = false; |
2908 | } |
2909 | } |
2910 | if (Bad) |
2911 | report(msg: "Using an undefined physical register" , MO, MONum); |
2912 | } else if (MRI->def_empty(RegNo: Reg)) { |
2913 | report(msg: "Reading virtual register without a def" , MO, MONum); |
2914 | } else { |
2915 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
2916 | // We don't know which virtual registers are live in, so only complain |
2917 | // if vreg was killed in this MBB. Otherwise keep track of vregs that |
2918 | // must be live in. PHI instructions are handled separately. |
2919 | if (MInfo.regsKilled.count(V: Reg)) |
2920 | report(msg: "Using a killed virtual register" , MO, MONum); |
2921 | else if (!MI->isPHI()) |
2922 | MInfo.vregsLiveIn.insert(KV: std::make_pair(x: Reg, y&: MI)); |
2923 | } |
2924 | } |
2925 | } |
2926 | |
2927 | if (MO->isDef()) { |
2928 | // Register defined. |
2929 | // TODO: verify that earlyclobber ops are not used. |
2930 | if (MO->isDead()) |
2931 | addRegWithSubRegs(RV&: regsDead, Reg); |
2932 | else |
2933 | addRegWithSubRegs(RV&: regsDefined, Reg); |
2934 | |
2935 | // Verify SSA form. |
2936 | if (MRI->isSSA() && Reg.isVirtual() && |
2937 | std::next(x: MRI->def_begin(RegNo: Reg)) != MRI->def_end()) |
2938 | report(msg: "Multiple virtual register defs in SSA form" , MO, MONum); |
2939 | |
2940 | // Check LiveInts for a live segment, but only for virtual registers. |
2941 | if (LiveInts && !LiveInts->isNotInMIMap(Instr: *MI)) { |
2942 | SlotIndex DefIdx = LiveInts->getInstructionIndex(Instr: *MI); |
2943 | DefIdx = DefIdx.getRegSlot(EC: MO->isEarlyClobber()); |
2944 | |
2945 | if (Reg.isVirtual()) { |
2946 | checkLivenessAtDef(MO, MONum, DefIdx, LR: *LI, VRegOrUnit: Reg); |
2947 | |
2948 | if (LI->hasSubRanges()) { |
2949 | LaneBitmask MOMask = SubRegIdx != 0 |
2950 | ? TRI->getSubRegIndexLaneMask(SubIdx: SubRegIdx) |
2951 | : MRI->getMaxLaneMaskForVReg(Reg); |
2952 | for (const LiveInterval::SubRange &SR : LI->subranges()) { |
2953 | if ((SR.LaneMask & MOMask).none()) |
2954 | continue; |
2955 | checkLivenessAtDef(MO, MONum, DefIdx, LR: SR, VRegOrUnit: Reg, SubRangeCheck: true, LaneMask: SR.LaneMask); |
2956 | } |
2957 | } |
2958 | } |
2959 | } |
2960 | } |
2961 | } |
2962 | |
2963 | // This function gets called after visiting all instructions in a bundle. The |
2964 | // argument points to the bundle header. |
2965 | // Normal stand-alone instructions are also considered 'bundles', and this |
2966 | // function is called for all of them. |
2967 | void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { |
2968 | BBInfo &MInfo = MBBInfoMap[MI->getParent()]; |
2969 | set_union(S1&: MInfo.regsKilled, S2: regsKilled); |
2970 | set_subtract(S1&: regsLive, S2: regsKilled); regsKilled.clear(); |
2971 | // Kill any masked registers. |
2972 | while (!regMasks.empty()) { |
2973 | const uint32_t *Mask = regMasks.pop_back_val(); |
2974 | for (Register Reg : regsLive) |
2975 | if (Reg.isPhysical() && |
2976 | MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg: Reg.asMCReg())) |
2977 | regsDead.push_back(Elt: Reg); |
2978 | } |
2979 | set_subtract(S1&: regsLive, S2: regsDead); regsDead.clear(); |
2980 | set_union(S1&: regsLive, S2: regsDefined); regsDefined.clear(); |
2981 | } |
2982 | |
2983 | void |
2984 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { |
2985 | MBBInfoMap[MBB].regsLiveOut = regsLive; |
2986 | regsLive.clear(); |
2987 | |
2988 | if (Indexes) { |
2989 | SlotIndex stop = Indexes->getMBBEndIdx(mbb: MBB); |
2990 | if (!(stop > lastIndex)) { |
2991 | report(msg: "Block ends before last instruction index" , MBB); |
2992 | errs() << "Block ends at " << stop |
2993 | << " last instruction was at " << lastIndex << '\n'; |
2994 | } |
2995 | lastIndex = stop; |
2996 | } |
2997 | } |
2998 | |
2999 | namespace { |
3000 | // This implements a set of registers that serves as a filter: can filter other |
3001 | // sets by passing through elements not in the filter and blocking those that |
3002 | // are. Any filter implicitly includes the full set of physical registers upon |
3003 | // creation, thus filtering them all out. The filter itself as a set only grows, |
3004 | // and needs to be as efficient as possible. |
3005 | struct VRegFilter { |
3006 | // Add elements to the filter itself. \pre Input set \p FromRegSet must have |
3007 | // no duplicates. Both virtual and physical registers are fine. |
3008 | template <typename RegSetT> void add(const RegSetT &FromRegSet) { |
3009 | SmallVector<Register, 0> VRegsBuffer; |
3010 | filterAndAdd(FromRegSet, VRegsBuffer); |
3011 | } |
3012 | // Filter \p FromRegSet through the filter and append passed elements into \p |
3013 | // ToVRegs. All elements appended are then added to the filter itself. |
3014 | // \returns true if anything changed. |
3015 | template <typename RegSetT> |
3016 | bool filterAndAdd(const RegSetT &FromRegSet, |
3017 | SmallVectorImpl<Register> &ToVRegs) { |
3018 | unsigned SparseUniverse = Sparse.size(); |
3019 | unsigned NewSparseUniverse = SparseUniverse; |
3020 | unsigned NewDenseSize = Dense.size(); |
3021 | size_t Begin = ToVRegs.size(); |
3022 | for (Register Reg : FromRegSet) { |
3023 | if (!Reg.isVirtual()) |
3024 | continue; |
