1 | //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass eliminates machine instruction PHI nodes by inserting copy |
10 | // instructions. This destroys SSA information, but is the desired input for |
11 | // some register allocators. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/CodeGen/PHIElimination.h" |
16 | #include "PHIEliminationUtils.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/LoopInfo.h" |
21 | #include "llvm/CodeGen/LiveInterval.h" |
22 | #include "llvm/CodeGen/LiveIntervals.h" |
23 | #include "llvm/CodeGen/LiveVariables.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineDominators.h" |
26 | #include "llvm/CodeGen/MachineFunction.h" |
27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
28 | #include "llvm/CodeGen/MachineInstr.h" |
29 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
30 | #include "llvm/CodeGen/MachineLoopInfo.h" |
31 | #include "llvm/CodeGen/MachineOperand.h" |
32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
33 | #include "llvm/CodeGen/SlotIndexes.h" |
34 | #include "llvm/CodeGen/TargetInstrInfo.h" |
35 | #include "llvm/CodeGen/TargetOpcodes.h" |
36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
38 | #include "llvm/Pass.h" |
39 | #include "llvm/Support/CommandLine.h" |
40 | #include "llvm/Support/Debug.h" |
41 | #include "llvm/Support/raw_ostream.h" |
42 | #include <cassert> |
43 | #include <iterator> |
44 | #include <utility> |
45 | |
46 | using namespace llvm; |
47 | |
48 | #define DEBUG_TYPE "phi-node-elimination" |
49 | |
50 | static cl::opt<bool> |
51 | DisableEdgeSplitting("disable-phi-elim-edge-splitting" , cl::init(Val: false), |
52 | cl::Hidden, |
53 | cl::desc("Disable critical edge splitting " |
54 | "during PHI elimination" )); |
55 | |
56 | static cl::opt<bool> |
57 | SplitAllCriticalEdges("phi-elim-split-all-critical-edges" , cl::init(Val: false), |
58 | cl::Hidden, |
59 | cl::desc("Split all critical edges during " |
60 | "PHI elimination" )); |
61 | |
62 | static cl::opt<bool> NoPhiElimLiveOutEarlyExit( |
63 | "no-phi-elim-live-out-early-exit" , cl::init(Val: false), cl::Hidden, |
64 | cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true." )); |
65 | |
66 | namespace { |
67 | |
68 | class PHIEliminationImpl { |
69 | MachineRegisterInfo *MRI = nullptr; // Machine register information |
70 | LiveVariables *LV = nullptr; |
71 | LiveIntervals *LIS = nullptr; |
72 | MachineLoopInfo *MLI = nullptr; |
73 | MachineDominatorTree *MDT = nullptr; |
74 | |
75 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
76 | /// in predecessor basic blocks. |
77 | bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); |
78 | |
79 | void LowerPHINode(MachineBasicBlock &MBB, |
80 | MachineBasicBlock::iterator LastPHIIt, |
81 | bool AllEdgesCritical); |
82 | |
83 | /// analyzePHINodes - Gather information about the PHI nodes in |
84 | /// here. In particular, we want to map the number of uses of a virtual |
85 | /// register which is used in a PHI node. We map that to the BB the |
86 | /// vreg is coming from. This is used later to determine when the vreg |
87 | /// is killed in the BB. |
88 | void analyzePHINodes(const MachineFunction &MF); |
89 | |
90 | /// Split critical edges where necessary for good coalescer performance. |
91 | bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, |
92 | MachineLoopInfo *MLI, |
93 | std::vector<SparseBitVector<>> *LiveInSets); |
94 | |
95 | // These functions are temporary abstractions around LiveVariables and |
96 | // LiveIntervals, so they can go away when LiveVariables does. |
97 | bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); |
98 | bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); |
99 | |
100 | using BBVRegPair = std::pair<unsigned, Register>; |
101 | using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; |
102 | |
103 | // Count the number of non-undef PHI uses of each register in each BB. |
104 | VRegPHIUse VRegPHIUseCount; |
105 | |
106 | // Defs of PHI sources which are implicit_def. |
107 | SmallPtrSet<MachineInstr *, 4> ImpDefs; |
108 | |
109 | // Map reusable lowered PHI node -> incoming join register. |
110 | using LoweredPHIMap = |
111 | DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>; |
112 | LoweredPHIMap LoweredPHIs; |
113 | |
114 | MachineFunctionPass *P = nullptr; |
115 | MachineFunctionAnalysisManager *MFAM = nullptr; |
116 | |
117 | public: |
118 | PHIEliminationImpl(MachineFunctionPass *P) : P(P) { |
119 | auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
