1 | //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file This register allocator allocates registers to a basic block at a |
10 | /// time, attempting to keep values in registers and reusing registers as |
11 | /// appropriate. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/CodeGen/RegAllocFast.h" |
16 | #include "llvm/ADT/ArrayRef.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/IndexedMap.h" |
19 | #include "llvm/ADT/MapVector.h" |
20 | #include "llvm/ADT/SmallSet.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/SparseSet.h" |
23 | #include "llvm/ADT/Statistic.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineFrameInfo.h" |
26 | #include "llvm/CodeGen/MachineFunction.h" |
27 | #include "llvm/CodeGen/MachineFunctionPass.h" |
28 | #include "llvm/CodeGen/MachineInstr.h" |
29 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
30 | #include "llvm/CodeGen/MachineOperand.h" |
31 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
32 | #include "llvm/CodeGen/RegAllocCommon.h" |
33 | #include "llvm/CodeGen/RegAllocRegistry.h" |
34 | #include "llvm/CodeGen/RegisterClassInfo.h" |
35 | #include "llvm/CodeGen/TargetInstrInfo.h" |
36 | #include "llvm/CodeGen/TargetOpcodes.h" |
37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/InitializePasses.h" |
40 | #include "llvm/MC/MCRegisterInfo.h" |
41 | #include "llvm/Pass.h" |
42 | #include "llvm/Support/Debug.h" |
43 | #include "llvm/Support/ErrorHandling.h" |
44 | #include "llvm/Support/raw_ostream.h" |
45 | #include <cassert> |
46 | #include <tuple> |
47 | #include <vector> |
48 | |
49 | using namespace llvm; |
50 | |
51 | #define DEBUG_TYPE "regalloc" |
52 | |
53 | STATISTIC(NumStores, "Number of stores added" ); |
54 | STATISTIC(NumLoads, "Number of loads added" ); |
55 | STATISTIC(NumCoalesced, "Number of copies coalesced" ); |
56 | |
57 | // FIXME: Remove this switch when all testcases are fixed! |
58 | static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs" , |
59 | cl::Hidden); |
60 | |
61 | static RegisterRegAlloc fastRegAlloc("fast" , "fast register allocator" , |
62 | createFastRegisterAllocator); |
63 | |
64 | namespace { |
65 | |
66 | /// Assign ascending index for instructions in machine basic block. The index |
67 | /// can be used to determine dominance between instructions in same MBB. |
68 | class InstrPosIndexes { |
69 | public: |
70 | void unsetInitialized() { IsInitialized = false; } |
71 | |
72 | void init(const MachineBasicBlock &MBB) { |
73 | CurMBB = &MBB; |
74 | Instr2PosIndex.clear(); |
75 | uint64_t LastIndex = 0; |
76 | for (const MachineInstr &MI : MBB) { |
77 | LastIndex += InstrDist; |
78 | Instr2PosIndex[&MI] = LastIndex; |
79 | } |
80 | } |
81 | |
82 | /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign |
83 | /// index without affecting existing instruction's index. Return true if all |
84 | /// instructions index has been reassigned. |
85 | bool getIndex(const MachineInstr &MI, uint64_t &Index) { |
86 | if (!IsInitialized) { |
87 | init(MBB: *MI.getParent()); |
88 | IsInitialized = true; |
89 | Index = Instr2PosIndex.at(Val: &MI); |
90 | return true; |
91 | } |
92 | |
93 | assert(MI.getParent() == CurMBB && "MI is not in CurMBB" ); |
94 | auto It = Instr2PosIndex.find(Val: &MI); |
95 | if (It != Instr2PosIndex.end()) { |
96 | Index = It->second; |
97 | return false; |
98 | } |
99 | |
100 | // Distance is the number of consecutive unassigned instructions including |
101 | // MI. Start is the first instruction of them. End is the next of last |
102 | // instruction of them. |
103 | // e.g. |
104 | // |Instruction| A | B | C | MI | D | E | |
105 | // | Index | 1024 | | | | | 2048 | |
106 | // |
107 | // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End |
108 | // is E. |
109 | unsigned Distance = 1; |
110 | MachineBasicBlock::const_iterator Start = MI.getIterator(), |
111 | End = std::next(x: Start); |
112 | while (Start != CurMBB->begin() && |
113 | !Instr2PosIndex.count(Val: &*std::prev(x: Start))) { |
114 | --Start; |
115 | ++Distance; |
116 | } |
117 | while (End != CurMBB->end() && !Instr2PosIndex.count(Val: &*(End))) { |
118 | ++End; |
119 | ++Distance; |
120 | } |
121 | |
122 | // LastIndex is initialized to last used index prior to MI or zero. |
123 | // In previous example, LastIndex is 1024, EndIndex is 2048; |
124 | uint64_t LastIndex = |
125 | Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(Val: &*std::prev(x: Start)); |
126 | uint64_t Step; |
127 | if (End == CurMBB->end()) |
128 | Step = static_cast<uint64_t>(InstrDist); |
129 | else { |
130 | // No instruction uses index zero. |
131 | uint64_t EndIndex = Instr2PosIndex.at(Val: &*End); |
132 | assert(EndIndex > LastIndex && "Index must be ascending order" ); |
133 | unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; |
134 | // We want index gap between two adjacent MI is as same as possible. Given |
135 | // total A available indexes, D is number of consecutive unassigned |
136 | // instructions, S is the step. |
137 | // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| |
138 | // There're S-1 available indexes between unassigned instruction and its |
139 | // predecessor. There're A-S*D available indexes between the last |
140 | // unassigned instruction and its successor. |
141 | // Ideally, we want |
142 | // S-1 = A-S*D |
143 | // then |
144 | // S = (A+1)/(D+1) |
145 | // An valid S must be integer greater than zero, so |
146 | // S <= (A+1)/(D+1) |
147 | // => |
148 | // A-S*D >= 0 |
149 | // That means we can safely use (A+1)/(D+1) as step. |
150 | // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, |
151 | // 1636, 1840. |
152 | Step = (NumAvailableIndexes + 1) / (Distance + 1); |
153 | } |
154 | |
155 | // Reassign index for all instructions if number of new inserted |
156 | // instructions exceed slot or all instructions are new. |
157 | if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { |
158 | init(MBB: *CurMBB); |
159 | Index = Instr2PosIndex.at(Val: &MI); |
160 | return true; |
161 | } |
162 | |
163 | for (auto I = Start; I != End; ++I) { |
164 | LastIndex += Step; |
165 | Instr2PosIndex[&*I] = LastIndex; |
166 | } |
167 | Index = Instr2PosIndex.at(Val: &MI); |
168 | return false; |
169 | } |
170 | |
171 | private: |
172 | bool IsInitialized = false; |
173 | enum { InstrDist = 1024 }; |
174 | const MachineBasicBlock *CurMBB = nullptr; |
175 | DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; |
176 | }; |
177 | |
178 | class RegAllocFastImpl { |
179 | public: |
180 | RegAllocFastImpl(const RegAllocFilterFunc F = nullptr, |
181 | bool ClearVirtRegs_ = true) |
182 | : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1), |
183 | ClearVirtRegs(ClearVirtRegs_) {} |
184 | |
185 | private: |
186 | MachineFrameInfo *MFI = nullptr; |
187 | MachineRegisterInfo *MRI = nullptr; |
188 | const TargetRegisterInfo *TRI = nullptr; |
189 | const TargetInstrInfo *TII = nullptr; |
190 | RegisterClassInfo RegClassInfo; |
191 | const RegAllocFilterFunc ShouldAllocateRegisterImpl; |
192 | |
193 | /// Basic block currently being allocated. |
194 | MachineBasicBlock *MBB = nullptr; |
195 | |
196 | /// Maps virtual regs to the frame index where these values are spilled. |
197 | IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; |
198 | |
199 | /// Everything we know about a live virtual register. |
200 | struct LiveReg { |
201 | MachineInstr *LastUse = nullptr; ///< Last instr to use reg. |
202 | Register VirtReg; ///< Virtual register number. |
203 | MCPhysReg PhysReg = 0; ///< Currently held here. |
204 | bool LiveOut = false; ///< Register is possibly live out. |
205 | bool Reloaded = false; ///< Register was reloaded. |
206 | bool Error = false; ///< Could not allocate. |
207 | |
208 | explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} |
209 | |
210 | unsigned getSparseSetIndex() const { |
211 | return Register::virtReg2Index(Reg: VirtReg); |
212 | } |
213 | }; |
214 | |
215 | using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; |
216 | /// This map contains entries for each virtual register that is currently |
217 | /// available in a physical register. |
218 | LiveRegMap LiveVirtRegs; |
219 | |
220 | /// Stores assigned virtual registers present in the bundle MI. |
221 | DenseMap<Register, MCPhysReg> BundleVirtRegsMap; |
222 | |
223 | DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; |
224 | /// List of DBG_VALUE that we encountered without the vreg being assigned |
225 | /// because they were placed after the last use of the vreg. |
226 | DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; |
227 | |
228 | /// Has a bit set for every virtual register for which it was determined |
229 | /// that it is alive across blocks. |
230 | BitVector MayLiveAcrossBlocks; |
231 | |
232 | /// State of a register unit. |
233 | enum RegUnitState { |
234 | /// A free register is not currently in use and can be allocated |
235 | /// immediately without checking aliases. |
236 | regFree, |
237 | |