3025 | unsigned Index = Register::virtReg2Index(Reg); |
3026 | if (Index < SparseUniverseMax) { |
3027 | if (Index < SparseUniverse && Sparse.test(Idx: Index)) |
3028 | continue; |
3029 | NewSparseUniverse = std::max(a: NewSparseUniverse, b: Index + 1); |
3030 | } else { |
3031 | if (Dense.count(V: Reg)) |
3032 | continue; |
3033 | ++NewDenseSize; |
3034 | } |
3035 | ToVRegs.push_back(Elt: Reg); |
3036 | } |
3037 | size_t End = ToVRegs.size(); |
3038 | if (Begin == End) |
3039 | return false; |
3040 | // Reserving space in sets once performs better than doing so continuously |
3041 | // and pays easily for double look-ups (even in Dense with SparseUniverseMax |
3042 | // tuned all the way down) and double iteration (the second one is over a |
3043 | // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). |
3044 | Sparse.resize(N: NewSparseUniverse); |
3045 | Dense.reserve(Size: NewDenseSize); |
3046 | for (unsigned I = Begin; I < End; ++I) { |
3047 | Register Reg = ToVRegs[I]; |
3048 | unsigned Index = Register::virtReg2Index(Reg); |
3049 | if (Index < SparseUniverseMax) |
3050 | Sparse.set(Index); |
3051 | else |
3052 | Dense.insert(V: Reg); |
3053 | } |
3054 | return true; |
3055 | } |
3056 | |
3057 | private: |
3058 | static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; |
3059 | // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound |
3060 | // are tracked by Dense. The only purpose of the threashold and the Dense set |
3061 | // is to have a reasonably growing memory usage in pathological cases (large |
3062 | // number of very sparse VRegFilter instances live at the same time). In |
3063 | // practice even in the worst-by-execution time cases having all elements |
3064 | // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more |
3065 | // space efficient than if tracked by Dense. The threashold is set to keep the |
3066 | // worst-case memory usage within 2x of figures determined empirically for |
3067 | // "all Dense" scenario in such worst-by-execution-time cases. |
3068 | BitVector Sparse; |
3069 | DenseSet<unsigned> Dense; |
3070 | }; |
3071 | |
3072 | // Implements both a transfer function and a (binary, in-place) join operator |
3073 | // for a dataflow over register sets with set union join and filtering transfer |
3074 | // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. |
3075 | // Maintains out_b as its state, allowing for O(n) iteration over it at any |
3076 | // time, where n is the size of the set (as opposed to O(U) where U is the |
3077 | // universe). filter_b implicitly contains all physical registers at all times. |
3078 | class FilteringVRegSet { |
3079 | VRegFilter Filter; |
3080 | SmallVector<Register, 0> VRegs; |
3081 | |
3082 | public: |
3083 | // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. |
3084 | // Both virtual and physical registers are fine. |
3085 | template <typename RegSetT> void addToFilter(const RegSetT &RS) { |
3086 | Filter.add(RS); |
3087 | } |
3088 | // Passes \p RS through the filter_b (transfer function) and adds what's left |
3089 | // to itself (out_b). |
3090 | template <typename RegSetT> bool add(const RegSetT &RS) { |
3091 | // Double-duty the Filter: to maintain VRegs a set (and the join operation |
3092 | // a set union) just add everything being added here to the Filter as well. |
3093 | return Filter.filterAndAdd(RS, VRegs); |
3094 | } |
3095 | using const_iterator = decltype(VRegs)::const_iterator; |
3096 | const_iterator begin() const { return VRegs.begin(); } |
3097 | const_iterator end() const { return VRegs.end(); } |
3098 | size_t size() const { return VRegs.size(); } |
3099 | }; |
3100 | } // namespace |
3101 | |
3102 | // Calculate the largest possible vregsPassed sets. These are the registers that |
3103 | // can pass through an MBB live, but may not be live every time. It is assumed |
3104 | // that all vregsPassed sets are empty before the call. |
3105 | void MachineVerifier::calcRegsPassed() { |
3106 | if (MF->empty()) |
3107 | // ReversePostOrderTraversal doesn't handle empty functions. |
3108 | return; |
3109 | |
3110 | for (const MachineBasicBlock *MB : |
3111 | ReversePostOrderTraversal<const MachineFunction *>(MF)) { |
3112 | FilteringVRegSet VRegs; |
3113 | BBInfo &Info = MBBInfoMap[MB]; |
3114 | assert(Info.reachable); |
3115 | |
3116 | VRegs.addToFilter(RS: Info.regsKilled); |
3117 | VRegs.addToFilter(RS: Info.regsLiveOut); |
3118 | for (const MachineBasicBlock *Pred : MB->predecessors()) { |
3119 | const BBInfo &PredInfo = MBBInfoMap[Pred]; |
3120 | if (!PredInfo.reachable) |
3121 | continue; |
3122 | |
3123 | VRegs.add(RS: PredInfo.regsLiveOut); |
3124 | VRegs.add(RS: PredInfo.vregsPassed); |
3125 | } |
3126 | Info.vregsPassed.reserve(Size: VRegs.size()); |
3127 | Info.vregsPassed.insert(I: VRegs.begin(), E: VRegs.end()); |
3128 | } |
3129 | } |
3130 | |
3131 | // Calculate the set of virtual registers that must be passed through each basic |
3132 | // block in order to satisfy the requirements of successor blocks. This is very |
3133 | // similar to calcRegsPassed, only backwards. |
3134 | void MachineVerifier::calcRegsRequired() { |
3135 | // First push live-in regs to predecessors' vregsRequired. |