120 | auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
121 | auto *MLIWrapper = P->getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); |
122 | auto *MDTWrapper = |
123 | P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
124 | LV = LVWrapper ? &LVWrapper->getLV() : nullptr; |
125 | LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
126 | MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; |
127 | MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; |
128 | } |
129 | |
130 | PHIEliminationImpl(MachineFunction &MF, MachineFunctionAnalysisManager &AM) |
131 | : LV(AM.getCachedResult<LiveVariablesAnalysis>(IR&: MF)), |
132 | LIS(AM.getCachedResult<LiveIntervalsAnalysis>(IR&: MF)), |
133 | MLI(AM.getCachedResult<MachineLoopAnalysis>(IR&: MF)), |
134 | MDT(AM.getCachedResult<MachineDominatorTreeAnalysis>(IR&: MF)), MFAM(&AM) {} |
135 | |
136 | bool run(MachineFunction &MF); |
137 | }; |
138 | |
139 | class PHIElimination : public MachineFunctionPass { |
140 | public: |
141 | static char ID; // Pass identification, replacement for typeid |
142 | |
143 | PHIElimination() : MachineFunctionPass(ID) { |
144 | initializePHIEliminationPass(*PassRegistry::getPassRegistry()); |
145 | } |
146 | |
147 | bool runOnMachineFunction(MachineFunction &MF) override { |
148 | PHIEliminationImpl Impl(this); |
149 | return Impl.run(MF); |
150 | } |
151 | |
152 | MachineFunctionProperties getSetProperties() const override { |
153 | return MachineFunctionProperties().set( |
154 | MachineFunctionProperties::Property::NoPHIs); |
155 | } |
156 | |
157 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
158 | }; |
159 | |
160 | } // end anonymous namespace |
161 | |
162 | PreservedAnalyses |
163 | PHIEliminationPass::run(MachineFunction &MF, |
164 | MachineFunctionAnalysisManager &MFAM) { |
165 | PHIEliminationImpl Impl(MF, MFAM); |
166 | bool Changed = Impl.run(MF); |
167 | if (!Changed) |
168 | return PreservedAnalyses::all(); |
169 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
170 | PA.preserve<LiveIntervalsAnalysis>(); |
171 | PA.preserve<LiveVariablesAnalysis>(); |
172 | PA.preserve<SlotIndexesAnalysis>(); |
173 | PA.preserve<MachineDominatorTreeAnalysis>(); |
174 | PA.preserve<MachineLoopAnalysis>(); |
175 | return PA; |
176 | } |
177 | |
178 | STATISTIC(NumLowered, "Number of phis lowered" ); |
179 | STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split" ); |
180 | STATISTIC(NumReused, "Number of reused lowered phis" ); |
181 | |
182 | char PHIElimination::ID = 0; |
183 | |
184 | char &llvm::PHIEliminationID = PHIElimination::ID; |
185 | |
186 | INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, |
187 | "Eliminate PHI nodes for register allocation" , false, |
188 | false) |
189 | INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) |
190 | INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, |
191 | "Eliminate PHI nodes for register allocation" , false, false) |
192 | |
193 | void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { |
194 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
195 | AU.addPreserved<LiveVariablesWrapperPass>(); |
196 | AU.addPreserved<SlotIndexesWrapperPass>(); |
197 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
198 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
199 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
200 | MachineFunctionPass::getAnalysisUsage(AU); |
201 | } |
202 | |
203 | bool PHIEliminationImpl::run(MachineFunction &MF) { |
204 | MRI = &MF.getRegInfo(); |
205 | |
206 | bool Changed = false; |
207 | |
208 | // Split critical edges to help the coalescer. |
209 | if (!DisableEdgeSplitting && (LV || LIS)) { |
210 | // A set of live-in regs for each MBB which is used to update LV |
211 | // efficiently also with large functions. |
212 | std::vector<SparseBitVector<>> LiveInSets; |
213 | if (LV) { |
214 | LiveInSets.resize(new_size: MF.size()); |
215 | for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { |
216 | // Set the bit for this register for each MBB where it is |
217 | // live-through or live-in (killed). |
218 | Register VirtReg = Register::index2VirtReg(Index); |
219 | MachineInstr *DefMI = MRI->getVRegDef(Reg: VirtReg); |
220 | if (!DefMI) |
221 | continue; |
222 | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg: VirtReg); |
223 | SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); |
224 | SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); |
225 | while (AliveBlockItr != EndItr) { |