238 | /// A pre-assigned register has been assigned before register allocation |
239 | /// (e.g., setting up a call parameter). |
240 | regPreAssigned, |
241 | |
242 | /// Used temporarily in reloadAtBegin() to mark register units that are |
243 | /// live-in to the basic block. |
244 | regLiveIn, |
245 | |
246 | /// A register state may also be a virtual register number, indication |
247 | /// that the physical register is currently allocated to a virtual |
248 | /// register. In that case, LiveVirtRegs contains the inverse mapping. |
249 | }; |
250 | |
251 | /// Maps each physical register to a RegUnitState enum or virtual register. |
252 | std::vector<unsigned> RegUnitStates; |
253 | |
254 | SmallVector<MachineInstr *, 32> Coalesced; |
255 | |
256 | /// Track register units that are used in the current instruction, and so |
257 | /// cannot be allocated. |
258 | /// |
259 | /// In the first phase (tied defs/early clobber), we consider also physical |
260 | /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely |
261 | /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To |
262 | /// avoid resetting the entire vector after every instruction, we track the |
263 | /// instruction "generation" in the remaining 31 bits -- this means, that if |
264 | /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is |
265 | /// never zero and always incremented by two. |
266 | /// |
267 | /// Don't allocate inline storage: the number of register units is typically |
268 | /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000). |
269 | uint32_t InstrGen; |
270 | SmallVector<unsigned, 0> UsedInInstr; |
271 | |
272 | SmallVector<unsigned, 8> DefOperandIndexes; |
273 | // Register masks attached to the current instruction. |
274 | SmallVector<const uint32_t *> RegMasks; |
275 | |
276 | // Assign index for each instruction to quickly determine dominance. |
277 | InstrPosIndexes PosIndexes; |
278 | |
279 | void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); |
280 | bool isPhysRegFree(MCPhysReg PhysReg) const; |
281 | |
282 | /// Mark a physreg as used in this instruction. |
283 | void markRegUsedInInstr(MCPhysReg PhysReg) { |
284 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
285 | UsedInInstr[Unit] = InstrGen | 1; |
286 | } |
287 | |
288 | // Check if physreg is clobbered by instruction's regmask(s). |
289 | bool isClobberedByRegMasks(MCPhysReg PhysReg) const { |
290 | return llvm::any_of(Range: RegMasks, P: [PhysReg](const uint32_t *Mask) { |
291 | return MachineOperand::clobbersPhysReg(RegMask: Mask, PhysReg); |
292 | }); |
293 | } |
294 | |
295 | /// Check if a physreg or any of its aliases are used in this instruction. |
296 | bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { |
297 | if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) |
298 | return true; |
299 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
300 | if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses)) |
301 | return true; |
302 | return false; |
303 | } |
304 | |
305 | /// Mark physical register as being used in a register use operand. |
306 | /// This is only used by the special livethrough handling code. |
307 | void markPhysRegUsedInInstr(MCPhysReg PhysReg) { |
308 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
309 | assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?" ); |
310 | UsedInInstr[Unit] = InstrGen; |
311 | } |
312 | } |
313 | |
314 | /// Remove mark of physical register being used in the instruction. |
315 | void unmarkRegUsedInInstr(MCPhysReg PhysReg) { |
316 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
317 | UsedInInstr[Unit] = 0; |
318 | } |
319 | |
320 | enum : unsigned { |
321 | spillClean = 50, |
322 | spillDirty = 100, |
323 | spillPrefBonus = 20, |
324 | spillImpossible = ~0u |
325 | }; |
326 | |
327 | public: |
328 | bool ClearVirtRegs; |
329 | |
330 | bool runOnMachineFunction(MachineFunction &MF); |
331 | |
332 | private: |
333 | void allocateBasicBlock(MachineBasicBlock &MBB); |
334 | |
335 | void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts, |
336 | Register Reg) const; |
337 | |
338 | void findAndSortDefOperandIndexes(const MachineInstr &MI); |
339 | |
340 | void allocateInstruction(MachineInstr &MI); |
341 | void handleDebugValue(MachineInstr &MI); |
342 | void handleBundle(MachineInstr &MI); |
343 | |
344 | bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); |
345 | bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); |
346 | bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); |
347 | void freePhysReg(MCPhysReg PhysReg); |
348 | |
349 | unsigned calcSpillCost(MCPhysReg PhysReg) const; |
350 | |
351 | LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { |
352 | return LiveVirtRegs.find(Key: Register::virtReg2Index(Reg: VirtReg)); |
353 | } |
354 | |
355 | LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { |
356 | return LiveVirtRegs.find(Key: Register::virtReg2Index(Reg: VirtReg)); |
357 | } |
358 | |
359 | void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); |
360 | void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, |
361 | bool LookAtPhysRegUses = false); |
362 | void allocVirtRegUndef(MachineOperand &MO); |
363 | void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, |
364 | MCPhysReg Reg); |
365 | bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, |
366 | Register VirtReg); |
367 | bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, |
368 | bool LookAtPhysRegUses = false); |
369 | bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); |
370 | |
371 | MachineBasicBlock::iterator |
372 | getMBBBeginInsertionPoint(MachineBasicBlock &MBB, |
373 | SmallSet<Register, 2> &PrologLiveIns) const; |
374 | |
375 | void reloadAtBegin(MachineBasicBlock &MBB); |
376 | bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); |
377 | |
378 | Register traceCopies(Register VirtReg) const; |
379 | Register traceCopyChain(Register Reg) const; |
380 | |
381 | bool shouldAllocateRegister(const Register Reg) const; |
382 | int getStackSpaceFor(Register VirtReg); |
383 | void spill(MachineBasicBlock::iterator Before, Register VirtReg, |
384 | MCPhysReg AssignedReg, bool Kill, bool LiveOut); |
385 | void reload(MachineBasicBlock::iterator Before, Register VirtReg, |
386 | MCPhysReg PhysReg); |
387 | |
388 | bool mayLiveOut(Register VirtReg); |
389 | bool mayLiveIn(Register VirtReg); |
390 | |
391 | void dumpState() const; |
392 | }; |
393 | |
394 | class RegAllocFast : public MachineFunctionPass { |
395 | RegAllocFastImpl Impl; |
396 | |
397 | public: |
398 | static char ID; |
399 | |
400 | RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true) |
401 | : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} |
402 | |
403 | bool runOnMachineFunction(MachineFunction &MF) override { |
404 | return Impl.runOnMachineFunction(MF); |
405 | } |
406 | |
407 | StringRef getPassName() const override { return "Fast Register Allocator" ; } |
408 | |
409 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
410 | AU.setPreservesCFG(); |
411 | MachineFunctionPass::getAnalysisUsage(AU); |
412 | } |
413 | |
414 | MachineFunctionProperties getRequiredProperties() const override { |
415 | return MachineFunctionProperties().set( |
416 | MachineFunctionProperties::Property::NoPHIs); |
417 | } |
418 | |
419 | MachineFunctionProperties getSetProperties() const override { |
420 | if (Impl.ClearVirtRegs) { |
421 | return MachineFunctionProperties().set( |
422 | MachineFunctionProperties::Property::NoVRegs); |
423 | } |
424 | |
425 | return MachineFunctionProperties(); |
426 | } |
427 | |
428 | MachineFunctionProperties getClearedProperties() const override { |
429 | return MachineFunctionProperties().set( |
430 | MachineFunctionProperties::Property::IsSSA); |
431 | } |
432 | }; |
433 | |
434 | } // end anonymous namespace |
435 | |
436 | char RegAllocFast::ID = 0; |
437 | |
438 | INITIALIZE_PASS(RegAllocFast, "regallocfast" , "Fast Register Allocator" , false, |
439 | false) |
440 | |
441 | bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { |
442 | assert(Reg.isVirtual()); |
443 | if (!ShouldAllocateRegisterImpl) |
444 | return true; |
445 | |
446 | return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg); |
447 | } |
448 | |
449 | void RegAllocFastImpl::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { |
450 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) |
451 | RegUnitStates[Unit] = NewState; |
452 | } |
453 | |
454 | bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const { |
455 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
456 | if (RegUnitStates[Unit] != regFree) |
457 | return false; |
458 | } |
459 | return true; |
460 | } |
461 | |
462 | /// This allocates space for the specified virtual register to be held on the |
463 | /// stack. |
464 | int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { |
465 | // Find the location Reg would belong... |
466 | int SS = StackSlotForVirtReg[VirtReg]; |
467 | // Already has space allocated? |
468 | if (SS != -1) |
469 | return SS; |
470 | |
