1 | //===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements integer type expansion and promotion for LegalizeTypes. |
10 | // Promotion is the act of changing a computation in an illegal type into a |
11 | // computation in a larger type. For example, implementing i8 arithmetic in an |
12 | // i32 register (often needed on powerpc). |
13 | // Expansion is the act of changing a computation in an illegal type into a |
14 | // computation in two identical registers of a smaller type. For example, |
15 | // implementing i64 arithmetic in two i32 registers (often needed on 32-bit |
16 | // targets). |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #include "LegalizeTypes.h" |
21 | #include "llvm/Analysis/TargetLibraryInfo.h" |
22 | #include "llvm/CodeGen/StackMaps.h" |
23 | #include "llvm/CodeGen/TargetLowering.h" |
24 | #include "llvm/IR/DerivedTypes.h" |
25 | #include "llvm/Support/ErrorHandling.h" |
26 | #include "llvm/Support/KnownBits.h" |
27 | #include "llvm/Support/raw_ostream.h" |
28 | #include <algorithm> |
29 | using namespace llvm; |
30 | |
31 | #define DEBUG_TYPE "legalize-types" |
32 | |
33 | //===----------------------------------------------------------------------===// |
34 | // Integer Result Promotion |
35 | //===----------------------------------------------------------------------===// |
36 | |
37 | /// PromoteIntegerResult - This method is called when a result of a node is |
38 | /// found to be in need of promotion to a larger type. At this point, the node |
39 | /// may also have invalid operands or may have other results that need |
40 | /// expansion, we just know that (at least) one result needs promotion. |
41 | void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) { |
42 | LLVM_DEBUG(dbgs() << "Promote integer result: " ; N->dump(&DAG)); |
43 | SDValue Res = SDValue(); |
44 | |
45 | // See if the target wants to custom expand this node. |
46 | if (CustomLowerNode(N, VT: N->getValueType(ResNo), LegalizeResult: true)) { |
47 | LLVM_DEBUG(dbgs() << "Node has been custom expanded, done\n" ); |
48 | return; |
49 | } |
50 | |
51 | switch (N->getOpcode()) { |
52 | default: |
53 | #ifndef NDEBUG |
54 | dbgs() << "PromoteIntegerResult #" << ResNo << ": " ; |
55 | N->dump(&DAG); dbgs() << "\n" ; |
56 | #endif |
57 | report_fatal_error(reason: "Do not know how to promote this operator!" ); |
58 | case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break; |
59 | case ISD::AssertSext: Res = PromoteIntRes_AssertSext(N); break; |
60 | case ISD::AssertZext: Res = PromoteIntRes_AssertZext(N); break; |
61 | case ISD::BITCAST: Res = PromoteIntRes_BITCAST(N); break; |
62 | case ISD::VP_BITREVERSE: |
63 | case ISD::BITREVERSE: Res = PromoteIntRes_BITREVERSE(N); break; |
64 | case ISD::VP_BSWAP: |
65 | case ISD::BSWAP: Res = PromoteIntRes_BSWAP(N); break; |
66 | case ISD::BUILD_PAIR: Res = PromoteIntRes_BUILD_PAIR(N); break; |
67 | case ISD::Constant: Res = PromoteIntRes_Constant(N); break; |
68 | case ISD::VP_CTLZ_ZERO_UNDEF: |
69 | case ISD::VP_CTLZ: |
70 | case ISD::CTLZ_ZERO_UNDEF: |
71 | case ISD::CTLZ: Res = PromoteIntRes_CTLZ(N); break; |
72 | case ISD::PARITY: |
73 | case ISD::VP_CTPOP: |
74 | case ISD::CTPOP: Res = PromoteIntRes_CTPOP_PARITY(N); break; |
75 | case ISD::VP_CTTZ_ZERO_UNDEF: |
76 | case ISD::VP_CTTZ: |
77 | case ISD::CTTZ_ZERO_UNDEF: |
78 | case ISD::CTTZ: Res = PromoteIntRes_CTTZ(N); break; |
79 | case ISD::VP_CTTZ_ELTS_ZERO_UNDEF: |
80 | case ISD::VP_CTTZ_ELTS: |
81 | Res = PromoteIntRes_VP_CttzElements(N); |
82 | break; |
83 | case ISD::EXTRACT_VECTOR_ELT: |
84 | Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break; |
85 | case ISD::LOAD: Res = PromoteIntRes_LOAD(N: cast<LoadSDNode>(Val: N)); break; |
86 | case ISD::MLOAD: Res = PromoteIntRes_MLOAD(N: cast<MaskedLoadSDNode>(Val: N)); |
87 | break; |
88 | case ISD::MGATHER: Res = PromoteIntRes_MGATHER(N: cast<MaskedGatherSDNode>(Val: N)); |
89 | break; |
90 | case ISD::VECTOR_COMPRESS: |
91 | Res = PromoteIntRes_VECTOR_COMPRESS(N); |
92 | break; |
93 | case ISD::SELECT: |
94 | case ISD::VSELECT: |
95 | case ISD::VP_SELECT: |
96 | case ISD::VP_MERGE: |
97 | Res = PromoteIntRes_Select(N); |
98 | break; |
99 | case ISD::SELECT_CC: Res = PromoteIntRes_SELECT_CC(N); break; |
100 | case ISD::STRICT_FSETCC: |
101 | case ISD::STRICT_FSETCCS: |
102 | case ISD::SETCC: Res = PromoteIntRes_SETCC(N); break; |
103 | case ISD::SMIN: |
104 | case ISD::SMAX: Res = PromoteIntRes_SExtIntBinOp(N); break; |
105 | case ISD::UMIN: |
106 | case ISD::UMAX: Res = PromoteIntRes_UMINUMAX(N); break; |
107 | |
108 | case ISD::SHL: |
109 | case ISD::VP_SHL: Res = PromoteIntRes_SHL(N); break; |
110 | case ISD::SIGN_EXTEND_INREG: |
111 | Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break; |
112 | case ISD::SRA: |
113 | case ISD::VP_SRA: Res = PromoteIntRes_SRA(N); break; |
114 | case ISD::SRL: |
115 | case ISD::VP_SRL: Res = PromoteIntRes_SRL(N); break; |
116 | case ISD::VP_TRUNCATE: |
117 | case ISD::TRUNCATE: Res = PromoteIntRes_TRUNCATE(N); break; |
118 | case ISD::UNDEF: Res = PromoteIntRes_UNDEF(N); break; |
119 | case ISD::VAARG: Res = PromoteIntRes_VAARG(N); break; |
120 | case ISD::VSCALE: Res = PromoteIntRes_VSCALE(N); break; |
121 | |
122 | case ISD::EXTRACT_SUBVECTOR: |
123 | Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break; |
124 | case ISD::INSERT_SUBVECTOR: |
125 | Res = PromoteIntRes_INSERT_SUBVECTOR(N); break; |
126 | case ISD::VECTOR_REVERSE: |
127 | Res = PromoteIntRes_VECTOR_REVERSE(N); break; |
128 | case ISD::VECTOR_SHUFFLE: |
129 | Res = PromoteIntRes_VECTOR_SHUFFLE(N); break; |
130 | case ISD::VECTOR_SPLICE: |
131 | Res = PromoteIntRes_VECTOR_SPLICE(N); break; |
132 | case ISD::VECTOR_INTERLEAVE: |
133 | case ISD::VECTOR_DEINTERLEAVE: |
134 | Res = PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(N); |
135 | return; |
136 | case ISD::INSERT_VECTOR_ELT: |
137 | Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break; |
138 | case ISD::BUILD_VECTOR: |
139 | Res = PromoteIntRes_BUILD_VECTOR(N); |
140 | break; |
141 | case ISD::SPLAT_VECTOR: |
142 | case ISD::SCALAR_TO_VECTOR: |
143 | case ISD::EXPERIMENTAL_VP_SPLAT: |
144 | Res = PromoteIntRes_ScalarOp(N); |
145 | break; |
146 | case ISD::STEP_VECTOR: Res = PromoteIntRes_STEP_VECTOR(N); break; |
147 | case ISD::CONCAT_VECTORS: |
148 | Res = PromoteIntRes_CONCAT_VECTORS(N); break; |
149 | |
150 | case ISD::ANY_EXTEND_VECTOR_INREG: |
151 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
152 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
153 | Res = PromoteIntRes_EXTEND_VECTOR_INREG(N); break; |
154 | |
155 | case ISD::SIGN_EXTEND: |
156 | case ISD::VP_SIGN_EXTEND: |
157 | case ISD::ZERO_EXTEND: |
158 | case ISD::VP_ZERO_EXTEND: |
159 | case ISD::ANY_EXTEND: Res = PromoteIntRes_INT_EXTEND(N); break; |
160 | |
161 | case ISD::VP_FP_TO_SINT: |
162 | case ISD::VP_FP_TO_UINT: |
163 | case ISD::STRICT_FP_TO_SINT: |
164 | case ISD::STRICT_FP_TO_UINT: |
165 | case ISD::FP_TO_SINT: |
166 | case ISD::FP_TO_UINT: Res = PromoteIntRes_FP_TO_XINT(N); break; |
167 | |
168 | case ISD::FP_TO_SINT_SAT: |
169 | case ISD::FP_TO_UINT_SAT: |
170 | Res = PromoteIntRes_FP_TO_XINT_SAT(N); break; |
171 | |
172 | case ISD::FP_TO_BF16: |
173 | case ISD::FP_TO_FP16: |
174 | Res = PromoteIntRes_FP_TO_FP16_BF16(N); |
175 | break; |
176 | case ISD::STRICT_FP_TO_BF16: |
177 | case ISD::STRICT_FP_TO_FP16: |
178 | Res = PromoteIntRes_STRICT_FP_TO_FP16_BF16(N); |
179 | break; |
180 | case ISD::GET_ROUNDING: Res = PromoteIntRes_GET_ROUNDING(N); break; |
181 | |
182 | case ISD::AND: |
183 | case ISD::OR: |
184 | case ISD::XOR: |
185 | case ISD::ADD: |
186 | case ISD::SUB: |
187 | case ISD::MUL: |
188 | case ISD::VP_AND: |
189 | case ISD::VP_OR: |
190 | case ISD::VP_XOR: |
191 | case ISD::VP_ADD: |
192 | case ISD::VP_SUB: |
193 | case ISD::VP_MUL: Res = PromoteIntRes_SimpleIntBinOp(N); break; |
194 | |
195 | case ISD::AVGCEILS: |
196 | case ISD::AVGFLOORS: |
197 | case ISD::VP_SMIN: |
198 | case ISD::VP_SMAX: |
199 | case ISD::SDIV: |
200 | case ISD::SREM: |
201 | case ISD::VP_SDIV: |
202 | case ISD::VP_SREM: Res = PromoteIntRes_SExtIntBinOp(N); break; |
203 | |
204 | case ISD::AVGCEILU: |
205 | case ISD::AVGFLOORU: |
206 | case ISD::VP_UMIN: |
207 | case ISD::VP_UMAX: |
208 | case ISD::UDIV: |
209 | case ISD::UREM: |
210 | case ISD::VP_UDIV: |
211 | case ISD::VP_UREM: Res = PromoteIntRes_ZExtIntBinOp(N); break; |
212 | |
213 | case ISD::SADDO: |
214 | case ISD::SSUBO: Res = PromoteIntRes_SADDSUBO(N, ResNo); break; |
215 | case ISD::UADDO: |
216 | case ISD::USUBO: Res = PromoteIntRes_UADDSUBO(N, ResNo); break; |
217 | case ISD::SMULO: |
218 | case ISD::UMULO: Res = PromoteIntRes_XMULO(N, ResNo); break; |
219 | |
220 | case ISD::ADDE: |
221 | case ISD::SUBE: |
222 | case ISD::UADDO_CARRY: |
223 | case ISD::USUBO_CARRY: Res = PromoteIntRes_UADDSUBO_CARRY(N, ResNo); break; |
224 | |
225 | case ISD::SADDO_CARRY: |
226 | case ISD::SSUBO_CARRY: Res = PromoteIntRes_SADDSUBO_CARRY(N, ResNo); break; |
227 | |
228 | case ISD::SADDSAT: |
229 | case ISD::UADDSAT: |
230 | case ISD::SSUBSAT: |
231 | case ISD::USUBSAT: |
232 | case ISD::SSHLSAT: |
233 | case ISD::USHLSAT: |
234 | Res = PromoteIntRes_ADDSUBSHLSAT<EmptyMatchContext>(N); |
235 | break; |
236 | case ISD::VP_SADDSAT: |
237 | case ISD::VP_UADDSAT: |
238 | case ISD::VP_SSUBSAT: |
239 | case ISD::VP_USUBSAT: |
240 | Res = PromoteIntRes_ADDSUBSHLSAT<VPMatchContext>(N); |
241 | break; |
242 | |
243 | case ISD::SCMP: |
244 | case ISD::UCMP: |
245 | Res = PromoteIntRes_CMP(N); |
246 | break; |
247 | |
248 | case ISD::SMULFIX: |
249 | case ISD::SMULFIXSAT: |
250 | case ISD::UMULFIX: |
251 | case ISD::UMULFIXSAT: Res = PromoteIntRes_MULFIX(N); break; |
252 | |
253 | case ISD::SDIVFIX: |
254 | case ISD::SDIVFIXSAT: |
255 | case ISD::UDIVFIX: |
256 | case ISD::UDIVFIXSAT: Res = PromoteIntRes_DIVFIX(N); break; |
257 | |
258 | case ISD::ABS: Res = PromoteIntRes_ABS(N); break; |
259 | |
260 | case ISD::ATOMIC_LOAD: |
261 | Res = PromoteIntRes_Atomic0(N: cast<AtomicSDNode>(Val: N)); break; |
262 | |
263 | case ISD::ATOMIC_LOAD_ADD: |
264 | case ISD::ATOMIC_LOAD_SUB: |
265 | case ISD::ATOMIC_LOAD_AND: |
266 | case ISD::ATOMIC_LOAD_CLR: |
267 | case ISD::ATOMIC_LOAD_OR: |
268 | case ISD::ATOMIC_LOAD_XOR: |
269 | case ISD::ATOMIC_LOAD_NAND: |
270 | case ISD::ATOMIC_LOAD_MIN: |
271 | case ISD::ATOMIC_LOAD_MAX: |
272 | case ISD::ATOMIC_LOAD_UMIN: |
273 | case ISD::ATOMIC_LOAD_UMAX: |
274 | case ISD::ATOMIC_SWAP: |
275 | Res = PromoteIntRes_Atomic1(N: cast<AtomicSDNode>(Val: N)); break; |
276 | |
277 | case ISD::ATOMIC_CMP_SWAP: |
278 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
279 | Res = PromoteIntRes_AtomicCmpSwap(N: cast<AtomicSDNode>(Val: N), ResNo); |
280 | break; |
281 | |
282 | case ISD::VECREDUCE_ADD: |
283 | case ISD::VECREDUCE_MUL: |
284 | case ISD::VECREDUCE_AND: |
285 | case ISD::VECREDUCE_OR: |
286 | case ISD::VECREDUCE_XOR: |
287 | case ISD::VECREDUCE_SMAX: |
288 | case ISD::VECREDUCE_SMIN: |
289 | case ISD::VECREDUCE_UMAX: |
290 | case ISD::VECREDUCE_UMIN: |
291 | Res = PromoteIntRes_VECREDUCE(N); |
292 | break; |
293 | |
294 | case ISD::VP_REDUCE_ADD: |
295 | case ISD::VP_REDUCE_MUL: |
296 | case ISD::VP_REDUCE_AND: |
297 | case ISD::VP_REDUCE_OR: |
298 | case ISD::VP_REDUCE_XOR: |
299 | case ISD::VP_REDUCE_SMAX: |
300 | case ISD::VP_REDUCE_SMIN: |
301 | case ISD::VP_REDUCE_UMAX: |
302 | case ISD::VP_REDUCE_UMIN: |
303 | Res = PromoteIntRes_VP_REDUCE(N); |
304 | break; |
305 | |
306 | case ISD::FREEZE: |
307 | Res = PromoteIntRes_FREEZE(N); |
308 | break; |
309 | |
310 | case ISD::ROTL: |
311 | case ISD::ROTR: |
312 | Res = PromoteIntRes_Rotate(N); |
313 | break; |
314 | |
315 | case ISD::FSHL: |
316 | case ISD::FSHR: |
317 | Res = PromoteIntRes_FunnelShift(N); |
318 | break; |
319 | |
320 | case ISD::VP_FSHL: |
321 | case ISD::VP_FSHR: |
322 | Res = PromoteIntRes_VPFunnelShift(N); |
323 | break; |
324 | |
325 | case ISD::IS_FPCLASS: |
326 | Res = PromoteIntRes_IS_FPCLASS(N); |
327 | break; |
328 | case ISD::FFREXP: |
329 | Res = PromoteIntRes_FFREXP(N); |
330 | break; |
331 | |
332 | case ISD::LRINT: |
333 | case ISD::LLRINT: |
334 | Res = PromoteIntRes_XRINT(N); |
335 | break; |
336 | |
337 | case ISD::PATCHPOINT: |
338 | Res = PromoteIntRes_PATCHPOINT(N); |
339 | break; |
340 | } |
341 | |
342 | // If the result is null then the sub-method took care of registering it. |
343 | if (Res.getNode()) |
344 | SetPromotedInteger(Op: SDValue(N, ResNo), Result: Res); |
345 | } |
346 | |
347 | SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N, |
348 | unsigned ResNo) { |
349 | SDValue Op = DisintegrateMERGE_VALUES(N, ResNo); |
350 | return GetPromotedInteger(Op); |
351 | } |
352 | |
353 | SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) { |
354 | // Sign-extend the new bits, and continue the assertion. |
355 | SDValue Op = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
356 | return DAG.getNode(Opcode: ISD::AssertSext, DL: SDLoc(N), |
357 | VT: Op.getValueType(), N1: Op, N2: N->getOperand(Num: 1)); |
358 | } |
359 | |
360 | SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) { |
361 | // Zero the new bits, and continue the assertion. |
362 | SDValue Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
363 | return DAG.getNode(Opcode: ISD::AssertZext, DL: SDLoc(N), |
364 | VT: Op.getValueType(), N1: Op, N2: N->getOperand(Num: 1)); |
365 | } |
366 | |
367 | SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) { |
368 | EVT ResVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
369 | SDValue Res = DAG.getAtomic(Opcode: N->getOpcode(), dl: SDLoc(N), |
370 | MemVT: N->getMemoryVT(), VT: ResVT, |
371 | Chain: N->getChain(), Ptr: N->getBasePtr(), |
372 | MMO: N->getMemOperand()); |
373 | if (N->getOpcode() == ISD::ATOMIC_LOAD) { |
374 | ISD::LoadExtType ETy = cast<AtomicSDNode>(Val: N)->getExtensionType(); |
375 | if (ETy == ISD::NON_EXTLOAD) { |
376 | switch (TLI.getExtendForAtomicOps()) { |
377 | case ISD::SIGN_EXTEND: |
378 | ETy = ISD::SEXTLOAD; |
379 | break; |
380 | case ISD::ZERO_EXTEND: |
381 | ETy = ISD::ZEXTLOAD; |
382 | break; |
383 | case ISD::ANY_EXTEND: |
384 | ETy = ISD::EXTLOAD; |
385 | break; |
386 | default: |
387 | llvm_unreachable("Invalid atomic op extension" ); |
388 | } |
389 | } |
390 | cast<AtomicSDNode>(Val&: Res)->setExtensionType(ETy); |
391 | } |
392 | |
393 | // Legalize the chain result - switch anything that used the old chain to |
394 | // use the new one. |
395 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
396 | return Res; |
397 | } |
398 | |
399 | SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) { |
400 | SDValue Op2 = GetPromotedInteger(Op: N->getOperand(Num: 2)); |
401 | SDValue Res = DAG.getAtomic(Opcode: N->getOpcode(), dl: SDLoc(N), |
402 | MemVT: N->getMemoryVT(), |
403 | Chain: N->getChain(), Ptr: N->getBasePtr(), |
404 | Val: Op2, MMO: N->getMemOperand()); |
405 | // Legalize the chain result - switch anything that used the old chain to |
406 | // use the new one. |
407 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
408 | return Res; |
409 | } |
410 | |
411 | SDValue DAGTypeLegalizer::PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, |
412 | unsigned ResNo) { |
413 | if (ResNo == 1) { |
414 | assert(N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); |
415 | EVT SVT = getSetCCResultType(VT: N->getOperand(Num: 2).getValueType()); |
416 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 1)); |
417 | |
418 | // Only use the result of getSetCCResultType if it is legal, |
419 | // otherwise just use the promoted result type (NVT). |
420 | if (!TLI.isTypeLegal(VT: SVT)) |
421 | SVT = NVT; |
422 | |
423 | SDVTList VTs = DAG.getVTList(VT1: N->getValueType(ResNo: 0), VT2: SVT, VT3: MVT::Other); |
424 | SDValue Res = DAG.getAtomicCmpSwap( |
425 | Opcode: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl: SDLoc(N), MemVT: N->getMemoryVT(), VTs, |
426 | Chain: N->getChain(), Ptr: N->getBasePtr(), Cmp: N->getOperand(Num: 2), Swp: N->getOperand(Num: 3), |
427 | MMO: N->getMemOperand()); |
428 | ReplaceValueWith(From: SDValue(N, 0), To: Res.getValue(R: 0)); |
429 | ReplaceValueWith(From: SDValue(N, 2), To: Res.getValue(R: 2)); |
430 | return DAG.getSExtOrTrunc(Op: Res.getValue(R: 1), DL: SDLoc(N), VT: NVT); |
431 | } |
432 | |
433 | // Op2 is used for the comparison and thus must be extended according to the |
434 | // target's atomic operations. Op3 is merely stored and so can be left alone. |
435 | SDValue Op2 = N->getOperand(Num: 2); |
436 | SDValue Op3 = GetPromotedInteger(Op: N->getOperand(Num: 3)); |
437 | switch (TLI.getExtendForAtomicCmpSwapArg()) { |
438 | case ISD::SIGN_EXTEND: |
439 | Op2 = SExtPromotedInteger(Op: Op2); |
440 | break; |
441 | case ISD::ZERO_EXTEND: |
442 | Op2 = ZExtPromotedInteger(Op: Op2); |
443 | break; |
444 | case ISD::ANY_EXTEND: |
445 | Op2 = GetPromotedInteger(Op: Op2); |
446 | break; |
447 | default: |
448 | llvm_unreachable("Invalid atomic op extension" ); |
449 | } |
450 | |
451 | SDVTList VTs = |
452 | DAG.getVTList(VT1: Op2.getValueType(), VT2: N->getValueType(ResNo: 1), VT3: MVT::Other); |
453 | SDValue Res = DAG.getAtomicCmpSwap( |
454 | Opcode: N->getOpcode(), dl: SDLoc(N), MemVT: N->getMemoryVT(), VTs, Chain: N->getChain(), |
455 | Ptr: N->getBasePtr(), Cmp: Op2, Swp: Op3, MMO: N->getMemOperand()); |
456 | // Update the use to N with the newly created Res. |
457 | for (unsigned i = 1, NumResults = N->getNumValues(); i < NumResults; ++i) |
458 | ReplaceValueWith(From: SDValue(N, i), To: Res.getValue(R: i)); |
459 | return Res; |
460 | } |
461 | |
462 | SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) { |
463 | SDValue InOp = N->getOperand(Num: 0); |
464 | EVT InVT = InOp.getValueType(); |
465 | EVT NInVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: InVT); |
466 | EVT OutVT = N->getValueType(ResNo: 0); |
467 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
468 | SDLoc dl(N); |
469 | |
470 | switch (getTypeAction(VT: InVT)) { |
471 | case TargetLowering::TypeLegal: |
472 | break; |
473 | case TargetLowering::TypePromoteInteger: |
474 | if (NOutVT.bitsEq(VT: NInVT) && !NOutVT.isVector() && !NInVT.isVector()) |
475 | // The input promotes to the same size. Convert the promoted value. |
476 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: NOutVT, Operand: GetPromotedInteger(Op: InOp)); |
477 | break; |
478 | case TargetLowering::TypeSoftenFloat: |
479 | // Promote the integer operand by hand. |
480 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: GetSoftenedFloat(Op: InOp)); |
481 | case TargetLowering::TypeSoftPromoteHalf: |
482 | // Promote the integer operand by hand. |
483 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: GetSoftPromotedHalf(Op: InOp)); |
484 | case TargetLowering::TypePromoteFloat: { |
485 | // Convert the promoted float by hand. |
486 | if (!NOutVT.isVector()) |
487 | return DAG.getNode(Opcode: ISD::FP_TO_FP16, DL: dl, VT: NOutVT, Operand: GetPromotedFloat(Op: InOp)); |
488 | break; |
489 | } |
490 | case TargetLowering::TypeExpandInteger: |
491 | case TargetLowering::TypeExpandFloat: |
492 | break; |
493 | case TargetLowering::TypeScalarizeVector: |
494 | // Convert the element to an integer and promote it by hand. |
495 | if (!NOutVT.isVector()) |
496 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, |
497 | Operand: BitConvertToInteger(Op: GetScalarizedVector(Op: InOp))); |
498 | break; |
499 | case TargetLowering::TypeScalarizeScalableVector: |
500 | report_fatal_error(reason: "Scalarization of scalable vectors is not supported." ); |
501 | case TargetLowering::TypeSplitVector: { |
502 | if (!NOutVT.isVector()) { |
503 | // For example, i32 = BITCAST v2i16 on alpha. Convert the split |
504 | // pieces of the input into integers and reassemble in the final type. |
505 | SDValue Lo, Hi; |
506 | GetSplitVector(Op: N->getOperand(Num: 0), Lo, Hi); |
507 | Lo = BitConvertToInteger(Op: Lo); |
508 | Hi = BitConvertToInteger(Op: Hi); |
509 | |
510 | if (DAG.getDataLayout().isBigEndian()) |
511 | std::swap(a&: Lo, b&: Hi); |
512 | |
513 | InOp = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, |
514 | VT: EVT::getIntegerVT(Context&: *DAG.getContext(), |
515 | BitWidth: NOutVT.getSizeInBits()), |
516 | Operand: JoinIntegers(Lo, Hi)); |
517 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: NOutVT, Operand: InOp); |
518 | } |
519 | break; |
520 | } |
521 | case TargetLowering::TypeWidenVector: |
522 | // The input is widened to the same size. Convert to the widened value. |
523 | // Make sure that the outgoing value is not a vector, because this would |
524 | // make us bitcast between two vectors which are legalized in different ways. |
525 | if (NOutVT.bitsEq(VT: NInVT) && !NOutVT.isVector()) { |
526 | SDValue Res = |
527 | DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: NOutVT, Operand: GetWidenedVector(Op: InOp)); |
528 | |
529 | // For big endian targets we need to shift the casted value or the |
530 | // interesting bits will end up at the wrong place. |
531 | if (DAG.getDataLayout().isBigEndian()) { |
532 | unsigned ShiftAmt = NInVT.getSizeInBits() - InVT.getSizeInBits(); |
533 | assert(ShiftAmt < NOutVT.getSizeInBits() && "Too large shift amount!" ); |
534 | Res = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NOutVT, N1: Res, |
535 | N2: DAG.getShiftAmountConstant(Val: ShiftAmt, VT: NOutVT, DL: dl)); |
536 | } |
537 | return Res; |
538 | } |
539 | // If the output type is also a vector and widening it to the same size |
540 | // as the widened input type would be a legal type, we can widen the bitcast |
541 | // and handle the promotion after. |
542 | if (NOutVT.isVector()) { |
543 | TypeSize WidenInSize = NInVT.getSizeInBits(); |
544 | TypeSize OutSize = OutVT.getSizeInBits(); |
545 | if (WidenInSize.hasKnownScalarFactor(RHS: OutSize)) { |
546 | unsigned Scale = WidenInSize.getKnownScalarFactor(RHS: OutSize); |
547 | EVT WideOutVT = |
548 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: OutVT.getVectorElementType(), |
549 | EC: OutVT.getVectorElementCount() * Scale); |
550 | if (isTypeLegal(VT: WideOutVT)) { |
551 | InOp = DAG.getBitcast(VT: WideOutVT, V: GetWidenedVector(Op: InOp)); |
552 | InOp = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: OutVT, N1: InOp, |
553 | N2: DAG.getVectorIdxConstant(Val: 0, DL: dl)); |
554 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: InOp); |
555 | } |
556 | } |
557 | } |
558 | } |
559 | |
560 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, |
561 | Operand: CreateStackStoreLoad(Op: InOp, DestVT: OutVT)); |
562 | } |
563 | |
564 | SDValue DAGTypeLegalizer::PromoteIntRes_FREEZE(SDNode *N) { |
565 | SDValue V = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
566 | return DAG.getNode(Opcode: ISD::FREEZE, DL: SDLoc(N), |
567 | VT: V.getValueType(), Operand: V); |
568 | } |
569 | |
570 | SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) { |
571 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
572 | EVT OVT = N->getValueType(ResNo: 0); |
573 | EVT NVT = Op.getValueType(); |
574 | SDLoc dl(N); |
575 | |
576 | // If the larger BSWAP isn't supported by the target, try to expand now. |
577 | // If we expand later we'll end up with more operations since we lost the |
578 | // original type. We only do this for scalars since we have a shuffle |
579 | // based lowering for vectors in LegalizeVectorOps. |
580 | if (!OVT.isVector() && |
581 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::BSWAP, VT: NVT)) { |
582 | if (SDValue Res = TLI.expandBSWAP(N, DAG)) |
583 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: Res); |
584 | } |
585 | |
586 | unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(); |
587 | SDValue ShAmt = DAG.getShiftAmountConstant(Val: DiffBits, VT: NVT, DL: dl); |
588 | if (N->getOpcode() == ISD::BSWAP) |
589 | return DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: DAG.getNode(Opcode: ISD::BSWAP, DL: dl, VT: NVT, Operand: Op), |
590 | N2: ShAmt); |
591 | SDValue Mask = N->getOperand(Num: 1); |
592 | SDValue EVL = N->getOperand(Num: 2); |
593 | return DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT: NVT, |
594 | N1: DAG.getNode(Opcode: ISD::VP_BSWAP, DL: dl, VT: NVT, N1: Op, N2: Mask, N3: EVL), N2: ShAmt, |
595 | N3: Mask, N4: EVL); |
596 | } |
597 | |
598 | SDValue DAGTypeLegalizer::PromoteIntRes_BITREVERSE(SDNode *N) { |
599 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
600 | EVT OVT = N->getValueType(ResNo: 0); |
601 | EVT NVT = Op.getValueType(); |
602 | SDLoc dl(N); |
603 | |
604 | // If the larger BITREVERSE isn't supported by the target, try to expand now. |
605 | // If we expand later we'll end up with more operations since we lost the |
606 | // original type. We only do this for scalars since we have a shuffle |
607 | // based lowering for vectors in LegalizeVectorOps. |
608 | if (!OVT.isVector() && OVT.isSimple() && |
609 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::BITREVERSE, VT: NVT)) { |
610 | if (SDValue Res = TLI.expandBITREVERSE(N, DAG)) |
611 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: Res); |
612 | } |
613 | |
614 | unsigned DiffBits = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(); |
615 | SDValue ShAmt = DAG.getShiftAmountConstant(Val: DiffBits, VT: NVT, DL: dl); |