226 | unsigned BlockNum = *(AliveBlockItr++); |
227 | LiveInSets[BlockNum].set(Index); |
228 | } |
229 | // The register is live into an MBB in which it is killed but not |
230 | // defined. See comment for VarInfo in LiveVariables.h. |
231 | MachineBasicBlock *DefMBB = DefMI->getParent(); |
232 | if (VI.Kills.size() > 1 || |
233 | (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) |
234 | for (auto *MI : VI.Kills) |
235 | LiveInSets[MI->getParent()->getNumber()].set(Index); |
236 | } |
237 | } |
238 | |
239 | for (auto &MBB : MF) |
240 | Changed |= SplitPHIEdges(MF, MBB, MLI, LiveInSets: (LV ? &LiveInSets : nullptr)); |
241 | } |
242 | |
243 | // This pass takes the function out of SSA form. |
244 | MRI->leaveSSA(); |
245 | |
246 | // Populate VRegPHIUseCount |
247 | if (LV || LIS) |
248 | analyzePHINodes(MF); |
249 | |
250 | // Eliminate PHI instructions by inserting copies into predecessor blocks. |
251 | for (auto &MBB : MF) |
252 | Changed |= EliminatePHINodes(MF, MBB); |
253 | |
254 | // Remove dead IMPLICIT_DEF instructions. |
255 | for (MachineInstr *DefMI : ImpDefs) { |
256 | Register DefReg = DefMI->getOperand(i: 0).getReg(); |
257 | if (MRI->use_nodbg_empty(RegNo: DefReg)) { |
258 | if (LIS) |
259 | LIS->RemoveMachineInstrFromMaps(MI&: *DefMI); |
260 | DefMI->eraseFromParent(); |
261 | } |
262 | } |
263 | |
264 | // Clean up the lowered PHI instructions. |
265 | for (auto &I : LoweredPHIs) { |
266 | if (LIS) |
267 | LIS->RemoveMachineInstrFromMaps(MI&: *I.first); |
268 | MF.deleteMachineInstr(MI: I.first); |
269 | } |
270 | |
271 | // TODO: we should use the incremental DomTree updater here. |
272 | if (Changed && MDT) |
273 | MDT->getBase().recalculate(Func&: MF); |
274 | |
275 | LoweredPHIs.clear(); |
276 | ImpDefs.clear(); |
277 | VRegPHIUseCount.clear(); |
278 | |
279 | MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); |
280 | |
281 | return Changed; |
282 | } |
283 | |
284 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
285 | /// predecessor basic blocks. |
286 | bool PHIEliminationImpl::EliminatePHINodes(MachineFunction &MF, |
287 | MachineBasicBlock &MBB) { |
288 | if (MBB.empty() || !MBB.front().isPHI()) |
289 | return false; // Quick exit for basic blocks without PHIs. |
290 | |
291 | // Get an iterator to the last PHI node. |
292 | MachineBasicBlock::iterator LastPHIIt = |
293 | std::prev(x: MBB.SkipPHIsAndLabels(I: MBB.begin())); |
294 | |
295 | // If all incoming edges are critical, we try to deduplicate identical PHIs so |
296 | // that we generate fewer copies. If at any edge is non-critical, we either |
297 | // have less than two predecessors (=> no PHIs) or a predecessor has only us |
298 | // as a successor (=> identical PHI node can't occur in different block). |
299 | bool AllEdgesCritical = MBB.pred_size() >= 2; |
300 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
301 | if (Pred->succ_size() < 2) { |
302 | AllEdgesCritical = false; |
303 | break; |
304 | } |
305 | } |
306 | |
307 | while (MBB.front().isPHI()) |
308 | LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); |
309 | |
310 | return true; |
311 | } |
312 | |
313 | /// Return true if all defs of VirtReg are implicit-defs. |
314 | /// This includes registers with no defs. |
315 | static bool isImplicitlyDefined(unsigned VirtReg, |
316 | const MachineRegisterInfo &MRI) { |
317 | for (MachineInstr &DI : MRI.def_instructions(Reg: VirtReg)) |
318 | if (!DI.isImplicitDef()) |
319 | return false; |
320 | return true; |
321 | } |
322 | |
323 | /// Return true if all sources of the phi node are implicit_def's, or undef's. |
324 | static bool allPhiOperandsUndefined(const MachineInstr &MPhi, |
325 | const MachineRegisterInfo &MRI) { |
326 | for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { |
327 | const MachineOperand &MO = MPhi.getOperand(i: I); |
328 | if (!isImplicitlyDefined(VirtReg: MO.getReg(), MRI) && !MO.isUndef()) |
329 | return false; |
330 | } |
331 | return true; |
332 | } |
333 | /// LowerPHINode - Lower the PHI node at the top of the specified block. |
334 | void PHIEliminationImpl::LowerPHINode(MachineBasicBlock &MBB, |
335 | MachineBasicBlock::iterator LastPHIIt, |
336 | bool AllEdgesCritical) { |
337 | ++NumLowered; |
338 | |
339 | MachineBasicBlock::iterator AfterPHIsIt = std::next(x: LastPHIIt); |
340 | |
341 | // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
342 | MachineInstr *MPhi = MBB.remove(I: &*MBB.begin()); |
343 | |
344 | unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