471 | // Allocate a new stack object for this spill location... |
472 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
473 | unsigned Size = TRI->getSpillSize(RC); |
474 | Align Alignment = TRI->getSpillAlign(RC); |
475 | int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); |
476 | |
477 | // Assign the slot. |
478 | StackSlotForVirtReg[VirtReg] = FrameIdx; |
479 | return FrameIdx; |
480 | } |
481 | |
482 | static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, |
483 | const MachineInstr &B) { |
484 | uint64_t IndexA, IndexB; |
485 | PosIndexes.getIndex(MI: A, Index&: IndexA); |
486 | if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) |
487 | PosIndexes.getIndex(MI: A, Index&: IndexA); |
488 | return IndexA < IndexB; |
489 | } |
490 | |
491 | /// Returns false if \p VirtReg is known to not live out of the current block. |
492 | bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { |
493 | if (MayLiveAcrossBlocks.test(Idx: Register::virtReg2Index(Reg: VirtReg))) { |
494 | // Cannot be live-out if there are no successors. |
495 | return !MBB->succ_empty(); |
496 | } |
497 | |
498 | const MachineInstr *SelfLoopDef = nullptr; |
499 | |
500 | // If this block loops back to itself, it is necessary to check whether the |
501 | // use comes after the def. |
502 | if (MBB->isSuccessor(MBB)) { |
503 | // Find the first def in the self loop MBB. |
504 | for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) { |
505 | if (DefInst.getParent() != MBB) { |
506 | MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg)); |
507 | return true; |
508 | } else { |
509 | if (!SelfLoopDef || dominates(PosIndexes, A: DefInst, B: *SelfLoopDef)) |
510 | SelfLoopDef = &DefInst; |
511 | } |
512 | } |
513 | if (!SelfLoopDef) { |
514 | MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg)); |
515 | return true; |
516 | } |
517 | } |
518 | |
519 | // See if the first \p Limit uses of the register are all in the current |
520 | // block. |
521 | static const unsigned Limit = 8; |
522 | unsigned C = 0; |
523 | for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg: VirtReg)) { |
524 | if (UseInst.getParent() != MBB || ++C >= Limit) { |
525 | MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg)); |
526 | // Cannot be live-out if there are no successors. |
527 | return !MBB->succ_empty(); |
528 | } |
529 | |
530 | if (SelfLoopDef) { |
531 | // Try to handle some simple cases to avoid spilling and reloading every |
532 | // value inside a self looping block. |
533 | if (SelfLoopDef == &UseInst || |
534 | !dominates(PosIndexes, A: *SelfLoopDef, B: UseInst)) { |
535 | MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg)); |
536 | return true; |
537 | } |
538 | } |
539 | } |
540 | |
541 | return false; |
542 | } |
543 | |
544 | /// Returns false if \p VirtReg is known to not be live into the current block. |
545 | bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { |
546 | if (MayLiveAcrossBlocks.test(Idx: Register::virtReg2Index(Reg: VirtReg))) |
547 | return !MBB->pred_empty(); |
548 | |
549 | // See if the first \p Limit def of the register are all in the current block. |
550 | static const unsigned Limit = 8; |
551 | unsigned C = 0; |
552 | for (const MachineInstr &DefInst : MRI->def_instructions(Reg: VirtReg)) { |
553 | if (DefInst.getParent() != MBB || ++C >= Limit) { |
554 | MayLiveAcrossBlocks.set(Register::virtReg2Index(Reg: VirtReg)); |
555 | return !MBB->pred_empty(); |
556 | } |
557 | } |
558 | |
559 | return false; |
560 | } |
561 | |
562 | /// Insert spill instruction for \p AssignedReg before \p Before. Update |
563 | /// DBG_VALUEs with \p VirtReg operands with the stack slot. |
564 | void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, |
565 | Register VirtReg, MCPhysReg AssignedReg, bool Kill, |
566 | bool LiveOut) { |
567 | LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " |
568 | << printReg(AssignedReg, TRI)); |
569 | int FI = getStackSpaceFor(VirtReg); |
570 | LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); |
571 | |
572 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
573 | TII->storeRegToStackSlot(MBB&: *MBB, MI: Before, SrcReg: AssignedReg, isKill: Kill, FrameIndex: FI, RC: &RC, TRI, |
574 | VReg: VirtReg); |
575 | ++NumStores; |
576 | |
577 | MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); |
578 | |
579 | // When we spill a virtual register, we will have spill instructions behind |
580 | // every definition of it, meaning we can switch all the DBG_VALUEs over |
581 | // to just reference the stack slot. |
582 | SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; |
583 | SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> |
584 | SpilledOperandsMap; |
585 | for (MachineOperand *MO : LRIDbgOperands) |
586 | SpilledOperandsMap[MO->getParent()].push_back(Elt: MO); |
587 | for (auto MISpilledOperands : SpilledOperandsMap) { |
588 | MachineInstr &DBG = *MISpilledOperands.first; |
589 | // We don't have enough support for tracking operands of DBG_VALUE_LISTs. |
590 | if (DBG.isDebugValueList()) |
591 | continue; |
592 | MachineInstr *NewDV = buildDbgValueForSpill( |
593 | BB&: *MBB, I: Before, Orig: *MISpilledOperands.first, FrameIndex: FI, SpilledOperands&: MISpilledOperands.second); |
594 | assert(NewDV->getParent() == MBB && "dangling parent pointer" ); |
595 | (void)NewDV; |
596 | LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); |
597 | |
598 | if (LiveOut) { |
599 | // We need to insert a DBG_VALUE at the end of the block if the spill slot |
600 | // is live out, but there is another use of the value after the |
601 | // spill. This will allow LiveDebugValues to see the correct live out |
602 | // value to propagate to the successors. |
603 | MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(Orig: NewDV); |
604 | MBB->insert(I: FirstTerm, MI: ClonedDV); |
605 | LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n" ); |
606 | } |
607 | |
608 | // Rewrite unassigned dbg_values to use the stack slot. |
609 | // TODO We can potentially do this for list debug values as well if we know |
610 | // how the dbg_values are getting unassigned. |
611 | if (DBG.isNonListDebugValue()) { |
612 | MachineOperand &MO = DBG.getDebugOperand(Index: 0); |
613 | if (MO.isReg() && MO.getReg() == 0) { |
614 | updateDbgValueForSpill(Orig&: DBG, FrameIndex: FI, Reg: 0); |
615 | } |
616 | } |
617 | } |
618 | // Now this register is spilled there is should not be any DBG_VALUE |
619 | // pointing to this register because they are all pointing to spilled value |
620 | // now. |
621 | LRIDbgOperands.clear(); |
622 | } |
623 | |
624 | /// Insert reload instruction for \p PhysReg before \p Before. |
625 | void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, |
626 | Register VirtReg, MCPhysReg PhysReg) { |
627 | LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " |
628 | << printReg(PhysReg, TRI) << '\n'); |
629 | int FI = getStackSpaceFor(VirtReg); |
630 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
631 | TII->loadRegFromStackSlot(MBB&: *MBB, MI: Before, DestReg: PhysReg, FrameIndex: FI, RC: &RC, TRI, VReg: VirtReg); |
632 | ++NumLoads; |
633 | } |
634 | |
635 | /// Get basic block begin insertion point. |
636 | /// This is not just MBB.begin() because surprisingly we have EH_LABEL |
637 | /// instructions marking the begin of a basic block. This means we must insert |
638 | /// new instructions after such labels... |
639 | MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( |
640 | MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { |
641 | MachineBasicBlock::iterator I = MBB.begin(); |
642 | while (I != MBB.end()) { |
643 | if (I->isLabel()) { |
644 | ++I; |
645 | continue; |
646 | } |
647 | |
648 | // Most reloads should be inserted after prolog instructions. |
649 | if (!TII->isBasicBlockPrologue(MI: *I)) |
650 | break; |
651 | |
652 | // However if a prolog instruction reads a register that needs to be |
653 | // reloaded, the reload should be inserted before the prolog. |
654 | for (MachineOperand &MO : I->operands()) { |
655 | if (MO.isReg()) |
656 | PrologLiveIns.insert(V: MO.getReg()); |
657 | } |
658 | |
659 | ++I; |
660 | } |
661 | |
662 | return I; |
663 | } |
664 | |
665 | /// Reload all currently assigned virtual registers. |
666 | void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { |
667 | if (LiveVirtRegs.empty()) |
668 | return; |
669 | |
670 | for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
671 | MCPhysReg Reg = P.PhysReg; |
672 | // Set state to live-in. This possibly overrides mappings to virtual |
673 | // registers but we don't care anymore at this point. |
674 | setPhysRegState(PhysReg: Reg, NewState: regLiveIn); |
675 | } |
676 | |
677 | SmallSet<Register, 2> PrologLiveIns; |
678 | |
679 | // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order |
680 | // of spilling here is deterministic, if arbitrary. |
681 | MachineBasicBlock::iterator InsertBefore = |
682 | getMBBBeginInsertionPoint(MBB, PrologLiveIns); |