3136 | SmallPtrSet<const MachineBasicBlock*, 8> todo; |
3137 | for (const auto &MBB : *MF) { |
3138 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3139 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
3140 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3141 | if (PInfo.addRequired(RM: MInfo.vregsLiveIn)) |
3142 | todo.insert(Ptr: Pred); |
3143 | } |
3144 | |
3145 | // Handle the PHI node. |
3146 | for (const MachineInstr &MI : MBB.phis()) { |
3147 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { |
3148 | // Skip those Operands which are undef regs or not regs. |
3149 | if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) |
3150 | continue; |
3151 | |
3152 | // Get register and predecessor for one PHI edge. |
3153 | Register Reg = MI.getOperand(i).getReg(); |
3154 | const MachineBasicBlock *Pred = MI.getOperand(i: i + 1).getMBB(); |
3155 | |
3156 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3157 | if (PInfo.addRequired(Reg)) |
3158 | todo.insert(Ptr: Pred); |
3159 | } |
3160 | } |
3161 | } |
3162 | |
3163 | // Iteratively push vregsRequired to predecessors. This will converge to the |
3164 | // same final state regardless of DenseSet iteration order. |
3165 | while (!todo.empty()) { |
3166 | const MachineBasicBlock *MBB = *todo.begin(); |
3167 | todo.erase(Ptr: MBB); |
3168 | BBInfo &MInfo = MBBInfoMap[MBB]; |
3169 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
3170 | if (Pred == MBB) |
3171 | continue; |
3172 | BBInfo &SInfo = MBBInfoMap[Pred]; |
3173 | if (SInfo.addRequired(RS: MInfo.vregsRequired)) |
3174 | todo.insert(Ptr: Pred); |
3175 | } |
3176 | } |
3177 | } |
3178 | |
3179 | // Check PHI instructions at the beginning of MBB. It is assumed that |
3180 | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. |
3181 | void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { |
3182 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3183 | |
3184 | SmallPtrSet<const MachineBasicBlock*, 8> seen; |
3185 | for (const MachineInstr &Phi : MBB) { |
3186 | if (!Phi.isPHI()) |
3187 | break; |
3188 | seen.clear(); |
3189 | |
3190 | const MachineOperand &MODef = Phi.getOperand(i: 0); |
3191 | if (!MODef.isReg() || !MODef.isDef()) { |
3192 | report(msg: "Expected first PHI operand to be a register def" , MO: &MODef, MONum: 0); |
3193 | continue; |
3194 | } |
3195 | if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || |
3196 | MODef.isEarlyClobber() || MODef.isDebug()) |
3197 | report(msg: "Unexpected flag on PHI operand" , MO: &MODef, MONum: 0); |
3198 | Register DefReg = MODef.getReg(); |
3199 | if (!DefReg.isVirtual()) |
3200 | report(msg: "Expected first PHI operand to be a virtual register" , MO: &MODef, MONum: 0); |
3201 | |
3202 | for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { |
3203 | const MachineOperand &MO0 = Phi.getOperand(i: I); |
3204 | if (!MO0.isReg()) { |
3205 | report(msg: "Expected PHI operand to be a register" , MO: &MO0, MONum: I); |
3206 | continue; |
3207 | } |
3208 | if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || |
3209 | MO0.isDebug() || MO0.isTied()) |
3210 | report(msg: "Unexpected flag on PHI operand" , MO: &MO0, MONum: I); |
3211 | |
3212 | const MachineOperand &MO1 = Phi.getOperand(i: I + 1); |
3213 | if (!MO1.isMBB()) { |
3214 | report(msg: "Expected PHI operand to be a basic block" , MO: &MO1, MONum: I + 1); |
3215 | continue; |
3216 | } |
3217 | |
3218 | const MachineBasicBlock &Pre = *MO1.getMBB(); |
3219 | if (!Pre.isSuccessor(MBB: &MBB)) { |
3220 | report(msg: "PHI input is not a predecessor block" , MO: &MO1, MONum: I + 1); |
3221 | continue; |
3222 | } |
3223 | |
3224 | if (MInfo.reachable) { |
3225 | seen.insert(Ptr: &Pre); |
3226 | BBInfo &PrInfo = MBBInfoMap[&Pre]; |
3227 | if (!MO0.isUndef() && PrInfo.reachable && |
3228 | !PrInfo.isLiveOut(Reg: MO0.getReg())) |
3229 | report(msg: "PHI operand is not live-out from predecessor" , MO: &MO0, MONum: I); |
3230 | } |
3231 | } |
3232 | |
3233 | // Did we see all predecessors? |
3234 | if (MInfo.reachable) { |
3235 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
3236 | if (!seen.count(Ptr: Pred)) { |
3237 | report(msg: "Missing PHI operand" , MI: &Phi); |
3238 | errs() << printMBBReference(MBB: *Pred) |
3239 | << " is a predecessor according to the CFG.\n" ; |
3240 | } |
3241 | } |
3242 | } |
3243 | } |
3244 | } |
3245 | |
3246 | static void |
3247 | verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, |
3248 | std::function<void(const Twine &Message)> FailureCB) { |
3249 | MachineConvergenceVerifier CV; |
3250 | CV.initialize(OS: &errs(), FailureCB, F: MF); |
3251 | |
3252 | for (const auto &MBB : MF) { |
3253 | CV.visit(BB: MBB); |
3254 | for (const auto &MI : MBB.instrs()) |
3255 | CV.visit(I: MI); |
3256 | } |
3257 | |
3258 | if (CV.sawTokens()) { |
3259 | DT.recalculate(Func&: const_cast<MachineFunction &>(MF)); |
3260 | CV.verify(DT); |
3261 | } |
3262 | } |
3263 | |
3264 | void MachineVerifier::visitMachineFunctionAfter() { |
3265 | auto FailureCB = [this](const Twine &Message) { |
3266 | report(msg: Message.str().c_str(), MF); |
3267 | }; |
3268 | verifyConvergenceControl(MF: *MF, DT, FailureCB); |
3269 | |
3270 | calcRegsPassed(); |