616 | if (N->getOpcode() == ISD::BITREVERSE) |
617 | return DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, |
618 | N1: DAG.getNode(Opcode: ISD::BITREVERSE, DL: dl, VT: NVT, Operand: Op), N2: ShAmt); |
619 | SDValue Mask = N->getOperand(Num: 1); |
620 | SDValue EVL = N->getOperand(Num: 2); |
621 | return DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT: NVT, |
622 | N1: DAG.getNode(Opcode: ISD::VP_BITREVERSE, DL: dl, VT: NVT, N1: Op, N2: Mask, N3: EVL), |
623 | N2: ShAmt, N3: Mask, N4: EVL); |
624 | } |
625 | |
626 | SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) { |
627 | // The pair element type may be legal, or may not promote to the same type as |
628 | // the result, for example i14 = BUILD_PAIR (i7, i7). Handle all cases. |
629 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), |
630 | VT: TLI.getTypeToTransformTo(Context&: *DAG.getContext(), |
631 | VT: N->getValueType(ResNo: 0)), Operand: JoinIntegers(Lo: N->getOperand(Num: 0), |
632 | Hi: N->getOperand(Num: 1))); |
633 | } |
634 | |
635 | SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) { |
636 | EVT VT = N->getValueType(ResNo: 0); |
637 | // FIXME there is no actual debug info here |
638 | SDLoc dl(N); |
639 | // Zero extend things like i1, sign extend everything else. It shouldn't |
640 | // matter in theory which one we pick, but this tends to give better code? |
641 | unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
642 | SDValue Result = DAG.getNode(Opcode: Opc, DL: dl, |
643 | VT: TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT), |
644 | Operand: SDValue(N, 0)); |
645 | assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?" ); |
646 | return Result; |
647 | } |
648 | |
649 | SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) { |
650 | EVT OVT = N->getValueType(ResNo: 0); |
651 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OVT); |
652 | SDLoc dl(N); |
653 | |
654 | // If the larger CTLZ isn't supported by the target, try to expand now. |
655 | // If we expand later we'll end up with more operations since we lost the |
656 | // original type. |
657 | if (!OVT.isVector() && TLI.isTypeLegal(VT: NVT) && |
658 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::CTLZ, VT: NVT) && |
659 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::CTLZ_ZERO_UNDEF, VT: NVT)) { |
660 | if (SDValue Result = TLI.expandCTLZ(N, DAG)) { |
661 | Result = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: Result); |
662 | return Result; |
663 | } |
664 | } |
665 | |
666 | unsigned CtlzOpcode = N->getOpcode(); |
667 | if (CtlzOpcode == ISD::CTLZ || CtlzOpcode == ISD::VP_CTLZ) { |
668 | // Subtract off the extra leading bits in the bigger type. |
669 | SDValue = DAG.getConstant( |
670 | Val: NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(), DL: dl, VT: NVT); |
671 | |
672 | if (!N->isVPOpcode()) { |
673 | // Zero extend to the promoted type and do the count there. |
674 | SDValue Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
675 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, |
676 | N1: DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: Op), |
677 | N2: ExtractLeadingBits); |
678 | } |
679 | SDValue Mask = N->getOperand(Num: 1); |
680 | SDValue EVL = N->getOperand(Num: 2); |
681 | // Zero extend to the promoted type and do the count there. |
682 | SDValue Op = VPZExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
683 | return DAG.getNode(Opcode: ISD::VP_SUB, DL: dl, VT: NVT, |
684 | N1: DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, N1: Op, N2: Mask, N3: EVL), |
685 | N2: ExtractLeadingBits, N3: Mask, N4: EVL); |
686 | } |
687 | if (CtlzOpcode == ISD::CTLZ_ZERO_UNDEF || |
688 | CtlzOpcode == ISD::VP_CTLZ_ZERO_UNDEF) { |
689 | // Any Extend the argument |
690 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
691 | // Op = Op << (sizeinbits(NVT) - sizeinbits(Old VT)) |
692 | unsigned SHLAmount = NVT.getScalarSizeInBits() - OVT.getScalarSizeInBits(); |
693 | auto ShiftConst = |
694 | DAG.getShiftAmountConstant(Val: SHLAmount, VT: Op.getValueType(), DL: dl); |
695 | if (!N->isVPOpcode()) { |
696 | Op = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: Op, N2: ShiftConst); |
697 | return DAG.getNode(Opcode: CtlzOpcode, DL: dl, VT: NVT, Operand: Op); |
698 | } |
699 | |
700 | SDValue Mask = N->getOperand(Num: 1); |
701 | SDValue EVL = N->getOperand(Num: 2); |
702 | Op = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT: NVT, N1: Op, N2: ShiftConst, N3: Mask, N4: EVL); |
703 | return DAG.getNode(Opcode: CtlzOpcode, DL: dl, VT: NVT, N1: Op, N2: Mask, N3: EVL); |
704 | } |
705 | llvm_unreachable("Invalid CTLZ Opcode" ); |
706 | } |
707 | |
708 | SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP_PARITY(SDNode *N) { |
709 | EVT OVT = N->getValueType(ResNo: 0); |
710 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OVT); |
711 | |
712 | // If the larger CTPOP isn't supported by the target, try to expand now. |
713 | // If we expand later we'll end up with more operations since we lost the |
714 | // original type. |
715 | // TODO: Expand ISD::PARITY. Need to move ExpandPARITY from LegalizeDAG to |
716 | // TargetLowering. |
717 | if (N->getOpcode() == ISD::CTPOP && !OVT.isVector() && TLI.isTypeLegal(VT: NVT) && |
718 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::CTPOP, VT: NVT)) { |
719 | if (SDValue Result = TLI.expandCTPOP(N, DAG)) { |
720 | Result = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: NVT, Operand: Result); |
721 | return Result; |
722 | } |
723 | } |
724 | |
725 | // Zero extend to the promoted type and do the count or parity there. |
726 | if (!N->isVPOpcode()) { |
727 | SDValue Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
728 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: Op.getValueType(), Operand: Op); |
729 | } |
730 | |
731 | SDValue Mask = N->getOperand(Num: 1); |
732 | SDValue EVL = N->getOperand(Num: 2); |
733 | SDValue Op = VPZExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
734 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: Op.getValueType(), N1: Op, N2: Mask, |
735 | N3: EVL); |
736 | } |
737 | |
738 | SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) { |
739 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
740 | EVT OVT = N->getValueType(ResNo: 0); |
741 | EVT NVT = Op.getValueType(); |
742 | SDLoc dl(N); |
743 | |
744 | // If the larger CTTZ isn't supported by the target, try to expand now. |
745 | // If we expand later we'll end up with more operations since we lost the |
746 | // original type. Don't expand if we can use CTPOP or CTLZ expansion on the |
747 | // larger type. |
748 | if (!OVT.isVector() && TLI.isTypeLegal(VT: NVT) && |
749 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::CTTZ, VT: NVT) && |
750 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::CTTZ_ZERO_UNDEF, VT: NVT) && |
751 | !TLI.isOperationLegal(Op: ISD::CTPOP, VT: NVT) && |
752 | !TLI.isOperationLegal(Op: ISD::CTLZ, VT: NVT)) { |
753 | if (SDValue Result = TLI.expandCTTZ(N, DAG)) { |
754 | Result = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: Result); |
755 | return Result; |
756 | } |
757 | } |
758 | |
759 | unsigned NewOpc = N->getOpcode(); |
760 | if (NewOpc == ISD::CTTZ || NewOpc == ISD::VP_CTTZ) { |
761 | // The count is the same in the promoted type except if the original |
762 | // value was zero. This can be handled by setting the bit just off |
763 | // the top of the original type. |
764 | auto TopBit = APInt::getOneBitSet(numBits: NVT.getScalarSizeInBits(), |
765 | BitNo: OVT.getScalarSizeInBits()); |
766 | if (NewOpc == ISD::CTTZ) { |
767 | Op = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, N1: Op, N2: DAG.getConstant(Val: TopBit, DL: dl, VT: NVT)); |
768 | NewOpc = ISD::CTTZ_ZERO_UNDEF; |
769 | } else { |
770 | Op = |
771 | DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT: NVT, N1: Op, N2: DAG.getConstant(Val: TopBit, DL: dl, VT: NVT), |
772 | N3: N->getOperand(Num: 1), N4: N->getOperand(Num: 2)); |
773 | NewOpc = ISD::VP_CTTZ_ZERO_UNDEF; |
774 | } |
775 | } |
776 | if (!N->isVPOpcode()) |
777 | return DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, Operand: Op); |
778 | return DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, N1: Op, N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2)); |
779 | } |
780 | |
781 | SDValue DAGTypeLegalizer::PromoteIntRes_VP_CttzElements(SDNode *N) { |
782 | SDLoc DL(N); |
783 | EVT NewVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
784 | return DAG.getNode(Opcode: N->getOpcode(), DL, VT: NewVT, Ops: N->ops()); |
785 | } |
786 | |
787 | SDValue DAGTypeLegalizer::(SDNode *N) { |
788 | SDLoc dl(N); |
789 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
790 | |
791 | SDValue Op0 = N->getOperand(Num: 0); |
792 | SDValue Op1 = N->getOperand(Num: 1); |
793 | |
794 | // If the input also needs to be promoted, do that first so we can get a |
795 | // get a good idea for the output type. |
796 | if (TLI.getTypeAction(Context&: *DAG.getContext(), VT: Op0.getValueType()) |
797 | == TargetLowering::TypePromoteInteger) { |
798 | SDValue In = GetPromotedInteger(Op: Op0); |
799 | |
800 | // If the new type is larger than NVT, use it. We probably won't need to |
801 | // promote it again. |
802 | EVT SVT = In.getValueType().getScalarType(); |
803 | if (SVT.bitsGE(VT: NVT)) { |
804 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: SVT, N1: In, N2: Op1); |
805 | return DAG.getAnyExtOrTrunc(Op: Ext, DL: dl, VT: NVT); |
806 | } |
807 | } |
808 | |
809 | return DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: NVT, N1: Op0, N2: Op1); |
810 | } |
811 | |
812 | SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) { |
813 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
814 | unsigned NewOpc = N->getOpcode(); |
815 | SDLoc dl(N); |
816 | |
817 | // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is |
818 | // not Legal, check to see if we can use FP_TO_SINT instead. (If both UINT |
819 | // and SINT conversions are Custom, there is no way to tell which is |
820 | // preferable. We choose SINT because that's the right thing on PPC.) |
821 | if (N->getOpcode() == ISD::FP_TO_UINT && |
822 | !TLI.isOperationLegal(Op: ISD::FP_TO_UINT, VT: NVT) && |
823 | TLI.isOperationLegalOrCustom(Op: ISD::FP_TO_SINT, VT: NVT)) |
824 | NewOpc = ISD::FP_TO_SINT; |
825 | |
826 | if (N->getOpcode() == ISD::STRICT_FP_TO_UINT && |
827 | !TLI.isOperationLegal(Op: ISD::STRICT_FP_TO_UINT, VT: NVT) && |
828 | TLI.isOperationLegalOrCustom(Op: ISD::STRICT_FP_TO_SINT, VT: NVT)) |
829 | NewOpc = ISD::STRICT_FP_TO_SINT; |
830 | |
831 | if (N->getOpcode() == ISD::VP_FP_TO_UINT && |
832 | !TLI.isOperationLegal(Op: ISD::VP_FP_TO_UINT, VT: NVT) && |
833 | TLI.isOperationLegalOrCustom(Op: ISD::VP_FP_TO_SINT, VT: NVT)) |
834 | NewOpc = ISD::VP_FP_TO_SINT; |
835 | |
836 | SDValue Res; |
837 | if (N->isStrictFPOpcode()) { |
838 | Res = DAG.getNode(Opcode: NewOpc, DL: dl, ResultTys: {NVT, MVT::Other}, |
839 | Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1)}); |
840 | // Legalize the chain result - switch anything that used the old chain to |
841 | // use the new one. |
842 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
843 | } else if (NewOpc == ISD::VP_FP_TO_SINT || NewOpc == ISD::VP_FP_TO_UINT) { |
844 | Res = DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1), |
845 | N->getOperand(Num: 2)}); |
846 | } else { |
847 | Res = DAG.getNode(Opcode: NewOpc, DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
848 | } |
849 | |
850 | // Assert that the converted value fits in the original type. If it doesn't |
851 | // (eg: because the value being converted is too big), then the result of the |
852 | // original operation was undefined anyway, so the assert is still correct. |
853 | // |
854 | // NOTE: fp-to-uint to fp-to-sint promotion guarantees zero extend. For example: |
855 | // before legalization: fp-to-uint16, 65534. -> 0xfffe |
856 | // after legalization: fp-to-sint32, 65534. -> 0x0000fffe |
857 | return DAG.getNode(Opcode: (N->getOpcode() == ISD::FP_TO_UINT || |
858 | N->getOpcode() == ISD::STRICT_FP_TO_UINT || |
859 | N->getOpcode() == ISD::VP_FP_TO_UINT) |
860 | ? ISD::AssertZext |
861 | : ISD::AssertSext, |
862 | DL: dl, VT: NVT, N1: Res, |
863 | N2: DAG.getValueType(N->getValueType(ResNo: 0).getScalarType())); |
864 | } |
865 | |
866 | SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT_SAT(SDNode *N) { |
867 | // Promote the result type, while keeping the original width in Op1. |
868 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
869 | SDLoc dl(N); |
870 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, N1: N->getOperand(Num: 0), |
871 | N2: N->getOperand(Num: 1)); |
872 | } |
873 | |
874 | SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_FP16_BF16(SDNode *N) { |
875 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
876 | SDLoc dl(N); |
877 | |
878 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
879 | } |
880 | |
881 | SDValue DAGTypeLegalizer::PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N) { |
882 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
883 | SDLoc dl(N); |
884 | |
885 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList: DAG.getVTList(VT1: NVT, VT2: MVT::Other), |
886 | N1: N->getOperand(Num: 0), N2: N->getOperand(Num: 1)); |
887 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
888 | return Res; |
889 | } |
890 | |
891 | SDValue DAGTypeLegalizer::PromoteIntRes_XRINT(SDNode *N) { |
892 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
893 | SDLoc dl(N); |
894 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
895 | } |
896 | |
897 | SDValue DAGTypeLegalizer::PromoteIntRes_GET_ROUNDING(SDNode *N) { |
898 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
899 | SDLoc dl(N); |
900 | |
901 | SDValue Res = |
902 | DAG.getNode(Opcode: N->getOpcode(), DL: dl, ResultTys: {NVT, MVT::Other}, Ops: N->getOperand(Num: 0)); |
903 | |
904 | // Legalize the chain result - switch anything that used the old chain to |
905 | // use the new one. |
906 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
907 | return Res; |
908 | } |
909 | |
910 | SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) { |
911 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
912 | SDLoc dl(N); |
913 | |
914 | if (getTypeAction(VT: N->getOperand(Num: 0).getValueType()) |
915 | == TargetLowering::TypePromoteInteger) { |
916 | SDValue Res = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
917 | assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!" ); |
918 | |
919 | // If the result and operand types are the same after promotion, simplify |
920 | // to an in-register extension. Unless this is a VP_*_EXTEND. |
921 | if (NVT == Res.getValueType() && N->getNumOperands() == 1) { |
922 | // The high bits are not guaranteed to be anything. Insert an extend. |
923 | if (N->getOpcode() == ISD::SIGN_EXTEND) |
924 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: NVT, N1: Res, |
925 | N2: DAG.getValueType(N->getOperand(Num: 0).getValueType())); |
926 | if (N->getOpcode() == ISD::ZERO_EXTEND) |
927 | return DAG.getZeroExtendInReg(Op: Res, DL: dl, VT: N->getOperand(Num: 0).getValueType()); |
928 | assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!" ); |
929 | return Res; |
930 | } |
931 | } |
932 | |
933 | // Otherwise, just extend the original operand all the way to the larger type. |
934 | if (N->getNumOperands() != 1) { |
935 | assert(N->getNumOperands() == 3 && "Unexpected number of operands!" ); |
936 | assert(N->isVPOpcode() && "Expected VP opcode" ); |
937 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, N1: N->getOperand(Num: 0), |
938 | N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2)); |
939 | } |
940 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
941 | } |
942 | |
943 | SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) { |
944 | assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!" ); |
945 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
946 | ISD::LoadExtType ExtType = |
947 | ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType(); |
948 | SDLoc dl(N); |
949 | SDValue Res = DAG.getExtLoad(ExtType, dl, VT: NVT, Chain: N->getChain(), Ptr: N->getBasePtr(), |
950 | MemVT: N->getMemoryVT(), MMO: N->getMemOperand()); |
951 | |
952 | // Legalize the chain result - switch anything that used the old chain to |
953 | // use the new one. |
954 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
955 | return Res; |
956 | } |
957 | |
958 | SDValue DAGTypeLegalizer::PromoteIntRes_MLOAD(MaskedLoadSDNode *N) { |
959 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
960 | SDValue ExtPassThru = GetPromotedInteger(Op: N->getPassThru()); |
961 | |
962 | ISD::LoadExtType ExtType = N->getExtensionType(); |
963 | if (ExtType == ISD::NON_EXTLOAD) |
964 | ExtType = ISD::EXTLOAD; |
965 | |
966 | SDLoc dl(N); |
967 | SDValue Res = DAG.getMaskedLoad(VT: NVT, dl, Chain: N->getChain(), Base: N->getBasePtr(), |
968 | Offset: N->getOffset(), Mask: N->getMask(), Src0: ExtPassThru, |
969 | MemVT: N->getMemoryVT(), MMO: N->getMemOperand(), |
970 | AM: N->getAddressingMode(), ExtType, |
971 | IsExpanding: N->isExpandingLoad()); |
972 | // Legalize the chain result - switch anything that used the old chain to |
973 | // use the new one. |
974 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
975 | return Res; |
976 | } |
977 | |
978 | SDValue DAGTypeLegalizer::PromoteIntRes_MGATHER(MaskedGatherSDNode *N) { |
979 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
980 | SDValue ExtPassThru = GetPromotedInteger(Op: N->getPassThru()); |
981 | assert(NVT == ExtPassThru.getValueType() && |
982 | "Gather result type and the passThru argument type should be the same" ); |
983 | |
984 | ISD::LoadExtType ExtType = N->getExtensionType(); |
985 | if (ExtType == ISD::NON_EXTLOAD) |
986 | ExtType = ISD::EXTLOAD; |
987 | |
988 | SDLoc dl(N); |
989 | SDValue Ops[] = {N->getChain(), ExtPassThru, N->getMask(), N->getBasePtr(), |
990 | N->getIndex(), N->getScale() }; |
991 | SDValue Res = DAG.getMaskedGather(VTs: DAG.getVTList(VT1: NVT, VT2: MVT::Other), |
992 | MemVT: N->getMemoryVT(), dl, Ops, |
993 | MMO: N->getMemOperand(), IndexType: N->getIndexType(), |
994 | ExtTy: ExtType); |
995 | // Legalize the chain result - switch anything that used the old chain to |
996 | // use the new one. |
997 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
998 | return Res; |
999 | } |
1000 | |
1001 | SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_COMPRESS(SDNode *N) { |
1002 | SDValue Vec = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1003 | SDValue Passthru = GetPromotedInteger(Op: N->getOperand(Num: 2)); |
1004 | return DAG.getNode(Opcode: ISD::VECTOR_COMPRESS, DL: SDLoc(N), VT: Vec.getValueType(), N1: Vec, |
1005 | N2: N->getOperand(Num: 1), N3: Passthru); |
1006 | } |
1007 | |
1008 | /// Promote the overflow flag of an overflowing arithmetic node. |
1009 | SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) { |
1010 | // Change the return type of the boolean result while obeying |
1011 | // getSetCCResultType. |
1012 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 1)); |
1013 | EVT VT = N->getValueType(ResNo: 0); |
1014 | EVT SVT = getSetCCResultType(VT); |
1015 | SDValue Ops[3] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
1016 | unsigned NumOps = N->getNumOperands(); |
1017 | assert(NumOps <= 3 && "Too many operands" ); |
1018 | if (NumOps == 3) |
1019 | Ops[2] = PromoteTargetBoolean(Bool: N->getOperand(Num: 2), ValVT: VT); |
1020 | |
1021 | SDLoc dl(N); |
1022 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: SVT), |
1023 | Ops: ArrayRef(Ops, NumOps)); |
1024 | |
1025 | // Modified the sum result - switch anything that used the old sum to use |
1026 | // the new one. |
1027 | ReplaceValueWith(From: SDValue(N, 0), To: Res); |
1028 | |
1029 | // Convert to the expected type. |
1030 | return DAG.getBoolExtOrTrunc(Op: Res.getValue(R: 1), SL: dl, VT: NVT, OpVT: VT); |
1031 | } |
1032 | |
1033 | template <class MatchContextClass> |
1034 | SDValue DAGTypeLegalizer::PromoteIntRes_ADDSUBSHLSAT(SDNode *N) { |
1035 | // If the promoted type is legal, we can convert this to: |
1036 | // 1. ANY_EXTEND iN to iM |
1037 | // 2. SHL by M-N |
1038 | // 3. [US][ADD|SUB|SHL]SAT |
1039 | // 4. L/ASHR by M-N |
1040 | // Else it is more efficient to convert this to a min and a max |
1041 | // operation in the higher precision arithmetic. |
1042 | SDLoc dl(N); |
1043 | SDValue Op1 = N->getOperand(Num: 0); |
1044 | SDValue Op2 = N->getOperand(Num: 1); |
1045 | MatchContextClass matcher(DAG, TLI, N); |
1046 | unsigned OldBits = Op1.getScalarValueSizeInBits(); |
1047 | |
1048 | unsigned Opcode = matcher.getRootBaseOpcode(); |
1049 | bool IsShift = Opcode == ISD::USHLSAT || Opcode == ISD::SSHLSAT; |
1050 | |
1051 | // FIXME: We need vp-aware PromotedInteger functions. |
1052 | SDValue Op1Promoted, Op2Promoted; |
1053 | if (IsShift) { |
1054 | Op1Promoted = GetPromotedInteger(Op: Op1); |
1055 | Op2Promoted = ZExtPromotedInteger(Op: Op2); |
1056 | } else if (Opcode == ISD::UADDSAT || Opcode == ISD::USUBSAT) { |
1057 | Op1Promoted = ZExtPromotedInteger(Op: Op1); |
1058 | Op2Promoted = ZExtPromotedInteger(Op: Op2); |
1059 | } else { |
1060 | Op1Promoted = SExtPromotedInteger(Op: Op1); |
1061 | Op2Promoted = SExtPromotedInteger(Op: Op2); |
1062 | } |
1063 | EVT PromotedType = Op1Promoted.getValueType(); |
1064 | unsigned NewBits = PromotedType.getScalarSizeInBits(); |
1065 | |
1066 | if (Opcode == ISD::UADDSAT) { |
1067 | APInt MaxVal = APInt::getAllOnes(numBits: OldBits).zext(width: NewBits); |
1068 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT: PromotedType); |
1069 | SDValue Add = |
1070 | matcher.getNode(ISD::ADD, dl, PromotedType, Op1Promoted, Op2Promoted); |
1071 | return matcher.getNode(ISD::UMIN, dl, PromotedType, Add, SatMax); |
1072 | } |
1073 | |
1074 | // USUBSAT can always be promoted as long as we have zero-extended the args. |
1075 | if (Opcode == ISD::USUBSAT) |
1076 | return matcher.getNode(ISD::USUBSAT, dl, PromotedType, Op1Promoted, |
1077 | Op2Promoted); |
1078 | |
1079 | // Shift cannot use a min/max expansion, we can't detect overflow if all of |
1080 | // the bits have been shifted out. |
1081 | if (IsShift || matcher.isOperationLegal(Opcode, PromotedType)) { |
1082 | unsigned ShiftOp; |
1083 | switch (Opcode) { |
1084 | case ISD::SADDSAT: |
1085 | case ISD::SSUBSAT: |
1086 | case ISD::SSHLSAT: |
1087 | ShiftOp = ISD::SRA; |
1088 | break; |
1089 | case ISD::USHLSAT: |
1090 | ShiftOp = ISD::SRL; |
1091 | break; |
1092 | default: |
1093 | llvm_unreachable("Expected opcode to be signed or unsigned saturation " |
1094 | "addition, subtraction or left shift" ); |
1095 | } |
1096 | |
1097 | unsigned SHLAmount = NewBits - OldBits; |
1098 | SDValue ShiftAmount = |
1099 | DAG.getShiftAmountConstant(Val: SHLAmount, VT: PromotedType, DL: dl); |
1100 | Op1Promoted = |
1101 | DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: PromotedType, N1: Op1Promoted, N2: ShiftAmount); |
1102 | if (!IsShift) |
1103 | Op2Promoted = |
1104 | matcher.getNode(ISD::SHL, dl, PromotedType, Op2Promoted, ShiftAmount); |
1105 | |
1106 | SDValue Result = |
1107 | matcher.getNode(Opcode, dl, PromotedType, Op1Promoted, Op2Promoted); |
1108 | return matcher.getNode(ShiftOp, dl, PromotedType, Result, ShiftAmount); |
1109 | } |
1110 | |
1111 | unsigned AddOp = Opcode == ISD::SADDSAT ? ISD::ADD : ISD::SUB; |
1112 | APInt MinVal = APInt::getSignedMinValue(numBits: OldBits).sext(width: NewBits); |
1113 | APInt MaxVal = APInt::getSignedMaxValue(numBits: OldBits).sext(width: NewBits); |
1114 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT: PromotedType); |
1115 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT: PromotedType); |
1116 | SDValue Result = |
1117 | matcher.getNode(AddOp, dl, PromotedType, Op1Promoted, Op2Promoted); |
1118 | Result = matcher.getNode(ISD::SMIN, dl, PromotedType, Result, SatMax); |
1119 | Result = matcher.getNode(ISD::SMAX, dl, PromotedType, Result, SatMin); |
1120 | return Result; |
1121 | } |
1122 | |
1123 | SDValue DAGTypeLegalizer::PromoteIntRes_MULFIX(SDNode *N) { |
1124 | // Can just promote the operands then continue with operation. |
1125 | SDLoc dl(N); |
1126 | SDValue Op1Promoted, Op2Promoted; |
1127 | bool Signed = |
1128 | N->getOpcode() == ISD::SMULFIX || N->getOpcode() == ISD::SMULFIXSAT; |
1129 | bool Saturating = |
1130 | N->getOpcode() == ISD::SMULFIXSAT || N->getOpcode() == ISD::UMULFIXSAT; |
1131 | if (Signed) { |
1132 | Op1Promoted = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1133 | Op2Promoted = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1134 | } else { |
1135 | Op1Promoted = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1136 | Op2Promoted = ZExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1137 | } |
1138 | EVT OldType = N->getOperand(Num: 0).getValueType(); |
1139 | EVT PromotedType = Op1Promoted.getValueType(); |
1140 | unsigned DiffSize = |
1141 | PromotedType.getScalarSizeInBits() - OldType.getScalarSizeInBits(); |
1142 | |
1143 | if (Saturating) { |
1144 | // Promoting the operand and result values changes the saturation width, |