345 | Register DestReg = MPhi->getOperand(i: 0).getReg(); |
346 | assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs" ); |
347 | bool isDead = MPhi->getOperand(i: 0).isDead(); |
348 | |
349 | // Create a new register for the incoming PHI arguments. |
350 | MachineFunction &MF = *MBB.getParent(); |
351 | unsigned IncomingReg = 0; |
352 | bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs |
353 | bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? |
354 | |
355 | // Insert a register to register copy at the top of the current block (but |
356 | // after any remaining phi nodes) which copies the new incoming register |
357 | // into the phi node destination. |
358 | MachineInstr *PHICopy = nullptr; |
359 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
360 | if (allPhiOperandsUndefined(MPhi: *MPhi, MRI: *MRI)) |
361 | // If all sources of a PHI node are implicit_def or undef uses, just emit an |
362 | // implicit_def instead of a copy. |
363 | PHICopy = BuildMI(BB&: MBB, I: AfterPHIsIt, MIMD: MPhi->getDebugLoc(), |
364 | MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg); |
365 | else { |
366 | // Can we reuse an earlier PHI node? This only happens for critical edges, |
367 | // typically those created by tail duplication. Typically, an identical PHI |
368 | // node can't occur, so avoid hashing/storing such PHIs, which is somewhat |
369 | // expensive. |
370 | unsigned *Entry = nullptr; |
371 | if (AllEdgesCritical) |
372 | Entry = &LoweredPHIs[MPhi]; |
373 | if (Entry && *Entry) { |
374 | // An identical PHI node was already lowered. Reuse the incoming register. |
375 | IncomingReg = *Entry; |
376 | reusedIncoming = true; |
377 | ++NumReused; |
378 | LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " |
379 | << *MPhi); |
380 | } else { |
381 | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg: DestReg); |
382 | IncomingReg = MF.getRegInfo().createVirtualRegister(RegClass: RC); |
383 | if (Entry) { |
384 | EliminateNow = false; |
385 | *Entry = IncomingReg; |
386 | } |
387 | } |
388 | |
389 | // Give the target possiblity to handle special cases fallthrough otherwise |
390 | PHICopy = TII->createPHIDestinationCopy( |
391 | MBB, InsPt: AfterPHIsIt, DL: MPhi->getDebugLoc(), Src: IncomingReg, Dst: DestReg); |
392 | } |
393 | |
394 | if (MPhi->peekDebugInstrNum()) { |
395 | // If referred to by debug-info, store where this PHI was. |
396 | MachineFunction *MF = MBB.getParent(); |
397 | unsigned ID = MPhi->peekDebugInstrNum(); |
398 | auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); |
399 | auto Res = MF->DebugPHIPositions.insert(KV: {ID, P}); |
400 | assert(Res.second); |
401 | (void)Res; |
402 | } |
403 | |
404 | // Update live variable information if there is any. |
405 | if (LV) { |
406 | if (IncomingReg) { |
407 | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg: IncomingReg); |
408 | |
409 | MachineInstr *OldKill = nullptr; |
410 | bool IsPHICopyAfterOldKill = false; |
411 | |
412 | if (reusedIncoming && (OldKill = VI.findKill(MBB: &MBB))) { |
413 | // Calculate whether the PHICopy is after the OldKill. |
414 | // In general, the PHICopy is inserted as the first non-phi instruction |
415 | // by default, so it's before the OldKill. But some Target hooks for |
416 | // createPHIDestinationCopy() may modify the default insert position of |
417 | // PHICopy. |
418 | for (auto I = MBB.SkipPHIsAndLabels(I: MBB.begin()), E = MBB.end(); I != E; |
419 | ++I) { |
420 | if (I == PHICopy) |
421 | break; |
422 | |
423 | if (I == OldKill) { |
424 | IsPHICopyAfterOldKill = true; |
425 | break; |
426 | } |
427 | } |
428 | } |
429 | |
430 | // When we are reusing the incoming register and it has been marked killed |
431 | // by OldKill, if the PHICopy is after the OldKill, we should remove the |
432 | // killed flag from OldKill. |
433 | if (IsPHICopyAfterOldKill) { |
434 | LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); |
435 | LV->removeVirtualRegisterKilled(Reg: IncomingReg, MI&: *OldKill); |
436 | LLVM_DEBUG(MBB.dump()); |
437 | } |
438 | |
439 | // Add information to LiveVariables to know that the first used incoming |
440 | // value or the resued incoming value whose PHICopy is after the OldKIll |
441 | // is killed. Note that because the value is defined in several places |
442 | // (once each for each incoming block), the "def" block and instruction |
443 | // fields for the VarInfo is not filled in. |
444 | if (!OldKill || IsPHICopyAfterOldKill) |