3271 | |
3272 | for (const MachineBasicBlock &MBB : *MF) |
3273 | checkPHIOps(MBB); |
3274 | |
3275 | // Now check liveness info if available |
3276 | calcRegsRequired(); |
3277 | |
3278 | // Check for killed virtual registers that should be live out. |
3279 | for (const auto &MBB : *MF) { |
3280 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3281 | for (Register VReg : MInfo.vregsRequired) |
3282 | if (MInfo.regsKilled.count(V: VReg)) { |
3283 | report(msg: "Virtual register killed in block, but needed live out." , MBB: &MBB); |
3284 | errs() << "Virtual register " << printReg(Reg: VReg) |
3285 | << " is used after the block.\n" ; |
3286 | } |
3287 | } |
3288 | |
3289 | if (!MF->empty()) { |
3290 | BBInfo &MInfo = MBBInfoMap[&MF->front()]; |
3291 | for (Register VReg : MInfo.vregsRequired) { |
3292 | report(msg: "Virtual register defs don't dominate all uses." , MF); |
3293 | report_context_vreg(VReg); |
3294 | } |
3295 | } |
3296 | |
3297 | if (LiveVars) |
3298 | verifyLiveVariables(); |
3299 | if (LiveInts) |
3300 | verifyLiveIntervals(); |
3301 | |
3302 | // Check live-in list of each MBB. If a register is live into MBB, check |
3303 | // that the register is in regsLiveOut of each predecessor block. Since |
3304 | // this must come from a definition in the predecesssor or its live-in |
3305 | // list, this will catch a live-through case where the predecessor does not |
3306 | // have the register in its live-in list. This currently only checks |
3307 | // registers that have no aliases, are not allocatable and are not |
3308 | // reserved, which could mean a condition code register for instance. |
3309 | if (MRI->tracksLiveness()) |
3310 | for (const auto &MBB : *MF) |
3311 | for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
3312 | MCPhysReg LiveInReg = P.PhysReg; |
3313 | bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); |
3314 | if (hasAliases || isAllocatable(Reg: LiveInReg) || isReserved(Reg: LiveInReg)) |
3315 | continue; |
3316 | for (const MachineBasicBlock *Pred : MBB.predecessors()) { |
3317 | BBInfo &PInfo = MBBInfoMap[Pred]; |
3318 | if (!PInfo.regsLiveOut.count(V: LiveInReg)) { |
3319 | report(msg: "Live in register not found to be live out from predecessor." , |
3320 | MBB: &MBB); |
3321 | errs() << TRI->getName(RegNo: LiveInReg) |
3322 | << " not found to be live out from " |
3323 | << printMBBReference(MBB: *Pred) << "\n" ; |
3324 | } |
3325 | } |
3326 | } |
3327 | |
3328 | for (auto CSInfo : MF->getCallSitesInfo()) |
3329 | if (!CSInfo.first->isCall()) |
3330 | report(msg: "Call site info referencing instruction that is not call" , MF); |
3331 | |
3332 | // If there's debug-info, check that we don't have any duplicate value |
3333 | // tracking numbers. |
3334 | if (MF->getFunction().getSubprogram()) { |
3335 | DenseSet<unsigned> SeenNumbers; |
3336 | for (const auto &MBB : *MF) { |
3337 | for (const auto &MI : MBB) { |
3338 | if (auto Num = MI.peekDebugInstrNum()) { |
3339 | auto Result = SeenNumbers.insert(V: (unsigned)Num); |
3340 | if (!Result.second) |
3341 | report(msg: "Instruction has a duplicated value tracking number" , MI: &MI); |
3342 | } |
3343 | } |
3344 | } |
3345 | } |
3346 | } |
3347 | |
3348 | void MachineVerifier::verifyLiveVariables() { |
3349 | assert(LiveVars && "Don't call verifyLiveVariables without LiveVars" ); |
3350 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
3351 | Register Reg = Register::index2VirtReg(Index: I); |
3352 | LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); |
3353 | for (const auto &MBB : *MF) { |
3354 | BBInfo &MInfo = MBBInfoMap[&MBB]; |
3355 | |
3356 | // Our vregsRequired should be identical to LiveVariables' AliveBlocks |
3357 | if (MInfo.vregsRequired.count(V: Reg)) { |
3358 | if (!VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
3359 | report(msg: "LiveVariables: Block missing from AliveBlocks" , MBB: &MBB); |
3360 | errs() << "Virtual register " << printReg(Reg) |
3361 | << " must be live through the block.\n" ; |
3362 | } |
3363 | } else { |
3364 | if (VI.AliveBlocks.test(Idx: MBB.getNumber())) { |
3365 | report(msg: "LiveVariables: Block should not be in AliveBlocks" , MBB: &MBB); |
3366 | errs() << "Virtual register " << printReg(Reg) |
3367 | << " is not needed live through the block.\n" ; |
3368 | } |
3369 | } |
3370 | } |
3371 | } |
3372 | } |
3373 | |
3374 | void MachineVerifier::verifyLiveIntervals() { |
3375 | assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts" ); |
3376 | for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { |
3377 | Register Reg = Register::index2VirtReg(Index: I); |
3378 | |
3379 | // Spilling and splitting may leave unused registers around. Skip them. |
3380 | if (MRI->reg_nodbg_empty(RegNo: Reg)) |
3381 | continue; |
3382 | |
3383 | if (!LiveInts->hasInterval(Reg)) { |
3384 | report(msg: "Missing live interval for virtual register" , MF); |
3385 | errs() << printReg(Reg, TRI) << " still has defs or uses\n" ; |
3386 | continue; |
3387 | } |
3388 | |
3389 | const LiveInterval &LI = LiveInts->getInterval(Reg); |
3390 | assert(Reg == LI.reg() && "Invalid reg to interval mapping" ); |
3391 | verifyLiveInterval(LI); |
3392 | } |
3393 | |