683 | for (const LiveReg &LR : LiveVirtRegs) { |
684 | MCPhysReg PhysReg = LR.PhysReg; |
685 | if (PhysReg == 0) |
686 | continue; |
687 | |
688 | MCRegister FirstUnit = *TRI->regunits(Reg: PhysReg).begin(); |
689 | if (RegUnitStates[FirstUnit] == regLiveIn) |
690 | continue; |
691 | |
692 | assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && |
693 | "no reload in start block. Missing vreg def?" ); |
694 | |
695 | if (PrologLiveIns.count(V: PhysReg)) { |
696 | // FIXME: Theoretically this should use an insert point skipping labels |
697 | // but I'm not sure how labels should interact with prolog instruction |
698 | // that need reloads. |
699 | reload(Before: MBB.begin(), VirtReg: LR.VirtReg, PhysReg); |
700 | } else |
701 | reload(Before: InsertBefore, VirtReg: LR.VirtReg, PhysReg); |
702 | } |
703 | LiveVirtRegs.clear(); |
704 | } |
705 | |
706 | /// Handle the direct use of a physical register. Check that the register is |
707 | /// not used by a virtreg. Kill the physreg, marking it free. This may add |
708 | /// implicit kills to MO->getParent() and invalidate MO. |
709 | bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { |
710 | assert(Register::isPhysicalRegister(Reg) && "expected physreg" ); |
711 | bool displacedAny = displacePhysReg(MI, PhysReg: Reg); |
712 | setPhysRegState(PhysReg: Reg, NewState: regPreAssigned); |
713 | markRegUsedInInstr(PhysReg: Reg); |
714 | return displacedAny; |
715 | } |
716 | |
717 | bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { |
718 | bool displacedAny = displacePhysReg(MI, PhysReg: Reg); |
719 | setPhysRegState(PhysReg: Reg, NewState: regPreAssigned); |
720 | return displacedAny; |
721 | } |
722 | |
723 | /// Mark PhysReg as reserved or free after spilling any virtregs. This is very |
724 | /// similar to defineVirtReg except the physreg is reserved instead of |
725 | /// allocated. |
726 | bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { |
727 | bool displacedAny = false; |
728 | |
729 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
730 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
731 | default: { |
732 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
733 | assert(LRI != LiveVirtRegs.end() && "datastructures in sync" ); |
734 | MachineBasicBlock::iterator ReloadBefore = |
735 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
736 | reload(Before: ReloadBefore, VirtReg, PhysReg: LRI->PhysReg); |
737 | |
738 | setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree); |
739 | LRI->PhysReg = 0; |
740 | LRI->Reloaded = true; |
741 | displacedAny = true; |
742 | break; |
743 | } |
744 | case regPreAssigned: |
745 | RegUnitStates[Unit] = regFree; |
746 | displacedAny = true; |
747 | break; |
748 | case regFree: |
749 | break; |
750 | } |
751 | } |
752 | return displacedAny; |
753 | } |
754 | |
755 | void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) { |
756 | LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); |
757 | |
758 | MCRegister FirstUnit = *TRI->regunits(Reg: PhysReg).begin(); |
759 | switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { |
760 | case regFree: |
761 | LLVM_DEBUG(dbgs() << '\n'); |
762 | return; |
763 | case regPreAssigned: |
764 | LLVM_DEBUG(dbgs() << '\n'); |
765 | setPhysRegState(PhysReg, NewState: regFree); |
766 | return; |
767 | default: { |
768 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
769 | assert(LRI != LiveVirtRegs.end()); |
770 | LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); |
771 | setPhysRegState(PhysReg: LRI->PhysReg, NewState: regFree); |
772 | LRI->PhysReg = 0; |
773 | } |
774 | return; |
775 | } |
776 | } |
777 | |
778 | /// Return the cost of spilling clearing out PhysReg and aliases so it is free |
779 | /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases |
780 | /// disabled - it can be allocated directly. |
781 | /// \returns spillImpossible when PhysReg or an alias can't be spilled. |
782 | unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { |
783 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
784 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
785 | case regFree: |
786 | break; |
787 | case regPreAssigned: |
788 | LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " |
789 | << printReg(PhysReg, TRI) << '\n'); |
790 | return spillImpossible; |
791 | default: { |
792 | bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || |
793 | findLiveVirtReg(VirtReg)->LiveOut; |
794 | return SureSpill ? spillClean : spillDirty; |
795 | } |
796 | } |
797 | } |
798 | return 0; |
799 | } |
800 | |
801 | void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, |
802 | Register VirtReg, |
803 | MCPhysReg Reg) { |
804 | auto UDBGValIter = DanglingDbgValues.find(Val: VirtReg); |
805 | if (UDBGValIter == DanglingDbgValues.end()) |
806 | return; |
807 | |
808 | SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; |
809 | for (MachineInstr *DbgValue : Dangling) { |
810 | assert(DbgValue->isDebugValue()); |
811 | if (!DbgValue->hasDebugOperandForReg(Reg: VirtReg)) |
812 | continue; |
813 | |
814 | // Test whether the physreg survives from the definition to the DBG_VALUE. |
815 | MCPhysReg SetToReg = Reg; |
816 | unsigned Limit = 20; |
817 | for (MachineBasicBlock::iterator I = std::next(x: Definition.getIterator()), |
818 | E = DbgValue->getIterator(); |
819 | I != E; ++I) { |
820 | if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { |
821 | LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
822 | << '\n'); |
823 | SetToReg = 0; |
824 | break; |
825 | } |
826 | } |
827 | for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(Reg: VirtReg)) { |
828 | MO.setReg(SetToReg); |
829 | if (SetToReg != 0) |
830 | MO.setIsRenamable(); |
831 | } |
832 | } |
833 | Dangling.clear(); |
834 | } |
835 | |
836 | /// This method updates local state so that we know that PhysReg is the |
837 | /// proper container for VirtReg now. The physical register must not be used |
838 | /// for anything else when this is called. |
839 | void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, |
840 | MCPhysReg PhysReg) { |
841 | Register VirtReg = LR.VirtReg; |
842 | LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " |
843 | << printReg(PhysReg, TRI) << '\n'); |
844 | assert(LR.PhysReg == 0 && "Already assigned a physreg" ); |
845 | assert(PhysReg != 0 && "Trying to assign no register" ); |
846 | LR.PhysReg = PhysReg; |
847 | setPhysRegState(PhysReg, NewState: VirtReg); |
848 | |
849 | assignDanglingDebugValues(Definition&: AtMI, VirtReg, Reg: PhysReg); |
850 | } |
851 | |
852 | static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } |
853 | |
854 | Register RegAllocFastImpl::traceCopyChain(Register Reg) const { |
855 | static const unsigned ChainLengthLimit = 3; |
856 | unsigned C = 0; |
857 | do { |
858 | if (Reg.isPhysical()) |
859 | return Reg; |
860 | assert(Reg.isVirtual()); |
861 | |
862 | MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); |
863 | if (!VRegDef || !isCoalescable(MI: *VRegDef)) |
864 | return 0; |
865 | Reg = VRegDef->getOperand(i: 1).getReg(); |
866 | } while (++C <= ChainLengthLimit); |
867 | return 0; |
868 | } |
869 | |
870 | /// Check if any of \p VirtReg's definitions is a copy. If it is follow the |
871 | /// chain of copies to check whether we reach a physical register we can |
872 | /// coalesce with. |
873 | Register RegAllocFastImpl::traceCopies(Register VirtReg) const { |
874 | static const unsigned DefLimit = 3; |
875 | unsigned C = 0; |
876 | for (const MachineInstr &MI : MRI->def_instructions(Reg: VirtReg)) { |
877 | if (isCoalescable(MI)) { |
878 | Register Reg = MI.getOperand(i: 1).getReg(); |
879 | Reg = traceCopyChain(Reg); |
880 | if (Reg.isValid()) |
881 | return Reg; |
882 | } |
883 | |
884 | if (++C >= DefLimit) |
885 | break; |
886 | } |
887 | return Register(); |
888 | } |
889 | |
890 | /// Allocates a physical register for VirtReg. |
891 | void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, |
892 | Register Hint0, bool LookAtPhysRegUses) { |
893 | const Register VirtReg = LR.VirtReg; |
894 | assert(LR.PhysReg == 0); |
895 | |
896 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
897 | LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) |
898 | << " in class " << TRI->getRegClassName(&RC) |
899 | << " with hint " << printReg(Hint0, TRI) << '\n'); |
900 | |
901 | // Take hint when possible. |
902 | if (Hint0.isPhysical() && MRI->isAllocatable(PhysReg: Hint0) && RC.contains(Reg: Hint0) && |
903 | !isRegUsedInInstr(PhysReg: Hint0, LookAtPhysRegUses)) { |
904 | // Take hint if the register is currently free. |
905 | if (isPhysRegFree(PhysReg: Hint0)) { |
906 | LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) |
907 | << '\n'); |
908 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint0); |
909 | return; |
910 | } else { |
911 | LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) |
912 | << " occupied\n" ); |
913 | } |
914 | } else { |
915 | Hint0 = Register(); |
916 | } |
917 | |
918 | // Try other hint. |