1145 | // which is extends the values that we clamp to on saturation. This could be |
1146 | // resolved by shifting one of the operands the same amount, which would |
1147 | // also shift the result we compare against, then shifting back. |
1148 | Op1Promoted = |
1149 | DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: PromotedType, N1: Op1Promoted, |
1150 | N2: DAG.getShiftAmountConstant(Val: DiffSize, VT: PromotedType, DL: dl)); |
1151 | SDValue Result = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: PromotedType, N1: Op1Promoted, |
1152 | N2: Op2Promoted, N3: N->getOperand(Num: 2)); |
1153 | unsigned ShiftOp = Signed ? ISD::SRA : ISD::SRL; |
1154 | return DAG.getNode(Opcode: ShiftOp, DL: dl, VT: PromotedType, N1: Result, |
1155 | N2: DAG.getShiftAmountConstant(Val: DiffSize, VT: PromotedType, DL: dl)); |
1156 | } |
1157 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: PromotedType, N1: Op1Promoted, N2: Op2Promoted, |
1158 | N3: N->getOperand(Num: 2)); |
1159 | } |
1160 | |
1161 | static SDValue SaturateWidenedDIVFIX(SDValue V, SDLoc &dl, |
1162 | unsigned SatW, bool Signed, |
1163 | const TargetLowering &TLI, |
1164 | SelectionDAG &DAG) { |
1165 | EVT VT = V.getValueType(); |
1166 | unsigned VTW = VT.getScalarSizeInBits(); |
1167 | |
1168 | if (!Signed) { |
1169 | // Saturate to the unsigned maximum by getting the minimum of V and the |
1170 | // maximum. |
1171 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT, N1: V, |
1172 | N2: DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTW, loBitsSet: SatW), |
1173 | DL: dl, VT)); |
1174 | } |
1175 | |
1176 | // Saturate to the signed maximum (the low SatW - 1 bits) by taking the |
1177 | // signed minimum of it and V. |
1178 | V = DAG.getNode(Opcode: ISD::SMIN, DL: dl, VT, N1: V, |
1179 | N2: DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTW, loBitsSet: SatW - 1), |
1180 | DL: dl, VT)); |
1181 | // Saturate to the signed minimum (the high SatW + 1 bits) by taking the |
1182 | // signed maximum of it and V. |
1183 | V = DAG.getNode(Opcode: ISD::SMAX, DL: dl, VT, N1: V, |
1184 | N2: DAG.getConstant(Val: APInt::getHighBitsSet(numBits: VTW, hiBitsSet: VTW - SatW + 1), |
1185 | DL: dl, VT)); |
1186 | return V; |
1187 | } |
1188 | |
1189 | static SDValue earlyExpandDIVFIX(SDNode *N, SDValue LHS, SDValue RHS, |
1190 | unsigned Scale, const TargetLowering &TLI, |
1191 | SelectionDAG &DAG, unsigned SatW = 0) { |
1192 | EVT VT = LHS.getValueType(); |
1193 | unsigned VTSize = VT.getScalarSizeInBits(); |
1194 | bool Signed = N->getOpcode() == ISD::SDIVFIX || |
1195 | N->getOpcode() == ISD::SDIVFIXSAT; |
1196 | bool Saturating = N->getOpcode() == ISD::SDIVFIXSAT || |
1197 | N->getOpcode() == ISD::UDIVFIXSAT; |
1198 | |
1199 | SDLoc dl(N); |
1200 | // Widen the types by a factor of two. This is guaranteed to expand, since it |
1201 | // will always have enough high bits in the LHS to shift into. |
1202 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VTSize * 2); |
1203 | if (VT.isVector()) |
1204 | WideVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, |
1205 | EC: VT.getVectorElementCount()); |
1206 | LHS = DAG.getExtOrTrunc(IsSigned: Signed, Op: LHS, DL: dl, VT: WideVT); |
1207 | RHS = DAG.getExtOrTrunc(IsSigned: Signed, Op: RHS, DL: dl, VT: WideVT); |
1208 | SDValue Res = TLI.expandFixedPointDiv(Opcode: N->getOpcode(), dl, LHS, RHS, Scale, |
1209 | DAG); |
1210 | assert(Res && "Expanding DIVFIX with wide type failed?" ); |
1211 | if (Saturating) { |
1212 | // If the caller has told us to saturate at something less, use that width |
1213 | // instead of the type before doubling. However, it cannot be more than |
1214 | // what we just widened! |
1215 | assert(SatW <= VTSize && |
1216 | "Tried to saturate to more than the original type?" ); |
1217 | Res = SaturateWidenedDIVFIX(V: Res, dl, SatW: SatW == 0 ? VTSize : SatW, Signed, |
1218 | TLI, DAG); |
1219 | } |
1220 | return DAG.getZExtOrTrunc(Op: Res, DL: dl, VT); |
1221 | } |
1222 | |
1223 | SDValue DAGTypeLegalizer::PromoteIntRes_DIVFIX(SDNode *N) { |
1224 | SDLoc dl(N); |
1225 | SDValue Op1Promoted, Op2Promoted; |
1226 | bool Signed = N->getOpcode() == ISD::SDIVFIX || |
1227 | N->getOpcode() == ISD::SDIVFIXSAT; |
1228 | bool Saturating = N->getOpcode() == ISD::SDIVFIXSAT || |
1229 | N->getOpcode() == ISD::UDIVFIXSAT; |
1230 | if (Signed) { |
1231 | Op1Promoted = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1232 | Op2Promoted = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1233 | } else { |
1234 | Op1Promoted = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1235 | Op2Promoted = ZExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1236 | } |
1237 | EVT PromotedType = Op1Promoted.getValueType(); |
1238 | unsigned Scale = N->getConstantOperandVal(Num: 2); |
1239 | |
1240 | // If the type is already legal and the operation is legal in that type, we |
1241 | // should not early expand. |
1242 | if (TLI.isTypeLegal(VT: PromotedType)) { |
1243 | TargetLowering::LegalizeAction Action = |
1244 | TLI.getFixedPointOperationAction(Op: N->getOpcode(), VT: PromotedType, Scale); |
1245 | if (Action == TargetLowering::Legal || Action == TargetLowering::Custom) { |
1246 | unsigned Diff = PromotedType.getScalarSizeInBits() - |
1247 | N->getValueType(ResNo: 0).getScalarSizeInBits(); |
1248 | if (Saturating) |
1249 | Op1Promoted = |
1250 | DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: PromotedType, N1: Op1Promoted, |
1251 | N2: DAG.getShiftAmountConstant(Val: Diff, VT: PromotedType, DL: dl)); |
1252 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: PromotedType, N1: Op1Promoted, |
1253 | N2: Op2Promoted, N3: N->getOperand(Num: 2)); |
1254 | if (Saturating) |
1255 | Res = DAG.getNode(Opcode: Signed ? ISD::SRA : ISD::SRL, DL: dl, VT: PromotedType, N1: Res, |
1256 | N2: DAG.getShiftAmountConstant(Val: Diff, VT: PromotedType, DL: dl)); |
1257 | return Res; |
1258 | } |
1259 | } |
1260 | |
1261 | // See if we can perform the division in this type without expanding. |
1262 | if (SDValue Res = TLI.expandFixedPointDiv(Opcode: N->getOpcode(), dl, LHS: Op1Promoted, |
1263 | RHS: Op2Promoted, Scale, DAG)) { |
1264 | if (Saturating) |
1265 | Res = SaturateWidenedDIVFIX(V: Res, dl, |
1266 | SatW: N->getValueType(ResNo: 0).getScalarSizeInBits(), |
1267 | Signed, TLI, DAG); |
1268 | return Res; |
1269 | } |
1270 | // If we cannot, expand it to twice the type width. If we are saturating, give |
1271 | // it the original width as a saturating width so we don't need to emit |
1272 | // two saturations. |
1273 | return earlyExpandDIVFIX(N, LHS: Op1Promoted, RHS: Op2Promoted, Scale, TLI, DAG, |
1274 | SatW: N->getValueType(ResNo: 0).getScalarSizeInBits()); |
1275 | } |
1276 | |
1277 | SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) { |
1278 | if (ResNo == 1) |
1279 | return PromoteIntRes_Overflow(N); |
1280 | |
1281 | // The operation overflowed iff the result in the larger type is not the |
1282 | // sign extension of its truncation to the original type. |
1283 | SDValue LHS = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1284 | SDValue RHS = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1285 | EVT OVT = N->getOperand(Num: 0).getValueType(); |
1286 | EVT NVT = LHS.getValueType(); |
1287 | SDLoc dl(N); |
1288 | |
1289 | // Do the arithmetic in the larger type. |
1290 | unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB; |
1291 | SDValue Res = DAG.getNode(Opcode, DL: dl, VT: NVT, N1: LHS, N2: RHS); |
1292 | |
1293 | // Calculate the overflow flag: sign extend the arithmetic result from |
1294 | // the original type. |
1295 | SDValue Ofl = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: NVT, N1: Res, |
1296 | N2: DAG.getValueType(OVT)); |
1297 | // Overflowed if and only if this is not equal to Res. |
1298 | Ofl = DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: Ofl, RHS: Res, Cond: ISD::SETNE); |
1299 | |
1300 | // Use the calculated overflow everywhere. |
1301 | ReplaceValueWith(From: SDValue(N, 1), To: Ofl); |
1302 | |
1303 | return Res; |
1304 | } |
1305 | |
1306 | SDValue DAGTypeLegalizer::PromoteIntRes_CMP(SDNode *N) { |
1307 | EVT PromotedResultTy = |
1308 | TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1309 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: PromotedResultTy, |
1310 | N1: N->getOperand(Num: 0), N2: N->getOperand(Num: 1)); |
1311 | } |
1312 | |
1313 | SDValue DAGTypeLegalizer::PromoteIntRes_Select(SDNode *N) { |
1314 | SDValue Mask = N->getOperand(Num: 0); |
1315 | |
1316 | SDValue LHS = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
1317 | SDValue RHS = GetPromotedInteger(Op: N->getOperand(Num: 2)); |
1318 | |
1319 | unsigned Opcode = N->getOpcode(); |
1320 | if (Opcode == ISD::VP_SELECT || Opcode == ISD::VP_MERGE) |
1321 | return DAG.getNode(Opcode, DL: SDLoc(N), VT: LHS.getValueType(), N1: Mask, N2: LHS, N3: RHS, |
1322 | N4: N->getOperand(Num: 3)); |
1323 | return DAG.getNode(Opcode, DL: SDLoc(N), VT: LHS.getValueType(), N1: Mask, N2: LHS, N3: RHS); |
1324 | } |
1325 | |
1326 | SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) { |
1327 | SDValue LHS = GetPromotedInteger(Op: N->getOperand(Num: 2)); |
1328 | SDValue RHS = GetPromotedInteger(Op: N->getOperand(Num: 3)); |
1329 | return DAG.getNode(Opcode: ISD::SELECT_CC, DL: SDLoc(N), |
1330 | VT: LHS.getValueType(), N1: N->getOperand(Num: 0), |
1331 | N2: N->getOperand(Num: 1), N3: LHS, N4: RHS, N5: N->getOperand(Num: 4)); |
1332 | } |
1333 | |
1334 | SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) { |
1335 | unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; |
1336 | EVT InVT = N->getOperand(Num: OpNo).getValueType(); |
1337 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1338 | |
1339 | EVT SVT = getSetCCResultType(VT: InVT); |
1340 | |
1341 | // If we got back a type that needs to be promoted, this likely means the |
1342 | // the input type also needs to be promoted. So get the promoted type for |
1343 | // the input and try the query again. |
1344 | if (getTypeAction(VT: SVT) == TargetLowering::TypePromoteInteger) { |
1345 | if (getTypeAction(VT: InVT) == TargetLowering::TypePromoteInteger) { |
1346 | InVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: InVT); |
1347 | SVT = getSetCCResultType(VT: InVT); |
1348 | } else { |
1349 | // Input type isn't promoted, just use the default promoted type. |
1350 | SVT = NVT; |
1351 | } |
1352 | } |
1353 | |
1354 | SDLoc dl(N); |
1355 | assert(SVT.isVector() == N->getOperand(OpNo).getValueType().isVector() && |
1356 | "Vector compare must return a vector result!" ); |
1357 | |
1358 | // Get the SETCC result using the canonical SETCC type. |
1359 | SDValue SetCC; |
1360 | if (N->isStrictFPOpcode()) { |
1361 | SDVTList VTs = DAG.getVTList(VTs: {SVT, MVT::Other}); |
1362 | SDValue Opers[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), |
1363 | N->getOperand(Num: 2), N->getOperand(Num: 3)}; |
1364 | SetCC = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList: VTs, Ops: Opers, Flags: N->getFlags()); |
1365 | // Legalize the chain result - switch anything that used the old chain to |
1366 | // use the new one. |
1367 | ReplaceValueWith(From: SDValue(N, 1), To: SetCC.getValue(R: 1)); |
1368 | } else |
1369 | SetCC = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: SVT, N1: N->getOperand(Num: 0), |
1370 | N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2), Flags: N->getFlags()); |
1371 | |
1372 | // Convert to the expected type. |
1373 | return DAG.getSExtOrTrunc(Op: SetCC, DL: dl, VT: NVT); |
1374 | } |
1375 | |
1376 | SDValue DAGTypeLegalizer::PromoteIntRes_IS_FPCLASS(SDNode *N) { |
1377 | SDLoc DL(N); |
1378 | SDValue Arg = N->getOperand(Num: 0); |
1379 | SDValue Test = N->getOperand(Num: 1); |
1380 | EVT NResVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1381 | return DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: NResVT, N1: Arg, N2: Test); |
1382 | } |
1383 | |
1384 | SDValue DAGTypeLegalizer::PromoteIntRes_FFREXP(SDNode *N) { |
1385 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 1)); |
1386 | EVT VT = N->getValueType(ResNo: 0); |
1387 | |
1388 | SDLoc dl(N); |
1389 | SDValue Res = |
1390 | DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: NVT), N: N->getOperand(Num: 0)); |
1391 | |
1392 | ReplaceValueWith(From: SDValue(N, 0), To: Res); |
1393 | return Res.getValue(R: 1); |
1394 | } |
1395 | |
1396 | SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) { |
1397 | SDValue LHS = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1398 | SDValue RHS = N->getOperand(Num: 1); |
1399 | if (N->getOpcode() != ISD::VP_SHL) { |
1400 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1401 | RHS = ZExtPromotedInteger(Op: RHS); |
1402 | |
1403 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1404 | } |
1405 | |
1406 | SDValue Mask = N->getOperand(Num: 2); |
1407 | SDValue EVL = N->getOperand(Num: 3); |
1408 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1409 | RHS = VPZExtPromotedInteger(Op: RHS, Mask, EVL); |
1410 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1411 | N3: Mask, N4: EVL); |
1412 | } |
1413 | |
1414 | SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) { |
1415 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1416 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: SDLoc(N), |
1417 | VT: Op.getValueType(), N1: Op, N2: N->getOperand(Num: 1)); |
1418 | } |
1419 | |
1420 | SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) { |
1421 | // The input may have strange things in the top bits of the registers, but |
1422 | // these operations don't care. They may have weird bits going out, but |
1423 | // that too is okay if they are integer operations. |
1424 | SDValue LHS = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1425 | SDValue RHS = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
1426 | if (N->getNumOperands() == 2) |
1427 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1428 | assert(N->getNumOperands() == 4 && "Unexpected number of operands!" ); |
1429 | assert(N->isVPOpcode() && "Expected VP opcode" ); |
1430 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1431 | N3: N->getOperand(Num: 2), N4: N->getOperand(Num: 3)); |
1432 | } |
1433 | |
1434 | SDValue DAGTypeLegalizer::PromoteIntRes_SExtIntBinOp(SDNode *N) { |
1435 | if (N->getNumOperands() == 2) { |
1436 | // Sign extend the input. |
1437 | SDValue LHS = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1438 | SDValue RHS = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1439 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1440 | } |
1441 | assert(N->getNumOperands() == 4 && "Unexpected number of operands!" ); |
1442 | assert(N->isVPOpcode() && "Expected VP opcode" ); |
1443 | SDValue Mask = N->getOperand(Num: 2); |
1444 | SDValue EVL = N->getOperand(Num: 3); |
1445 | // Sign extend the input. |
1446 | SDValue LHS = VPSExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
1447 | SDValue RHS = VPSExtPromotedInteger(Op: N->getOperand(Num: 1), Mask, EVL); |
1448 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1449 | N3: Mask, N4: EVL); |
1450 | } |
1451 | |
1452 | SDValue DAGTypeLegalizer::PromoteIntRes_ZExtIntBinOp(SDNode *N) { |
1453 | if (N->getNumOperands() == 2) { |
1454 | // Zero extend the input. |
1455 | SDValue LHS = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1456 | SDValue RHS = ZExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1457 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1458 | } |
1459 | assert(N->getNumOperands() == 4 && "Unexpected number of operands!" ); |
1460 | assert(N->isVPOpcode() && "Expected VP opcode" ); |
1461 | // Zero extend the input. |
1462 | SDValue Mask = N->getOperand(Num: 2); |
1463 | SDValue EVL = N->getOperand(Num: 3); |
1464 | SDValue LHS = VPZExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
1465 | SDValue RHS = VPZExtPromotedInteger(Op: N->getOperand(Num: 1), Mask, EVL); |
1466 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1467 | N3: Mask, N4: EVL); |
1468 | } |
1469 | |
1470 | SDValue DAGTypeLegalizer::PromoteIntRes_UMINUMAX(SDNode *N) { |
1471 | SDValue LHS = N->getOperand(Num: 0); |
1472 | SDValue RHS = N->getOperand(Num: 1); |
1473 | |
1474 | // It doesn't matter if we sign extend or zero extend in the inputs. So do |
1475 | // whatever is best for the target and the promoted operands. |
1476 | SExtOrZExtPromotedOperands(LHS, RHS); |
1477 | |
1478 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), |
1479 | VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1480 | } |
1481 | |
1482 | SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) { |
1483 | SDValue RHS = N->getOperand(Num: 1); |
1484 | if (N->getOpcode() != ISD::VP_SRA) { |
1485 | // The input value must be properly sign extended. |
1486 | SDValue LHS = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1487 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1488 | RHS = ZExtPromotedInteger(Op: RHS); |
1489 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1490 | } |
1491 | |
1492 | SDValue Mask = N->getOperand(Num: 2); |
1493 | SDValue EVL = N->getOperand(Num: 3); |
1494 | // The input value must be properly sign extended. |
1495 | SDValue LHS = VPSExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
1496 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1497 | RHS = VPZExtPromotedInteger(Op: RHS, Mask, EVL); |
1498 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1499 | N3: Mask, N4: EVL); |
1500 | } |
1501 | |
1502 | SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) { |
1503 | SDValue RHS = N->getOperand(Num: 1); |
1504 | if (N->getOpcode() != ISD::VP_SRL) { |
1505 | // The input value must be properly zero extended. |
1506 | SDValue LHS = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1507 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1508 | RHS = ZExtPromotedInteger(Op: RHS); |
1509 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS); |
1510 | } |
1511 | |
1512 | SDValue Mask = N->getOperand(Num: 2); |
1513 | SDValue EVL = N->getOperand(Num: 3); |
1514 | // The input value must be properly zero extended. |
1515 | SDValue LHS = VPZExtPromotedInteger(Op: N->getOperand(Num: 0), Mask, EVL); |
1516 | if (getTypeAction(VT: RHS.getValueType()) == TargetLowering::TypePromoteInteger) |
1517 | RHS = VPZExtPromotedInteger(Op: RHS, Mask, EVL); |
1518 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: LHS.getValueType(), N1: LHS, N2: RHS, |
1519 | N3: Mask, N4: EVL); |
1520 | } |
1521 | |
1522 | SDValue DAGTypeLegalizer::PromoteIntRes_Rotate(SDNode *N) { |
1523 | // Lower the rotate to shifts and ORs which can be promoted. |
1524 | SDValue Res = TLI.expandROT(N, AllowVectorOps: true /*AllowVectorOps*/, DAG); |
1525 | ReplaceValueWith(From: SDValue(N, 0), To: Res); |
1526 | return SDValue(); |
1527 | } |
1528 | |
1529 | SDValue DAGTypeLegalizer::PromoteIntRes_FunnelShift(SDNode *N) { |
1530 | SDValue Hi = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1531 | SDValue Lo = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
1532 | SDValue Amt = N->getOperand(Num: 2); |
1533 | if (getTypeAction(VT: Amt.getValueType()) == TargetLowering::TypePromoteInteger) |
1534 | Amt = ZExtPromotedInteger(Op: Amt); |
1535 | EVT AmtVT = Amt.getValueType(); |
1536 | |
1537 | SDLoc DL(N); |
1538 | EVT OldVT = N->getOperand(Num: 0).getValueType(); |
1539 | EVT VT = Lo.getValueType(); |
1540 | unsigned Opcode = N->getOpcode(); |
1541 | bool IsFSHR = Opcode == ISD::FSHR; |
1542 | unsigned OldBits = OldVT.getScalarSizeInBits(); |
1543 | unsigned NewBits = VT.getScalarSizeInBits(); |
1544 | |
1545 | // Amount has to be interpreted modulo the old bit width. |
1546 | Amt = DAG.getNode(Opcode: ISD::UREM, DL, VT: AmtVT, N1: Amt, |
1547 | N2: DAG.getConstant(Val: OldBits, DL, VT: AmtVT)); |
1548 | |
1549 | // If the promoted type is twice the size (or more), then we use the |
1550 | // traditional funnel 'double' shift codegen. This isn't necessary if the |
1551 | // shift amount is constant. |
1552 | // fshl(x,y,z) -> (((aext(x) << bw) | zext(y)) << (z % bw)) >> bw. |
1553 | // fshr(x,y,z) -> (((aext(x) << bw) | zext(y)) >> (z % bw)). |
1554 | if (NewBits >= (2 * OldBits) && !isa<ConstantSDNode>(Val: Amt) && |
1555 | !TLI.isOperationLegalOrCustom(Op: Opcode, VT)) { |
1556 | SDValue HiShift = DAG.getConstant(Val: OldBits, DL, VT); |
1557 | Hi = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Hi, N2: HiShift); |
1558 | Lo = DAG.getZeroExtendInReg(Op: Lo, DL, VT: OldVT); |
1559 | SDValue Res = DAG.getNode(Opcode: ISD::OR, DL, VT, N1: Hi, N2: Lo); |
1560 | Res = DAG.getNode(Opcode: IsFSHR ? ISD::SRL : ISD::SHL, DL, VT, N1: Res, N2: Amt); |
1561 | if (!IsFSHR) |
1562 | Res = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Res, N2: HiShift); |
1563 | return Res; |
1564 | } |
1565 | |
1566 | // Shift Lo up to occupy the upper bits of the promoted type. |
1567 | SDValue ShiftOffset = DAG.getConstant(Val: NewBits - OldBits, DL, VT: AmtVT); |
1568 | Lo = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Lo, N2: ShiftOffset); |
1569 | |
1570 | // Increase Amount to shift the result into the lower bits of the promoted |
1571 | // type. |
1572 | if (IsFSHR) |
1573 | Amt = DAG.getNode(Opcode: ISD::ADD, DL, VT: AmtVT, N1: Amt, N2: ShiftOffset); |
1574 | |
1575 | return DAG.getNode(Opcode, DL, VT, N1: Hi, N2: Lo, N3: Amt); |
1576 | } |
1577 | |
1578 | // A vp version of PromoteIntRes_FunnelShift. |
1579 | SDValue DAGTypeLegalizer::PromoteIntRes_VPFunnelShift(SDNode *N) { |
1580 | SDValue Hi = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
1581 | SDValue Lo = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
1582 | SDValue Amt = N->getOperand(Num: 2); |
1583 | SDValue Mask = N->getOperand(Num: 3); |
1584 | SDValue EVL = N->getOperand(Num: 4); |
1585 | if (getTypeAction(VT: Amt.getValueType()) == TargetLowering::TypePromoteInteger) |
1586 | Amt = VPZExtPromotedInteger(Op: Amt, Mask, EVL); |
1587 | EVT AmtVT = Amt.getValueType(); |
1588 | |
1589 | SDLoc DL(N); |
1590 | EVT OldVT = N->getOperand(Num: 0).getValueType(); |
1591 | EVT VT = Lo.getValueType(); |
1592 | unsigned Opcode = N->getOpcode(); |
1593 | bool IsFSHR = Opcode == ISD::VP_FSHR; |
1594 | unsigned OldBits = OldVT.getScalarSizeInBits(); |
1595 | unsigned NewBits = VT.getScalarSizeInBits(); |
1596 | |
1597 | // Amount has to be interpreted modulo the old bit width. |
1598 | Amt = DAG.getNode(Opcode: ISD::VP_UREM, DL, VT: AmtVT, N1: Amt, |
1599 | N2: DAG.getConstant(Val: OldBits, DL, VT: AmtVT), N3: Mask, N4: EVL); |
1600 | |
1601 | // If the promoted type is twice the size (or more), then we use the |
1602 | // traditional funnel 'double' shift codegen. This isn't necessary if the |
1603 | // shift amount is constant. |
1604 | // fshl(x,y,z) -> (((aext(x) << bw) | zext(y)) << (z % bw)) >> bw. |
1605 | // fshr(x,y,z) -> (((aext(x) << bw) | zext(y)) >> (z % bw)). |
1606 | if (NewBits >= (2 * OldBits) && !isa<ConstantSDNode>(Val: Amt) && |
1607 | !TLI.isOperationLegalOrCustom(Op: Opcode, VT)) { |
1608 | SDValue HiShift = DAG.getConstant(Val: OldBits, DL, VT); |
1609 | Hi = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: Hi, N2: HiShift, N3: Mask, N4: EVL); |
1610 | Lo = DAG.getVPZeroExtendInReg(Op: Lo, Mask, EVL, DL, VT: OldVT); |
1611 | SDValue Res = DAG.getNode(Opcode: ISD::VP_OR, DL, VT, N1: Hi, N2: Lo, N3: Mask, N4: EVL); |
1612 | Res = DAG.getNode(Opcode: IsFSHR ? ISD::VP_SRL : ISD::VP_SHL, DL, VT, N1: Res, N2: Amt, |
1613 | N3: Mask, N4: EVL); |
1614 | if (!IsFSHR) |
1615 | Res = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Res, N2: HiShift, N3: Mask, N4: EVL); |
1616 | return Res; |
1617 | } |
1618 | |
1619 | // Shift Lo up to occupy the upper bits of the promoted type. |
1620 | SDValue ShiftOffset = DAG.getConstant(Val: NewBits - OldBits, DL, VT: AmtVT); |
1621 | Lo = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: Lo, N2: ShiftOffset, N3: Mask, N4: EVL); |
1622 | |
1623 | // Increase Amount to shift the result into the lower bits of the promoted |
1624 | // type. |
1625 | if (IsFSHR) |
1626 | Amt = DAG.getNode(Opcode: ISD::VP_ADD, DL, VT: AmtVT, N1: Amt, N2: ShiftOffset, N3: Mask, N4: EVL); |
1627 | |
1628 | return DAG.getNode(Opcode, DL, VT, N1: Hi, N2: Lo, N3: Amt, N4: Mask, N5: EVL); |
1629 | } |
1630 | |
1631 | SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) { |
1632 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1633 | SDValue Res; |
1634 | SDValue InOp = N->getOperand(Num: 0); |
1635 | SDLoc dl(N); |
1636 | |
1637 | switch (getTypeAction(VT: InOp.getValueType())) { |
1638 | default: llvm_unreachable("Unknown type action!" ); |
1639 | case TargetLowering::TypeLegal: |
1640 | case TargetLowering::TypeExpandInteger: |
1641 | Res = InOp; |
1642 | break; |
1643 | case TargetLowering::TypePromoteInteger: |
1644 | Res = GetPromotedInteger(Op: InOp); |
1645 | break; |
1646 | case TargetLowering::TypeSplitVector: { |
1647 | EVT InVT = InOp.getValueType(); |
1648 | assert(InVT.isVector() && "Cannot split scalar types" ); |
1649 | ElementCount NumElts = InVT.getVectorElementCount(); |
1650 | assert(NumElts == NVT.getVectorElementCount() && |
1651 | "Dst and Src must have the same number of elements" ); |
1652 | assert(isPowerOf2_32(NumElts.getKnownMinValue()) && |