3394 | // Verify all the cached regunit intervals. |
3395 | for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) |
3396 | if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit: i)) |
3397 | verifyLiveRange(*LR, i); |
3398 | } |
3399 | |
3400 | void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, |
3401 | const VNInfo *VNI, Register Reg, |
3402 | LaneBitmask LaneMask) { |
3403 | if (VNI->isUnused()) |
3404 | return; |
3405 | |
3406 | const VNInfo *DefVNI = LR.getVNInfoAt(Idx: VNI->def); |
3407 | |
3408 | if (!DefVNI) { |
3409 | report(msg: "Value not live at VNInfo def and not marked unused" , MF); |
3410 | report_context(LR, VRegUnit: Reg, LaneMask); |
3411 | report_context(VNI: *VNI); |
3412 | return; |
3413 | } |
3414 | |
3415 | if (DefVNI != VNI) { |
3416 | report(msg: "Live segment at def has different VNInfo" , MF); |
3417 | report_context(LR, VRegUnit: Reg, LaneMask); |
3418 | report_context(VNI: *VNI); |
3419 | return; |
3420 | } |
3421 | |
3422 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: VNI->def); |
3423 | if (!MBB) { |
3424 | report(msg: "Invalid VNInfo definition index" , MF); |
3425 | report_context(LR, VRegUnit: Reg, LaneMask); |
3426 | report_context(VNI: *VNI); |
3427 | return; |
3428 | } |
3429 | |
3430 | if (VNI->isPHIDef()) { |
3431 | if (VNI->def != LiveInts->getMBBStartIdx(mbb: MBB)) { |
3432 | report(msg: "PHIDef VNInfo is not defined at MBB start" , MBB); |
3433 | report_context(LR, VRegUnit: Reg, LaneMask); |
3434 | report_context(VNI: *VNI); |
3435 | } |
3436 | return; |
3437 | } |
3438 | |
3439 | // Non-PHI def. |
3440 | const MachineInstr *MI = LiveInts->getInstructionFromIndex(index: VNI->def); |
3441 | if (!MI) { |
3442 | report(msg: "No instruction at VNInfo def index" , MBB); |
3443 | report_context(LR, VRegUnit: Reg, LaneMask); |
3444 | report_context(VNI: *VNI); |
3445 | return; |
3446 | } |
3447 | |
3448 | if (Reg != 0) { |
3449 | bool hasDef = false; |
3450 | bool isEarlyClobber = false; |
3451 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
3452 | if (!MOI->isReg() || !MOI->isDef()) |
3453 | continue; |
3454 | if (Reg.isVirtual()) { |
3455 | if (MOI->getReg() != Reg) |
3456 | continue; |
3457 | } else { |
3458 | if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(Reg: MOI->getReg(), RegUnit: Reg)) |
3459 | continue; |
3460 | } |
3461 | if (LaneMask.any() && |
3462 | (TRI->getSubRegIndexLaneMask(SubIdx: MOI->getSubReg()) & LaneMask).none()) |
3463 | continue; |
3464 | hasDef = true; |
3465 | if (MOI->isEarlyClobber()) |
3466 | isEarlyClobber = true; |
3467 | } |
3468 | |
3469 | if (!hasDef) { |
3470 | report(msg: "Defining instruction does not modify register" , MI); |
3471 | report_context(LR, VRegUnit: Reg, LaneMask); |
3472 | report_context(VNI: *VNI); |
3473 | } |
3474 | |
3475 | // Early clobber defs begin at USE slots, but other defs must begin at |
3476 | // DEF slots. |
3477 | if (isEarlyClobber) { |
3478 | if (!VNI->def.isEarlyClobber()) { |
3479 | report(msg: "Early clobber def must be at an early-clobber slot" , MBB); |
3480 | report_context(LR, VRegUnit: Reg, LaneMask); |
3481 | report_context(VNI: *VNI); |
3482 | } |
3483 | } else if (!VNI->def.isRegister()) { |
3484 | report(msg: "Non-PHI, non-early clobber def must be at a register slot" , MBB); |
3485 | report_context(LR, VRegUnit: Reg, LaneMask); |
3486 | report_context(VNI: *VNI); |
3487 | } |
3488 | } |
3489 | } |
3490 | |
3491 | void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, |
3492 | const LiveRange::const_iterator I, |
3493 | Register Reg, |
3494 | LaneBitmask LaneMask) { |
3495 | const LiveRange::Segment &S = *I; |
3496 | const VNInfo *VNI = S.valno; |
3497 | assert(VNI && "Live segment has no valno" ); |
3498 | |
3499 | if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(ValNo: VNI->id)) { |
3500 | report(msg: "Foreign valno in live segment" , MF); |
3501 | report_context(LR, VRegUnit: Reg, LaneMask); |
3502 | report_context(S); |
3503 | report_context(VNI: *VNI); |
3504 | } |
3505 | |
3506 | if (VNI->isUnused()) { |
3507 | report(msg: "Live segment valno is marked unused" , MF); |
3508 | report_context(LR, VRegUnit: Reg, LaneMask); |
3509 | report_context(S); |
3510 | } |
3511 | |
3512 | const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(index: S.start); |
3513 | if (!MBB) { |
3514 | report(msg: "Bad start of live segment, no basic block" , MF); |
3515 | report_context(LR, VRegUnit: Reg, LaneMask); |
3516 | report_context(S); |
3517 | return; |
3518 | } |
3519 | SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(mbb: MBB); |
3520 | if (S.start != MBBStartIdx && S.start != VNI->def) { |
3521 | report(msg: "Live segment must begin at MBB entry or valno def" , MBB); |
3522 | report_context(LR, VRegUnit: Reg, LaneMask); |
3523 | report_context(S); |
3524 | } |
3525 | |
3526 | const MachineBasicBlock *EndMBB = |
3527 | LiveInts->getMBBFromIndex(index: S.end.getPrevSlot()); |
3528 | if (!EndMBB) { |
3529 | report(msg: "Bad end of live segment, no basic block" , MF); |
3530 | report_context(LR, VRegUnit: Reg, LaneMask); |
3531 | report_context(S); |
3532 | return; |
3533 | } |
3534 | |
3535 | // Checks for non-live-out segments. |
3536 | if (S.end != LiveInts->getMBBEndIdx(mbb: EndMBB)) { |