919 | Register Hint1 = traceCopies(VirtReg); |
920 | if (Hint1.isPhysical() && MRI->isAllocatable(PhysReg: Hint1) && RC.contains(Reg: Hint1) && |
921 | !isRegUsedInInstr(PhysReg: Hint1, LookAtPhysRegUses)) { |
922 | // Take hint if the register is currently free. |
923 | if (isPhysRegFree(PhysReg: Hint1)) { |
924 | LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) |
925 | << '\n'); |
926 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: Hint1); |
927 | return; |
928 | } else { |
929 | LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) |
930 | << " occupied\n" ); |
931 | } |
932 | } else { |
933 | Hint1 = Register(); |
934 | } |
935 | |
936 | MCPhysReg BestReg = 0; |
937 | unsigned BestCost = spillImpossible; |
938 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
939 | for (MCPhysReg PhysReg : AllocationOrder) { |
940 | LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); |
941 | if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { |
942 | LLVM_DEBUG(dbgs() << "already used in instr.\n" ); |
943 | continue; |
944 | } |
945 | |
946 | unsigned Cost = calcSpillCost(PhysReg); |
947 | LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); |
948 | // Immediate take a register with cost 0. |
949 | if (Cost == 0) { |
950 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg); |
951 | return; |
952 | } |
953 | |
954 | if (PhysReg == Hint0 || PhysReg == Hint1) |
955 | Cost -= spillPrefBonus; |
956 | |
957 | if (Cost < BestCost) { |
958 | BestReg = PhysReg; |
959 | BestCost = Cost; |
960 | } |
961 | } |
962 | |
963 | if (!BestReg) { |
964 | // Nothing we can do: Report an error and keep going with an invalid |
965 | // allocation. |
966 | if (MI.isInlineAsm()) |
967 | MI.emitError(Msg: "inline assembly requires more registers than available" ); |
968 | else |
969 | MI.emitError(Msg: "ran out of registers during register allocation" ); |
970 | |
971 | LR.Error = true; |
972 | LR.PhysReg = 0; |
973 | return; |
974 | } |
975 | |
976 | displacePhysReg(MI, PhysReg: BestReg); |
977 | assignVirtToPhysReg(AtMI&: MI, LR, PhysReg: BestReg); |
978 | } |
979 | |
980 | void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { |
981 | assert(MO.isUndef() && "expected undef use" ); |
982 | Register VirtReg = MO.getReg(); |
983 | assert(VirtReg.isVirtual() && "Expected virtreg" ); |
984 | if (!shouldAllocateRegister(Reg: VirtReg)) |
985 | return; |
986 | |
987 | LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); |
988 | MCPhysReg PhysReg; |
989 | if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
990 | PhysReg = LRI->PhysReg; |
991 | } else { |
992 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
993 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
994 | assert(!AllocationOrder.empty() && "Allocation order must not be empty" ); |
995 | PhysReg = AllocationOrder[0]; |
996 | } |
997 | |
998 | unsigned SubRegIdx = MO.getSubReg(); |
999 | if (SubRegIdx != 0) { |
1000 | PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubRegIdx); |
1001 | MO.setSubReg(0); |
1002 | } |
1003 | MO.setReg(PhysReg); |
1004 | MO.setIsRenamable(true); |
1005 | } |
1006 | |
1007 | /// Variation of defineVirtReg() with special handling for livethrough regs |
1008 | /// (tied or earlyclobber) that may interfere with preassigned uses. |
1009 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1010 | bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, |
1011 | unsigned OpNum, |
1012 | Register VirtReg) { |
1013 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1014 | return false; |
1015 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
1016 | if (LRI != LiveVirtRegs.end()) { |
1017 | MCPhysReg PrevReg = LRI->PhysReg; |
1018 | if (PrevReg != 0 && isRegUsedInInstr(PhysReg: PrevReg, LookAtPhysRegUses: true)) { |
1019 | LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) |
1020 | << " (tied/earlyclobber resolution)\n" ); |
1021 | freePhysReg(PhysReg: PrevReg); |
1022 | LRI->PhysReg = 0; |
1023 | allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses: true); |
1024 | MachineBasicBlock::iterator InsertBefore = |
1025 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
1026 | LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " |
1027 | << printReg(PrevReg, TRI) << '\n'); |
1028 | BuildMI(BB&: *MBB, I: InsertBefore, MIMD: MI.getDebugLoc(), |
1029 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: PrevReg) |
1030 | .addReg(RegNo: LRI->PhysReg, flags: llvm::RegState::Kill); |
1031 | } |
1032 | MachineOperand &MO = MI.getOperand(i: OpNum); |
1033 | if (MO.getSubReg() && !MO.isUndef()) { |
1034 | LRI->LastUse = &MI; |
1035 | } |
1036 | } |
1037 | return defineVirtReg(MI, OpNum, VirtReg, LookAtPhysRegUses: true); |
1038 | } |
1039 | |
1040 | /// Allocates a register for VirtReg definition. Typically the register is |
1041 | /// already assigned from a use of the virtreg, however we still need to |
1042 | /// perform an allocation if: |
1043 | /// - It is a dead definition without any uses. |
1044 | /// - The value is live out and all uses are in different basic blocks. |
1045 | /// |
1046 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1047 | bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, |
1048 | Register VirtReg, bool LookAtPhysRegUses) { |
1049 | assert(VirtReg.isVirtual() && "Not a virtual register" ); |
1050 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1051 | return false; |
1052 | MachineOperand &MO = MI.getOperand(i: OpNum); |
1053 | LiveRegMap::iterator LRI; |
1054 | bool New; |
1055 | std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg)); |
1056 | if (New) { |
1057 | if (!MO.isDead()) { |
1058 | if (mayLiveOut(VirtReg)) { |
1059 | LRI->LiveOut = true; |
1060 | } else { |
1061 | // It is a dead def without the dead flag; add the flag now. |
1062 | MO.setIsDead(true); |
1063 | } |
1064 | } |
1065 | } |
1066 | if (LRI->PhysReg == 0) { |
1067 | allocVirtReg(MI, LR&: *LRI, Hint0: 0, LookAtPhysRegUses); |
1068 | // If no physical register is available for LRI, we assign one at random |
1069 | // and bail out of this function immediately. |
1070 | if (LRI->Error) { |
1071 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
1072 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
1073 | if (AllocationOrder.empty()) |
1074 | return setPhysReg(MI, MO, PhysReg: MCRegister::NoRegister); |
1075 | return setPhysReg(MI, MO, PhysReg: *AllocationOrder.begin()); |
1076 | } |
1077 | } else { |
1078 | assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && |
1079 | "TODO: preassign mismatch" ); |
1080 | LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) |
1081 | << " use existing assignment to " |
1082 | << printReg(LRI->PhysReg, TRI) << '\n'); |
1083 | } |
1084 | |
1085 | MCPhysReg PhysReg = LRI->PhysReg; |
1086 | if (LRI->Reloaded || LRI->LiveOut) { |
1087 | if (!MI.isImplicitDef()) { |
1088 | MachineBasicBlock::iterator SpillBefore = |
1089 | std::next(x: (MachineBasicBlock::iterator)MI.getIterator()); |
1090 | LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut |
1091 | << " RL: " << LRI->Reloaded << '\n'); |
1092 | bool Kill = LRI->LastUse == nullptr; |
1093 | spill(Before: SpillBefore, VirtReg, AssignedReg: PhysReg, Kill, LiveOut: LRI->LiveOut); |
1094 | |
1095 | // We need to place additional spills for each indirect destination of an |
1096 | // INLINEASM_BR. |
1097 | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { |
1098 | int FI = StackSlotForVirtReg[VirtReg]; |
1099 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
1100 | for (MachineOperand &MO : MI.operands()) { |
1101 | if (MO.isMBB()) { |
1102 | MachineBasicBlock *Succ = MO.getMBB(); |
1103 | TII->storeRegToStackSlot(MBB&: *Succ, MI: Succ->begin(), SrcReg: PhysReg, isKill: Kill, FrameIndex: FI, |
1104 | RC: &RC, TRI, VReg: VirtReg); |
1105 | ++NumStores; |
1106 | Succ->addLiveIn(PhysReg); |
1107 | } |
1108 | } |
1109 | } |
1110 | |
1111 | LRI->LastUse = nullptr; |
1112 | } |
1113 | LRI->LiveOut = false; |
1114 | LRI->Reloaded = false; |
1115 | } |
1116 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1117 | BundleVirtRegsMap[VirtReg] = PhysReg; |
1118 | } |
1119 | markRegUsedInInstr(PhysReg); |
1120 | return setPhysReg(MI, MO, PhysReg); |
1121 | } |
1122 | |
1123 | /// Allocates a register for a VirtReg use. |
1124 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1125 | bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, |
1126 | Register VirtReg) { |
1127 | assert(VirtReg.isVirtual() && "Not a virtual register" ); |
1128 | if (!shouldAllocateRegister(Reg: VirtReg)) |
1129 | return false; |
1130 | LiveRegMap::iterator LRI; |
1131 | bool New; |
1132 | std::tie(args&: LRI, args&: New) = LiveVirtRegs.insert(Val: LiveReg(VirtReg)); |
1133 | if (New) { |
1134 | if (!MO.isKill()) { |
1135 | if (mayLiveOut(VirtReg)) { |
1136 | LRI->LiveOut = true; |
1137 | } else { |
1138 | // It is a last (killing) use without the kill flag; add the flag now. |
1139 | MO.setIsKill(true); |
1140 | } |
1141 | } |
1142 | } else { |