1653 | "Promoted vector type must be a power of two" ); |
1654 | |
1655 | SDValue EOp1, EOp2; |
1656 | GetSplitVector(Op: InOp, Lo&: EOp1, Hi&: EOp2); |
1657 | |
1658 | EVT HalfNVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: NVT.getScalarType(), |
1659 | EC: NumElts.divideCoefficientBy(RHS: 2)); |
1660 | if (N->getOpcode() == ISD::TRUNCATE) { |
1661 | EOp1 = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfNVT, Operand: EOp1); |
1662 | EOp2 = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfNVT, Operand: EOp2); |
1663 | } else { |
1664 | assert(N->getOpcode() == ISD::VP_TRUNCATE && |
1665 | "Expected VP_TRUNCATE opcode" ); |
1666 | SDValue MaskLo, MaskHi, EVLLo, EVLHi; |
1667 | std::tie(args&: MaskLo, args&: MaskHi) = SplitMask(Mask: N->getOperand(Num: 1)); |
1668 | std::tie(args&: EVLLo, args&: EVLHi) = |
1669 | DAG.SplitEVL(N: N->getOperand(Num: 2), VecVT: N->getValueType(ResNo: 0), DL: dl); |
1670 | EOp1 = DAG.getNode(Opcode: ISD::VP_TRUNCATE, DL: dl, VT: HalfNVT, N1: EOp1, N2: MaskLo, N3: EVLLo); |
1671 | EOp2 = DAG.getNode(Opcode: ISD::VP_TRUNCATE, DL: dl, VT: HalfNVT, N1: EOp2, N2: MaskHi, N3: EVLHi); |
1672 | } |
1673 | return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: NVT, N1: EOp1, N2: EOp2); |
1674 | } |
1675 | // TODO: VP_TRUNCATE need to handle when TypeWidenVector access to some |
1676 | // targets. |
1677 | case TargetLowering::TypeWidenVector: { |
1678 | SDValue WideInOp = GetWidenedVector(Op: InOp); |
1679 | |
1680 | // Truncate widened InOp. |
1681 | unsigned NumElem = WideInOp.getValueType().getVectorNumElements(); |
1682 | EVT TruncVT = EVT::getVectorVT(Context&: *DAG.getContext(), |
1683 | VT: N->getValueType(ResNo: 0).getScalarType(), NumElements: NumElem); |
1684 | SDValue WideTrunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: TruncVT, Operand: WideInOp); |
1685 | |
1686 | // Zero extend so that the elements are of same type as those of NVT |
1687 | EVT ExtVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: NVT.getVectorElementType(), |
1688 | NumElements: NumElem); |
1689 | SDValue WideExt = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: ExtVT, Operand: WideTrunc); |
1690 | |
1691 | // Extract the low NVT subvector. |
1692 | SDValue ZeroIdx = DAG.getVectorIdxConstant(Val: 0, DL: dl); |
1693 | return DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: NVT, N1: WideExt, N2: ZeroIdx); |
1694 | } |
1695 | } |
1696 | |
1697 | // Truncate to NVT instead of VT |
1698 | if (N->getOpcode() == ISD::VP_TRUNCATE) |
1699 | return DAG.getNode(Opcode: ISD::VP_TRUNCATE, DL: dl, VT: NVT, N1: Res, N2: N->getOperand(Num: 1), |
1700 | N3: N->getOperand(Num: 2)); |
1701 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: NVT, Operand: Res); |
1702 | } |
1703 | |
1704 | SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) { |
1705 | if (ResNo == 1) |
1706 | return PromoteIntRes_Overflow(N); |
1707 | |
1708 | // The operation overflowed iff the result in the larger type is not the |
1709 | // zero extension of its truncation to the original type. |
1710 | SDValue LHS = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1711 | SDValue RHS = ZExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1712 | EVT OVT = N->getOperand(Num: 0).getValueType(); |
1713 | EVT NVT = LHS.getValueType(); |
1714 | SDLoc dl(N); |
1715 | |
1716 | // Do the arithmetic in the larger type. |
1717 | unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB; |
1718 | SDValue Res = DAG.getNode(Opcode, DL: dl, VT: NVT, N1: LHS, N2: RHS); |
1719 | |
1720 | // Calculate the overflow flag: zero extend the arithmetic result from |
1721 | // the original type. |
1722 | SDValue Ofl = DAG.getZeroExtendInReg(Op: Res, DL: dl, VT: OVT); |
1723 | // Overflowed if and only if this is not equal to Res. |
1724 | Ofl = DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: Ofl, RHS: Res, Cond: ISD::SETNE); |
1725 | |
1726 | // Use the calculated overflow everywhere. |
1727 | ReplaceValueWith(From: SDValue(N, 1), To: Ofl); |
1728 | |
1729 | return Res; |
1730 | } |
1731 | |
1732 | // Handle promotion for the ADDE/SUBE/UADDO_CARRY/USUBO_CARRY nodes. Notice that |
1733 | // the third operand of ADDE/SUBE nodes is carry flag, which differs from |
1734 | // the UADDO_CARRY/USUBO_CARRY nodes in that the third operand is carry Boolean. |
1735 | SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO_CARRY(SDNode *N, |
1736 | unsigned ResNo) { |
1737 | if (ResNo == 1) |
1738 | return PromoteIntRes_Overflow(N); |
1739 | |
1740 | // We need to sign-extend the operands so the carry value computed by the |
1741 | // wide operation will be equivalent to the carry value computed by the |
1742 | // narrow operation. |
1743 | // An UADDO_CARRY can generate carry only if any of the operands has its |
1744 | // most significant bit set. Sign extension propagates the most significant |
1745 | // bit into the higher bits which means the extra bit that the narrow |
1746 | // addition would need (i.e. the carry) will be propagated through the higher |
1747 | // bits of the wide addition. |
1748 | // A USUBO_CARRY can generate borrow only if LHS < RHS and this property will |
1749 | // be preserved by sign extension. |
1750 | SDValue LHS = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1751 | SDValue RHS = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
1752 | |
1753 | EVT ValueVTs[] = {LHS.getValueType(), N->getValueType(ResNo: 1)}; |
1754 | |
1755 | // Do the arithmetic in the wide type. |
1756 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VTList: DAG.getVTList(VTs: ValueVTs), |
1757 | N1: LHS, N2: RHS, N3: N->getOperand(Num: 2)); |
1758 | |
1759 | // Update the users of the original carry/borrow value. |
1760 | ReplaceValueWith(From: SDValue(N, 1), To: Res.getValue(R: 1)); |
1761 | |
1762 | return SDValue(Res.getNode(), 0); |
1763 | } |
1764 | |
1765 | SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO_CARRY(SDNode *N, |
1766 | unsigned ResNo) { |
1767 | assert(ResNo == 1 && "Don't know how to promote other results yet." ); |
1768 | return PromoteIntRes_Overflow(N); |
1769 | } |
1770 | |
1771 | SDValue DAGTypeLegalizer::PromoteIntRes_ABS(SDNode *N) { |
1772 | EVT OVT = N->getValueType(ResNo: 0); |
1773 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OVT); |
1774 | |
1775 | // If a larger ABS or SMAX isn't supported by the target, try to expand now. |
1776 | // If we expand later we'll end up sign extending more than just the sra input |
1777 | // in sra+xor+sub expansion. |
1778 | if (!OVT.isVector() && |
1779 | !TLI.isOperationLegalOrCustomOrPromote(Op: ISD::ABS, VT: NVT) && |
1780 | !TLI.isOperationLegal(Op: ISD::SMAX, VT: NVT)) { |
1781 | if (SDValue Res = TLI.expandABS(N, DAG)) |
1782 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: NVT, Operand: Res); |
1783 | } |
1784 | |
1785 | SDValue Op0 = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
1786 | return DAG.getNode(Opcode: ISD::ABS, DL: SDLoc(N), VT: Op0.getValueType(), Operand: Op0); |
1787 | } |
1788 | |
1789 | SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) { |
1790 | // Promote the overflow bit trivially. |
1791 | if (ResNo == 1) |
1792 | return PromoteIntRes_Overflow(N); |
1793 | |
1794 | SDValue LHS = N->getOperand(Num: 0), RHS = N->getOperand(Num: 1); |
1795 | SDLoc DL(N); |
1796 | EVT SmallVT = LHS.getValueType(); |
1797 | |
1798 | // To determine if the result overflowed in a larger type, we extend the |
1799 | // input to the larger type, do the multiply (checking if it overflows), |
1800 | // then also check the high bits of the result to see if overflow happened |
1801 | // there. |
1802 | if (N->getOpcode() == ISD::SMULO) { |
1803 | LHS = SExtPromotedInteger(Op: LHS); |
1804 | RHS = SExtPromotedInteger(Op: RHS); |
1805 | } else { |
1806 | LHS = ZExtPromotedInteger(Op: LHS); |
1807 | RHS = ZExtPromotedInteger(Op: RHS); |
1808 | } |
1809 | SDVTList VTs = DAG.getVTList(VT1: LHS.getValueType(), VT2: N->getValueType(ResNo: 1)); |
1810 | SDValue Mul = DAG.getNode(Opcode: N->getOpcode(), DL, VTList: VTs, N1: LHS, N2: RHS); |
1811 | |
1812 | // Overflow occurred if it occurred in the larger type, or if the high part |
1813 | // of the result does not zero/sign-extend the low part. Check this second |
1814 | // possibility first. |
1815 | SDValue Overflow; |
1816 | if (N->getOpcode() == ISD::UMULO) { |
1817 | // Unsigned overflow occurred if the high part is non-zero. |
1818 | unsigned Shift = SmallVT.getScalarSizeInBits(); |
1819 | SDValue Hi = |
1820 | DAG.getNode(Opcode: ISD::SRL, DL, VT: Mul.getValueType(), N1: Mul, |
1821 | N2: DAG.getShiftAmountConstant(Val: Shift, VT: Mul.getValueType(), DL)); |
1822 | Overflow = DAG.getSetCC(DL, VT: N->getValueType(ResNo: 1), LHS: Hi, |
1823 | RHS: DAG.getConstant(Val: 0, DL, VT: Hi.getValueType()), |
1824 | Cond: ISD::SETNE); |
1825 | } else { |
1826 | // Signed overflow occurred if the high part does not sign extend the low. |
1827 | SDValue SExt = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: Mul.getValueType(), |
1828 | N1: Mul, N2: DAG.getValueType(SmallVT)); |
1829 | Overflow = DAG.getSetCC(DL, VT: N->getValueType(ResNo: 1), LHS: SExt, RHS: Mul, Cond: ISD::SETNE); |
1830 | } |
1831 | |
1832 | // The only other way for overflow to occur is if the multiplication in the |
1833 | // larger type itself overflowed. |
1834 | Overflow = DAG.getNode(Opcode: ISD::OR, DL, VT: N->getValueType(ResNo: 1), N1: Overflow, |
1835 | N2: SDValue(Mul.getNode(), 1)); |
1836 | |
1837 | // Use the calculated overflow everywhere. |
1838 | ReplaceValueWith(From: SDValue(N, 1), To: Overflow); |
1839 | return Mul; |
1840 | } |
1841 | |
1842 | SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) { |
1843 | return DAG.getUNDEF(VT: TLI.getTypeToTransformTo(Context&: *DAG.getContext(), |
1844 | VT: N->getValueType(ResNo: 0))); |
1845 | } |
1846 | |
1847 | SDValue DAGTypeLegalizer::PromoteIntRes_VSCALE(SDNode *N) { |
1848 | EVT VT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1849 | |
1850 | const APInt &MulImm = N->getConstantOperandAPInt(Num: 0); |
1851 | return DAG.getVScale(DL: SDLoc(N), VT, MulImm: MulImm.sext(width: VT.getSizeInBits())); |
1852 | } |
1853 | |
1854 | SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) { |
1855 | SDValue Chain = N->getOperand(Num: 0); // Get the chain. |
1856 | SDValue Ptr = N->getOperand(Num: 1); // Get the pointer. |
1857 | EVT VT = N->getValueType(ResNo: 0); |
1858 | SDLoc dl(N); |
1859 | |
1860 | MVT RegVT = TLI.getRegisterType(Context&: *DAG.getContext(), VT); |
1861 | unsigned NumRegs = TLI.getNumRegisters(Context&: *DAG.getContext(), VT); |
1862 | // The argument is passed as NumRegs registers of type RegVT. |
1863 | |
1864 | SmallVector<SDValue, 8> Parts(NumRegs); |
1865 | for (unsigned i = 0; i < NumRegs; ++i) { |
1866 | Parts[i] = DAG.getVAArg(VT: RegVT, dl, Chain, Ptr, SV: N->getOperand(Num: 2), |
1867 | Align: N->getConstantOperandVal(Num: 3)); |
1868 | Chain = Parts[i].getValue(R: 1); |
1869 | } |
1870 | |
1871 | // Handle endianness of the load. |
1872 | if (DAG.getDataLayout().isBigEndian()) |
1873 | std::reverse(first: Parts.begin(), last: Parts.end()); |
1874 | |
1875 | // Assemble the parts in the promoted type. |
1876 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
1877 | SDValue Res = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: NVT, Operand: Parts[0]); |
1878 | for (unsigned i = 1; i < NumRegs; ++i) { |
1879 | SDValue Part = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: NVT, Operand: Parts[i]); |
1880 | // Shift it to the right position and "or" it in. |
1881 | Part = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: Part, |
1882 | N2: DAG.getConstant(Val: i * RegVT.getSizeInBits(), DL: dl, |
1883 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
1884 | Res = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, N1: Res, N2: Part); |
1885 | } |
1886 | |
1887 | // Modified the chain result - switch anything that used the old chain to |
1888 | // use the new one. |
1889 | ReplaceValueWith(From: SDValue(N, 1), To: Chain); |
1890 | |
1891 | return Res; |
1892 | } |
1893 | |
1894 | //===----------------------------------------------------------------------===// |
1895 | // Integer Operand Promotion |
1896 | //===----------------------------------------------------------------------===// |
1897 | |
1898 | /// PromoteIntegerOperand - This method is called when the specified operand of |
1899 | /// the specified node is found to need promotion. At this point, all of the |
1900 | /// result types of the node are known to be legal, but other operands of the |
1901 | /// node may need promotion or expansion as well as the specified one. |
1902 | bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) { |
1903 | LLVM_DEBUG(dbgs() << "Promote integer operand: " ; N->dump(&DAG)); |
1904 | SDValue Res = SDValue(); |
1905 | if (CustomLowerNode(N, VT: N->getOperand(Num: OpNo).getValueType(), LegalizeResult: false)) { |
1906 | LLVM_DEBUG(dbgs() << "Node has been custom lowered, done\n" ); |
1907 | return false; |
1908 | } |
1909 | |
1910 | switch (N->getOpcode()) { |
1911 | default: |
1912 | #ifndef NDEBUG |
1913 | dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": " ; |
1914 | N->dump(&DAG); dbgs() << "\n" ; |
1915 | #endif |
1916 | report_fatal_error(reason: "Do not know how to promote this operator's operand!" ); |
1917 | |
1918 | case ISD::ANY_EXTEND: Res = PromoteIntOp_ANY_EXTEND(N); break; |
1919 | case ISD::ATOMIC_STORE: |
1920 | Res = PromoteIntOp_ATOMIC_STORE(N: cast<AtomicSDNode>(Val: N)); |
1921 | break; |
1922 | case ISD::BITCAST: Res = PromoteIntOp_BITCAST(N); break; |
1923 | case ISD::BR_CC: Res = PromoteIntOp_BR_CC(N, OpNo); break; |
1924 | case ISD::BRCOND: Res = PromoteIntOp_BRCOND(N, OpNo); break; |
1925 | case ISD::BUILD_PAIR: Res = PromoteIntOp_BUILD_PAIR(N); break; |
1926 | case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break; |
1927 | case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break; |
1928 | case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break; |
1929 | case ISD::INSERT_VECTOR_ELT: |
1930 | Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo); |
1931 | break; |
1932 | case ISD::SPLAT_VECTOR: |
1933 | case ISD::SCALAR_TO_VECTOR: |
1934 | case ISD::EXPERIMENTAL_VP_SPLAT: |
1935 | Res = PromoteIntOp_ScalarOp(N); |
1936 | break; |
1937 | case ISD::VSELECT: |
1938 | case ISD::SELECT: Res = PromoteIntOp_SELECT(N, OpNo); break; |
1939 | case ISD::SELECT_CC: Res = PromoteIntOp_SELECT_CC(N, OpNo); break; |
1940 | case ISD::VP_SETCC: |
1941 | case ISD::SETCC: Res = PromoteIntOp_SETCC(N, OpNo); break; |
1942 | case ISD::SIGN_EXTEND: Res = PromoteIntOp_SIGN_EXTEND(N); break; |
1943 | case ISD::VP_SIGN_EXTEND: Res = PromoteIntOp_VP_SIGN_EXTEND(N); break; |
1944 | case ISD::VP_SINT_TO_FP: |
1945 | case ISD::SINT_TO_FP: Res = PromoteIntOp_SINT_TO_FP(N); break; |
1946 | case ISD::STRICT_SINT_TO_FP: Res = PromoteIntOp_STRICT_SINT_TO_FP(N); break; |
1947 | case ISD::STORE: Res = PromoteIntOp_STORE(N: cast<StoreSDNode>(Val: N), |
1948 | OpNo); break; |
1949 | case ISD::MSTORE: Res = PromoteIntOp_MSTORE(N: cast<MaskedStoreSDNode>(Val: N), |
1950 | OpNo); break; |
1951 | case ISD::MLOAD: Res = PromoteIntOp_MLOAD(N: cast<MaskedLoadSDNode>(Val: N), |
1952 | OpNo); break; |
1953 | case ISD::MGATHER: Res = PromoteIntOp_MGATHER(N: cast<MaskedGatherSDNode>(Val: N), |
1954 | OpNo); break; |
1955 | case ISD::MSCATTER: Res = PromoteIntOp_MSCATTER(N: cast<MaskedScatterSDNode>(Val: N), |
1956 | OpNo); break; |
1957 | case ISD::VECTOR_COMPRESS: |
1958 | Res = PromoteIntOp_VECTOR_COMPRESS(N, OpNo); |
1959 | break; |
1960 | case ISD::VP_TRUNCATE: |
1961 | case ISD::TRUNCATE: Res = PromoteIntOp_TRUNCATE(N); break; |
1962 | case ISD::BF16_TO_FP: |
1963 | case ISD::FP16_TO_FP: |
1964 | case ISD::VP_UINT_TO_FP: |
1965 | case ISD::UINT_TO_FP: Res = PromoteIntOp_UINT_TO_FP(N); break; |
1966 | case ISD::STRICT_FP16_TO_FP: |
1967 | case ISD::STRICT_UINT_TO_FP: Res = PromoteIntOp_STRICT_UINT_TO_FP(N); break; |
1968 | case ISD::ZERO_EXTEND: Res = PromoteIntOp_ZERO_EXTEND(N); break; |
1969 | case ISD::VP_ZERO_EXTEND: Res = PromoteIntOp_VP_ZERO_EXTEND(N); break; |
1970 | case ISD::EXTRACT_SUBVECTOR: Res = PromoteIntOp_EXTRACT_SUBVECTOR(N); break; |
1971 | case ISD::INSERT_SUBVECTOR: Res = PromoteIntOp_INSERT_SUBVECTOR(N); break; |
1972 | |
1973 | case ISD::SHL: |
1974 | case ISD::SRA: |
1975 | case ISD::SRL: |
1976 | case ISD::ROTL: |
1977 | case ISD::ROTR: Res = PromoteIntOp_Shift(N); break; |
1978 | |
1979 | case ISD::SCMP: |
1980 | case ISD::UCMP: Res = PromoteIntOp_CMP(N); break; |
1981 | |
1982 | case ISD::FSHL: |
1983 | case ISD::FSHR: Res = PromoteIntOp_FunnelShift(N); break; |
1984 | |
1985 | case ISD::FRAMEADDR: |
1986 | case ISD::RETURNADDR: Res = PromoteIntOp_FRAMERETURNADDR(N); break; |
1987 | |
1988 | case ISD::SMULFIX: |
1989 | case ISD::SMULFIXSAT: |
1990 | case ISD::UMULFIX: |
1991 | case ISD::UMULFIXSAT: |
1992 | case ISD::SDIVFIX: |
1993 | case ISD::SDIVFIXSAT: |
1994 | case ISD::UDIVFIX: |
1995 | case ISD::UDIVFIXSAT: Res = PromoteIntOp_FIX(N); break; |
1996 | case ISD::FPOWI: |
1997 | case ISD::STRICT_FPOWI: |
1998 | case ISD::FLDEXP: |
1999 | case ISD::STRICT_FLDEXP: Res = PromoteIntOp_ExpOp(N); break; |
2000 | case ISD::VECREDUCE_ADD: |
2001 | case ISD::VECREDUCE_MUL: |
2002 | case ISD::VECREDUCE_AND: |
2003 | case ISD::VECREDUCE_OR: |
2004 | case ISD::VECREDUCE_XOR: |
2005 | case ISD::VECREDUCE_SMAX: |
2006 | case ISD::VECREDUCE_SMIN: |
2007 | case ISD::VECREDUCE_UMAX: |
2008 | case ISD::VECREDUCE_UMIN: Res = PromoteIntOp_VECREDUCE(N); break; |
2009 | case ISD::VP_REDUCE_ADD: |
2010 | case ISD::VP_REDUCE_MUL: |
2011 | case ISD::VP_REDUCE_AND: |
2012 | case ISD::VP_REDUCE_OR: |
2013 | case ISD::VP_REDUCE_XOR: |
2014 | case ISD::VP_REDUCE_SMAX: |
2015 | case ISD::VP_REDUCE_SMIN: |
2016 | case ISD::VP_REDUCE_UMAX: |
2017 | case ISD::VP_REDUCE_UMIN: |
2018 | Res = PromoteIntOp_VP_REDUCE(N, OpNo); |
2019 | break; |
2020 | |
2021 | case ISD::SET_ROUNDING: Res = PromoteIntOp_SET_ROUNDING(N); break; |
2022 | case ISD::STACKMAP: |
2023 | Res = PromoteIntOp_STACKMAP(N, OpNo); |
2024 | break; |
2025 | case ISD::PATCHPOINT: |
2026 | Res = PromoteIntOp_PATCHPOINT(N, OpNo); |
2027 | break; |
2028 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
2029 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
2030 | Res = PromoteIntOp_VP_STRIDED(N, OpNo); |
2031 | break; |
2032 | case ISD::EXPERIMENTAL_VP_SPLICE: |
2033 | Res = PromoteIntOp_VP_SPLICE(N, OpNo); |
2034 | break; |
2035 | } |
2036 | |
2037 | // If the result is null, the sub-method took care of registering results etc. |
2038 | if (!Res.getNode()) return false; |
2039 | |
2040 | // If the result is N, the sub-method updated N in place. Tell the legalizer |
2041 | // core about this. |
2042 | if (Res.getNode() == N) |
2043 | return true; |
2044 | |
2045 | const bool IsStrictFp = N->isStrictFPOpcode(); |
2046 | assert(Res.getValueType() == N->getValueType(0) && |
2047 | N->getNumValues() == (IsStrictFp ? 2 : 1) && |
2048 | "Invalid operand expansion" ); |
2049 | LLVM_DEBUG(dbgs() << "Replacing: " ; N->dump(&DAG); dbgs() << " with: " ; |
2050 | Res.dump()); |
2051 | |
2052 | ReplaceValueWith(From: SDValue(N, 0), To: Res); |
2053 | if (IsStrictFp) |
2054 | ReplaceValueWith(From: SDValue(N, 1), To: SDValue(Res.getNode(), 1)); |
2055 | |
2056 | return false; |
2057 | } |
2058 | |
2059 | // These operands can be either sign extended or zero extended as long as we |
2060 | // treat them the same. If an extension is free, choose that. Otherwise, follow |
2061 | // target preference. |
2062 | void DAGTypeLegalizer::SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS) { |
2063 | SDValue OpL = GetPromotedInteger(Op: LHS); |
2064 | SDValue OpR = GetPromotedInteger(Op: RHS); |
2065 | |
2066 | if (TLI.isSExtCheaperThanZExt(FromTy: LHS.getValueType(), ToTy: OpL.getValueType())) { |
2067 | // The target would prefer to promote the comparison operand with sign |
2068 | // extension. Honor that unless the promoted values are already zero |
2069 | // extended. |
2070 | unsigned OpLEffectiveBits = |
2071 | DAG.computeKnownBits(Op: OpL).countMaxActiveBits(); |
2072 | unsigned OpREffectiveBits = |
2073 | DAG.computeKnownBits(Op: OpR).countMaxActiveBits(); |
2074 | if (OpLEffectiveBits <= LHS.getScalarValueSizeInBits() && |
2075 | OpREffectiveBits <= RHS.getScalarValueSizeInBits()) { |
2076 | LHS = OpL; |
2077 | RHS = OpR; |
2078 | return; |
2079 | } |
2080 | |
2081 | // The promoted values aren't zero extended, use a sext_inreg. |
2082 | LHS = SExtPromotedInteger(Op: LHS); |
2083 | RHS = SExtPromotedInteger(Op: RHS); |
2084 | return; |
2085 | } |
2086 | |
2087 | // Prefer to promote the comparison operand with zero extension. |
2088 | |
2089 | // If the width of OpL/OpR excluding the duplicated sign bits is no greater |
2090 | // than the width of LHS/RHS, we can avoid/ inserting a zext_inreg operation |
2091 | // that we might not be able to remove. |
2092 | unsigned OpLEffectiveBits = DAG.ComputeMaxSignificantBits(Op: OpL); |
2093 | unsigned OpREffectiveBits = DAG.ComputeMaxSignificantBits(Op: OpR); |
2094 | if (OpLEffectiveBits <= LHS.getScalarValueSizeInBits() && |
2095 | OpREffectiveBits <= RHS.getScalarValueSizeInBits()) { |
2096 | LHS = OpL; |
2097 | RHS = OpR; |
2098 | return; |
2099 | } |
2100 | |
2101 | // Otherwise, use zext_inreg. |
2102 | LHS = ZExtPromotedInteger(Op: LHS); |
2103 | RHS = ZExtPromotedInteger(Op: RHS); |
2104 | } |
2105 | |
2106 | /// PromoteSetCCOperands - Promote the operands of a comparison. This code is |
2107 | /// shared among BR_CC, SELECT_CC, and SETCC handlers. |
2108 | void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &LHS, SDValue &RHS, |
2109 | ISD::CondCode CCCode) { |
2110 | // We have to insert explicit sign or zero extends. Note that we could |
2111 | // insert sign extends for ALL conditions. For those operations where either |
2112 | // zero or sign extension would be valid, we ask the target which extension |
2113 | // it would prefer. |
2114 | |
2115 | // Signed comparisons always require sign extension. |
2116 | if (ISD::isSignedIntSetCC(Code: CCCode)) { |
2117 | LHS = SExtPromotedInteger(Op: LHS); |
2118 | RHS = SExtPromotedInteger(Op: RHS); |
2119 | return; |
2120 | } |
2121 | |
2122 | assert((ISD::isUnsignedIntSetCC(CCCode) || ISD::isIntEqualitySetCC(CCCode)) && |
2123 | "Unknown integer comparison!" ); |
2124 | |
2125 | SExtOrZExtPromotedOperands(LHS, RHS); |
2126 | } |
2127 | |
2128 | SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) { |
2129 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2130 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), Operand: Op); |
2131 | } |
2132 | |
2133 | SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) { |
2134 | SDValue Op1 = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
2135 | return DAG.getAtomic(Opcode: N->getOpcode(), dl: SDLoc(N), MemVT: N->getMemoryVT(), |
2136 | Chain: N->getChain(), Ptr: Op1, Val: N->getBasePtr(), MMO: N->getMemOperand()); |
2137 | } |
2138 | |
2139 | SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) { |
2140 | // This should only occur in unusual situations like bitcasting to an |
2141 | // x86_fp80, so just turn it into a store+load |
2142 | return CreateStackStoreLoad(Op: N->getOperand(Num: 0), DestVT: N->getValueType(ResNo: 0)); |
2143 | } |
2144 | |
2145 | SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) { |
2146 | assert(OpNo == 2 && "Don't know how to promote this operand!" ); |
2147 | |
2148 | SDValue LHS = N->getOperand(Num: 2); |
2149 | SDValue RHS = N->getOperand(Num: 3); |
2150 | PromoteSetCCOperands(LHS, RHS, CCCode: cast<CondCodeSDNode>(Val: N->getOperand(Num: 1))->get()); |
2151 | |
2152 | // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always |
2153 | // legal types. |
2154 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2155 | Op2: N->getOperand(Num: 1), Op3: LHS, Op4: RHS, Op5: N->getOperand(Num: 4)), |
2156 | 0); |
2157 | } |
2158 | |
2159 | SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) { |
2160 | assert(OpNo == 1 && "only know how to promote condition" ); |
2161 | |
2162 | // Promote all the way up to the canonical SetCC type. |
2163 | SDValue Cond = PromoteTargetBoolean(Bool: N->getOperand(Num: 1), ValVT: MVT::Other); |
2164 | |
2165 | // The chain (Op#0) and basic block destination (Op#2) are always legal types. |
2166 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: Cond, |
2167 | Op3: N->getOperand(Num: 2)), 0); |
2168 | } |
2169 | |
2170 | SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) { |
2171 | // Since the result type is legal, the operands must promote to it. |
2172 | EVT OVT = N->getOperand(Num: 0).getValueType(); |
2173 | SDValue Lo = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2174 | SDValue Hi = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
2175 | assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?" ); |
2176 | SDLoc dl(N); |
2177 | |
2178 | Hi = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: N->getValueType(ResNo: 0), N1: Hi, |
2179 | N2: DAG.getConstant(Val: OVT.getSizeInBits(), DL: dl, |
2180 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