3537 | // RegUnit intervals are allowed dead phis. |
3538 | if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && |
3539 | S.end == VNI->def.getDeadSlot()) |
3540 | return; |
3541 | |
3542 | // The live segment is ending inside EndMBB |
3543 | const MachineInstr *MI = |
3544 | LiveInts->getInstructionFromIndex(index: S.end.getPrevSlot()); |
3545 | if (!MI) { |
3546 | report(msg: "Live segment doesn't end at a valid instruction" , MBB: EndMBB); |
3547 | report_context(LR, VRegUnit: Reg, LaneMask); |
3548 | report_context(S); |
3549 | return; |
3550 | } |
3551 | |
3552 | // The block slot must refer to a basic block boundary. |
3553 | if (S.end.isBlock()) { |
3554 | report(msg: "Live segment ends at B slot of an instruction" , MBB: EndMBB); |
3555 | report_context(LR, VRegUnit: Reg, LaneMask); |
3556 | report_context(S); |
3557 | } |
3558 | |
3559 | if (S.end.isDead()) { |
3560 | // Segment ends on the dead slot. |
3561 | // That means there must be a dead def. |
3562 | if (!SlotIndex::isSameInstr(A: S.start, B: S.end)) { |
3563 | report(msg: "Live segment ending at dead slot spans instructions" , MBB: EndMBB); |
3564 | report_context(LR, VRegUnit: Reg, LaneMask); |
3565 | report_context(S); |
3566 | } |
3567 | } |
3568 | |
3569 | // After tied operands are rewritten, a live segment can only end at an |
3570 | // early-clobber slot if it is being redefined by an early-clobber def. |
3571 | // TODO: Before tied operands are rewritten, a live segment can only end at |
3572 | // an early-clobber slot if the last use is tied to an early-clobber def. |
3573 | if (MF->getProperties().hasProperty( |
3574 | P: MachineFunctionProperties::Property::TiedOpsRewritten) && |
3575 | S.end.isEarlyClobber()) { |
3576 | if (I + 1 == LR.end() || (I + 1)->start != S.end) { |
3577 | report(msg: "Live segment ending at early clobber slot must be " |
3578 | "redefined by an EC def in the same instruction" , |
3579 | MBB: EndMBB); |
3580 | report_context(LR, VRegUnit: Reg, LaneMask); |
3581 | report_context(S); |
3582 | } |
3583 | } |
3584 | |
3585 | // The following checks only apply to virtual registers. Physreg liveness |
3586 | // is too weird to check. |
3587 | if (Reg.isVirtual()) { |
3588 | // A live segment can end with either a redefinition, a kill flag on a |
3589 | // use, or a dead flag on a def. |
3590 | bool hasRead = false; |
3591 | bool hasSubRegDef = false; |
3592 | bool hasDeadDef = false; |
3593 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
3594 | if (!MOI->isReg() || MOI->getReg() != Reg) |
3595 | continue; |
3596 | unsigned Sub = MOI->getSubReg(); |
3597 | LaneBitmask SLM = |
3598 | Sub != 0 ? TRI->getSubRegIndexLaneMask(SubIdx: Sub) : LaneBitmask::getAll(); |
3599 | if (MOI->isDef()) { |
3600 | if (Sub != 0) { |
3601 | hasSubRegDef = true; |
3602 | // An operand %0:sub0 reads %0:sub1..n. Invert the lane |
3603 | // mask for subregister defs. Read-undef defs will be handled by |
3604 | // readsReg below. |
3605 | SLM = ~SLM; |
3606 | } |
3607 | if (MOI->isDead()) |
3608 | hasDeadDef = true; |
3609 | } |
3610 | if (LaneMask.any() && (LaneMask & SLM).none()) |
3611 | continue; |
3612 | if (MOI->readsReg()) |
3613 | hasRead = true; |
3614 | } |
3615 | if (S.end.isDead()) { |
3616 | // Make sure that the corresponding machine operand for a "dead" live |
3617 | // range has the dead flag. We cannot perform this check for subregister |
3618 | // liveranges as partially dead values are allowed. |
3619 | if (LaneMask.none() && !hasDeadDef) { |
3620 | report( |
3621 | msg: "Instruction ending live segment on dead slot has no dead flag" , |
3622 | MI); |
3623 | report_context(LR, VRegUnit: Reg, LaneMask); |
3624 | report_context(S); |
3625 | } |
3626 | } else { |
3627 | if (!hasRead) { |
3628 | // When tracking subregister liveness, the main range must start new |
3629 | // values on partial register writes, even if there is no read. |
3630 | if (!MRI->shouldTrackSubRegLiveness(VReg: Reg) || LaneMask.any() || |
3631 | !hasSubRegDef) { |
3632 | report(msg: "Instruction ending live segment doesn't read the register" , |
3633 | MI); |
3634 | report_context(LR, VRegUnit: Reg, LaneMask); |
3635 | report_context(S); |
3636 | } |
3637 | } |
3638 | } |
3639 | } |
3640 | } |
3641 | |
3642 | // Now check all the basic blocks in this live segment. |
3643 | MachineFunction::const_iterator MFI = MBB->getIterator(); |
3644 | // Is this live segment the beginning of a non-PHIDef VN? |
3645 | if (S.start == VNI->def && !VNI->isPHIDef()) { |
3646 | // Not live-in to any blocks. |
3647 | if (MBB == EndMBB) |
3648 | return; |
3649 | // Skip this block. |
3650 | ++MFI; |
3651 | } |
3652 | |
3653 | SmallVector<SlotIndex, 4> Undefs; |
3654 | if (LaneMask.any()) { |
3655 | LiveInterval &OwnerLI = LiveInts->getInterval(Reg); |
3656 | OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, MRI: *MRI, Indexes: *Indexes); |
3657 | } |
3658 | |
3659 | while (true) { |
3660 | assert(LiveInts->isLiveInToMBB(LR, &*MFI)); |
3661 | // We don't know how to track physregs into a landing pad. |
3662 | if (!Reg.isVirtual() && MFI->isEHPad()) { |
3663 | if (&*MFI == EndMBB) |
3664 | break; |
3665 | ++MFI; |
3666 | continue; |