1143 | assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag" ); |
1144 | } |
1145 | |
1146 | // If necessary allocate a register. |
1147 | if (LRI->PhysReg == 0) { |
1148 | assert(!MO.isTied() && "tied op should be allocated" ); |
1149 | Register Hint; |
1150 | if (MI.isCopy() && MI.getOperand(i: 1).getSubReg() == 0) { |
1151 | Hint = MI.getOperand(i: 0).getReg(); |
1152 | if (Hint.isVirtual()) { |
1153 | assert(!shouldAllocateRegister(Hint)); |
1154 | Hint = Register(); |
1155 | } else { |
1156 | assert(Hint.isPhysical() && |
1157 | "Copy destination should already be assigned" ); |
1158 | } |
1159 | } |
1160 | allocVirtReg(MI, LR&: *LRI, Hint0: Hint, LookAtPhysRegUses: false); |
1161 | if (LRI->Error) { |
1162 | const TargetRegisterClass &RC = *MRI->getRegClass(Reg: VirtReg); |
1163 | ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(RC: &RC); |
1164 | if (AllocationOrder.empty()) |
1165 | return setPhysReg(MI, MO, PhysReg: MCRegister::NoRegister); |
1166 | return setPhysReg(MI, MO, PhysReg: *AllocationOrder.begin()); |
1167 | } |
1168 | } |
1169 | |
1170 | LRI->LastUse = &MI; |
1171 | |
1172 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1173 | BundleVirtRegsMap[VirtReg] = LRI->PhysReg; |
1174 | } |
1175 | markRegUsedInInstr(PhysReg: LRI->PhysReg); |
1176 | return setPhysReg(MI, MO, PhysReg: LRI->PhysReg); |
1177 | } |
1178 | |
1179 | /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. |
1180 | /// \return true if MI's MachineOperands were re-arranged/invalidated. |
1181 | bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, |
1182 | MCPhysReg PhysReg) { |
1183 | if (!MO.getSubReg()) { |
1184 | MO.setReg(PhysReg); |
1185 | MO.setIsRenamable(true); |
1186 | return false; |
1187 | } |
1188 | |
1189 | // Handle subregister index. |
1190 | MO.setReg(PhysReg ? TRI->getSubReg(Reg: PhysReg, Idx: MO.getSubReg()) : MCRegister()); |
1191 | MO.setIsRenamable(true); |
1192 | // Note: We leave the subreg number around a little longer in case of defs. |
1193 | // This is so that the register freeing logic in allocateInstruction can still |
1194 | // recognize this as subregister defs. The code there will clear the number. |
1195 | if (!MO.isDef()) |
1196 | MO.setSubReg(0); |
1197 | |
1198 | // A kill flag implies killing the full register. Add corresponding super |
1199 | // register kill. |
1200 | if (MO.isKill()) { |
1201 | MI.addRegisterKilled(IncomingReg: PhysReg, RegInfo: TRI, AddIfNotFound: true); |
1202 | // Conservatively assume implicit MOs were re-arranged |
1203 | return true; |
1204 | } |
1205 | |
1206 | // A <def,read-undef> of a sub-register requires an implicit def of the full |
1207 | // register. |
1208 | if (MO.isDef() && MO.isUndef()) { |
1209 | if (MO.isDead()) |
1210 | MI.addRegisterDead(Reg: PhysReg, RegInfo: TRI, AddIfNotFound: true); |
1211 | else |
1212 | MI.addRegisterDefined(Reg: PhysReg, RegInfo: TRI); |
1213 | // Conservatively assume implicit MOs were re-arranged |
1214 | return true; |
1215 | } |
1216 | return false; |
1217 | } |
1218 | |
1219 | #ifndef NDEBUG |
1220 | |
1221 | void RegAllocFastImpl::dumpState() const { |
1222 | for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; |
1223 | ++Unit) { |
1224 | switch (unsigned VirtReg = RegUnitStates[Unit]) { |
1225 | case regFree: |
1226 | break; |
1227 | case regPreAssigned: |
1228 | dbgs() << " " << printRegUnit(Unit, TRI) << "[P]" ; |
1229 | break; |
1230 | case regLiveIn: |
1231 | llvm_unreachable("Should not have regLiveIn in map" ); |
1232 | default: { |
1233 | dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); |
1234 | LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); |
1235 | assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry" ); |
1236 | if (I->LiveOut || I->Reloaded) { |
1237 | dbgs() << '['; |
1238 | if (I->LiveOut) |
1239 | dbgs() << 'O'; |
1240 | if (I->Reloaded) |
1241 | dbgs() << 'R'; |
1242 | dbgs() << ']'; |
1243 | } |
1244 | assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present" ); |
1245 | break; |
1246 | } |
1247 | } |
1248 | } |
1249 | dbgs() << '\n'; |
1250 | // Check that LiveVirtRegs is the inverse. |
1251 | for (const LiveReg &LR : LiveVirtRegs) { |
1252 | Register VirtReg = LR.VirtReg; |
1253 | assert(VirtReg.isVirtual() && "Bad map key" ); |
1254 | MCPhysReg PhysReg = LR.PhysReg; |
1255 | if (PhysReg != 0) { |
1256 | assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg" ); |
1257 | for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
1258 | assert(RegUnitStates[Unit] == VirtReg && "inverse map valid" ); |
1259 | } |
1260 | } |
1261 | } |
1262 | } |
1263 | #endif |
1264 | |
1265 | /// Count number of defs consumed from each register class by \p Reg |
1266 | void RegAllocFastImpl::addRegClassDefCounts( |
1267 | MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const { |
1268 | assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); |
1269 | |
1270 | if (Reg.isVirtual()) { |
1271 | if (!shouldAllocateRegister(Reg)) |
1272 | return; |
1273 | const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); |
1274 | for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
1275 | RCIdx != RCIdxEnd; ++RCIdx) { |
1276 | const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx); |
1277 | // FIXME: Consider aliasing sub/super registers. |
1278 | if (OpRC->hasSubClassEq(RC: IdxRC)) |
1279 | ++RegClassDefCounts[RCIdx]; |
1280 | } |
1281 | |
1282 | return; |
1283 | } |
1284 | |
1285 | for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
1286 | RCIdx != RCIdxEnd; ++RCIdx) { |
1287 | const TargetRegisterClass *IdxRC = TRI->getRegClass(i: RCIdx); |
1288 | for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { |
1289 | if (IdxRC->contains(Reg: *Alias)) { |
1290 | ++RegClassDefCounts[RCIdx]; |
1291 | break; |
1292 | } |
1293 | } |
1294 | } |
1295 | } |
1296 | |
1297 | /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands |
1298 | /// that are to be allocated. Those are ordered in a way that small classes, |
1299 | /// early clobbers and livethroughs are allocated first. |
1300 | void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { |
1301 | DefOperandIndexes.clear(); |
1302 | |
1303 | LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n" ); |
1304 | for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { |
1305 | const MachineOperand &MO = MI.getOperand(i: I); |
1306 | if (!MO.isReg()) |
1307 | continue; |
1308 | Register Reg = MO.getReg(); |
1309 | if (MO.readsReg()) { |
1310 | if (Reg.isPhysical()) { |
1311 | LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); |
1312 | markPhysRegUsedInInstr(PhysReg: Reg); |
1313 | } |
1314 | } |
1315 | |
1316 | if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg)) |
1317 | DefOperandIndexes.push_back(Elt: I); |
1318 | } |
1319 | |
1320 | // Most instructions only have one virtual def, so there's no point in |
1321 | // computing the possible number of defs for every register class. |
1322 | if (DefOperandIndexes.size() <= 1) |
1323 | return; |
1324 | |
1325 | // Track number of defs which may consume a register from the class. This is |
1326 | // used to assign registers for possibly-too-small classes first. Example: |
1327 | // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd |
1328 | // registers first so that the gr32 don't use the gr32_abcd registers before |
1329 | // we assign these. |
1330 | SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); |
1331 | |
1332 | for (const MachineOperand &MO : MI.operands()) |
1333 | if (MO.isReg() && MO.isDef()) |
1334 | addRegClassDefCounts(RegClassDefCounts, Reg: MO.getReg()); |
1335 | |
1336 | llvm::sort(C&: DefOperandIndexes, Comp: [&](unsigned I0, unsigned I1) { |
1337 | const MachineOperand &MO0 = MI.getOperand(i: I0); |
1338 | const MachineOperand &MO1 = MI.getOperand(i: I1); |
1339 | Register Reg0 = MO0.getReg(); |
1340 | Register Reg1 = MO1.getReg(); |
1341 | const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg: Reg0); |
1342 | const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg: Reg1); |
1343 | |
1344 | // Identify regclass that are easy to use up completely just in this |
1345 | // instruction. |
1346 | unsigned ClassSize0 = RegClassInfo.getOrder(RC: &RC0).size(); |
1347 | unsigned ClassSize1 = RegClassInfo.getOrder(RC: &RC1).size(); |
1348 | |
1349 | bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; |
1350 | bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; |
1351 | if (SmallClass0 > SmallClass1) |
1352 | return true; |
1353 | if (SmallClass0 < SmallClass1) |
1354 | return false; |
1355 | |
1356 | // Allocate early clobbers and livethrough operands first. |
1357 | bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || |
1358 | (MO0.getSubReg() == 0 && !MO0.isUndef()); |
1359 | bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || |
1360 | (MO1.getSubReg() == 0 && !MO1.isUndef()); |
1361 | if (Livethrough0 > Livethrough1) |
1362 | return true; |
1363 | if (Livethrough0 < Livethrough1) |
1364 | return false; |
1365 | |
1366 | // Tie-break rule: operand index. |
1367 | return I0 < I1; |