445 | LV->addVirtualRegisterKilled(IncomingReg, MI&: *PHICopy); |
446 | } |
447 | |
448 | // Since we are going to be deleting the PHI node, if it is the last use of |
449 | // any registers, or if the value itself is dead, we need to move this |
450 | // information over to the new copy we just inserted. |
451 | LV->removeVirtualRegistersKilled(MI&: *MPhi); |
452 | |
453 | // If the result is dead, update LV. |
454 | if (isDead) { |
455 | LV->addVirtualRegisterDead(IncomingReg: DestReg, MI&: *PHICopy); |
456 | LV->removeVirtualRegisterDead(Reg: DestReg, MI&: *MPhi); |
457 | } |
458 | } |
459 | |
460 | // Update LiveIntervals for the new copy or implicit def. |
461 | if (LIS) { |
462 | SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(MI&: *PHICopy); |
463 | |
464 | SlotIndex MBBStartIndex = LIS->getMBBStartIdx(mbb: &MBB); |
465 | if (IncomingReg) { |
466 | // Add the region from the beginning of MBB to the copy instruction to |
467 | // IncomingReg's live interval. |
468 | LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(Reg: IncomingReg); |
469 | VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(Idx: MBBStartIndex); |
470 | if (!IncomingVNI) |
471 | IncomingVNI = |
472 | IncomingLI.getNextValue(Def: MBBStartIndex, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
473 | IncomingLI.addSegment(S: LiveInterval::Segment( |
474 | MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); |
475 | } |
476 | |
477 | LiveInterval &DestLI = LIS->getInterval(Reg: DestReg); |
478 | assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals." ); |
479 | |
480 | SlotIndex NewStart = DestCopyIndex.getRegSlot(); |
481 | |
482 | SmallVector<LiveRange *> ToUpdate({&DestLI}); |
483 | for (auto &SR : DestLI.subranges()) |
484 | ToUpdate.push_back(Elt: &SR); |
485 | |
486 | for (auto LR : ToUpdate) { |
487 | auto DestSegment = LR->find(Pos: MBBStartIndex); |
488 | assert(DestSegment != LR->end() && |
489 | "PHI destination must be live in block" ); |
490 | |
491 | if (LR->endIndex().isDead()) { |
492 | // A dead PHI's live range begins and ends at the start of the MBB, but |
493 | // the lowered copy, which will still be dead, needs to begin and end at |
494 | // the copy instruction. |
495 | VNInfo *OrigDestVNI = LR->getVNInfoAt(Idx: DestSegment->start); |
496 | assert(OrigDestVNI && "PHI destination should be live at block entry." ); |
497 | LR->removeSegment(Start: DestSegment->start, End: DestSegment->start.getDeadSlot()); |
498 | LR->createDeadDef(Def: NewStart, VNIAlloc&: LIS->getVNInfoAllocator()); |
499 | LR->removeValNo(ValNo: OrigDestVNI); |
500 | continue; |
501 | } |
502 | |
503 | // Destination copies are not inserted in the same order as the PHI nodes |
504 | // they replace. Hence the start of the live range may need to be adjusted |
505 | // to match the actual slot index of the copy. |
506 | if (DestSegment->start > NewStart) { |
507 | VNInfo *VNI = LR->getVNInfoAt(Idx: DestSegment->start); |
508 | assert(VNI && "value should be defined for known segment" ); |
509 | LR->addSegment( |
510 | S: LiveInterval::Segment(NewStart, DestSegment->start, VNI)); |
511 | } else if (DestSegment->start < NewStart) { |
512 | assert(DestSegment->start >= MBBStartIndex); |
513 | assert(DestSegment->end >= DestCopyIndex.getRegSlot()); |
514 | LR->removeSegment(Start: DestSegment->start, End: NewStart); |
515 | } |
516 | VNInfo *DestVNI = LR->getVNInfoAt(Idx: NewStart); |
517 | assert(DestVNI && "PHI destination should be live at its definition." ); |
518 | DestVNI->def = NewStart; |
519 | } |
520 | } |
521 | |
522 | // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
523 | if (LV || LIS) { |
524 | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
525 | if (!MPhi->getOperand(i).isUndef()) { |
526 | --VRegPHIUseCount[BBVRegPair( |
527 | MPhi->getOperand(i: i + 1).getMBB()->getNumber(), |
528 | MPhi->getOperand(i).getReg())]; |
529 | } |
530 | } |
531 | } |
532 | |
533 | // Now loop over all of the incoming arguments, changing them to copy into the |
534 | // IncomingReg register in the corresponding predecessor basic block. |
535 | SmallPtrSet<MachineBasicBlock *, 8> MBBsInsertedInto; |
536 | for (int i = NumSrcs - 1; i >= 0; --i) { |
537 | Register SrcReg = MPhi->getOperand(i: i * 2 + 1).getReg(); |
538 | unsigned SrcSubReg = MPhi->getOperand(i: i * 2 + 1).getSubReg(); |
539 | bool SrcUndef = MPhi->getOperand(i: i * 2 + 1).isUndef() || |
540 | isImplicitlyDefined(VirtReg: SrcReg, MRI: *MRI); |
541 | assert(SrcReg.isVirtual() && |