3667 | } |
3668 | |
3669 | // Is VNI a PHI-def in the current block? |
3670 | bool IsPHI = VNI->isPHIDef() && |
3671 | VNI->def == LiveInts->getMBBStartIdx(mbb: &*MFI); |
3672 | |
3673 | // Check that VNI is live-out of all predecessors. |
3674 | for (const MachineBasicBlock *Pred : MFI->predecessors()) { |
3675 | SlotIndex PEnd = LiveInts->getMBBEndIdx(mbb: Pred); |
3676 | // Predecessor of landing pad live-out on last call. |
3677 | if (MFI->isEHPad()) { |
3678 | for (const MachineInstr &MI : llvm::reverse(C: *Pred)) { |
3679 | if (MI.isCall()) { |
3680 | PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); |
3681 | break; |
3682 | } |
3683 | } |
3684 | } |
3685 | const VNInfo *PVNI = LR.getVNInfoBefore(Idx: PEnd); |
3686 | |
3687 | // All predecessors must have a live-out value. However for a phi |
3688 | // instruction with subregister intervals |
3689 | // only one of the subregisters (not necessarily the current one) needs to |
3690 | // be defined. |
3691 | if (!PVNI && (LaneMask.none() || !IsPHI)) { |
3692 | if (LiveRangeCalc::isJointlyDominated(MBB: Pred, Defs: Undefs, Indexes: *Indexes)) |
3693 | continue; |
3694 | report(msg: "Register not marked live out of predecessor" , MBB: Pred); |
3695 | report_context(LR, VRegUnit: Reg, LaneMask); |
3696 | report_context(VNI: *VNI); |
3697 | errs() << " live into " << printMBBReference(MBB: *MFI) << '@' |
3698 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << ", not live before " |
3699 | << PEnd << '\n'; |
3700 | continue; |
3701 | } |
3702 | |
3703 | // Only PHI-defs can take different predecessor values. |
3704 | if (!IsPHI && PVNI != VNI) { |
3705 | report(msg: "Different value live out of predecessor" , MBB: Pred); |
3706 | report_context(LR, VRegUnit: Reg, LaneMask); |
3707 | errs() << "Valno #" << PVNI->id << " live out of " |
3708 | << printMBBReference(MBB: *Pred) << '@' << PEnd << "\nValno #" |
3709 | << VNI->id << " live into " << printMBBReference(MBB: *MFI) << '@' |
3710 | << LiveInts->getMBBStartIdx(mbb: &*MFI) << '\n'; |
3711 | } |
3712 | } |
3713 | if (&*MFI == EndMBB) |
3714 | break; |
3715 | ++MFI; |
3716 | } |
3717 | } |
3718 | |
3719 | void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, |
3720 | LaneBitmask LaneMask) { |
3721 | for (const VNInfo *VNI : LR.valnos) |
3722 | verifyLiveRangeValue(LR, VNI, Reg, LaneMask); |
3723 | |
3724 | for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) |
3725 | verifyLiveRangeSegment(LR, I, Reg, LaneMask); |
3726 | } |
3727 | |
3728 | void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { |
3729 | Register Reg = LI.reg(); |
3730 | assert(Reg.isVirtual()); |
3731 | verifyLiveRange(LR: LI, Reg); |
3732 | |
3733 | if (LI.hasSubRanges()) { |
3734 | LaneBitmask Mask; |
3735 | LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); |
3736 | for (const LiveInterval::SubRange &SR : LI.subranges()) { |
3737 | if ((Mask & SR.LaneMask).any()) { |
3738 | report(msg: "Lane masks of sub ranges overlap in live interval" , MF); |
3739 | report_context(LI); |
3740 | } |
3741 | if ((SR.LaneMask & ~MaxMask).any()) { |
3742 | report(msg: "Subrange lanemask is invalid" , MF); |
3743 | report_context(LI); |
3744 | } |
3745 | if (SR.empty()) { |
3746 | report(msg: "Subrange must not be empty" , MF); |
3747 | report_context(LR: SR, VRegUnit: LI.reg(), LaneMask: SR.LaneMask); |
3748 | } |
3749 | Mask |= SR.LaneMask; |
3750 | verifyLiveRange(LR: SR, Reg: LI.reg(), LaneMask: SR.LaneMask); |
3751 | if (!LI.covers(Other: SR)) { |
3752 | report(msg: "A Subrange is not covered by the main range" , MF); |
3753 | report_context(LI); |
3754 | } |
3755 | } |
3756 | } |
3757 | |
3758 | // Check the LI only has one connected component. |
3759 | ConnectedVNInfoEqClasses ConEQ(*LiveInts); |
3760 | unsigned NumComp = ConEQ.Classify(LR: LI); |
3761 | if (NumComp > 1) { |
3762 | report(msg: "Multiple connected components in live interval" , MF); |
3763 | report_context(LI); |
3764 | for (unsigned comp = 0; comp != NumComp; ++comp) { |
3765 | errs() << comp << ": valnos" ; |
3766 | for (const VNInfo *I : LI.valnos) |
3767 | if (comp == ConEQ.getEqClass(VNI: I)) |
3768 | errs() << ' ' << I->id; |
3769 | errs() << '\n'; |
3770 | } |
3771 | } |
3772 | } |
3773 | |
3774 | namespace { |
3775 | |
3776 | // FrameSetup and FrameDestroy can have zero adjustment, so using a single |
3777 | // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the |
3778 | // value is zero. |
3779 | // We use a bool plus an integer to capture the stack state. |
3780 | struct StackStateOfBB { |
3781 | StackStateOfBB() = default; |
3782 | StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : |
3783 | EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), |
3784 | ExitIsSetup(ExitSetup) {} |
3785 | |
3786 | // Can be negative, which means we are setting up a frame. |
3787 | int EntryValue = 0; |
3788 | int ExitValue = 0; |
3789 | bool EntryIsSetup = false; |
3790 | bool ExitIsSetup = false; |
3791 | }; |
3792 | |
3793 | } // end anonymous namespace |
3794 | |
3795 | /// Make sure on every path through the CFG, a FrameSetup <n> is always followed |
3796 | /// by a FrameDestroy <n>, stack adjustments are identical on all |