1368 | }); |
1369 | } |
1370 | |
1371 | // Returns true if MO is tied and the operand it's tied to is not Undef (not |
1372 | // Undef is not the same thing as Def). |
1373 | static bool isTiedToNotUndef(const MachineOperand &MO) { |
1374 | if (!MO.isTied()) |
1375 | return false; |
1376 | const MachineInstr &MI = *MO.getParent(); |
1377 | unsigned TiedIdx = MI.findTiedOperandIdx(OpIdx: MI.getOperandNo(I: &MO)); |
1378 | const MachineOperand &TiedMO = MI.getOperand(i: TiedIdx); |
1379 | return !TiedMO.isUndef(); |
1380 | } |
1381 | |
1382 | void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { |
1383 | // The basic algorithm here is: |
1384 | // 1. Mark registers of def operands as free |
1385 | // 2. Allocate registers to use operands and place reload instructions for |
1386 | // registers displaced by the allocation. |
1387 | // |
1388 | // However we need to handle some corner cases: |
1389 | // - pre-assigned defs and uses need to be handled before the other def/use |
1390 | // operands are processed to avoid the allocation heuristics clashing with |
1391 | // the pre-assignment. |
1392 | // - The "free def operands" step has to come last instead of first for tied |
1393 | // operands and early-clobbers. |
1394 | |
1395 | InstrGen += 2; |
1396 | // In the event we ever get more than 2**31 instructions... |
1397 | if (LLVM_UNLIKELY(InstrGen == 0)) { |
1398 | UsedInInstr.assign(NumElts: UsedInInstr.size(), Elt: 0); |
1399 | InstrGen = 2; |
1400 | } |
1401 | RegMasks.clear(); |
1402 | BundleVirtRegsMap.clear(); |
1403 | |
1404 | // Scan for special cases; Apply pre-assigned register defs to state. |
1405 | bool HasPhysRegUse = false; |
1406 | bool HasRegMask = false; |
1407 | bool HasVRegDef = false; |
1408 | bool HasDef = false; |
1409 | bool HasEarlyClobber = false; |
1410 | bool NeedToAssignLiveThroughs = false; |
1411 | for (MachineOperand &MO : MI.operands()) { |
1412 | if (MO.isReg()) { |
1413 | Register Reg = MO.getReg(); |
1414 | if (Reg.isVirtual()) { |
1415 | if (!shouldAllocateRegister(Reg)) |
1416 | continue; |
1417 | if (MO.isDef()) { |
1418 | HasDef = true; |
1419 | HasVRegDef = true; |
1420 | if (MO.isEarlyClobber()) { |
1421 | HasEarlyClobber = true; |
1422 | NeedToAssignLiveThroughs = true; |
1423 | } |
1424 | if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) |
1425 | NeedToAssignLiveThroughs = true; |
1426 | } |
1427 | } else if (Reg.isPhysical()) { |
1428 | if (!MRI->isReserved(PhysReg: Reg)) { |
1429 | if (MO.isDef()) { |
1430 | HasDef = true; |
1431 | bool displacedAny = definePhysReg(MI, Reg); |
1432 | if (MO.isEarlyClobber()) |
1433 | HasEarlyClobber = true; |
1434 | if (!displacedAny) |
1435 | MO.setIsDead(true); |
1436 | } |
1437 | if (MO.readsReg()) |
1438 | HasPhysRegUse = true; |
1439 | } |
1440 | } |
1441 | } else if (MO.isRegMask()) { |
1442 | HasRegMask = true; |
1443 | RegMasks.push_back(Elt: MO.getRegMask()); |
1444 | } |
1445 | } |
1446 | |
1447 | // Allocate virtreg defs. |
1448 | if (HasDef) { |
1449 | if (HasVRegDef) { |
1450 | // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop |
1451 | // multiple times to ensure no operand is missed. |
1452 | bool ReArrangedImplicitOps = true; |
1453 | |
1454 | // Special handling for early clobbers, tied operands or subregister defs: |
1455 | // Compared to "normal" defs these: |
1456 | // - Must not use a register that is pre-assigned for a use operand. |
1457 | // - In order to solve tricky inline assembly constraints we change the |
1458 | // heuristic to figure out a good operand order before doing |
1459 | // assignments. |
1460 | if (NeedToAssignLiveThroughs) { |
1461 | while (ReArrangedImplicitOps) { |
1462 | ReArrangedImplicitOps = false; |
1463 | findAndSortDefOperandIndexes(MI); |
1464 | for (unsigned OpIdx : DefOperandIndexes) { |
1465 | MachineOperand &MO = MI.getOperand(i: OpIdx); |
1466 | LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); |
1467 | Register Reg = MO.getReg(); |
1468 | if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || |
1469 | (MO.getSubReg() && !MO.isUndef())) { |
1470 | ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpNum: OpIdx, VirtReg: Reg); |
1471 | } else { |
1472 | ReArrangedImplicitOps = defineVirtReg(MI, OpNum: OpIdx, VirtReg: Reg); |
1473 | } |
1474 | // Implicit operands of MI were re-arranged, |
1475 | // re-compute DefOperandIndexes. |
1476 | if (ReArrangedImplicitOps) |
1477 | break; |
1478 | } |
1479 | } |
1480 | } else { |
1481 | // Assign virtual register defs. |
1482 | while (ReArrangedImplicitOps) { |
1483 | ReArrangedImplicitOps = false; |
1484 | for (MachineOperand &MO : MI.operands()) { |
1485 | if (!MO.isReg() || !MO.isDef()) |
1486 | continue; |
1487 | Register Reg = MO.getReg(); |
1488 | if (Reg.isVirtual()) { |
1489 | ReArrangedImplicitOps = |
1490 | defineVirtReg(MI, OpNum: MI.getOperandNo(I: &MO), VirtReg: Reg); |
1491 | if (ReArrangedImplicitOps) |
1492 | break; |
1493 | } |
1494 | } |
1495 | } |
1496 | } |
1497 | } |
1498 | |
1499 | // Free registers occupied by defs. |
1500 | // Iterate operands in reverse order, so we see the implicit super register |
1501 | // defs first (we added them earlier in case of <def,read-undef>). |
1502 | for (MachineOperand &MO : reverse(C: MI.operands())) { |
1503 | if (!MO.isReg() || !MO.isDef()) |
1504 | continue; |
1505 | |
1506 | Register Reg = MO.getReg(); |
1507 | |
1508 | // subreg defs don't free the full register. We left the subreg number |
1509 | // around as a marker in setPhysReg() to recognize this case here. |
1510 | if (Reg.isPhysical() && MO.getSubReg() != 0) { |
1511 | MO.setSubReg(0); |
1512 | continue; |
1513 | } |
1514 | |
1515 | assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && |
1516 | "tied def assigned to clobbered register" ); |
1517 | |
1518 | // Do not free tied operands and early clobbers. |
1519 | if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) |
1520 | continue; |
1521 | if (!Reg) |
1522 | continue; |
1523 | if (Reg.isVirtual()) { |
1524 | assert(!shouldAllocateRegister(Reg)); |
1525 | continue; |
1526 | } |
1527 | assert(Reg.isPhysical()); |
1528 | if (MRI->isReserved(PhysReg: Reg)) |
1529 | continue; |
1530 | freePhysReg(PhysReg: Reg); |
1531 | unmarkRegUsedInInstr(PhysReg: Reg); |
1532 | } |
1533 | } |
1534 | |
1535 | // Displace clobbered registers. |
1536 | if (HasRegMask) { |
1537 | assert(!RegMasks.empty() && "expected RegMask" ); |
1538 | // MRI bookkeeping. |
1539 | for (const auto *RM : RegMasks) |
1540 | MRI->addPhysRegsUsedFromRegMask(RegMask: RM); |
1541 | |
1542 | // Displace clobbered registers. |
1543 | for (const LiveReg &LR : LiveVirtRegs) { |
1544 | MCPhysReg PhysReg = LR.PhysReg; |
1545 | if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) |
1546 | displacePhysReg(MI, PhysReg); |
1547 | } |
1548 | } |
1549 | |
1550 | // Apply pre-assigned register uses to state. |
1551 | if (HasPhysRegUse) { |
1552 | for (MachineOperand &MO : MI.operands()) { |
1553 | if (!MO.isReg() || !MO.readsReg()) |
1554 | continue; |
1555 | Register Reg = MO.getReg(); |
1556 | if (!Reg.isPhysical()) |
1557 | continue; |
1558 | if (MRI->isReserved(PhysReg: Reg)) |
1559 | continue; |
1560 | if (!usePhysReg(MI, Reg)) |
1561 | MO.setIsKill(true); |
1562 | } |
1563 | } |
1564 | |
1565 | // Allocate virtreg uses and insert reloads as necessary. |
1566 | // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple |
1567 | // times to ensure no operand is missed. |
1568 | bool HasUndefUse = false; |
1569 | bool ReArrangedImplicitMOs = true; |
1570 | while (ReArrangedImplicitMOs) { |
1571 | ReArrangedImplicitMOs = false; |
1572 | for (MachineOperand &MO : MI.operands()) { |
1573 | if (!MO.isReg() || !MO.isUse()) |
1574 | continue; |
1575 | Register Reg = MO.getReg(); |
1576 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1577 | continue; |
1578 | |
1579 | if (MO.isUndef()) { |
1580 | HasUndefUse = true; |
1581 | continue; |
1582 | } |
1583 | |
1584 | // Populate MayLiveAcrossBlocks in case the use block is allocated before |
1585 | // the def block (removing the vreg uses). |
1586 | mayLiveIn(VirtReg: Reg); |
1587 | |
1588 | assert(!MO.isInternalRead() && "Bundles not supported" ); |
1589 | assert(MO.readsReg() && "reading use" ); |
1590 | ReArrangedImplicitMOs = useVirtReg(MI, MO, VirtReg: Reg); |
1591 | if (ReArrangedImplicitMOs) |
1592 | break; |
1593 | } |
1594 | } |
1595 | |
1596 | // Allocate undef operands. This is a separate step because in a situation |
1597 | // like ` = OP undef %X, %X` both operands need the same register assign |
1598 | // so we should perform the normal assignment first. |
1599 | if (HasUndefUse) { |
1600 | for (MachineOperand &MO : MI.all_uses()) { |
1601 | Register Reg = MO.getReg(); |
1602 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1603 | continue; |
1604 | |
1605 | assert(MO.isUndef() && "Should only have undef virtreg uses left" ); |
1606 | allocVirtRegUndef(MO); |
1607 | } |
1608 | } |
1609 | |
1610 | // Free early clobbers. |
1611 | if (HasEarlyClobber) { |