542 | "Machine PHI Operands must all be virtual registers!" ); |
543 | |
544 | // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
545 | // path the PHI. |
546 | MachineBasicBlock &opBlock = *MPhi->getOperand(i: i * 2 + 2).getMBB(); |
547 | |
548 | // Check to make sure we haven't already emitted the copy for this block. |
549 | // This can happen because PHI nodes may have multiple entries for the same |
550 | // basic block. |
551 | if (!MBBsInsertedInto.insert(Ptr: &opBlock).second) |
552 | continue; // If the copy has already been emitted, we're done. |
553 | |
554 | MachineInstr *SrcRegDef = MRI->getVRegDef(Reg: SrcReg); |
555 | if (SrcRegDef && TII->isUnspillableTerminator(MI: SrcRegDef)) { |
556 | assert(SrcRegDef->getOperand(0).isReg() && |
557 | SrcRegDef->getOperand(0).isDef() && |
558 | "Expected operand 0 to be a reg def!" ); |
559 | // Now that the PHI's use has been removed (as the instruction was |
560 | // removed) there should be no other uses of the SrcReg. |
561 | assert(MRI->use_empty(SrcReg) && |
562 | "Expected a single use from UnspillableTerminator" ); |
563 | SrcRegDef->getOperand(i: 0).setReg(IncomingReg); |
564 | |
565 | // Update LiveVariables. |
566 | if (LV) { |
567 | LiveVariables::VarInfo &SrcVI = LV->getVarInfo(Reg: SrcReg); |
568 | LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(Reg: IncomingReg); |
569 | IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); |
570 | SrcVI.AliveBlocks.clear(); |
571 | } |
572 | |
573 | continue; |
574 | } |
575 | |
576 | // Find a safe location to insert the copy, this may be the first terminator |
577 | // in the block (or end()). |
578 | MachineBasicBlock::iterator InsertPos = |
579 | findPHICopyInsertPoint(MBB: &opBlock, SuccMBB: &MBB, SrcReg); |
580 | |
581 | // Insert the copy. |
582 | MachineInstr *NewSrcInstr = nullptr; |
583 | if (!reusedIncoming && IncomingReg) { |
584 | if (SrcUndef) { |
585 | // The source register is undefined, so there is no need for a real |
586 | // COPY, but we still need to ensure joint dominance by defs. |
587 | // Insert an IMPLICIT_DEF instruction. |
588 | NewSrcInstr = |
589 | BuildMI(BB&: opBlock, I: InsertPos, MIMD: MPhi->getDebugLoc(), |
590 | MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: IncomingReg); |
591 | |
592 | // Clean up the old implicit-def, if there even was one. |
593 | if (MachineInstr *DefMI = MRI->getVRegDef(Reg: SrcReg)) |
594 | if (DefMI->isImplicitDef()) |
595 | ImpDefs.insert(Ptr: DefMI); |
596 | } else { |
597 | // Delete the debug location, since the copy is inserted into a |
598 | // different basic block. |
599 | NewSrcInstr = TII->createPHISourceCopy(MBB&: opBlock, InsPt: InsertPos, DL: nullptr, |
600 | Src: SrcReg, SrcSubReg, Dst: IncomingReg); |
601 | } |
602 | } |
603 | |
604 | // We only need to update the LiveVariables kill of SrcReg if this was the |
605 | // last PHI use of SrcReg to be lowered on this CFG edge and it is not live |
606 | // out of the predecessor. We can also ignore undef sources. |
607 | if (LV && !SrcUndef && |
608 | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && |
609 | !LV->isLiveOut(Reg: SrcReg, MBB: opBlock)) { |
610 | // We want to be able to insert a kill of the register if this PHI (aka, |
611 | // the copy we just inserted) is the last use of the source value. Live |
612 | // variable analysis conservatively handles this by saying that the value |
613 | // is live until the end of the block the PHI entry lives in. If the value |
614 | // really is dead at the PHI copy, there will be no successor blocks which |
615 | // have the value live-in. |
616 | |
617 | // Okay, if we now know that the value is not live out of the block, we |
618 | // can add a kill marker in this block saying that it kills the incoming |
619 | // value! |
620 | |
621 | // In our final twist, we have to decide which instruction kills the |
622 | // register. In most cases this is the copy, however, terminator |
623 | // instructions at the end of the block may also use the value. In this |
624 | // case, we should mark the last such terminator as being the killing |
625 | // block, not the copy. |
626 | MachineBasicBlock::iterator KillInst = opBlock.end(); |
627 | for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); |
628 | ++Term) { |
629 | if (Term->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
630 | KillInst = Term; |
631 | } |
632 | |
633 | if (KillInst == opBlock.end()) { |
634 | // No terminator uses the register. |
635 | |
636 | if (reusedIncoming || !IncomingReg) { |