3797 | /// CFG edges to a merge point, and frame is destroyed at end of a return block. |
3798 | void MachineVerifier::verifyStackFrame() { |
3799 | unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); |
3800 | unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); |
3801 | if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) |
3802 | return; |
3803 | |
3804 | SmallVector<StackStateOfBB, 8> SPState; |
3805 | SPState.resize(N: MF->getNumBlockIDs()); |
3806 | df_iterator_default_set<const MachineBasicBlock*> Reachable; |
3807 | |
3808 | // Visit the MBBs in DFS order. |
3809 | for (df_ext_iterator<const MachineFunction *, |
3810 | df_iterator_default_set<const MachineBasicBlock *>> |
3811 | DFI = df_ext_begin(G: MF, S&: Reachable), DFE = df_ext_end(G: MF, S&: Reachable); |
3812 | DFI != DFE; ++DFI) { |
3813 | const MachineBasicBlock *MBB = *DFI; |
3814 | |
3815 | StackStateOfBB BBState; |
3816 | // Check the exit state of the DFS stack predecessor. |
3817 | if (DFI.getPathLength() >= 2) { |
3818 | const MachineBasicBlock *StackPred = DFI.getPath(n: DFI.getPathLength() - 2); |
3819 | assert(Reachable.count(StackPred) && |
3820 | "DFS stack predecessor is already visited.\n" ); |
3821 | BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; |
3822 | BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; |
3823 | BBState.ExitValue = BBState.EntryValue; |
3824 | BBState.ExitIsSetup = BBState.EntryIsSetup; |
3825 | } |
3826 | |
3827 | if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { |
3828 | report(msg: "Call frame size on entry does not match value computed from " |
3829 | "predecessor" , |
3830 | MBB); |
3831 | errs() << "Call frame size on entry " << MBB->getCallFrameSize() |
3832 | << " does not match value computed from predecessor " |
3833 | << -BBState.EntryValue << '\n'; |
3834 | } |
3835 | |
3836 | // Update stack state by checking contents of MBB. |
3837 | for (const auto &I : *MBB) { |
3838 | if (I.getOpcode() == FrameSetupOpcode) { |
3839 | if (BBState.ExitIsSetup) |
3840 | report(msg: "FrameSetup is after another FrameSetup" , MI: &I); |
3841 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
3842 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
3843 | "instruction." , MI: &I); |
3844 | BBState.ExitValue -= TII->getFrameTotalSize(I); |
3845 | BBState.ExitIsSetup = true; |
3846 | } |
3847 | |
3848 | if (I.getOpcode() == FrameDestroyOpcode) { |
3849 | int Size = TII->getFrameTotalSize(I); |
3850 | if (!BBState.ExitIsSetup) |
3851 | report(msg: "FrameDestroy is not after a FrameSetup" , MI: &I); |
3852 | int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : |
3853 | BBState.ExitValue; |
3854 | if (BBState.ExitIsSetup && AbsSPAdj != Size) { |
3855 | report(msg: "FrameDestroy <n> is after FrameSetup <m>" , MI: &I); |
3856 | errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" |
3857 | << AbsSPAdj << ">.\n" ; |
3858 | } |
3859 | if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) |
3860 | report(msg: "AdjustsStack not set in presence of a frame pseudo " |
3861 | "instruction." , MI: &I); |
3862 | BBState.ExitValue += Size; |
3863 | BBState.ExitIsSetup = false; |
3864 | } |
3865 | } |
3866 | SPState[MBB->getNumber()] = BBState; |
3867 | |
3868 | // Make sure the exit state of any predecessor is consistent with the entry |
3869 | // state. |
3870 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
3871 | if (Reachable.count(Ptr: Pred) && |
3872 | (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || |
3873 | SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { |
3874 | report(msg: "The exit stack state of a predecessor is inconsistent." , MBB); |
3875 | errs() << "Predecessor " << printMBBReference(MBB: *Pred) |
3876 | << " has exit state (" << SPState[Pred->getNumber()].ExitValue |
3877 | << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " |
3878 | << printMBBReference(MBB: *MBB) << " has entry state (" |
3879 | << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n" ; |
3880 | } |
3881 | } |
3882 | |
3883 | // Make sure the entry state of any successor is consistent with the exit |
3884 | // state. |
3885 | for (const MachineBasicBlock *Succ : MBB->successors()) { |
3886 | if (Reachable.count(Ptr: Succ) && |
3887 | (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || |
3888 | SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { |
3889 | report(msg: "The entry stack state of a successor is inconsistent." , MBB); |
3890 | errs() << "Successor " << printMBBReference(MBB: *Succ) |
3891 | << " has entry state (" << SPState[Succ->getNumber()].EntryValue |
3892 | << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " |
3893 | << printMBBReference(MBB: *MBB) << " has exit state (" |
3894 | << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n" ; |
3895 | } |
3896 | } |
3897 | |
3898 | // Make sure a basic block with return ends with zero stack adjustment. |
3899 | if (!MBB->empty() && MBB->back().isReturn()) { |
3900 | if (BBState.ExitIsSetup) |
3901 | report(msg: "A return block ends with a FrameSetup." , MBB); |
3902 | if (BBState.ExitValue) |
3903 | report(msg: "A return block ends with a nonzero stack adjustment." , MBB); |
3904 | } |
3905 | } |
3906 | } |
3907 | |