2181 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT: N->getValueType(ResNo: 0), N1: Lo, N2: Hi); |
2182 | } |
2183 | |
2184 | SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) { |
2185 | // The vector type is legal but the element type is not. This implies |
2186 | // that the vector is a power-of-two in length and that the element |
2187 | // type does not have a strange size (eg: it is not i1). |
2188 | EVT VecVT = N->getValueType(ResNo: 0); |
2189 | unsigned NumElts = VecVT.getVectorNumElements(); |
2190 | assert(!((NumElts & 1) && (!TLI.isTypeLegal(VecVT))) && |
2191 | "Legal vector of one illegal element?" ); |
2192 | |
2193 | // Promote the inserted value. The type does not need to match the |
2194 | // vector element type. Check that any extra bits introduced will be |
2195 | // truncated away. |
2196 | assert(N->getOperand(0).getValueSizeInBits() >= |
2197 | N->getValueType(0).getScalarSizeInBits() && |
2198 | "Type of inserted value narrower than vector element type!" ); |
2199 | |
2200 | SmallVector<SDValue, 16> NewOps; |
2201 | for (unsigned i = 0; i < NumElts; ++i) |
2202 | NewOps.push_back(Elt: GetPromotedInteger(Op: N->getOperand(Num: i))); |
2203 | |
2204 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2205 | } |
2206 | |
2207 | SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, |
2208 | unsigned OpNo) { |
2209 | if (OpNo == 1) { |
2210 | // Promote the inserted value. This is valid because the type does not |
2211 | // have to match the vector element type. |
2212 | |
2213 | // Check that any extra bits introduced will be truncated away. |
2214 | assert(N->getOperand(1).getValueSizeInBits() >= |
2215 | N->getValueType(0).getScalarSizeInBits() && |
2216 | "Type of inserted value narrower than vector element type!" ); |
2217 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2218 | Op2: GetPromotedInteger(Op: N->getOperand(Num: 1)), |
2219 | Op3: N->getOperand(Num: 2)), |
2220 | 0); |
2221 | } |
2222 | |
2223 | assert(OpNo == 2 && "Different operand and result vector types?" ); |
2224 | |
2225 | // Promote the index. |
2226 | SDValue Idx = DAG.getZExtOrTrunc(Op: N->getOperand(Num: 2), DL: SDLoc(N), |
2227 | VT: TLI.getVectorIdxTy(DL: DAG.getDataLayout())); |
2228 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2229 | Op2: N->getOperand(Num: 1), Op3: Idx), 0); |
2230 | } |
2231 | |
2232 | SDValue DAGTypeLegalizer::PromoteIntOp_ScalarOp(SDNode *N) { |
2233 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2234 | if (N->getOpcode() == ISD::EXPERIMENTAL_VP_SPLAT) |
2235 | return SDValue( |
2236 | DAG.UpdateNodeOperands(N, Op1: Op, Op2: N->getOperand(Num: 1), Op3: N->getOperand(Num: 2)), 0); |
2237 | |
2238 | // Integer SPLAT_VECTOR/SCALAR_TO_VECTOR operands are implicitly truncated, |
2239 | // so just promote the operand in place. |
2240 | return SDValue(DAG.UpdateNodeOperands(N, Op), 0); |
2241 | } |
2242 | |
2243 | SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) { |
2244 | assert(OpNo == 0 && "Only know how to promote the condition!" ); |
2245 | SDValue Cond = N->getOperand(Num: 0); |
2246 | EVT OpTy = N->getOperand(Num: 1).getValueType(); |
2247 | |
2248 | if (N->getOpcode() == ISD::VSELECT) |
2249 | if (SDValue Res = WidenVSELECTMask(N)) |
2250 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT: N->getValueType(ResNo: 0), |
2251 | N1: Res, N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2)); |
2252 | |
2253 | // Promote all the way up to the canonical SetCC type. |
2254 | EVT OpVT = N->getOpcode() == ISD::SELECT ? OpTy.getScalarType() : OpTy; |
2255 | Cond = PromoteTargetBoolean(Bool: Cond, ValVT: OpVT); |
2256 | |
2257 | return SDValue(DAG.UpdateNodeOperands(N, Op1: Cond, Op2: N->getOperand(Num: 1), |
2258 | Op3: N->getOperand(Num: 2)), 0); |
2259 | } |
2260 | |
2261 | SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) { |
2262 | assert(OpNo == 0 && "Don't know how to promote this operand!" ); |
2263 | |
2264 | SDValue LHS = N->getOperand(Num: 0); |
2265 | SDValue RHS = N->getOperand(Num: 1); |
2266 | PromoteSetCCOperands(LHS, RHS, CCCode: cast<CondCodeSDNode>(Val: N->getOperand(Num: 4))->get()); |
2267 | |
2268 | // The CC (#4) and the possible return values (#2 and #3) have legal types. |
2269 | return SDValue(DAG.UpdateNodeOperands(N, Op1: LHS, Op2: RHS, Op3: N->getOperand(Num: 2), |
2270 | Op4: N->getOperand(Num: 3), Op5: N->getOperand(Num: 4)), 0); |
2271 | } |
2272 | |
2273 | SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) { |
2274 | assert(OpNo == 0 && "Don't know how to promote this operand!" ); |
2275 | |
2276 | SDValue LHS = N->getOperand(Num: 0); |
2277 | SDValue RHS = N->getOperand(Num: 1); |
2278 | PromoteSetCCOperands(LHS, RHS, CCCode: cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get()); |
2279 | |
2280 | // The CC (#2) is always legal. |
2281 | if (N->getOpcode() == ISD::SETCC) |
2282 | return SDValue(DAG.UpdateNodeOperands(N, Op1: LHS, Op2: RHS, Op3: N->getOperand(Num: 2)), 0); |
2283 | |
2284 | assert(N->getOpcode() == ISD::VP_SETCC && "Expected VP_SETCC opcode" ); |
2285 | |
2286 | return SDValue(DAG.UpdateNodeOperands(N, Op1: LHS, Op2: RHS, Op3: N->getOperand(Num: 2), |
2287 | Op4: N->getOperand(Num: 3), Op5: N->getOperand(Num: 4)), |
2288 | 0); |
2289 | } |
2290 | |
2291 | SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) { |
2292 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2293 | Op2: ZExtPromotedInteger(Op: N->getOperand(Num: 1))), 0); |
2294 | } |
2295 | |
2296 | SDValue DAGTypeLegalizer::PromoteIntOp_CMP(SDNode *N) { |
2297 | SDValue LHS = N->getOpcode() == ISD::UCMP |
2298 | ? ZExtPromotedInteger(Op: N->getOperand(Num: 0)) |
2299 | : SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2300 | SDValue RHS = N->getOpcode() == ISD::UCMP |
2301 | ? ZExtPromotedInteger(Op: N->getOperand(Num: 1)) |
2302 | : SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
2303 | |
2304 | return SDValue(DAG.UpdateNodeOperands(N, Op1: LHS, Op2: RHS), 0); |
2305 | } |
2306 | |
2307 | SDValue DAGTypeLegalizer::PromoteIntOp_FunnelShift(SDNode *N) { |
2308 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: N->getOperand(Num: 1), |
2309 | Op3: ZExtPromotedInteger(Op: N->getOperand(Num: 2))), 0); |
2310 | } |
2311 | |
2312 | SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) { |
2313 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2314 | SDLoc dl(N); |
2315 | Op = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: N->getValueType(ResNo: 0), Operand: Op); |
2316 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Op.getValueType(), |
2317 | N1: Op, N2: DAG.getValueType(N->getOperand(Num: 0).getValueType())); |
2318 | } |
2319 | |
2320 | SDValue DAGTypeLegalizer::PromoteIntOp_VP_SIGN_EXTEND(SDNode *N) { |
2321 | SDLoc dl(N); |
2322 | EVT VT = N->getValueType(ResNo: 0); |
2323 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2324 | // FIXME: There is no VP_ANY_EXTEND yet. |
2325 | Op = DAG.getNode(Opcode: ISD::VP_ZERO_EXTEND, DL: dl, VT, N1: Op, N2: N->getOperand(Num: 1), |
2326 | N3: N->getOperand(Num: 2)); |
2327 | unsigned Diff = |
2328 | VT.getScalarSizeInBits() - N->getOperand(Num: 0).getScalarValueSizeInBits(); |
2329 | SDValue ShAmt = DAG.getShiftAmountConstant(Val: Diff, VT, DL: dl); |
2330 | // FIXME: There is no VP_SIGN_EXTEND_INREG so use a pair of shifts. |
2331 | SDValue Shl = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: ShAmt, N3: N->getOperand(Num: 1), |
2332 | N4: N->getOperand(Num: 2)); |
2333 | return DAG.getNode(Opcode: ISD::VP_SRA, DL: dl, VT, N1: Shl, N2: ShAmt, N3: N->getOperand(Num: 1), |
2334 | N4: N->getOperand(Num: 2)); |
2335 | } |
2336 | |
2337 | SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) { |
2338 | if (N->getOpcode() == ISD::VP_SINT_TO_FP) |
2339 | return SDValue(DAG.UpdateNodeOperands(N, |
2340 | Op1: SExtPromotedInteger(Op: N->getOperand(Num: 0)), |
2341 | Op2: N->getOperand(Num: 1), Op3: N->getOperand(Num: 2)), |
2342 | 0); |
2343 | return SDValue(DAG.UpdateNodeOperands(N, |
2344 | Op: SExtPromotedInteger(Op: N->getOperand(Num: 0))), 0); |
2345 | } |
2346 | |
2347 | SDValue DAGTypeLegalizer::PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N) { |
2348 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2349 | Op2: SExtPromotedInteger(Op: N->getOperand(Num: 1))), 0); |
2350 | } |
2351 | |
2352 | SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){ |
2353 | assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!" ); |
2354 | SDValue Ch = N->getChain(), Ptr = N->getBasePtr(); |
2355 | SDLoc dl(N); |
2356 | |
2357 | SDValue Val = GetPromotedInteger(Op: N->getValue()); // Get promoted value. |
2358 | |
2359 | // Truncate the value and store the result. |
2360 | return DAG.getTruncStore(Chain: Ch, dl, Val, Ptr, |
2361 | SVT: N->getMemoryVT(), MMO: N->getMemOperand()); |
2362 | } |
2363 | |
2364 | SDValue DAGTypeLegalizer::PromoteIntOp_MSTORE(MaskedStoreSDNode *N, |
2365 | unsigned OpNo) { |
2366 | SDValue DataOp = N->getValue(); |
2367 | SDValue Mask = N->getMask(); |
2368 | |
2369 | if (OpNo == 4) { |
2370 | // The Mask. Update in place. |
2371 | EVT DataVT = DataOp.getValueType(); |
2372 | Mask = PromoteTargetBoolean(Bool: Mask, ValVT: DataVT); |
2373 | SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); |
2374 | NewOps[4] = Mask; |
2375 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2376 | } |
2377 | |
2378 | assert(OpNo == 1 && "Unexpected operand for promotion" ); |
2379 | DataOp = GetPromotedInteger(Op: DataOp); |
2380 | |
2381 | return DAG.getMaskedStore(Chain: N->getChain(), dl: SDLoc(N), Val: DataOp, Base: N->getBasePtr(), |
2382 | Offset: N->getOffset(), Mask, MemVT: N->getMemoryVT(), |
2383 | MMO: N->getMemOperand(), AM: N->getAddressingMode(), |
2384 | /*IsTruncating*/ true, IsCompressing: N->isCompressingStore()); |
2385 | } |
2386 | |
2387 | SDValue DAGTypeLegalizer::PromoteIntOp_MLOAD(MaskedLoadSDNode *N, |
2388 | unsigned OpNo) { |
2389 | assert(OpNo == 3 && "Only know how to promote the mask!" ); |
2390 | EVT DataVT = N->getValueType(ResNo: 0); |
2391 | SDValue Mask = PromoteTargetBoolean(Bool: N->getOperand(Num: OpNo), ValVT: DataVT); |
2392 | SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); |
2393 | NewOps[OpNo] = Mask; |
2394 | SDNode *Res = DAG.UpdateNodeOperands(N, Ops: NewOps); |
2395 | if (Res == N) |
2396 | return SDValue(Res, 0); |
2397 | |
2398 | // Update triggered CSE, do our own replacement since caller can't. |
2399 | ReplaceValueWith(From: SDValue(N, 0), To: SDValue(Res, 0)); |
2400 | ReplaceValueWith(From: SDValue(N, 1), To: SDValue(Res, 1)); |
2401 | return SDValue(); |
2402 | } |
2403 | |
2404 | SDValue DAGTypeLegalizer::PromoteIntOp_MGATHER(MaskedGatherSDNode *N, |
2405 | unsigned OpNo) { |
2406 | SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); |
2407 | |
2408 | if (OpNo == 2) { |
2409 | // The Mask |
2410 | EVT DataVT = N->getValueType(ResNo: 0); |
2411 | NewOps[OpNo] = PromoteTargetBoolean(Bool: N->getOperand(Num: OpNo), ValVT: DataVT); |
2412 | } else if (OpNo == 4) { |
2413 | // The Index |
2414 | if (N->isIndexSigned()) |
2415 | // Need to sign extend the index since the bits will likely be used. |
2416 | NewOps[OpNo] = SExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2417 | else |
2418 | NewOps[OpNo] = ZExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2419 | } else |
2420 | NewOps[OpNo] = GetPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2421 | |
2422 | SDNode *Res = DAG.UpdateNodeOperands(N, Ops: NewOps); |
2423 | if (Res == N) |
2424 | return SDValue(Res, 0); |
2425 | |
2426 | // Update triggered CSE, do our own replacement since caller can't. |
2427 | ReplaceValueWith(From: SDValue(N, 0), To: SDValue(Res, 0)); |
2428 | ReplaceValueWith(From: SDValue(N, 1), To: SDValue(Res, 1)); |
2429 | return SDValue(); |
2430 | } |
2431 | |
2432 | SDValue DAGTypeLegalizer::PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, |
2433 | unsigned OpNo) { |
2434 | bool TruncateStore = N->isTruncatingStore(); |
2435 | SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end()); |
2436 | |
2437 | if (OpNo == 2) { |
2438 | // The Mask |
2439 | EVT DataVT = N->getValue().getValueType(); |
2440 | NewOps[OpNo] = PromoteTargetBoolean(Bool: N->getOperand(Num: OpNo), ValVT: DataVT); |
2441 | } else if (OpNo == 4) { |
2442 | // The Index |
2443 | if (N->isIndexSigned()) |
2444 | // Need to sign extend the index since the bits will likely be used. |
2445 | NewOps[OpNo] = SExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2446 | else |
2447 | NewOps[OpNo] = ZExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2448 | } else { |
2449 | NewOps[OpNo] = GetPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2450 | TruncateStore = true; |
2451 | } |
2452 | |
2453 | return DAG.getMaskedScatter(VTs: DAG.getVTList(VT: MVT::Other), MemVT: N->getMemoryVT(), |
2454 | dl: SDLoc(N), Ops: NewOps, MMO: N->getMemOperand(), |
2455 | IndexType: N->getIndexType(), IsTruncating: TruncateStore); |
2456 | } |
2457 | |
2458 | SDValue DAGTypeLegalizer::PromoteIntOp_VECTOR_COMPRESS(SDNode *N, |
2459 | unsigned OpNo) { |
2460 | assert(OpNo == 1 && "Can only promote VECTOR_COMPRESS mask." ); |
2461 | SDValue Vec = N->getOperand(Num: 0); |
2462 | EVT VT = Vec.getValueType(); |
2463 | SDValue Passthru = N->getOperand(Num: 2); |
2464 | SDValue Mask = PromoteTargetBoolean(Bool: N->getOperand(Num: 1), ValVT: VT); |
2465 | return DAG.getNode(Opcode: ISD::VECTOR_COMPRESS, DL: SDLoc(N), VT, N1: Vec, N2: Mask, N3: Passthru); |
2466 | } |
2467 | |
2468 | SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) { |
2469 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2470 | if (N->getOpcode() == ISD::VP_TRUNCATE) |
2471 | return DAG.getNode(Opcode: ISD::VP_TRUNCATE, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), N1: Op, |
2472 | N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2)); |
2473 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), Operand: Op); |
2474 | } |
2475 | |
2476 | SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) { |
2477 | if (N->getOpcode() == ISD::VP_UINT_TO_FP) |
2478 | return SDValue(DAG.UpdateNodeOperands(N, |
2479 | Op1: ZExtPromotedInteger(Op: N->getOperand(Num: 0)), |
2480 | Op2: N->getOperand(Num: 1), Op3: N->getOperand(Num: 2)), |
2481 | 0); |
2482 | return SDValue(DAG.UpdateNodeOperands(N, |
2483 | Op: ZExtPromotedInteger(Op: N->getOperand(Num: 0))), 0); |
2484 | } |
2485 | |
2486 | SDValue DAGTypeLegalizer::PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N) { |
2487 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
2488 | Op2: ZExtPromotedInteger(Op: N->getOperand(Num: 1))), 0); |
2489 | } |
2490 | |
2491 | SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) { |
2492 | SDLoc dl(N); |
2493 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2494 | Op = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: N->getValueType(ResNo: 0), Operand: Op); |
2495 | return DAG.getZeroExtendInReg(Op, DL: dl, VT: N->getOperand(Num: 0).getValueType()); |
2496 | } |
2497 | |
2498 | SDValue DAGTypeLegalizer::PromoteIntOp_VP_ZERO_EXTEND(SDNode *N) { |
2499 | SDLoc dl(N); |
2500 | EVT VT = N->getValueType(ResNo: 0); |
2501 | SDValue Op = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
2502 | // FIXME: There is no VP_ANY_EXTEND yet. |
2503 | Op = DAG.getNode(Opcode: ISD::VP_ZERO_EXTEND, DL: dl, VT, N1: Op, N2: N->getOperand(Num: 1), |
2504 | N3: N->getOperand(Num: 2)); |
2505 | return DAG.getVPZeroExtendInReg(Op, Mask: N->getOperand(Num: 1), EVL: N->getOperand(Num: 2), DL: dl, |
2506 | VT: N->getOperand(Num: 0).getValueType()); |
2507 | } |
2508 | |
2509 | SDValue DAGTypeLegalizer::PromoteIntOp_FIX(SDNode *N) { |
2510 | SDValue Op2 = ZExtPromotedInteger(Op: N->getOperand(Num: 2)); |
2511 | return SDValue( |
2512 | DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: N->getOperand(Num: 1), Op3: Op2), 0); |
2513 | } |
2514 | |
2515 | SDValue DAGTypeLegalizer::PromoteIntOp_FRAMERETURNADDR(SDNode *N) { |
2516 | // Promote the RETURNADDR/FRAMEADDR argument to a supported integer width. |
2517 | SDValue Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2518 | return SDValue(DAG.UpdateNodeOperands(N, Op), 0); |
2519 | } |
2520 | |
2521 | SDValue DAGTypeLegalizer::PromoteIntOp_ExpOp(SDNode *N) { |
2522 | bool IsStrict = N->isStrictFPOpcode(); |
2523 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : SDValue(); |
2524 | |
2525 | bool IsPowI = |
2526 | N->getOpcode() == ISD::FPOWI || N->getOpcode() == ISD::STRICT_FPOWI; |
2527 | |
2528 | // The integer operand is the last operand in FPOWI (or FLDEXP) (so the result |
2529 | // and floating point operand is already type legalized). |
2530 | RTLIB::Libcall LC = IsPowI ? RTLIB::getPOWI(RetVT: N->getValueType(ResNo: 0)) |
2531 | : RTLIB::getLDEXP(RetVT: N->getValueType(ResNo: 0)); |
2532 | |
2533 | if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(Call: LC)) { |
2534 | SDValue Op = SExtPromotedInteger(Op: N->getOperand(Num: 1)); |
2535 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: Op), 0); |
2536 | } |
2537 | |
2538 | // We can't just promote the exponent type in FPOWI, since we want to lower |
2539 | // the node to a libcall and we if we promote to a type larger than |
2540 | // sizeof(int) the libcall might not be according to the targets ABI. Instead |
2541 | // we rewrite to a libcall here directly, letting makeLibCall handle promotion |
2542 | // if the target accepts it according to shouldSignExtendTypeInLibCall. |
2543 | |
2544 | unsigned OpOffset = IsStrict ? 1 : 0; |
2545 | // The exponent should fit in a sizeof(int) type for the libcall to be valid. |
2546 | assert(DAG.getLibInfo().getIntSize() == |
2547 | N->getOperand(1 + OpOffset).getValueType().getSizeInBits() && |
2548 | "POWI exponent should match with sizeof(int) when doing the libcall." ); |
2549 | TargetLowering::MakeLibCallOptions CallOptions; |
2550 | CallOptions.setSExt(true); |
2551 | SDValue Ops[2] = {N->getOperand(Num: 0 + OpOffset), N->getOperand(Num: 1 + OpOffset)}; |
2552 | std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall( |
2553 | DAG, LC, RetVT: N->getValueType(ResNo: 0), Ops, CallOptions, dl: SDLoc(N), Chain); |
2554 | ReplaceValueWith(From: SDValue(N, 0), To: Tmp.first); |
2555 | if (IsStrict) |
2556 | ReplaceValueWith(From: SDValue(N, 1), To: Tmp.second); |
2557 | return SDValue(); |
2558 | } |
2559 | |
2560 | static unsigned getExtendForIntVecReduction(SDNode *N) { |
2561 | switch (N->getOpcode()) { |
2562 | default: |
2563 | llvm_unreachable("Expected integer vector reduction" ); |
2564 | case ISD::VECREDUCE_ADD: |
2565 | case ISD::VECREDUCE_MUL: |
2566 | case ISD::VECREDUCE_AND: |
2567 | case ISD::VECREDUCE_OR: |
2568 | case ISD::VECREDUCE_XOR: |
2569 | case ISD::VP_REDUCE_ADD: |
2570 | case ISD::VP_REDUCE_MUL: |
2571 | case ISD::VP_REDUCE_AND: |
2572 | case ISD::VP_REDUCE_OR: |
2573 | case ISD::VP_REDUCE_XOR: |
2574 | return ISD::ANY_EXTEND; |
2575 | case ISD::VECREDUCE_SMAX: |
2576 | case ISD::VECREDUCE_SMIN: |
2577 | case ISD::VP_REDUCE_SMAX: |
2578 | case ISD::VP_REDUCE_SMIN: |
2579 | return ISD::SIGN_EXTEND; |
2580 | case ISD::VECREDUCE_UMAX: |
2581 | case ISD::VECREDUCE_UMIN: |
2582 | case ISD::VP_REDUCE_UMAX: |
2583 | case ISD::VP_REDUCE_UMIN: |
2584 | return ISD::ZERO_EXTEND; |
2585 | } |
2586 | } |
2587 | |
2588 | SDValue DAGTypeLegalizer::PromoteIntOpVectorReduction(SDNode *N, SDValue V) { |
2589 | switch (getExtendForIntVecReduction(N)) { |
2590 | default: |
2591 | llvm_unreachable("Impossible extension kind for integer reduction" ); |
2592 | case ISD::ANY_EXTEND: |
2593 | return GetPromotedInteger(Op: V); |
2594 | case ISD::SIGN_EXTEND: |
2595 | return SExtPromotedInteger(Op: V); |
2596 | case ISD::ZERO_EXTEND: |
2597 | return ZExtPromotedInteger(Op: V); |
2598 | } |
2599 | } |
2600 | |
2601 | SDValue DAGTypeLegalizer::PromoteIntOp_VECREDUCE(SDNode *N) { |
2602 | SDLoc dl(N); |
2603 | SDValue Op = PromoteIntOpVectorReduction(N, V: N->getOperand(Num: 0)); |
2604 | |
2605 | EVT OrigEltVT = N->getOperand(Num: 0).getValueType().getVectorElementType(); |
2606 | EVT InVT = Op.getValueType(); |
2607 | EVT EltVT = InVT.getVectorElementType(); |
2608 | EVT ResVT = N->getValueType(ResNo: 0); |
2609 | unsigned Opcode = N->getOpcode(); |
2610 | |
2611 | // An i1 vecreduce_xor is equivalent to vecreduce_add, use that instead if |
2612 | // vecreduce_xor is not legal |
2613 | if (Opcode == ISD::VECREDUCE_XOR && OrigEltVT == MVT::i1 && |
2614 | !TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_XOR, VT: InVT) && |
2615 | TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_ADD, VT: InVT)) |
2616 | Opcode = ISD::VECREDUCE_ADD; |
2617 | |
2618 | // An i1 vecreduce_or is equivalent to vecreduce_umax, use that instead if |
2619 | // vecreduce_or is not legal |
2620 | else if (Opcode == ISD::VECREDUCE_OR && OrigEltVT == MVT::i1 && |
2621 | !TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_OR, VT: InVT) && |
2622 | TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_UMAX, VT: InVT)) { |
2623 | Opcode = ISD::VECREDUCE_UMAX; |
2624 | // Can't use promoteTargetBoolean here because we still need |
2625 | // to either sign_ext or zero_ext in the undefined case. |
2626 | switch (TLI.getBooleanContents(Type: InVT)) { |
2627 | case TargetLoweringBase::UndefinedBooleanContent: |
2628 | case TargetLoweringBase::ZeroOrOneBooleanContent: |
2629 | Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2630 | break; |
2631 | case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: |
2632 | Op = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2633 | break; |
2634 | } |
2635 | } |
2636 | |
2637 | // An i1 vecreduce_and is equivalent to vecreduce_umin, use that instead if |
2638 | // vecreduce_and is not legal |
2639 | else if (Opcode == ISD::VECREDUCE_AND && OrigEltVT == MVT::i1 && |
2640 | !TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_AND, VT: InVT) && |
2641 | TLI.isOperationLegalOrCustom(Op: ISD::VECREDUCE_UMIN, VT: InVT)) { |
2642 | Opcode = ISD::VECREDUCE_UMIN; |
2643 | // Can't use promoteTargetBoolean here because we still need |
2644 | // to either sign_ext or zero_ext in the undefined case. |
2645 | switch (TLI.getBooleanContents(Type: InVT)) { |
2646 | case TargetLoweringBase::UndefinedBooleanContent: |
2647 | case TargetLoweringBase::ZeroOrOneBooleanContent: |
2648 | Op = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2649 | break; |
2650 | case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: |
2651 | Op = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
2652 | break; |
2653 | } |
2654 | } |
2655 | |
2656 | if (ResVT.bitsGE(VT: EltVT)) |
2657 | return DAG.getNode(Opcode, DL: SDLoc(N), VT: ResVT, Operand: Op); |
2658 | |
2659 | // Result size must be >= element size. If this is not the case after |
2660 | // promotion, also promote the result type and then truncate. |
2661 | SDValue Reduce = DAG.getNode(Opcode, DL: dl, VT: EltVT, Operand: Op); |
2662 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: ResVT, Operand: Reduce); |
2663 | } |
2664 | |
2665 | SDValue DAGTypeLegalizer::PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo) { |
2666 | SDLoc DL(N); |
2667 | SDValue Op = N->getOperand(Num: OpNo); |
2668 | SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); |
2669 | |
2670 | if (OpNo == 2) { // Mask |
2671 | // Update in place. |
2672 | NewOps[2] = PromoteTargetBoolean(Bool: Op, ValVT: N->getOperand(Num: 1).getValueType()); |
2673 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2674 | } |
2675 | |
2676 | assert(OpNo == 1 && "Unexpected operand for promotion" ); |
2677 | |
2678 | Op = PromoteIntOpVectorReduction(N, V: Op); |
2679 | |
2680 | NewOps[OpNo] = Op; |
2681 | |
2682 | EVT VT = N->getValueType(ResNo: 0); |
2683 | EVT EltVT = Op.getValueType().getScalarType(); |
2684 | |
2685 | if (VT.bitsGE(VT: EltVT)) |
2686 | return DAG.getNode(Opcode: N->getOpcode(), DL: SDLoc(N), VT, Ops: NewOps); |
2687 | |
2688 | // Result size must be >= element/start-value size. If this is not the case |
2689 | // after promotion, also promote both the start value and result type and |
2690 | // then truncate. |
2691 | NewOps[0] = |
2692 | DAG.getNode(Opcode: getExtendForIntVecReduction(N), DL, VT: EltVT, Operand: N->getOperand(Num: 0)); |
2693 | SDValue Reduce = DAG.getNode(Opcode: N->getOpcode(), DL, VT: EltVT, Ops: NewOps); |
2694 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT, Operand: Reduce); |
2695 | } |
2696 | |
2697 | SDValue DAGTypeLegalizer::PromoteIntOp_SET_ROUNDING(SDNode *N) { |
2698 | SDValue Op = ZExtPromotedInteger(Op: N->getOperand(Num: 1)); |
2699 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: Op), 0); |
2700 | } |
2701 | |
2702 | SDValue DAGTypeLegalizer::PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo) { |
2703 | assert(OpNo > 1); // Because the first two arguments are guaranteed legal. |
2704 | SmallVector<SDValue> NewOps(N->ops().begin(), N->ops().end()); |
2705 | SDValue Operand = N->getOperand(Num: OpNo); |
2706 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: Operand.getValueType()); |
2707 | NewOps[OpNo] = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: NVT, Operand); |
2708 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2709 | } |
2710 | |
2711 | SDValue DAGTypeLegalizer::PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo) { |