637 | // We may have to rewind a bit if we didn't insert a copy this time. |
638 | KillInst = InsertPos; |
639 | while (KillInst != opBlock.begin()) { |
640 | --KillInst; |
641 | if (KillInst->isDebugInstr()) |
642 | continue; |
643 | if (KillInst->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
644 | break; |
645 | } |
646 | } else { |
647 | // We just inserted this copy. |
648 | KillInst = NewSrcInstr; |
649 | } |
650 | } |
651 | assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && |
652 | "Cannot find kill instruction" ); |
653 | |
654 | // Finally, mark it killed. |
655 | LV->addVirtualRegisterKilled(IncomingReg: SrcReg, MI&: *KillInst); |
656 | |
657 | // This vreg no longer lives all of the way through opBlock. |
658 | unsigned opBlockNum = opBlock.getNumber(); |
659 | LV->getVarInfo(Reg: SrcReg).AliveBlocks.reset(Idx: opBlockNum); |
660 | } |
661 | |
662 | if (LIS) { |
663 | if (NewSrcInstr) { |
664 | LIS->InsertMachineInstrInMaps(MI&: *NewSrcInstr); |
665 | LIS->addSegmentToEndOfBlock(Reg: IncomingReg, startInst&: *NewSrcInstr); |
666 | } |
667 | |
668 | if (!SrcUndef && |
669 | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { |
670 | LiveInterval &SrcLI = LIS->getInterval(Reg: SrcReg); |
671 | |
672 | bool isLiveOut = false; |
673 | for (MachineBasicBlock *Succ : opBlock.successors()) { |
674 | SlotIndex startIdx = LIS->getMBBStartIdx(mbb: Succ); |
675 | VNInfo *VNI = SrcLI.getVNInfoAt(Idx: startIdx); |
676 | |
677 | // Definitions by other PHIs are not truly live-in for our purposes. |
678 | if (VNI && VNI->def != startIdx) { |
679 | isLiveOut = true; |
680 | break; |
681 | } |
682 | } |
683 | |
684 | if (!isLiveOut) { |
685 | MachineBasicBlock::iterator KillInst = opBlock.end(); |
686 | for (MachineBasicBlock::iterator Term = InsertPos; |
687 | Term != opBlock.end(); ++Term) { |
688 | if (Term->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
689 | KillInst = Term; |
690 | } |
691 | |
692 | if (KillInst == opBlock.end()) { |
693 | // No terminator uses the register. |
694 | |
695 | if (reusedIncoming || !IncomingReg) { |
696 | // We may have to rewind a bit if we didn't just insert a copy. |
697 | KillInst = InsertPos; |
698 | while (KillInst != opBlock.begin()) { |
699 | --KillInst; |
700 | if (KillInst->isDebugInstr()) |
701 | continue; |
702 | if (KillInst->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
703 | break; |
704 | } |
705 | } else { |
706 | // We just inserted this copy. |
707 | KillInst = std::prev(x: InsertPos); |
708 | } |
709 | } |
710 | assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && |
711 | "Cannot find kill instruction" ); |
712 | |
713 | SlotIndex LastUseIndex = LIS->getInstructionIndex(Instr: *KillInst); |
714 | SrcLI.removeSegment(Start: LastUseIndex.getRegSlot(), |
715 | End: LIS->getMBBEndIdx(mbb: &opBlock)); |
716 | for (auto &SR : SrcLI.subranges()) { |
717 | SR.removeSegment(Start: LastUseIndex.getRegSlot(), |
718 | End: LIS->getMBBEndIdx(mbb: &opBlock)); |
719 | } |
720 | } |
721 | } |
722 | } |
723 | } |
724 | |
725 | // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. |
726 | if (EliminateNow) { |
727 | if (LIS) |
728 | LIS->RemoveMachineInstrFromMaps(MI&: *MPhi); |
729 | MF.deleteMachineInstr(MI: MPhi); |
730 | } |
731 | } |
732 | |
733 | /// analyzePHINodes - Gather information about the PHI nodes in here. In |
734 | /// particular, we want to map the number of uses of a virtual register which is |
735 | /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
736 | /// used later to determine when the vreg is killed in the BB. |
737 | void PHIEliminationImpl::analyzePHINodes(const MachineFunction &MF) { |
738 | for (const auto &MBB : MF) { |
739 | for (const auto &BBI : MBB) { |
740 | if (!BBI.isPHI()) |
741 | break; |
742 | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { |
743 | if (!BBI.getOperand(i).isUndef()) { |
744 | ++VRegPHIUseCount[BBVRegPair( |
745 | BBI.getOperand(i: i + 1).getMBB()->getNumber(), |
746 | BBI.getOperand(i).getReg())]; |
747 | } |
748 | } |
749 | } |
750 | } |
751 | } |
752 | |
753 | bool PHIEliminationImpl::SplitPHIEdges( |
754 | MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, |
755 | std::vector<SparseBitVector<>> *LiveInSets) { |
756 | if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) |
757 | return false; // Quick exit for basic blocks without PHIs. |
758 | |
759 | const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(BB: &MBB) : nullptr; |