1612 | for (MachineOperand &MO : reverse(C: MI.all_defs())) { |
1613 | if (!MO.isEarlyClobber()) |
1614 | continue; |
1615 | assert(!MO.getSubReg() && "should be already handled in def processing" ); |
1616 | |
1617 | Register Reg = MO.getReg(); |
1618 | if (!Reg) |
1619 | continue; |
1620 | if (Reg.isVirtual()) { |
1621 | assert(!shouldAllocateRegister(Reg)); |
1622 | continue; |
1623 | } |
1624 | assert(Reg.isPhysical() && "should have register assigned" ); |
1625 | |
1626 | // We sometimes get odd situations like: |
1627 | // early-clobber %x0 = INSTRUCTION %x0 |
1628 | // which is semantically questionable as the early-clobber should |
1629 | // apply before the use. But in practice we consider the use to |
1630 | // happen before the early clobber now. Don't free the early clobber |
1631 | // register in this case. |
1632 | if (MI.readsRegister(Reg, TRI)) |
1633 | continue; |
1634 | |
1635 | freePhysReg(PhysReg: Reg); |
1636 | } |
1637 | } |
1638 | |
1639 | LLVM_DEBUG(dbgs() << "<< " << MI); |
1640 | if (MI.isCopy() && MI.getOperand(i: 0).getReg() == MI.getOperand(i: 1).getReg() && |
1641 | MI.getNumOperands() == 2) { |
1642 | LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n" ); |
1643 | Coalesced.push_back(Elt: &MI); |
1644 | } |
1645 | } |
1646 | |
1647 | void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { |
1648 | // Ignore DBG_VALUEs that aren't based on virtual registers. These are |
1649 | // mostly constants and frame indices. |
1650 | assert(MI.isDebugValue() && "not a DBG_VALUE*" ); |
1651 | for (const auto &MO : MI.debug_operands()) { |
1652 | if (!MO.isReg()) |
1653 | continue; |
1654 | Register Reg = MO.getReg(); |
1655 | if (!Reg.isVirtual()) |
1656 | continue; |
1657 | if (!shouldAllocateRegister(Reg)) |
1658 | continue; |
1659 | |
1660 | // Already spilled to a stackslot? |
1661 | int SS = StackSlotForVirtReg[Reg]; |
1662 | if (SS != -1) { |
1663 | // Modify DBG_VALUE now that the value is in a spill slot. |
1664 | updateDbgValueForSpill(Orig&: MI, FrameIndex: SS, Reg); |
1665 | LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); |
1666 | continue; |
1667 | } |
1668 | |
1669 | // See if this virtual register has already been allocated to a physical |
1670 | // register or spilled to a stack slot. |
1671 | LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg: Reg); |
1672 | SmallVector<MachineOperand *> DbgOps; |
1673 | for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) |
1674 | DbgOps.push_back(Elt: &Op); |
1675 | |
1676 | if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
1677 | // Update every use of Reg within MI. |
1678 | for (auto &RegMO : DbgOps) |
1679 | setPhysReg(MI, MO&: *RegMO, PhysReg: LRI->PhysReg); |
1680 | } else { |
1681 | DanglingDbgValues[Reg].push_back(Elt: &MI); |
1682 | } |
1683 | |
1684 | // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so |
1685 | // that future spills of Reg will have DBG_VALUEs. |
1686 | LiveDbgValueMap[Reg].append(in_start: DbgOps.begin(), in_end: DbgOps.end()); |
1687 | } |
1688 | } |
1689 | |
1690 | void RegAllocFastImpl::handleBundle(MachineInstr &MI) { |
1691 | MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); |
1692 | ++BundledMI; |
1693 | while (BundledMI->isBundledWithPred()) { |
1694 | for (MachineOperand &MO : BundledMI->operands()) { |
1695 | if (!MO.isReg()) |
1696 | continue; |
1697 | |
1698 | Register Reg = MO.getReg(); |
1699 | if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
1700 | continue; |
1701 | |
1702 | DenseMap<Register, MCPhysReg>::iterator DI; |
1703 | DI = BundleVirtRegsMap.find(Val: Reg); |
1704 | assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register" ); |
1705 | |
1706 | setPhysReg(MI, MO, PhysReg: DI->second); |
1707 | } |
1708 | |
1709 | ++BundledMI; |
1710 | } |
1711 | } |
1712 | |
1713 | void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { |
1714 | this->MBB = &MBB; |
1715 | LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); |
1716 | |
1717 | PosIndexes.unsetInitialized(); |
1718 | RegUnitStates.assign(n: TRI->getNumRegUnits(), val: regFree); |
1719 | assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?" ); |
1720 | |
1721 | for (const auto &LiveReg : MBB.liveouts()) |
1722 | setPhysRegState(PhysReg: LiveReg.PhysReg, NewState: regPreAssigned); |
1723 | |
1724 | Coalesced.clear(); |
1725 | |
1726 | // Traverse block in reverse order allocating instructions one by one. |
1727 | for (MachineInstr &MI : reverse(C&: MBB)) { |
1728 | LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:" ; dumpState()); |
1729 | |
1730 | // Special handling for debug values. Note that they are not allowed to |
1731 | // affect codegen of the other instructions in any way. |
1732 | if (MI.isDebugValue()) { |
1733 | handleDebugValue(MI); |
1734 | continue; |
1735 | } |
1736 | |
1737 | allocateInstruction(MI); |
1738 | |
1739 | // Once BUNDLE header is assigned registers, same assignments need to be |
1740 | // done for bundled MIs. |
1741 | if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
1742 | handleBundle(MI); |
1743 | } |
1744 | } |
1745 | |
1746 | LLVM_DEBUG(dbgs() << "Begin Regs:" ; dumpState()); |
1747 | |
1748 | // Spill all physical registers holding virtual registers now. |
1749 | LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n" ); |
1750 | reloadAtBegin(MBB); |
1751 | |
1752 | // Erase all the coalesced copies. We are delaying it until now because |
1753 | // LiveVirtRegs might refer to the instrs. |
1754 | for (MachineInstr *MI : Coalesced) |
1755 | MBB.erase(I: MI); |
1756 | NumCoalesced += Coalesced.size(); |
1757 | |
1758 | for (auto &UDBGPair : DanglingDbgValues) { |
1759 | for (MachineInstr *DbgValue : UDBGPair.second) { |
1760 | assert(DbgValue->isDebugValue() && "expected DBG_VALUE" ); |
1761 | // Nothing to do if the vreg was spilled in the meantime. |
1762 | if (!DbgValue->hasDebugOperandForReg(Reg: UDBGPair.first)) |
1763 | continue; |
1764 | LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
1765 | << '\n'); |
1766 | DbgValue->setDebugValueUndef(); |
1767 | } |
1768 | } |
1769 | DanglingDbgValues.clear(); |
1770 | |
1771 | LLVM_DEBUG(MBB.dump()); |
1772 | } |
1773 | |
1774 | bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { |
1775 | LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" |
1776 | << "********** Function: " << MF.getName() << '\n'); |
1777 | MRI = &MF.getRegInfo(); |
1778 | const TargetSubtargetInfo &STI = MF.getSubtarget(); |
1779 | TRI = STI.getRegisterInfo(); |
1780 | TII = STI.getInstrInfo(); |
1781 | MFI = &MF.getFrameInfo(); |
1782 | MRI->freezeReservedRegs(); |
1783 | RegClassInfo.runOnMachineFunction(MF); |
1784 | unsigned NumRegUnits = TRI->getNumRegUnits(); |
1785 | InstrGen = 0; |
1786 | UsedInInstr.assign(NumElts: NumRegUnits, Elt: 0); |
1787 | |
1788 | // initialize the virtual->physical register map to have a 'null' |
1789 | // mapping for all virtual registers |
1790 | unsigned NumVirtRegs = MRI->getNumVirtRegs(); |
1791 | StackSlotForVirtReg.resize(s: NumVirtRegs); |
1792 | LiveVirtRegs.setUniverse(NumVirtRegs); |
1793 | MayLiveAcrossBlocks.clear(); |
1794 | MayLiveAcrossBlocks.resize(N: NumVirtRegs); |
1795 | |
1796 | // Loop over all of the basic blocks, eliminating virtual register references |
1797 | for (MachineBasicBlock &MBB : MF) |
1798 | allocateBasicBlock(MBB); |
1799 | |
1800 | if (ClearVirtRegs) { |
1801 | // All machine operands and other references to virtual registers have been |
1802 | // replaced. Remove the virtual registers. |
1803 | MRI->clearVirtRegs(); |
1804 | } |
1805 | |
1806 | StackSlotForVirtReg.clear(); |
1807 | LiveDbgValueMap.clear(); |
1808 | return true; |
1809 | } |
1810 | |
1811 | PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, |
1812 | MachineFunctionAnalysisManager &) { |
1813 | MFPropsModifier _(*this, MF); |
1814 | RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); |
1815 | bool Changed = Impl.runOnMachineFunction(MF); |
1816 | if (!Changed) |
1817 | return PreservedAnalyses::all(); |
1818 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
1819 | PA.preserveSet<CFGAnalyses>(); |
1820 | return PA; |
1821 | } |
1822 | |
1823 | void RegAllocFastPass::printPipeline( |
1824 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1825 | bool PrintFilterName = Opts.FilterName != "all" ; |
1826 | bool PrintNoClearVRegs = !Opts.ClearVRegs; |
1827 | bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; |
1828 | |
1829 | OS << "regallocfast" ; |
1830 | if (PrintFilterName || PrintNoClearVRegs) { |
1831 | OS << '<'; |
1832 | if (PrintFilterName) |
1833 | OS << "filter=" << Opts.FilterName; |
1834 | if (PrintSemicolon) |
1835 | OS << ';'; |
1836 | if (PrintNoClearVRegs) |
1837 | OS << "no-clear-vregs" ; |
1838 | OS << '>'; |
1839 | } |
1840 | } |
1841 | |
1842 | FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } |
1843 | |
1844 | FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor, |
1845 | bool ClearVirtRegs) { |
1846 | return new RegAllocFast(Ftor, ClearVirtRegs); |
1847 | } |
1848 | |