2712 | assert(OpNo >= 7); |
2713 | SmallVector<SDValue> NewOps(N->ops().begin(), N->ops().end()); |
2714 | SDValue Operand = N->getOperand(Num: OpNo); |
2715 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: Operand.getValueType()); |
2716 | NewOps[OpNo] = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: SDLoc(N), VT: NVT, Operand); |
2717 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2718 | } |
2719 | |
2720 | SDValue DAGTypeLegalizer::PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo) { |
2721 | assert((N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD && OpNo == 3) || |
2722 | (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE && OpNo == 4)); |
2723 | |
2724 | SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); |
2725 | NewOps[OpNo] = SExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2726 | |
2727 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2728 | } |
2729 | |
2730 | SDValue DAGTypeLegalizer::PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo) { |
2731 | SmallVector<SDValue, 6> NewOps(N->op_begin(), N->op_end()); |
2732 | |
2733 | if (OpNo == 2) { // Offset operand |
2734 | NewOps[OpNo] = SExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2735 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2736 | } |
2737 | |
2738 | assert((OpNo == 4 || OpNo == 5) && "Unexpected operand for promotion" ); |
2739 | |
2740 | NewOps[OpNo] = ZExtPromotedInteger(Op: N->getOperand(Num: OpNo)); |
2741 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
2742 | } |
2743 | |
2744 | //===----------------------------------------------------------------------===// |
2745 | // Integer Result Expansion |
2746 | //===----------------------------------------------------------------------===// |
2747 | |
2748 | /// ExpandIntegerResult - This method is called when the specified result of the |
2749 | /// specified node is found to need expansion. At this point, the node may also |
2750 | /// have invalid operands or may have other results that need promotion, we just |
2751 | /// know that (at least) one result needs expansion. |
2752 | void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) { |
2753 | LLVM_DEBUG(dbgs() << "Expand integer result: " ; N->dump(&DAG)); |
2754 | SDValue Lo, Hi; |
2755 | Lo = Hi = SDValue(); |
2756 | |
2757 | // See if the target wants to custom expand this node. |
2758 | if (CustomLowerNode(N, VT: N->getValueType(ResNo), LegalizeResult: true)) |
2759 | return; |
2760 | |
2761 | switch (N->getOpcode()) { |
2762 | default: |
2763 | #ifndef NDEBUG |
2764 | dbgs() << "ExpandIntegerResult #" << ResNo << ": " ; |
2765 | N->dump(&DAG); dbgs() << "\n" ; |
2766 | #endif |
2767 | report_fatal_error(reason: "Do not know how to expand the result of this " |
2768 | "operator!" ); |
2769 | |
2770 | case ISD::ARITH_FENCE: SplitRes_ARITH_FENCE(N, Lo, Hi); break; |
2771 | case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break; |
2772 | case ISD::SELECT: SplitRes_Select(N, Lo, Hi); break; |
2773 | case ISD::SELECT_CC: SplitRes_SELECT_CC(N, Lo, Hi); break; |
2774 | case ISD::UNDEF: SplitRes_UNDEF(N, Lo, Hi); break; |
2775 | case ISD::FREEZE: SplitRes_FREEZE(N, Lo, Hi); break; |
2776 | |
2777 | case ISD::BITCAST: ExpandRes_BITCAST(N, Lo, Hi); break; |
2778 | case ISD::BUILD_PAIR: ExpandRes_BUILD_PAIR(N, Lo, Hi); break; |
2779 | case ISD::EXTRACT_ELEMENT: ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break; |
2780 | case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break; |
2781 | case ISD::VAARG: ExpandRes_VAARG(N, Lo, Hi); break; |
2782 | |
2783 | case ISD::ANY_EXTEND: ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break; |
2784 | case ISD::AssertSext: ExpandIntRes_AssertSext(N, Lo, Hi); break; |
2785 | case ISD::AssertZext: ExpandIntRes_AssertZext(N, Lo, Hi); break; |
2786 | case ISD::BITREVERSE: ExpandIntRes_BITREVERSE(N, Lo, Hi); break; |
2787 | case ISD::BSWAP: ExpandIntRes_BSWAP(N, Lo, Hi); break; |
2788 | case ISD::PARITY: ExpandIntRes_PARITY(N, Lo, Hi); break; |
2789 | case ISD::Constant: ExpandIntRes_Constant(N, Lo, Hi); break; |
2790 | case ISD::ABS: ExpandIntRes_ABS(N, Lo, Hi); break; |
2791 | case ISD::CTLZ_ZERO_UNDEF: |
2792 | case ISD::CTLZ: ExpandIntRes_CTLZ(N, Lo, Hi); break; |
2793 | case ISD::CTPOP: ExpandIntRes_CTPOP(N, Lo, Hi); break; |
2794 | case ISD::CTTZ_ZERO_UNDEF: |
2795 | case ISD::CTTZ: ExpandIntRes_CTTZ(N, Lo, Hi); break; |
2796 | case ISD::GET_ROUNDING:ExpandIntRes_GET_ROUNDING(N, Lo, Hi); break; |
2797 | case ISD::STRICT_FP_TO_SINT: |
2798 | case ISD::FP_TO_SINT: |
2799 | case ISD::STRICT_FP_TO_UINT: |
2800 | case ISD::FP_TO_UINT: ExpandIntRes_FP_TO_XINT(N, Lo, Hi); break; |
2801 | case ISD::FP_TO_SINT_SAT: |
2802 | case ISD::FP_TO_UINT_SAT: ExpandIntRes_FP_TO_XINT_SAT(N, Lo, Hi); break; |
2803 | case ISD::STRICT_LROUND: |
2804 | case ISD::STRICT_LRINT: |
2805 | case ISD::LROUND: |
2806 | case ISD::LRINT: |
2807 | case ISD::STRICT_LLROUND: |
2808 | case ISD::STRICT_LLRINT: |
2809 | case ISD::LLROUND: |
2810 | case ISD::LLRINT: ExpandIntRes_XROUND_XRINT(N, Lo, Hi); break; |
2811 | case ISD::LOAD: ExpandIntRes_LOAD(N: cast<LoadSDNode>(Val: N), Lo, Hi); break; |
2812 | case ISD::MUL: ExpandIntRes_MUL(N, Lo, Hi); break; |
2813 | case ISD::READCYCLECOUNTER: |
2814 | case ISD::READSTEADYCOUNTER: ExpandIntRes_READCOUNTER(N, Lo, Hi); break; |
2815 | case ISD::SDIV: ExpandIntRes_SDIV(N, Lo, Hi); break; |
2816 | case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break; |
2817 | case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break; |
2818 | case ISD::SREM: ExpandIntRes_SREM(N, Lo, Hi); break; |
2819 | case ISD::TRUNCATE: ExpandIntRes_TRUNCATE(N, Lo, Hi); break; |
2820 | case ISD::UDIV: ExpandIntRes_UDIV(N, Lo, Hi); break; |
2821 | case ISD::UREM: ExpandIntRes_UREM(N, Lo, Hi); break; |
2822 | case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break; |
2823 | case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break; |
2824 | |
2825 | case ISD::ATOMIC_LOAD_ADD: |
2826 | case ISD::ATOMIC_LOAD_SUB: |
2827 | case ISD::ATOMIC_LOAD_AND: |
2828 | case ISD::ATOMIC_LOAD_CLR: |
2829 | case ISD::ATOMIC_LOAD_OR: |
2830 | case ISD::ATOMIC_LOAD_XOR: |
2831 | case ISD::ATOMIC_LOAD_NAND: |
2832 | case ISD::ATOMIC_LOAD_MIN: |
2833 | case ISD::ATOMIC_LOAD_MAX: |
2834 | case ISD::ATOMIC_LOAD_UMIN: |
2835 | case ISD::ATOMIC_LOAD_UMAX: |
2836 | case ISD::ATOMIC_SWAP: |
2837 | case ISD::ATOMIC_CMP_SWAP: { |
2838 | std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node: N); |
2839 | SplitInteger(Op: Tmp.first, Lo, Hi); |
2840 | ReplaceValueWith(From: SDValue(N, 1), To: Tmp.second); |
2841 | break; |
2842 | } |
2843 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { |
2844 | AtomicSDNode *AN = cast<AtomicSDNode>(Val: N); |
2845 | SDVTList VTs = DAG.getVTList(VT1: N->getValueType(ResNo: 0), VT2: MVT::Other); |
2846 | SDValue Tmp = DAG.getAtomicCmpSwap( |
2847 | Opcode: ISD::ATOMIC_CMP_SWAP, dl: SDLoc(N), MemVT: AN->getMemoryVT(), VTs, |
2848 | Chain: N->getOperand(Num: 0), Ptr: N->getOperand(Num: 1), Cmp: N->getOperand(Num: 2), Swp: N->getOperand(Num: 3), |
2849 | MMO: AN->getMemOperand()); |
2850 | |
2851 | // Expanding to the strong ATOMIC_CMP_SWAP node means we can determine |
2852 | // success simply by comparing the loaded value against the ingoing |
2853 | // comparison. |
2854 | SDValue Success = DAG.getSetCC(DL: SDLoc(N), VT: N->getValueType(ResNo: 1), LHS: Tmp, |
2855 | RHS: N->getOperand(Num: 2), Cond: ISD::SETEQ); |
2856 | |
2857 | SplitInteger(Op: Tmp, Lo, Hi); |
2858 | ReplaceValueWith(From: SDValue(N, 1), To: Success); |
2859 | ReplaceValueWith(From: SDValue(N, 2), To: Tmp.getValue(R: 1)); |
2860 | break; |
2861 | } |
2862 | |
2863 | case ISD::AND: |
2864 | case ISD::OR: |
2865 | case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break; |
2866 | |
2867 | case ISD::UMAX: |
2868 | case ISD::SMAX: |
2869 | case ISD::UMIN: |
2870 | case ISD::SMIN: ExpandIntRes_MINMAX(N, Lo, Hi); break; |
2871 | |
2872 | case ISD::SCMP: |
2873 | case ISD::UCMP: ExpandIntRes_CMP(N, Lo, Hi); break; |
2874 | |
2875 | case ISD::ADD: |
2876 | case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break; |
2877 | |
2878 | case ISD::ADDC: |
2879 | case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break; |
2880 | |
2881 | case ISD::ADDE: |
2882 | case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break; |
2883 | |
2884 | case ISD::UADDO_CARRY: |
2885 | case ISD::USUBO_CARRY: ExpandIntRes_UADDSUBO_CARRY(N, Lo, Hi); break; |
2886 | |
2887 | case ISD::SADDO_CARRY: |
2888 | case ISD::SSUBO_CARRY: ExpandIntRes_SADDSUBO_CARRY(N, Lo, Hi); break; |
2889 | |
2890 | case ISD::SHL: |
2891 | case ISD::SRA: |
2892 | case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break; |
2893 | |
2894 | case ISD::SADDO: |
2895 | case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break; |
2896 | case ISD::UADDO: |
2897 | case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break; |
2898 | case ISD::UMULO: |
2899 | case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break; |
2900 | |
2901 | case ISD::SADDSAT: |
2902 | case ISD::UADDSAT: |
2903 | case ISD::SSUBSAT: |
2904 | case ISD::USUBSAT: ExpandIntRes_ADDSUBSAT(N, Lo, Hi); break; |
2905 | |
2906 | case ISD::SSHLSAT: |
2907 | case ISD::USHLSAT: ExpandIntRes_SHLSAT(N, Lo, Hi); break; |
2908 | |
2909 | case ISD::AVGCEILS: |
2910 | case ISD::AVGCEILU: |
2911 | case ISD::AVGFLOORS: |
2912 | case ISD::AVGFLOORU: ExpandIntRes_AVG(N, Lo, Hi); break; |
2913 | |
2914 | case ISD::SMULFIX: |
2915 | case ISD::SMULFIXSAT: |
2916 | case ISD::UMULFIX: |
2917 | case ISD::UMULFIXSAT: ExpandIntRes_MULFIX(N, Lo, Hi); break; |
2918 | |
2919 | case ISD::SDIVFIX: |
2920 | case ISD::SDIVFIXSAT: |
2921 | case ISD::UDIVFIX: |
2922 | case ISD::UDIVFIXSAT: ExpandIntRes_DIVFIX(N, Lo, Hi); break; |
2923 | |
2924 | case ISD::VECREDUCE_ADD: |
2925 | case ISD::VECREDUCE_MUL: |
2926 | case ISD::VECREDUCE_AND: |
2927 | case ISD::VECREDUCE_OR: |
2928 | case ISD::VECREDUCE_XOR: |
2929 | case ISD::VECREDUCE_SMAX: |
2930 | case ISD::VECREDUCE_SMIN: |
2931 | case ISD::VECREDUCE_UMAX: |
2932 | case ISD::VECREDUCE_UMIN: ExpandIntRes_VECREDUCE(N, Lo, Hi); break; |
2933 | |
2934 | case ISD::ROTL: |
2935 | case ISD::ROTR: |
2936 | ExpandIntRes_Rotate(N, Lo, Hi); |
2937 | break; |
2938 | |
2939 | case ISD::FSHL: |
2940 | case ISD::FSHR: |
2941 | ExpandIntRes_FunnelShift(N, Lo, Hi); |
2942 | break; |
2943 | |
2944 | case ISD::VSCALE: |
2945 | ExpandIntRes_VSCALE(N, Lo, Hi); |
2946 | break; |
2947 | } |
2948 | |
2949 | // If Lo/Hi is null, the sub-method took care of registering results etc. |
2950 | if (Lo.getNode()) |
2951 | SetExpandedInteger(Op: SDValue(N, ResNo), Lo, Hi); |
2952 | } |
2953 | |
2954 | /// Lower an atomic node to the appropriate builtin call. |
2955 | std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) { |
2956 | unsigned Opc = Node->getOpcode(); |
2957 | MVT VT = cast<AtomicSDNode>(Val: Node)->getMemoryVT().getSimpleVT(); |
2958 | AtomicOrdering order = cast<AtomicSDNode>(Val: Node)->getMergedOrdering(); |
2959 | // Lower to outline atomic libcall if outline atomics enabled, |
2960 | // or to sync libcall otherwise |
2961 | RTLIB::Libcall LC = RTLIB::getOUTLINE_ATOMIC(Opc, Order: order, VT); |
2962 | EVT RetVT = Node->getValueType(ResNo: 0); |
2963 | TargetLowering::MakeLibCallOptions CallOptions; |
2964 | SmallVector<SDValue, 4> Ops; |
2965 | if (TLI.getLibcallName(Call: LC)) { |
2966 | Ops.append(in_start: Node->op_begin() + 2, in_end: Node->op_end()); |
2967 | Ops.push_back(Elt: Node->getOperand(Num: 1)); |
2968 | } else { |
2969 | LC = RTLIB::getSYNC(Opc, VT); |
2970 | assert(LC != RTLIB::UNKNOWN_LIBCALL && |
2971 | "Unexpected atomic op or value type!" ); |
2972 | Ops.append(in_start: Node->op_begin() + 1, in_end: Node->op_end()); |
2973 | } |
2974 | return TLI.makeLibCall(DAG, LC, RetVT, Ops, CallOptions, dl: SDLoc(Node), |
2975 | Chain: Node->getOperand(Num: 0)); |
2976 | } |
2977 | |
2978 | /// N is a shift by a value that needs to be expanded, |
2979 | /// and the shift amount is a constant 'Amt'. Expand the operation. |
2980 | void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, const APInt &Amt, |
2981 | SDValue &Lo, SDValue &Hi) { |
2982 | SDLoc DL(N); |
2983 | // Expand the incoming operand to be shifted, so that we have its parts |
2984 | SDValue InL, InH; |
2985 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: InL, Hi&: InH); |
2986 | |
2987 | // Though Amt shouldn't usually be 0, it's possible. E.g. when legalization |
2988 | // splitted a vector shift, like this: <op1, op2> SHL <0, 2>. |
2989 | if (!Amt) { |
2990 | Lo = InL; |
2991 | Hi = InH; |
2992 | return; |
2993 | } |
2994 | |
2995 | EVT NVT = InL.getValueType(); |
2996 | unsigned VTBits = N->getValueType(ResNo: 0).getSizeInBits(); |
2997 | unsigned NVTBits = NVT.getSizeInBits(); |
2998 | |
2999 | if (N->getOpcode() == ISD::SHL) { |
3000 | if (Amt.uge(RHS: VTBits)) { |
3001 | Lo = Hi = DAG.getConstant(Val: 0, DL, VT: NVT); |
3002 | } else if (Amt.ugt(RHS: NVTBits)) { |
3003 | Lo = DAG.getConstant(Val: 0, DL, VT: NVT); |
3004 | Hi = DAG.getNode(Opcode: ISD::SHL, DL, VT: NVT, N1: InL, |
3005 | N2: DAG.getShiftAmountConstant(Val: Amt - NVTBits, VT: NVT, DL)); |
3006 | } else if (Amt == NVTBits) { |
3007 | Lo = DAG.getConstant(Val: 0, DL, VT: NVT); |
3008 | Hi = InL; |
3009 | } else { |
3010 | Lo = DAG.getNode(Opcode: ISD::SHL, DL, VT: NVT, N1: InL, |
3011 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)); |
3012 | Hi = DAG.getNode( |
3013 | Opcode: ISD::OR, DL, VT: NVT, |
3014 | N1: DAG.getNode(Opcode: ISD::SHL, DL, VT: NVT, N1: InH, |
3015 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)), |
3016 | N2: DAG.getNode(Opcode: ISD::SRL, DL, VT: NVT, N1: InL, |
3017 | N2: DAG.getShiftAmountConstant(Val: -Amt + NVTBits, VT: NVT, DL))); |
3018 | } |
3019 | return; |
3020 | } |
3021 | |
3022 | if (N->getOpcode() == ISD::SRL) { |
3023 | if (Amt.uge(RHS: VTBits)) { |
3024 | Lo = Hi = DAG.getConstant(Val: 0, DL, VT: NVT); |
3025 | } else if (Amt.ugt(RHS: NVTBits)) { |
3026 | Lo = DAG.getNode(Opcode: ISD::SRL, DL, VT: NVT, N1: InH, |
3027 | N2: DAG.getShiftAmountConstant(Val: Amt - NVTBits, VT: NVT, DL)); |
3028 | Hi = DAG.getConstant(Val: 0, DL, VT: NVT); |
3029 | } else if (Amt == NVTBits) { |
3030 | Lo = InH; |
3031 | Hi = DAG.getConstant(Val: 0, DL, VT: NVT); |
3032 | } else { |
3033 | Lo = DAG.getNode( |
3034 | Opcode: ISD::OR, DL, VT: NVT, |
3035 | N1: DAG.getNode(Opcode: ISD::SRL, DL, VT: NVT, N1: InL, |
3036 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)), |
3037 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: NVT, N1: InH, |
3038 | N2: DAG.getShiftAmountConstant(Val: -Amt + NVTBits, VT: NVT, DL))); |
3039 | Hi = DAG.getNode(Opcode: ISD::SRL, DL, VT: NVT, N1: InH, |
3040 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)); |
3041 | } |
3042 | return; |
3043 | } |
3044 | |
3045 | assert(N->getOpcode() == ISD::SRA && "Unknown shift!" ); |
3046 | if (Amt.uge(RHS: VTBits)) { |
3047 | Hi = Lo = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: InH, |
3048 | N2: DAG.getShiftAmountConstant(Val: NVTBits - 1, VT: NVT, DL)); |
3049 | } else if (Amt.ugt(RHS: NVTBits)) { |
3050 | Lo = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: InH, |
3051 | N2: DAG.getShiftAmountConstant(Val: Amt - NVTBits, VT: NVT, DL)); |
3052 | Hi = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: InH, |
3053 | N2: DAG.getShiftAmountConstant(Val: NVTBits - 1, VT: NVT, DL)); |
3054 | } else if (Amt == NVTBits) { |
3055 | Lo = InH; |
3056 | Hi = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: InH, |
3057 | N2: DAG.getShiftAmountConstant(Val: NVTBits - 1, VT: NVT, DL)); |
3058 | } else { |
3059 | Lo = DAG.getNode( |
3060 | Opcode: ISD::OR, DL, VT: NVT, |
3061 | N1: DAG.getNode(Opcode: ISD::SRL, DL, VT: NVT, N1: InL, |
3062 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)), |
3063 | N2: DAG.getNode(Opcode: ISD::SHL, DL, VT: NVT, N1: InH, |
3064 | N2: DAG.getShiftAmountConstant(Val: -Amt + NVTBits, VT: NVT, DL))); |
3065 | Hi = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: InH, |
3066 | N2: DAG.getShiftAmountConstant(Val: Amt, VT: NVT, DL)); |
3067 | } |
3068 | } |
3069 | |
3070 | /// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify |
3071 | /// this shift based on knowledge of the high bit of the shift amount. If we |
3072 | /// can tell this, we know that it is >= 32 or < 32, without knowing the actual |
3073 | /// shift amount. |
3074 | bool DAGTypeLegalizer:: |
3075 | ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { |
3076 | unsigned Opc = N->getOpcode(); |
3077 | SDValue In = N->getOperand(Num: 0); |
3078 | SDValue Amt = N->getOperand(Num: 1); |
3079 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
3080 | EVT ShTy = Amt.getValueType(); |
3081 | unsigned ShBits = ShTy.getScalarSizeInBits(); |
3082 | unsigned NVTBits = NVT.getScalarSizeInBits(); |
3083 | assert(isPowerOf2_32(NVTBits) && |
3084 | "Expanded integer type size not a power of two!" ); |
3085 | SDLoc dl(N); |
3086 | |
3087 | APInt HighBitMask = APInt::getHighBitsSet(numBits: ShBits, hiBitsSet: ShBits - Log2_32(Value: NVTBits)); |
3088 | KnownBits Known = DAG.computeKnownBits(Op: Amt); |
3089 | |
3090 | // If we don't know anything about the high bits, exit. |
3091 | if (((Known.Zero | Known.One) & HighBitMask) == 0) |
3092 | return false; |
3093 | |
3094 | // Get the incoming operand to be shifted. |
3095 | SDValue InL, InH; |
3096 | GetExpandedInteger(Op: In, Lo&: InL, Hi&: InH); |
3097 | |
3098 | // If we know that any of the high bits of the shift amount are one, then we |
3099 | // can do this as a couple of simple shifts. |
3100 | if (Known.One.intersects(RHS: HighBitMask)) { |
3101 | // Mask out the high bit, which we know is set. |
3102 | Amt = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShTy, N1: Amt, |
3103 | N2: DAG.getConstant(Val: ~HighBitMask, DL: dl, VT: ShTy)); |
3104 | |
3105 | switch (Opc) { |
3106 | default: llvm_unreachable("Unknown shift" ); |
3107 | case ISD::SHL: |
3108 | Lo = DAG.getConstant(Val: 0, DL: dl, VT: NVT); // Low part is zero. |
3109 | Hi = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InL, N2: Amt); // High part from Lo part. |
3110 | return true; |
3111 | case ISD::SRL: |
3112 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); // Hi part is zero. |
3113 | Lo = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InH, N2: Amt); // Lo part from Hi part. |
3114 | return true; |
3115 | case ISD::SRA: |
3116 | Hi = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: InH, // Sign extend high part. |
3117 | N2: DAG.getConstant(Val: NVTBits - 1, DL: dl, VT: ShTy)); |
3118 | Lo = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: InH, N2: Amt); // Lo part from Hi part. |
3119 | return true; |
3120 | } |
3121 | } |
3122 | |
3123 | // If we know that all of the high bits of the shift amount are zero, then we |
3124 | // can do this as a couple of simple shifts. |
3125 | if (HighBitMask.isSubsetOf(RHS: Known.Zero)) { |
3126 | // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined |
3127 | // shift if x is zero. We can use XOR here because x is known to be smaller |
3128 | // than 32. |
3129 | SDValue Amt2 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ShTy, N1: Amt, |
3130 | N2: DAG.getConstant(Val: NVTBits - 1, DL: dl, VT: ShTy)); |
3131 | |
3132 | unsigned Op1, Op2; |
3133 | switch (Opc) { |
3134 | default: llvm_unreachable("Unknown shift" ); |
3135 | case ISD::SHL: Op1 = ISD::SHL; Op2 = ISD::SRL; break; |
3136 | case ISD::SRL: |
3137 | case ISD::SRA: Op1 = ISD::SRL; Op2 = ISD::SHL; break; |
3138 | } |
3139 | |
3140 | // When shifting right the arithmetic for Lo and Hi is swapped. |
3141 | if (Opc != ISD::SHL) |
3142 | std::swap(a&: InL, b&: InH); |
3143 | |
3144 | // Use a little trick to get the bits that move from Lo to Hi. First |
3145 | // shift by one bit. |
3146 | SDValue Sh1 = DAG.getNode(Opcode: Op2, DL: dl, VT: NVT, N1: InL, N2: DAG.getConstant(Val: 1, DL: dl, VT: ShTy)); |
3147 | // Then compute the remaining shift with amount-1. |
3148 | SDValue Sh2 = DAG.getNode(Opcode: Op2, DL: dl, VT: NVT, N1: Sh1, N2: Amt2); |
3149 | |
3150 | Lo = DAG.getNode(Opcode: Opc, DL: dl, VT: NVT, N1: InL, N2: Amt); |
3151 | Hi = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, N1: DAG.getNode(Opcode: Op1, DL: dl, VT: NVT, N1: InH, N2: Amt),N2: Sh2); |
3152 | |
3153 | if (Opc != ISD::SHL) |
3154 | std::swap(a&: Hi, b&: Lo); |
3155 | return true; |
3156 | } |
3157 | |
3158 | return false; |
3159 | } |
3160 | |
3161 | /// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift |
3162 | /// of any size. |
3163 | bool DAGTypeLegalizer:: |
3164 | ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) { |
3165 | SDValue Amt = N->getOperand(Num: 1); |
3166 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
3167 | EVT ShTy = Amt.getValueType(); |
3168 | unsigned NVTBits = NVT.getSizeInBits(); |
3169 | assert(isPowerOf2_32(NVTBits) && |
3170 | "Expanded integer type size not a power of two!" ); |
3171 | SDLoc dl(N); |
3172 | |
3173 | // Get the incoming operand to be shifted. |
3174 | SDValue InL, InH; |
3175 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: InL, Hi&: InH); |
3176 | |
3177 | SDValue NVBitsNode = DAG.getConstant(Val: NVTBits, DL: dl, VT: ShTy); |
3178 | SDValue AmtExcess = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ShTy, N1: Amt, N2: NVBitsNode); |
3179 | SDValue AmtLack = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ShTy, N1: NVBitsNode, N2: Amt); |
3180 | SDValue isShort = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: ShTy), |
3181 | LHS: Amt, RHS: NVBitsNode, Cond: ISD::SETULT); |
3182 | SDValue isZero = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: ShTy), |
3183 | LHS: Amt, RHS: DAG.getConstant(Val: 0, DL: dl, VT: ShTy), |
3184 | Cond: ISD::SETEQ); |
3185 | |
3186 | SDValue LoS, HiS, LoL, HiL; |
3187 | switch (N->getOpcode()) { |
3188 | default: llvm_unreachable("Unknown shift" ); |
3189 | case ISD::SHL: |
3190 | // Short: ShAmt < NVTBits |
3191 | LoS = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InL, N2: Amt); |
3192 | HiS = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, |
3193 | N1: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InH, N2: Amt), |
3194 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InL, N2: AmtLack)); |
3195 | |
3196 | // Long: ShAmt >= NVTBits |
3197 | LoL = DAG.getConstant(Val: 0, DL: dl, VT: NVT); // Lo part is zero. |
3198 | HiL = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InL, N2: AmtExcess); // Hi from Lo part. |
3199 | |
3200 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: LoS, RHS: LoL); |
3201 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: isZero, LHS: InH, |
3202 | RHS: DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: HiS, RHS: HiL)); |
3203 | return true; |
3204 | case ISD::SRL: |
3205 | // Short: ShAmt < NVTBits |
3206 | HiS = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InH, N2: Amt); |
3207 | LoS = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, |
3208 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InL, N2: Amt), |
3209 | // FIXME: If Amt is zero, the following shift generates an undefined result |
3210 | // on some architectures. |
3211 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InH, N2: AmtLack)); |
3212 | |
3213 | // Long: ShAmt >= NVTBits |
3214 | HiL = DAG.getConstant(Val: 0, DL: dl, VT: NVT); // Hi part is zero. |
3215 | LoL = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InH, N2: AmtExcess); // Lo from Hi part. |
3216 | |
3217 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: isZero, LHS: InL, |
3218 | RHS: DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: LoS, RHS: LoL)); |
3219 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: HiS, RHS: HiL); |
3220 | return true; |
3221 | case ISD::SRA: |
3222 | // Short: ShAmt < NVTBits |
3223 | HiS = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: InH, N2: Amt); |
3224 | LoS = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, |
3225 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: InL, N2: Amt), |
3226 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: InH, N2: AmtLack)); |
3227 | |
3228 | // Long: ShAmt >= NVTBits |
3229 | HiL = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: InH, // Sign of Hi part. |
3230 | N2: DAG.getConstant(Val: NVTBits - 1, DL: dl, VT: ShTy)); |
3231 | LoL = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: InH, N2: AmtExcess); // Lo from Hi part. |
3232 | |
3233 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: isZero, LHS: InL, |
3234 | RHS: DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: LoS, RHS: LoL)); |
3235 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: isShort, LHS: HiS, RHS: HiL); |
3236 | return true; |
3237 | } |
3238 | } |
3239 | |
3240 | static std::pair<ISD::CondCode, ISD::NodeType> getExpandedMinMaxOps(int Op) { |
3241 | |
3242 | switch (Op) { |
3243 | default: llvm_unreachable("invalid min/max opcode" ); |
3244 | case ISD::SMAX: |
3245 | return std::make_pair(x: ISD::SETGT, y: ISD::UMAX); |
3246 | case ISD::UMAX: |
3247 | return std::make_pair(x: ISD::SETUGT, y: ISD::UMAX); |