760 | bool = CurLoop && &MBB == CurLoop->getHeader(); |
761 | |
762 | bool Changed = false; |
763 | for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); |
764 | BBI != BBE && BBI->isPHI(); ++BBI) { |
765 | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
766 | Register Reg = BBI->getOperand(i).getReg(); |
767 | MachineBasicBlock *PreMBB = BBI->getOperand(i: i + 1).getMBB(); |
768 | // Is there a critical edge from PreMBB to MBB? |
769 | if (PreMBB->succ_size() == 1) |
770 | continue; |
771 | |
772 | // Avoid splitting backedges of loops. It would introduce small |
773 | // out-of-line blocks into the loop which is very bad for code placement. |
774 | if (PreMBB == &MBB && !SplitAllCriticalEdges) |
775 | continue; |
776 | const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(BB: PreMBB) : nullptr; |
777 | if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) |
778 | continue; |
779 | |
780 | // LV doesn't consider a phi use live-out, so isLiveOut only returns true |
781 | // when the source register is live-out for some other reason than a phi |
782 | // use. That means the copy we will insert in PreMBB won't be a kill, and |
783 | // there is a risk it may not be coalesced away. |
784 | // |
785 | // If the copy would be a kill, there is no need to split the edge. |
786 | bool ShouldSplit = isLiveOutPastPHIs(Reg, MBB: PreMBB); |
787 | if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) |
788 | continue; |
789 | if (ShouldSplit) { |
790 | LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " |
791 | << printMBBReference(*PreMBB) << " -> " |
792 | << printMBBReference(MBB) << ": " << *BBI); |
793 | } |
794 | |
795 | // If Reg is not live-in to MBB, it means it must be live-in to some |
796 | // other PreMBB successor, and we can avoid the interference by splitting |
797 | // the edge. |
798 | // |
799 | // If Reg *is* live-in to MBB, the interference is inevitable and a copy |
800 | // is likely to be left after coalescing. If we are looking at a loop |
801 | // exiting edge, split it so we won't insert code in the loop, otherwise |
802 | // don't bother. |
803 | ShouldSplit = ShouldSplit && !isLiveIn(Reg, MBB: &MBB); |
804 | |
805 | // Check for a loop exiting edge. |
806 | if (!ShouldSplit && CurLoop != PreLoop) { |
807 | LLVM_DEBUG({ |
808 | dbgs() << "Split wouldn't help, maybe avoid loop copies?\n" ; |
809 | if (PreLoop) |
810 | dbgs() << "PreLoop: " << *PreLoop; |
811 | if (CurLoop) |
812 | dbgs() << "CurLoop: " << *CurLoop; |
813 | }); |
814 | // This edge could be entering a loop, exiting a loop, or it could be |
815 | // both: Jumping directly form one loop to the header of a sibling |
816 | // loop. |
817 | // Split unless this edge is entering CurLoop from an outer loop. |
818 | ShouldSplit = PreLoop && !PreLoop->contains(L: CurLoop); |
819 | } |
820 | if (!ShouldSplit && !SplitAllCriticalEdges) |
821 | continue; |
822 | if (!(P ? PreMBB->SplitCriticalEdge(Succ: &MBB, P&: *P, LiveInSets) |
823 | : PreMBB->SplitCriticalEdge(Succ: &MBB, MFAM&: *MFAM, LiveInSets))) { |
824 | LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n" ); |
825 | continue; |
826 | } |
827 | Changed = true; |
828 | ++NumCriticalEdgesSplit; |
829 | } |
830 | } |
831 | return Changed; |
832 | } |
833 | |
834 | bool PHIEliminationImpl::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { |
835 | assert((LV || LIS) && |
836 | "isLiveIn() requires either LiveVariables or LiveIntervals" ); |
837 | if (LIS) |
838 | return LIS->isLiveInToMBB(LR: LIS->getInterval(Reg), mbb: MBB); |
839 | else |
840 | return LV->isLiveIn(Reg, MBB: *MBB); |
841 | } |
842 | |
843 | bool PHIEliminationImpl::isLiveOutPastPHIs(Register Reg, |
844 | const MachineBasicBlock *MBB) { |
845 | assert((LV || LIS) && |
846 | "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals" ); |
847 | // LiveVariables considers uses in PHIs to be in the predecessor basic block, |
848 | // so that a register used only in a PHI is not live out of the block. In |
849 | // contrast, LiveIntervals considers uses in PHIs to be on the edge rather |
850 | // than in the predecessor basic block, so that a register used only in a PHI |
851 | // is live out of the block. |
852 | if (LIS) { |
853 | const LiveInterval &LI = LIS->getInterval(Reg); |
854 | for (const MachineBasicBlock *SI : MBB->successors()) |
855 | if (LI.liveAt(index: LIS->getMBBStartIdx(mbb: SI))) |
856 | return true; |
857 | return false; |
858 | } else { |
859 | return LV->isLiveOut(Reg, MBB: *MBB); |
860 | } |
861 | } |
862 | |