3248 | case ISD::SMIN: |
3249 | return std::make_pair(x: ISD::SETLT, y: ISD::UMIN); |
3250 | case ISD::UMIN: |
3251 | return std::make_pair(x: ISD::SETULT, y: ISD::UMIN); |
3252 | } |
3253 | } |
3254 | |
3255 | void DAGTypeLegalizer::ExpandIntRes_MINMAX(SDNode *N, |
3256 | SDValue &Lo, SDValue &Hi) { |
3257 | SDLoc DL(N); |
3258 | |
3259 | SDValue LHS = N->getOperand(Num: 0); |
3260 | SDValue RHS = N->getOperand(Num: 1); |
3261 | |
3262 | // If the upper halves are all sign bits, then we can perform the MINMAX on |
3263 | // the lower half and sign-extend the result to the upper half. |
3264 | unsigned NumBits = N->getValueType(ResNo: 0).getScalarSizeInBits(); |
3265 | unsigned NumHalfBits = NumBits / 2; |
3266 | if (DAG.ComputeNumSignBits(Op: LHS) > NumHalfBits && |
3267 | DAG.ComputeNumSignBits(Op: RHS) > NumHalfBits) { |
3268 | SDValue LHSL, LHSH, RHSL, RHSH; |
3269 | GetExpandedInteger(Op: LHS, Lo&: LHSL, Hi&: LHSH); |
3270 | GetExpandedInteger(Op: RHS, Lo&: RHSL, Hi&: RHSH); |
3271 | EVT NVT = LHSL.getValueType(); |
3272 | |
3273 | Lo = DAG.getNode(Opcode: N->getOpcode(), DL, VT: NVT, N1: LHSL, N2: RHSL); |
3274 | Hi = DAG.getNode(Opcode: ISD::SRA, DL, VT: NVT, N1: Lo, |
3275 | N2: DAG.getShiftAmountConstant(Val: NumHalfBits - 1, VT: NVT, DL)); |
3276 | return; |
3277 | } |
3278 | |
3279 | // The Lo of smin(X, -1) is LHSL if X is negative. Otherwise it's -1. |
3280 | // The Lo of smax(X, 0) is 0 if X is negative. Otherwise it's LHSL. |
3281 | if ((N->getOpcode() == ISD::SMAX && isNullConstant(V: RHS)) || |
3282 | (N->getOpcode() == ISD::SMIN && isAllOnesConstant(V: RHS))) { |
3283 | SDValue LHSL, LHSH, RHSL, RHSH; |
3284 | GetExpandedInteger(Op: LHS, Lo&: LHSL, Hi&: LHSH); |
3285 | GetExpandedInteger(Op: RHS, Lo&: RHSL, Hi&: RHSH); |
3286 | EVT NVT = LHSL.getValueType(); |
3287 | EVT CCT = getSetCCResultType(VT: NVT); |
3288 | |
3289 | SDValue HiNeg = |
3290 | DAG.getSetCC(DL, VT: CCT, LHS: LHSH, RHS: DAG.getConstant(Val: 0, DL, VT: NVT), Cond: ISD::SETLT); |
3291 | if (N->getOpcode() == ISD::SMIN) { |
3292 | Lo = DAG.getSelect(DL, VT: NVT, Cond: HiNeg, LHS: LHSL, RHS: DAG.getConstant(Val: -1, DL, VT: NVT)); |
3293 | } else { |
3294 | Lo = DAG.getSelect(DL, VT: NVT, Cond: HiNeg, LHS: DAG.getConstant(Val: 0, DL, VT: NVT), RHS: LHSL); |
3295 | } |
3296 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL, VT: NVT, Ops: {LHSH, RHSH}); |
3297 | return; |
3298 | } |
3299 | |
3300 | const APInt *RHSVal = nullptr; |
3301 | if (auto *RHSConst = dyn_cast<ConstantSDNode>(Val&: RHS)) |
3302 | RHSVal = &RHSConst->getAPIntValue(); |
3303 | |
3304 | // The high half of MIN/MAX is always just the the MIN/MAX of the |
3305 | // high halves of the operands. Expand this way if it appears profitable. |
3306 | if (RHSVal && (N->getOpcode() == ISD::UMIN || N->getOpcode() == ISD::UMAX) && |
3307 | (RHSVal->countLeadingOnes() >= NumHalfBits || |
3308 | RHSVal->countLeadingZeros() >= NumHalfBits)) { |
3309 | SDValue LHSL, LHSH, RHSL, RHSH; |
3310 | GetExpandedInteger(Op: LHS, Lo&: LHSL, Hi&: LHSH); |
3311 | GetExpandedInteger(Op: RHS, Lo&: RHSL, Hi&: RHSH); |
3312 | EVT NVT = LHSL.getValueType(); |
3313 | EVT CCT = getSetCCResultType(VT: NVT); |
3314 | |
3315 | ISD::NodeType LoOpc; |
3316 | ISD::CondCode CondC; |
3317 | std::tie(args&: CondC, args&: LoOpc) = getExpandedMinMaxOps(Op: N->getOpcode()); |
3318 | |
3319 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL, VT: NVT, Ops: {LHSH, RHSH}); |
3320 | // We need to know whether to select Lo part that corresponds to 'winning' |
3321 | // Hi part or if Hi parts are equal. |
3322 | SDValue IsHiLeft = DAG.getSetCC(DL, VT: CCT, LHS: LHSH, RHS: RHSH, Cond: CondC); |
3323 | SDValue IsHiEq = DAG.getSetCC(DL, VT: CCT, LHS: LHSH, RHS: RHSH, Cond: ISD::SETEQ); |
3324 | |
3325 | // Lo part corresponding to the 'winning' Hi part |
3326 | SDValue LoCmp = DAG.getSelect(DL, VT: NVT, Cond: IsHiLeft, LHS: LHSL, RHS: RHSL); |
3327 | |
3328 | // Recursed Lo part if Hi parts are equal, this uses unsigned version |
3329 | SDValue LoMinMax = DAG.getNode(Opcode: LoOpc, DL, VT: NVT, Ops: {LHSL, RHSL}); |
3330 | |
3331 | Lo = DAG.getSelect(DL, VT: NVT, Cond: IsHiEq, LHS: LoMinMax, RHS: LoCmp); |
3332 | return; |
3333 | } |
3334 | |
3335 | // Expand to "a < b ? a : b" etc. Prefer ge/le if that simplifies |
3336 | // the compare. |
3337 | ISD::CondCode Pred; |
3338 | switch (N->getOpcode()) { |
3339 | default: llvm_unreachable("How did we get here?" ); |
3340 | case ISD::SMAX: |
3341 | if (RHSVal && RHSVal->countTrailingZeros() >= NumHalfBits) |
3342 | Pred = ISD::SETGE; |
3343 | else |
3344 | Pred = ISD::SETGT; |
3345 | break; |
3346 | case ISD::SMIN: |
3347 | if (RHSVal && RHSVal->countTrailingOnes() >= NumHalfBits) |
3348 | Pred = ISD::SETLE; |
3349 | else |
3350 | Pred = ISD::SETLT; |
3351 | break; |
3352 | case ISD::UMAX: |
3353 | if (RHSVal && RHSVal->countTrailingZeros() >= NumHalfBits) |
3354 | Pred = ISD::SETUGE; |
3355 | else |
3356 | Pred = ISD::SETUGT; |
3357 | break; |
3358 | case ISD::UMIN: |
3359 | if (RHSVal && RHSVal->countTrailingOnes() >= NumHalfBits) |
3360 | Pred = ISD::SETULE; |
3361 | else |
3362 | Pred = ISD::SETULT; |
3363 | break; |
3364 | } |
3365 | EVT VT = N->getValueType(ResNo: 0); |
3366 | EVT CCT = getSetCCResultType(VT); |
3367 | SDValue Cond = DAG.getSetCC(DL, VT: CCT, LHS, RHS, Cond: Pred); |
3368 | SDValue Result = DAG.getSelect(DL, VT, Cond, LHS, RHS); |
3369 | SplitInteger(Op: Result, Lo, Hi); |
3370 | } |
3371 | |
3372 | void DAGTypeLegalizer::ExpandIntRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi) { |
3373 | SDValue ExpandedCMP = TLI.expandCMP(Node: N, DAG); |
3374 | SplitInteger(Op: ExpandedCMP, Lo, Hi); |
3375 | } |
3376 | |
3377 | void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N, |
3378 | SDValue &Lo, SDValue &Hi) { |
3379 | SDLoc dl(N); |
3380 | // Expand the subcomponents. |
3381 | SDValue LHSL, LHSH, RHSL, RHSH; |
3382 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
3383 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RHSL, Hi&: RHSH); |
3384 | |
3385 | EVT NVT = LHSL.getValueType(); |
3386 | SDValue LoOps[2] = { LHSL, RHSL }; |
3387 | SDValue HiOps[3] = { LHSH, RHSH }; |
3388 | |
3389 | bool HasOpCarry = TLI.isOperationLegalOrCustom( |
3390 | Op: N->getOpcode() == ISD::ADD ? ISD::UADDO_CARRY : ISD::USUBO_CARRY, |
3391 | VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: NVT)); |
3392 | if (HasOpCarry) { |
3393 | SDVTList VTList = DAG.getVTList(VT1: NVT, VT2: getSetCCResultType(VT: NVT)); |
3394 | if (N->getOpcode() == ISD::ADD) { |
3395 | Lo = DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList, Ops: LoOps); |
3396 | HiOps[2] = Lo.getValue(R: 1); |
3397 | Hi = DAG.computeKnownBits(Op: HiOps[2]).isZero() |
3398 | ? DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList, Ops: ArrayRef(HiOps, 2)) |
3399 | : DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList, Ops: HiOps); |
3400 | } else { |
3401 | Lo = DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList, Ops: LoOps); |
3402 | HiOps[2] = Lo.getValue(R: 1); |
3403 | Hi = DAG.computeKnownBits(Op: HiOps[2]).isZero() |
3404 | ? DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList, Ops: ArrayRef(HiOps, 2)) |
3405 | : DAG.getNode(Opcode: ISD::USUBO_CARRY, DL: dl, VTList, Ops: HiOps); |
3406 | } |
3407 | return; |
3408 | } |
3409 | |
3410 | // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support |
3411 | // them. TODO: Teach operation legalization how to expand unsupported |
3412 | // ADDC/ADDE/SUBC/SUBE. The problem is that these operations generate |
3413 | // a carry of type MVT::Glue, but there doesn't seem to be any way to |
3414 | // generate a value of this type in the expanded code sequence. |
3415 | bool hasCarry = |
3416 | TLI.isOperationLegalOrCustom(Op: N->getOpcode() == ISD::ADD ? |
3417 | ISD::ADDC : ISD::SUBC, |
3418 | VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: NVT)); |
3419 | |
3420 | if (hasCarry) { |
3421 | SDVTList VTList = DAG.getVTList(VT1: NVT, VT2: MVT::Glue); |
3422 | if (N->getOpcode() == ISD::ADD) { |
3423 | Lo = DAG.getNode(Opcode: ISD::ADDC, DL: dl, VTList, Ops: LoOps); |
3424 | HiOps[2] = Lo.getValue(R: 1); |
3425 | Hi = DAG.getNode(Opcode: ISD::ADDE, DL: dl, VTList, Ops: HiOps); |
3426 | } else { |
3427 | Lo = DAG.getNode(Opcode: ISD::SUBC, DL: dl, VTList, Ops: LoOps); |
3428 | HiOps[2] = Lo.getValue(R: 1); |
3429 | Hi = DAG.getNode(Opcode: ISD::SUBE, DL: dl, VTList, Ops: HiOps); |
3430 | } |
3431 | return; |
3432 | } |
3433 | |
3434 | bool hasOVF = |
3435 | TLI.isOperationLegalOrCustom(Op: N->getOpcode() == ISD::ADD ? |
3436 | ISD::UADDO : ISD::USUBO, |
3437 | VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: NVT)); |
3438 | TargetLoweringBase::BooleanContent BoolType = TLI.getBooleanContents(Type: NVT); |
3439 | |
3440 | if (hasOVF) { |
3441 | EVT OvfVT = getSetCCResultType(VT: NVT); |
3442 | SDVTList VTList = DAG.getVTList(VT1: NVT, VT2: OvfVT); |
3443 | int RevOpc; |
3444 | if (N->getOpcode() == ISD::ADD) { |
3445 | RevOpc = ISD::SUB; |
3446 | Lo = DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList, Ops: LoOps); |
3447 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, Ops: ArrayRef(HiOps, 2)); |
3448 | } else { |
3449 | RevOpc = ISD::ADD; |
3450 | Lo = DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList, Ops: LoOps); |
3451 | Hi = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, Ops: ArrayRef(HiOps, 2)); |
3452 | } |
3453 | SDValue OVF = Lo.getValue(R: 1); |
3454 | |
3455 | switch (BoolType) { |
3456 | case TargetLoweringBase::UndefinedBooleanContent: |
3457 | OVF = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OvfVT, N1: DAG.getConstant(Val: 1, DL: dl, VT: OvfVT), N2: OVF); |
3458 | [[fallthrough]]; |
3459 | case TargetLoweringBase::ZeroOrOneBooleanContent: |
3460 | OVF = DAG.getZExtOrTrunc(Op: OVF, DL: dl, VT: NVT); |
3461 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, N1: Hi, N2: OVF); |
3462 | break; |
3463 | case TargetLoweringBase::ZeroOrNegativeOneBooleanContent: |
3464 | OVF = DAG.getSExtOrTrunc(Op: OVF, DL: dl, VT: NVT); |
3465 | Hi = DAG.getNode(Opcode: RevOpc, DL: dl, VT: NVT, N1: Hi, N2: OVF); |
3466 | } |
3467 | return; |
3468 | } |
3469 | |
3470 | if (N->getOpcode() == ISD::ADD) { |
3471 | Lo = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, Ops: LoOps); |
3472 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, Ops: ArrayRef(HiOps, 2)); |
3473 | SDValue Cmp; |
3474 | // Special case: X+1 has a carry out if X+1==0. This may reduce the live |
3475 | // range of X. We assume comparing with 0 is cheap. |
3476 | if (isOneConstant(V: LoOps[1])) |
3477 | Cmp = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: Lo, |
3478 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETEQ); |
3479 | else if (isAllOnesConstant(V: LoOps[1])) { |
3480 | if (isAllOnesConstant(V: HiOps[1])) |
3481 | Cmp = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: LoOps[0], |
3482 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETEQ); |
3483 | else |
3484 | Cmp = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: LoOps[0], |
3485 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETNE); |
3486 | } else |
3487 | Cmp = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: Lo, RHS: LoOps[0], |
3488 | Cond: ISD::SETULT); |
3489 | |
3490 | SDValue Carry; |
3491 | if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent) |
3492 | Carry = DAG.getZExtOrTrunc(Op: Cmp, DL: dl, VT: NVT); |
3493 | else |
3494 | Carry = DAG.getSelect(DL: dl, VT: NVT, Cond: Cmp, LHS: DAG.getConstant(Val: 1, DL: dl, VT: NVT), |
3495 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT)); |
3496 | |
3497 | if (isAllOnesConstant(V: LoOps[1]) && isAllOnesConstant(V: HiOps[1])) |
3498 | Hi = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, N1: HiOps[0], N2: Carry); |
3499 | else |
3500 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, N1: Hi, N2: Carry); |
3501 | } else { |
3502 | Lo = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, Ops: LoOps); |
3503 | Hi = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, Ops: ArrayRef(HiOps, 2)); |
3504 | SDValue Cmp = |
3505 | DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: LoOps[0].getValueType()), |
3506 | LHS: LoOps[0], RHS: LoOps[1], Cond: ISD::SETULT); |
3507 | |
3508 | SDValue Borrow; |
3509 | if (BoolType == TargetLoweringBase::ZeroOrOneBooleanContent) |
3510 | Borrow = DAG.getZExtOrTrunc(Op: Cmp, DL: dl, VT: NVT); |
3511 | else |
3512 | Borrow = DAG.getSelect(DL: dl, VT: NVT, Cond: Cmp, LHS: DAG.getConstant(Val: 1, DL: dl, VT: NVT), |
3513 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT)); |
3514 | |
3515 | Hi = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: NVT, N1: Hi, N2: Borrow); |
3516 | } |
3517 | } |
3518 | |
3519 | void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N, |
3520 | SDValue &Lo, SDValue &Hi) { |
3521 | // Expand the subcomponents. |
3522 | SDValue LHSL, LHSH, RHSL, RHSH; |
3523 | SDLoc dl(N); |
3524 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
3525 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RHSL, Hi&: RHSH); |
3526 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: MVT::Glue); |
3527 | SDValue LoOps[2] = { LHSL, RHSL }; |
3528 | SDValue HiOps[3] = { LHSH, RHSH }; |
3529 | |
3530 | if (N->getOpcode() == ISD::ADDC) { |
3531 | Lo = DAG.getNode(Opcode: ISD::ADDC, DL: dl, VTList, Ops: LoOps); |
3532 | HiOps[2] = Lo.getValue(R: 1); |
3533 | Hi = DAG.getNode(Opcode: ISD::ADDE, DL: dl, VTList, Ops: HiOps); |
3534 | } else { |
3535 | Lo = DAG.getNode(Opcode: ISD::SUBC, DL: dl, VTList, Ops: LoOps); |
3536 | HiOps[2] = Lo.getValue(R: 1); |
3537 | Hi = DAG.getNode(Opcode: ISD::SUBE, DL: dl, VTList, Ops: HiOps); |
3538 | } |
3539 | |
3540 | // Legalized the flag result - switch anything that used the old flag to |
3541 | // use the new one. |
3542 | ReplaceValueWith(From: SDValue(N, 1), To: Hi.getValue(R: 1)); |
3543 | } |
3544 | |
3545 | void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N, |
3546 | SDValue &Lo, SDValue &Hi) { |
3547 | // Expand the subcomponents. |
3548 | SDValue LHSL, LHSH, RHSL, RHSH; |
3549 | SDLoc dl(N); |
3550 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
3551 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RHSL, Hi&: RHSH); |
3552 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: MVT::Glue); |
3553 | SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(Num: 2) }; |
3554 | SDValue HiOps[3] = { LHSH, RHSH }; |
3555 | |
3556 | Lo = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: LoOps); |
3557 | HiOps[2] = Lo.getValue(R: 1); |
3558 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: HiOps); |
3559 | |
3560 | // Legalized the flag result - switch anything that used the old flag to |
3561 | // use the new one. |
3562 | ReplaceValueWith(From: SDValue(N, 1), To: Hi.getValue(R: 1)); |
3563 | } |
3564 | |
3565 | void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N, |
3566 | SDValue &Lo, SDValue &Hi) { |
3567 | SDValue LHS = N->getOperand(Num: 0); |
3568 | SDValue RHS = N->getOperand(Num: 1); |
3569 | SDLoc dl(N); |
3570 | |
3571 | SDValue Ovf; |
3572 | |
3573 | unsigned CarryOp, NoCarryOp; |
3574 | ISD::CondCode Cond; |
3575 | switch(N->getOpcode()) { |
3576 | case ISD::UADDO: |
3577 | CarryOp = ISD::UADDO_CARRY; |
3578 | NoCarryOp = ISD::ADD; |
3579 | Cond = ISD::SETULT; |
3580 | break; |
3581 | case ISD::USUBO: |
3582 | CarryOp = ISD::USUBO_CARRY; |
3583 | NoCarryOp = ISD::SUB; |
3584 | Cond = ISD::SETUGT; |
3585 | break; |
3586 | default: |
3587 | llvm_unreachable("Node has unexpected Opcode" ); |
3588 | } |
3589 | |
3590 | bool HasCarryOp = TLI.isOperationLegalOrCustom( |
3591 | Op: CarryOp, VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: LHS.getValueType())); |
3592 | |
3593 | if (HasCarryOp) { |
3594 | // Expand the subcomponents. |
3595 | SDValue LHSL, LHSH, RHSL, RHSH; |
3596 | GetExpandedInteger(Op: LHS, Lo&: LHSL, Hi&: LHSH); |
3597 | GetExpandedInteger(Op: RHS, Lo&: RHSL, Hi&: RHSH); |
3598 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: N->getValueType(ResNo: 1)); |
3599 | SDValue LoOps[2] = { LHSL, RHSL }; |
3600 | SDValue HiOps[3] = { LHSH, RHSH }; |
3601 | |
3602 | Lo = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: LoOps); |
3603 | HiOps[2] = Lo.getValue(R: 1); |
3604 | Hi = DAG.getNode(Opcode: CarryOp, DL: dl, VTList, Ops: HiOps); |
3605 | |
3606 | Ovf = Hi.getValue(R: 1); |
3607 | } else { |
3608 | // Expand the result by simply replacing it with the equivalent |
3609 | // non-overflow-checking operation. |
3610 | SDValue Sum = DAG.getNode(Opcode: NoCarryOp, DL: dl, VT: LHS.getValueType(), N1: LHS, N2: RHS); |
3611 | SplitInteger(Op: Sum, Lo, Hi); |
3612 | |
3613 | if (N->getOpcode() == ISD::UADDO && isOneConstant(V: RHS)) { |
3614 | // Special case: uaddo X, 1 overflowed if X+1 == 0. We can detect this |
3615 | // with (Lo | Hi) == 0. |
3616 | SDValue Or = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: Lo.getValueType(), N1: Lo, N2: Hi); |
3617 | Ovf = DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: Or, |
3618 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Lo.getValueType()), Cond: ISD::SETEQ); |
3619 | } else if (N->getOpcode() == ISD::UADDO && isAllOnesConstant(V: RHS)) { |
3620 | // Special case: uaddo X, -1 overflows if X == 0. |
3621 | Ovf = |
3622 | DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS, |
3623 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: LHS.getValueType()), Cond: ISD::SETNE); |
3624 | } else { |
3625 | // Calculate the overflow: addition overflows iff a + b < a, and |
3626 | // subtraction overflows iff a - b > a. |
3627 | Ovf = DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: Sum, RHS: LHS, Cond); |
3628 | } |
3629 | } |
3630 | |
3631 | // Legalized the flag result - switch anything that used the old flag to |
3632 | // use the new one. |
3633 | ReplaceValueWith(From: SDValue(N, 1), To: Ovf); |
3634 | } |
3635 | |
3636 | void DAGTypeLegalizer::ExpandIntRes_UADDSUBO_CARRY(SDNode *N, SDValue &Lo, |
3637 | SDValue &Hi) { |
3638 | // Expand the subcomponents. |
3639 | SDValue LHSL, LHSH, RHSL, RHSH; |
3640 | SDLoc dl(N); |
3641 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
3642 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RHSL, Hi&: RHSH); |
3643 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: N->getValueType(ResNo: 1)); |
3644 | SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(Num: 2) }; |
3645 | SDValue HiOps[3] = { LHSH, RHSH, SDValue() }; |
3646 | |
3647 | Lo = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: LoOps); |
3648 | HiOps[2] = Lo.getValue(R: 1); |
3649 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: HiOps); |
3650 | |
3651 | // Legalized the flag result - switch anything that used the old flag to |
3652 | // use the new one. |
3653 | ReplaceValueWith(From: SDValue(N, 1), To: Hi.getValue(R: 1)); |
3654 | } |
3655 | |
3656 | void DAGTypeLegalizer::ExpandIntRes_SADDSUBO_CARRY(SDNode *N, |
3657 | SDValue &Lo, SDValue &Hi) { |
3658 | // Expand the subcomponents. |
3659 | SDValue LHSL, LHSH, RHSL, RHSH; |
3660 | SDLoc dl(N); |
3661 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
3662 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RHSL, Hi&: RHSH); |
3663 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: N->getValueType(ResNo: 1)); |
3664 | |
3665 | // We need to use an unsigned carry op for the lo part. |
3666 | unsigned CarryOp = |
3667 | N->getOpcode() == ISD::SADDO_CARRY ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; |
3668 | Lo = DAG.getNode(Opcode: CarryOp, DL: dl, VTList, Ops: { LHSL, RHSL, N->getOperand(Num: 2) }); |
3669 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VTList, Ops: { LHSH, RHSH, Lo.getValue(R: 1) }); |
3670 | |
3671 | // Legalized the flag result - switch anything that used the old flag to |
3672 | // use the new one. |
3673 | ReplaceValueWith(From: SDValue(N, 1), To: Hi.getValue(R: 1)); |
3674 | } |
3675 | |
3676 | void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N, |
3677 | SDValue &Lo, SDValue &Hi) { |
3678 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
3679 | SDLoc dl(N); |
3680 | SDValue Op = N->getOperand(Num: 0); |
3681 | if (Op.getValueType().bitsLE(VT: NVT)) { |
3682 | // The low part is any extension of the input (which degenerates to a copy). |
3683 | Lo = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: Op); |
3684 | Hi = DAG.getUNDEF(VT: NVT); // The high part is undefined. |
3685 | } else { |
3686 | // For example, extension of an i48 to an i64. The operand type necessarily |
3687 | // promotes to the result type, so will end up being expanded too. |
3688 | assert(getTypeAction(Op.getValueType()) == |
3689 | TargetLowering::TypePromoteInteger && |
3690 | "Only know how to promote this result!" ); |
3691 | SDValue Res = GetPromotedInteger(Op); |
3692 | assert(Res.getValueType() == N->getValueType(0) && |
3693 | "Operand over promoted?" ); |
3694 | // Split the promoted operand. This will simplify when it is expanded. |
3695 | SplitInteger(Op: Res, Lo, Hi); |
3696 | } |
3697 | } |
3698 | |
3699 | void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N, |
3700 | SDValue &Lo, SDValue &Hi) { |
3701 | SDLoc dl(N); |
3702 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3703 | EVT NVT = Lo.getValueType(); |
3704 | EVT EVT = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT(); |
3705 | unsigned NVTBits = NVT.getSizeInBits(); |
3706 | unsigned EVTBits = EVT.getSizeInBits(); |
3707 | |
3708 | if (NVTBits < EVTBits) { |
3709 | Hi = DAG.getNode(Opcode: ISD::AssertSext, DL: dl, VT: NVT, N1: Hi, |
3710 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), |
3711 | BitWidth: EVTBits - NVTBits))); |
3712 | } else { |
3713 | Lo = DAG.getNode(Opcode: ISD::AssertSext, DL: dl, VT: NVT, N1: Lo, N2: DAG.getValueType(EVT)); |
3714 | // The high part replicates the sign bit of Lo, make it explicit. |
3715 | Hi = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: Lo, |
3716 | N2: DAG.getConstant(Val: NVTBits - 1, DL: dl, |
3717 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
3718 | } |
3719 | } |
3720 | |
3721 | void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N, |
3722 | SDValue &Lo, SDValue &Hi) { |
3723 | SDLoc dl(N); |
3724 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3725 | EVT NVT = Lo.getValueType(); |
3726 | EVT EVT = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT(); |
3727 | unsigned NVTBits = NVT.getSizeInBits(); |
3728 | unsigned EVTBits = EVT.getSizeInBits(); |
3729 | |
3730 | if (NVTBits < EVTBits) { |
3731 | Hi = DAG.getNode(Opcode: ISD::AssertZext, DL: dl, VT: NVT, N1: Hi, |
3732 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), |
3733 | BitWidth: EVTBits - NVTBits))); |
3734 | } else { |
3735 | Lo = DAG.getNode(Opcode: ISD::AssertZext, DL: dl, VT: NVT, N1: Lo, N2: DAG.getValueType(EVT)); |
3736 | // The high part must be zero, make it explicit. |
3737 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3738 | } |
3739 | } |
3740 | |
3741 | void DAGTypeLegalizer::ExpandIntRes_BITREVERSE(SDNode *N, |
3742 | SDValue &Lo, SDValue &Hi) { |
3743 | SDLoc dl(N); |
3744 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: Hi, Hi&: Lo); // Note swapped operands. |
3745 | Lo = DAG.getNode(Opcode: ISD::BITREVERSE, DL: dl, VT: Lo.getValueType(), Operand: Lo); |
3746 | Hi = DAG.getNode(Opcode: ISD::BITREVERSE, DL: dl, VT: Hi.getValueType(), Operand: Hi); |
3747 | } |
3748 | |
3749 | void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N, |
3750 | SDValue &Lo, SDValue &Hi) { |
3751 | SDLoc dl(N); |
3752 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: Hi, Hi&: Lo); // Note swapped operands. |
3753 | Lo = DAG.getNode(Opcode: ISD::BSWAP, DL: dl, VT: Lo.getValueType(), Operand: Lo); |
3754 | Hi = DAG.getNode(Opcode: ISD::BSWAP, DL: dl, VT: Hi.getValueType(), Operand: Hi); |
3755 | } |
3756 | |
3757 | void DAGTypeLegalizer::ExpandIntRes_PARITY(SDNode *N, SDValue &Lo, |
3758 | SDValue &Hi) { |
3759 | SDLoc dl(N); |
3760 | // parity(HiLo) -> parity(Lo^Hi) |
3761 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3762 | EVT NVT = Lo.getValueType(); |
3763 | Lo = |
3764 | DAG.getNode(Opcode: ISD::PARITY, DL: dl, VT: NVT, Operand: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: NVT, N1: Lo, N2: Hi)); |
3765 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3766 | } |
3767 | |
3768 | void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N, |
3769 | SDValue &Lo, SDValue &Hi) { |
3770 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
3771 | unsigned NBitWidth = NVT.getSizeInBits(); |
3772 | auto Constant = cast<ConstantSDNode>(Val: N); |
3773 | const APInt &Cst = Constant->getAPIntValue(); |
3774 | bool IsTarget = Constant->isTargetOpcode(); |
3775 | bool IsOpaque = Constant->isOpaque(); |
3776 | SDLoc dl(N); |
3777 | Lo = DAG.getConstant(Val: Cst.trunc(width: NBitWidth), DL: dl, VT: NVT, isTarget: IsTarget, isOpaque: IsOpaque); |
3778 | Hi = DAG.getConstant(Val: Cst.lshr(shiftAmt: NBitWidth).trunc(width: NBitWidth), DL: dl, VT: NVT, isTarget: IsTarget, |
3779 | isOpaque: IsOpaque); |
3780 | } |
3781 | |
3782 | void DAGTypeLegalizer::ExpandIntRes_ABS(SDNode *N, SDValue &Lo, SDValue &Hi) { |
3783 | SDLoc dl(N); |
3784 | |
3785 | SDValue N0 = N->getOperand(Num: 0); |
3786 | GetExpandedInteger(Op: N0, Lo, Hi); |
3787 | EVT NVT = Lo.getValueType(); |
3788 | |
3789 | // If the upper half is all sign bits, then we can perform the ABS on the |
3790 | // lower half and zero-extend. |
3791 | if (DAG.ComputeNumSignBits(Op: N0) > NVT.getScalarSizeInBits()) { |
3792 | Lo = DAG.getNode(Opcode: ISD::ABS, DL: dl, VT: NVT, Operand: Lo); |
3793 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3794 | return; |
3795 | } |
3796 | |
3797 | // If we have USUBO_CARRY, use the expanded form of the sra+xor+sub sequence |
3798 | // we use in LegalizeDAG. The SUB part of the expansion is based on |
3799 | // ExpandIntRes_ADDSUB which also uses USUBO_CARRY/USUBO after checking that |
3800 | // USUBO_CARRY is LegalOrCustom. Each of the pieces here can be further |
3801 | // expanded if needed. Shift expansion has a special case for filling with |
3802 | // sign bits so that we will only end up with one SRA. |
3803 | bool HasSubCarry = TLI.isOperationLegalOrCustom( |
3804 | Op: ISD::USUBO_CARRY, VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: NVT)); |
3805 | if (HasSubCarry) { |
3806 | SDValue Sign = DAG.getNode( |
3807 | Opcode: ISD::SRA, DL: dl, VT: NVT, N1: Hi, |
3808 | N2: DAG.getShiftAmountConstant(Val: NVT.getSizeInBits() - 1, VT: NVT, DL: dl)); |
3809 | SDVTList VTList = DAG.getVTList(VT1: NVT, VT2: getSetCCResultType(VT: NVT)); |
3810 | Lo = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: NVT, N1: Lo, N2: Sign); |
3811 | Hi = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: NVT, N1: Hi, N2: Sign); |
3812 | Lo = DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList, N1: Lo, N2: Sign); |
3813 | Hi = DAG.getNode(Opcode: ISD::USUBO_CARRY, DL: dl, VTList, N1: Hi, N2: Sign, N3: Lo.getValue(R: 1)); |
3814 | return; |
3815 | } |
3816 | |
3817 | // abs(HiLo) -> (Hi < 0 ? -HiLo : HiLo) |
3818 | EVT VT = N->getValueType(ResNo: 0); |
3819 | SDValue Neg = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, |
3820 | N1: DAG.getConstant(Val: 0, DL: dl, VT), N2: N0); |
3821 | SDValue NegLo, NegHi; |
3822 | SplitInteger(Op: Neg, Lo&: NegLo, Hi&: NegHi); |
3823 | |
3824 | SDValue HiIsNeg = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: Hi, |
3825 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETLT); |
3826 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: HiIsNeg, LHS: NegLo, RHS: Lo); |
3827 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: HiIsNeg, LHS: NegHi, RHS: Hi); |
3828 | } |
3829 | |
3830 | void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N, |
3831 | SDValue &Lo, SDValue &Hi) { |
3832 | SDLoc dl(N); |
3833 | // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32) |
3834 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3835 | EVT NVT = Lo.getValueType(); |
3836 | |
3837 | SDValue HiNotZero = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: Hi, |
3838 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETNE); |
3839 | |
3840 | SDValue LoLZ = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: Lo); |
3841 | SDValue HiLZ = DAG.getNode(Opcode: ISD::CTLZ_ZERO_UNDEF, DL: dl, VT: NVT, Operand: Hi); |
3842 | |
3843 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: HiNotZero, LHS: HiLZ, |
3844 | RHS: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, N1: LoLZ, |
3845 | N2: DAG.getConstant(Val: NVT.getSizeInBits(), DL: dl, |
3846 | VT: NVT))); |
3847 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3848 | } |
3849 | |
3850 | void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N, |
3851 | SDValue &Lo, SDValue &Hi) { |
3852 | SDLoc dl(N); |
3853 | // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo) |
3854 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3855 | EVT NVT = Lo.getValueType(); |
3856 | Lo = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, N1: DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT: NVT, Operand: Lo), |
3857 | N2: DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT: NVT, Operand: Hi)); |
3858 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3859 | } |
3860 | |
3861 | void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N, |
3862 | SDValue &Lo, SDValue &Hi) { |
3863 | SDLoc dl(N); |
3864 | // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32) |
3865 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
3866 | EVT NVT = Lo.getValueType(); |
3867 | |
3868 | SDValue LoNotZero = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: NVT), LHS: Lo, |
3869 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: NVT), Cond: ISD::SETNE); |
3870 | |
3871 | SDValue LoLZ = DAG.getNode(Opcode: ISD::CTTZ_ZERO_UNDEF, DL: dl, VT: NVT, Operand: Lo); |
3872 | SDValue HiLZ = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: Hi); |
3873 | |
3874 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: LoNotZero, LHS: LoLZ, |
3875 | RHS: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: NVT, N1: HiLZ, |
3876 | N2: DAG.getConstant(Val: NVT.getSizeInBits(), DL: dl, |
3877 | VT: NVT))); |
3878 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
3879 | } |
3880 | |
3881 | void DAGTypeLegalizer::ExpandIntRes_GET_ROUNDING(SDNode *N, SDValue &Lo, |
3882 | SDValue &Hi) { |
3883 | SDLoc dl(N); |
3884 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
3885 | unsigned NBitWidth = NVT.getSizeInBits(); |
3886 | |
3887 | Lo = DAG.getNode(Opcode: ISD::GET_ROUNDING, DL: dl, ResultTys: {NVT, MVT::Other}, Ops: N->getOperand(Num: 0)); |
3888 | SDValue Chain = Lo.getValue(R: 1); |
3889 | // The high part is the sign of Lo, as -1 is a valid value for GET_ROUNDING |
3890 | Hi = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: Lo, |
3891 | N2: DAG.getShiftAmountConstant(Val: NBitWidth - 1, VT: NVT, DL: dl)); |
3892 | |
3893 | // Legalize the chain result - switch anything that used the old chain to |
3894 | // use the new one. |
3895 | ReplaceValueWith(From: SDValue(N, 1), To: Chain); |
3896 | } |
3897 | |
3898 | // Helper for producing an FP_EXTEND/STRICT_FP_EXTEND of Op. |
3899 | static SDValue fpExtendHelper(SDValue Op, SDValue &Chain, bool IsStrict, EVT VT, |
3900 | SDLoc DL, SelectionDAG &DAG) { |
3901 | if (IsStrict) { |
3902 | Op = DAG.getNode(Opcode: ISD::STRICT_FP_EXTEND, DL, ResultTys: {VT, MVT::Other}, Ops: {Chain, Op}); |
3903 | Chain = Op.getValue(R: 1); |
3904 | return Op; |
3905 | } |
3906 | return DAG.getNode(Opcode: ISD::FP_EXTEND, DL, VT, Operand: Op); |
3907 | } |
3908 | |
3909 | void DAGTypeLegalizer::ExpandIntRes_FP_TO_XINT(SDNode *N, SDValue &Lo, |
3910 | SDValue &Hi) { |
3911 | SDLoc dl(N); |
3912 | EVT VT = N->getValueType(ResNo: 0); |
3913 | |
3914 | bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT || |
3915 | N->getOpcode() == ISD::STRICT_FP_TO_SINT; |
3916 | bool IsStrict = N->isStrictFPOpcode(); |
3917 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : SDValue(); |
3918 | SDValue Op = N->getOperand(Num: IsStrict ? 1 : 0); |
3919 | if (getTypeAction(VT: Op.getValueType()) == TargetLowering::TypePromoteFloat) |
3920 | Op = GetPromotedFloat(Op); |
3921 | |
3922 | if (getTypeAction(VT: Op.getValueType()) == TargetLowering::TypeSoftPromoteHalf) { |
3923 | EVT OFPVT = Op.getValueType(); |
3924 | EVT NFPVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OFPVT); |
3925 | Op = GetSoftPromotedHalf(Op); |
3926 | Op = DAG.getNode(Opcode: OFPVT == MVT::f16 ? ISD::FP16_TO_FP : ISD::BF16_TO_FP, DL: dl, |
3927 | VT: NFPVT, Operand: Op); |
3928 | Op = DAG.getNode(Opcode: IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, DL: dl, VT, Operand: Op); |
3929 | SplitInteger(Op, Lo, Hi); |
3930 | return; |
3931 | } |
3932 | |
3933 | if (Op.getValueType() == MVT::bf16) { |
3934 | // Extend to f32 as there is no bf16 libcall. |
3935 | Op = fpExtendHelper(Op, Chain, IsStrict, VT: MVT::f32, DL: dl, DAG); |
3936 | } |
3937 | |
3938 | RTLIB::Libcall LC = IsSigned ? RTLIB::getFPTOSINT(OpVT: Op.getValueType(), RetVT: VT) |
3939 | : RTLIB::getFPTOUINT(OpVT: Op.getValueType(), RetVT: VT); |
3940 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-xint conversion!" ); |
3941 | TargetLowering::MakeLibCallOptions CallOptions; |
3942 | CallOptions.setSExt(true); |
3943 | std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT: VT, Ops: Op, |
3944 | CallOptions, dl, Chain); |
3945 | SplitInteger(Op: Tmp.first, Lo, Hi); |
3946 | |
3947 | if (IsStrict) |
3948 | ReplaceValueWith(From: SDValue(N, 1), To: Tmp.second); |
3949 | } |
3950 | |
3951 | void DAGTypeLegalizer::ExpandIntRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, |
3952 | SDValue &Hi) { |
3953 | SDValue Res = TLI.expandFP_TO_INT_SAT(N, DAG); |
3954 | SplitInteger(Op: Res, Lo, Hi); |
3955 | } |
3956 | |
3957 | void DAGTypeLegalizer::ExpandIntRes_XROUND_XRINT(SDNode *N, SDValue &Lo, |
3958 | SDValue &Hi) { |
3959 | SDLoc dl(N); |
3960 | bool IsStrict = N->isStrictFPOpcode(); |
3961 | SDValue Op = N->getOperand(Num: IsStrict ? 1 : 0); |
3962 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : SDValue(); |
3963 | |
3964 | assert(getTypeAction(Op.getValueType()) != TargetLowering::TypePromoteFloat && |
3965 | "Input type needs to be promoted!" ); |
3966 | |
3967 | EVT VT = Op.getValueType(); |
3968 | |
3969 | if (VT == MVT::f16) { |
3970 | // Extend to f32. |
3971 | VT = MVT::f32; |
3972 | Op = fpExtendHelper(Op, Chain, IsStrict, VT, DL: dl, DAG); |
3973 | } |
3974 | |
3975 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
3976 | if (N->getOpcode() == ISD::LROUND || |
3977 | N->getOpcode() == ISD::STRICT_LROUND) { |
3978 | if (VT == MVT::f32) |
3979 | LC = RTLIB::LROUND_F32; |
3980 | else if (VT == MVT::f64) |
3981 | LC = RTLIB::LROUND_F64; |
3982 | else if (VT == MVT::f80) |
3983 | LC = RTLIB::LROUND_F80; |
3984 | else if (VT == MVT::f128) |
3985 | LC = RTLIB::LROUND_F128; |
3986 | else if (VT == MVT::ppcf128) |
3987 | LC = RTLIB::LROUND_PPCF128; |
3988 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected lround input type!" ); |
3989 | } else if (N->getOpcode() == ISD::LRINT || |
3990 | N->getOpcode() == ISD::STRICT_LRINT) { |
3991 | if (VT == MVT::f32) |
3992 | LC = RTLIB::LRINT_F32; |
3993 | else if (VT == MVT::f64) |
3994 | LC = RTLIB::LRINT_F64; |
3995 | else if (VT == MVT::f80) |
3996 | LC = RTLIB::LRINT_F80; |
3997 | else if (VT == MVT::f128) |
3998 | LC = RTLIB::LRINT_F128; |
3999 | else if (VT == MVT::ppcf128) |
4000 | LC = RTLIB::LRINT_PPCF128; |
4001 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected lrint input type!" ); |
4002 | } else if (N->getOpcode() == ISD::LLROUND || |
4003 | N->getOpcode() == ISD::STRICT_LLROUND) { |
4004 | if (VT == MVT::f32) |
4005 | LC = RTLIB::LLROUND_F32; |
4006 | else if (VT == MVT::f64) |
4007 | LC = RTLIB::LLROUND_F64; |
4008 | else if (VT == MVT::f80) |
4009 | LC = RTLIB::LLROUND_F80; |
4010 | else if (VT == MVT::f128) |
4011 | LC = RTLIB::LLROUND_F128; |
4012 | else if (VT == MVT::ppcf128) |
4013 | LC = RTLIB::LLROUND_PPCF128; |
4014 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llround input type!" ); |
4015 | } else if (N->getOpcode() == ISD::LLRINT || |
4016 | N->getOpcode() == ISD::STRICT_LLRINT) { |
4017 | if (VT == MVT::f32) |
4018 | LC = RTLIB::LLRINT_F32; |
4019 | else if (VT == MVT::f64) |
4020 | LC = RTLIB::LLRINT_F64; |
4021 | else if (VT == MVT::f80) |
4022 | LC = RTLIB::LLRINT_F80; |
4023 | else if (VT == MVT::f128) |
4024 | LC = RTLIB::LLRINT_F128; |
4025 | else if (VT == MVT::ppcf128) |
4026 | LC = RTLIB::LLRINT_PPCF128; |
4027 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected llrint input type!" ); |
4028 | } else |
4029 | llvm_unreachable("Unexpected opcode!" ); |
4030 | |
4031 | EVT RetVT = N->getValueType(ResNo: 0); |
4032 | |
4033 | TargetLowering::MakeLibCallOptions CallOptions; |
4034 | CallOptions.setSExt(true); |
4035 | std::pair<SDValue, SDValue> Tmp = TLI.makeLibCall(DAG, LC, RetVT, |
4036 | Ops: Op, CallOptions, dl, |
4037 | Chain); |
4038 | SplitInteger(Op: Tmp.first, Lo, Hi); |
4039 | |
4040 | if (N->isStrictFPOpcode()) |
4041 | ReplaceValueWith(From: SDValue(N, 1), To: Tmp.second); |
4042 | } |
4043 | |
4044 | void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N, |
4045 | SDValue &Lo, SDValue &Hi) { |
4046 | assert(!N->isAtomic() && "Should have been a ATOMIC_LOAD?" ); |
4047 | |
4048 | if (ISD::isNormalLoad(N)) { |
4049 | ExpandRes_NormalLoad(N, Lo, Hi); |
4050 | return; |
4051 | } |
4052 | |
4053 | assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!" ); |
4054 | |
4055 | EVT VT = N->getValueType(ResNo: 0); |
4056 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
4057 | SDValue Ch = N->getChain(); |
4058 | SDValue Ptr = N->getBasePtr(); |
4059 | ISD::LoadExtType ExtType = N->getExtensionType(); |
4060 | MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags(); |
4061 | AAMDNodes AAInfo = N->getAAInfo(); |
4062 | SDLoc dl(N); |
4063 | |
4064 | assert(NVT.isByteSized() && "Expanded type not byte sized!" ); |
4065 | |
4066 | if (N->getMemoryVT().bitsLE(VT: NVT)) { |
4067 | EVT MemVT = N->getMemoryVT(); |
4068 | |
4069 | Lo = DAG.getExtLoad(ExtType, dl, VT: NVT, Chain: Ch, Ptr, PtrInfo: N->getPointerInfo(), MemVT, |
4070 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
4071 | |
4072 | // Remember the chain. |
4073 | Ch = Lo.getValue(R: 1); |
4074 | |
4075 | if (ExtType == ISD::SEXTLOAD) { |
4076 | // The high part is obtained by SRA'ing all but one of the bits of the |
4077 | // lo part. |
4078 | unsigned LoSize = Lo.getValueSizeInBits(); |
4079 | Hi = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: NVT, N1: Lo, |
4080 | N2: DAG.getConstant(Val: LoSize - 1, DL: dl, |
4081 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
4082 | } else if (ExtType == ISD::ZEXTLOAD) { |
4083 | // The high part is just a zero. |
4084 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
4085 | } else { |
4086 | assert(ExtType == ISD::EXTLOAD && "Unknown extload!" ); |
4087 | // The high part is undefined. |
4088 | Hi = DAG.getUNDEF(VT: NVT); |
4089 | } |
4090 | } else if (DAG.getDataLayout().isLittleEndian()) { |
4091 | // Little-endian - low bits are at low addresses. |
4092 | Lo = DAG.getLoad(VT: NVT, dl, Chain: Ch, Ptr, PtrInfo: N->getPointerInfo(), |
4093 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
4094 | |
4095 | unsigned ExcessBits = |
4096 | N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); |
4097 | EVT NEVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: ExcessBits); |
4098 | |
4099 | // Increment the pointer to the other half. |
4100 | unsigned IncrementSize = NVT.getSizeInBits()/8; |
4101 | Ptr = DAG.getMemBasePlusOffset(Base: Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize), DL: dl); |
4102 | Hi = DAG.getExtLoad(ExtType, dl, VT: NVT, Chain: Ch, Ptr, |
4103 | PtrInfo: N->getPointerInfo().getWithOffset(O: IncrementSize), MemVT: NEVT, |
4104 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
4105 | |
4106 | // Build a factor node to remember that this load is independent of the |
4107 | // other one. |
4108 | Ch = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo.getValue(R: 1), |
4109 | N2: Hi.getValue(R: 1)); |
4110 | } else { |
4111 | // Big-endian - high bits are at low addresses. Favor aligned loads at |
4112 | // the cost of some bit-fiddling. |
4113 | EVT MemVT = N->getMemoryVT(); |
4114 | unsigned EBytes = MemVT.getStoreSize(); |
4115 | unsigned IncrementSize = NVT.getSizeInBits()/8; |
4116 | unsigned ExcessBits = (EBytes - IncrementSize)*8; |
4117 | |
4118 | // Load both the high bits and maybe some of the low bits. |
4119 | Hi = DAG.getExtLoad(ExtType, dl, VT: NVT, Chain: Ch, Ptr, PtrInfo: N->getPointerInfo(), |
4120 | MemVT: EVT::getIntegerVT(Context&: *DAG.getContext(), |
4121 | BitWidth: MemVT.getSizeInBits() - ExcessBits), |
4122 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
4123 | |
4124 | // Increment the pointer to the other half. |
4125 | Ptr = DAG.getMemBasePlusOffset(Base: Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize), DL: dl); |
4126 | // Load the rest of the low bits. |
4127 | Lo = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT: NVT, Chain: Ch, Ptr, |
4128 | PtrInfo: N->getPointerInfo().getWithOffset(O: IncrementSize), |
4129 | MemVT: EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: ExcessBits), |
4130 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
4131 | |
4132 | // Build a factor node to remember that this load is independent of the |
4133 | // other one. |
4134 | Ch = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo.getValue(R: 1), |
4135 | N2: Hi.getValue(R: 1)); |
4136 | |
4137 | if (ExcessBits < NVT.getSizeInBits()) { |
4138 | // Transfer low bits from the bottom of Hi to the top of Lo. |
4139 | Lo = DAG.getNode( |
4140 | Opcode: ISD::OR, DL: dl, VT: NVT, N1: Lo, |
4141 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: Hi, |
4142 | N2: DAG.getConstant(Val: ExcessBits, DL: dl, |
4143 | VT: TLI.getPointerTy(DL: DAG.getDataLayout())))); |
4144 | // Move high bits to the right position in Hi. |
4145 | Hi = DAG.getNode(Opcode: ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, DL: dl, VT: NVT, |
4146 | N1: Hi, |
4147 | N2: DAG.getConstant(Val: NVT.getSizeInBits() - ExcessBits, DL: dl, |
4148 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
4149 | } |
4150 | } |
4151 | |
4152 | // Legalize the chain result - switch anything that used the old chain to |
4153 | // use the new one. |
4154 | ReplaceValueWith(From: SDValue(N, 1), To: Ch); |
4155 | } |
4156 | |
4157 | void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N, |
4158 | SDValue &Lo, SDValue &Hi) { |
4159 | SDLoc dl(N); |
4160 | SDValue LL, LH, RL, RH; |
4161 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LL, Hi&: LH); |
4162 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RL, Hi&: RH); |
4163 | Lo = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: LL.getValueType(), N1: LL, N2: RL); |
4164 | Hi = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: LL.getValueType(), N1: LH, N2: RH); |
4165 | } |
4166 | |
4167 | void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N, |
4168 | SDValue &Lo, SDValue &Hi) { |
4169 | EVT VT = N->getValueType(ResNo: 0); |
4170 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
4171 | SDLoc dl(N); |
4172 | |
4173 | SDValue LL, LH, RL, RH; |
4174 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LL, Hi&: LH); |
4175 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: RL, Hi&: RH); |
4176 | |
4177 | if (TLI.expandMUL(N, Lo, Hi, HiLoVT: NVT, DAG, |
4178 | Kind: TargetLowering::MulExpansionKind::OnlyLegalOrCustom, |
4179 | LL, LH, RL, RH)) |
4180 | return; |
4181 | |
4182 | // If nothing else, we can make a libcall. |
4183 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
4184 | if (VT == MVT::i16) |
4185 | LC = RTLIB::MUL_I16; |
4186 | else if (VT == MVT::i32) |
4187 | LC = RTLIB::MUL_I32; |
4188 | else if (VT == MVT::i64) |
4189 | LC = RTLIB::MUL_I64; |
4190 | else if (VT == MVT::i128) |
4191 | LC = RTLIB::MUL_I128; |
4192 | |
4193 | if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(Call: LC)) { |
4194 | // Perform a wide multiplication where the wide type is the original VT and |
4195 | // the 4 parts are the split arguments. |
4196 | TLI.forceExpandWideMUL(DAG, dl, /*Signed=*/true, WideVT: VT, LL, LH, RL, RH, Lo, |
4197 | Hi); |
4198 | return; |
4199 | } |
4200 | |
4201 | // Note that we don't need to do a wide MUL here since we don't care about the |
4202 | // upper half of the result if it exceeds VT. |
4203 | SDValue Ops[2] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
4204 | TargetLowering::MakeLibCallOptions CallOptions; |
4205 | CallOptions.setSExt(true); |
4206 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, |
4207 | Lo, Hi); |
4208 | } |
4209 | |
4210 | void DAGTypeLegalizer::ExpandIntRes_READCOUNTER(SDNode *N, SDValue &Lo, |
4211 | SDValue &Hi) { |
4212 | SDLoc DL(N); |
4213 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
4214 | SDVTList VTs = DAG.getVTList(VT1: NVT, VT2: NVT, VT3: MVT::Other); |
4215 | SDValue R = DAG.getNode(Opcode: N->getOpcode(), DL, VTList: VTs, N: N->getOperand(Num: 0)); |
4216 | Lo = R.getValue(R: 0); |
4217 | Hi = R.getValue(R: 1); |
4218 | ReplaceValueWith(From: SDValue(N, 1), To: R.getValue(R: 2)); |
4219 | } |
4220 | |
4221 | void DAGTypeLegalizer::ExpandIntRes_AVG(SDNode *N, SDValue &Lo, SDValue &Hi) { |
4222 | SDValue Result = TLI.expandAVG(N, DAG); |
4223 | SplitInteger(Op: Result, Lo, Hi); |
4224 | } |
4225 | |
4226 | void DAGTypeLegalizer::ExpandIntRes_ADDSUBSAT(SDNode *N, SDValue &Lo, |
4227 | SDValue &Hi) { |
4228 | SDValue Result = TLI.expandAddSubSat(Node: N, DAG); |
4229 | SplitInteger(Op: Result, Lo, Hi); |
4230 | } |
4231 | |
4232 | void DAGTypeLegalizer::ExpandIntRes_SHLSAT(SDNode *N, SDValue &Lo, |
4233 | SDValue &Hi) { |
4234 | SDValue Result = TLI.expandShlSat(Node: N, DAG); |
4235 | SplitInteger(Op: Result, Lo, Hi); |
4236 | } |
4237 | |
4238 | /// This performs an expansion of the integer result for a fixed point |
4239 | /// multiplication. The default expansion performs rounding down towards |
4240 | /// negative infinity, though targets that do care about rounding should specify |
4241 | /// a target hook for rounding and provide their own expansion or lowering of |
4242 | /// fixed point multiplication to be consistent with rounding. |
4243 | void DAGTypeLegalizer::ExpandIntRes_MULFIX(SDNode *N, SDValue &Lo, |
4244 | SDValue &Hi) { |
4245 | SDLoc dl(N); |
4246 | EVT VT = N->getValueType(ResNo: 0); |
4247 | unsigned VTSize = VT.getScalarSizeInBits(); |
4248 | SDValue LHS = N->getOperand(Num: 0); |
4249 | SDValue RHS = N->getOperand(Num: 1); |
4250 | uint64_t Scale = N->getConstantOperandVal(Num: 2); |
4251 | bool Saturating = (N->getOpcode() == ISD::SMULFIXSAT || |
4252 | N->getOpcode() == ISD::UMULFIXSAT); |
4253 | bool Signed = (N->getOpcode() == ISD::SMULFIX || |
4254 | N->getOpcode() == ISD::SMULFIXSAT); |
4255 | |
4256 | // Handle special case when scale is equal to zero. |
4257 | if (!Scale) { |
4258 | SDValue Result; |
4259 | if (!Saturating) { |
4260 | Result = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
4261 | } else { |
4262 | EVT BoolVT = getSetCCResultType(VT); |
4263 | unsigned MulOp = Signed ? ISD::SMULO : ISD::UMULO; |
4264 | Result = DAG.getNode(Opcode: MulOp, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
4265 | SDValue Product = Result.getValue(R: 0); |
4266 | SDValue Overflow = Result.getValue(R: 1); |
4267 | if (Signed) { |
4268 | APInt MinVal = APInt::getSignedMinValue(numBits: VTSize); |
4269 | APInt MaxVal = APInt::getSignedMaxValue(numBits: VTSize); |
4270 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
4271 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
4272 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
4273 | // Xor the inputs, if resulting sign bit is 0 the product will be |
4274 | // positive, else negative. |
4275 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
4276 | SDValue ProdNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Xor, RHS: Zero, Cond: ISD::SETLT); |
4277 | Result = DAG.getSelect(DL: dl, VT, Cond: ProdNeg, LHS: SatMin, RHS: SatMax); |
4278 | Result = DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Result, RHS: Product); |
4279 | } else { |
4280 | // For unsigned multiplication, we only need to check the max since we |
4281 | // can't really overflow towards zero. |
4282 | APInt MaxVal = APInt::getMaxValue(numBits: VTSize); |
4283 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
4284 | Result = DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMax, RHS: Product); |
4285 | } |
4286 | } |
4287 | SplitInteger(Op: Result, Lo, Hi); |
4288 | return; |
4289 | } |
4290 | |
4291 | // For SMULFIX[SAT] we only expect to find Scale<VTSize, but this assert will |
4292 | // cover for unhandled cases below, while still being valid for UMULFIX[SAT]. |
4293 | assert(Scale <= VTSize && "Scale can't be larger than the value type size." ); |
4294 | |
4295 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
4296 | SDValue LL, LH, RL, RH; |
4297 | GetExpandedInteger(Op: LHS, Lo&: LL, Hi&: LH); |
4298 | GetExpandedInteger(Op: RHS, Lo&: RL, Hi&: RH); |
4299 | SmallVector<SDValue, 4> Result; |
4300 | |
4301 | unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; |
4302 | if (!TLI.expandMUL_LOHI(Opcode: LoHiOp, VT, dl, LHS, RHS, Result, HiLoVT: NVT, DAG, |
4303 | Kind: TargetLowering::MulExpansionKind::OnlyLegalOrCustom, |
4304 | LL, LH, RL, RH)) { |
4305 | Result.clear(); |
4306 | Result.resize(N: 4); |
4307 | |
4308 | SDValue LoTmp, HiTmp; |
4309 | TLI.forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo&: LoTmp, Hi&: HiTmp); |
4310 | SplitInteger(Op: LoTmp, Lo&: Result[0], Hi&: Result[1]); |
4311 | SplitInteger(Op: HiTmp, Lo&: Result[2], Hi&: Result[3]); |
4312 | } |
4313 | assert(Result.size() == 4 && "Unexpected number of partlets in the result" ); |
4314 | |
4315 | unsigned NVTSize = NVT.getScalarSizeInBits(); |
4316 | assert((VTSize == NVTSize * 2) && "Expected the new value type to be half " |
4317 | "the size of the current value type" ); |
4318 | |
4319 | // After getting the multiplication result in 4 parts, we need to perform a |
4320 | // shift right by the amount of the scale to get the result in that scale. |
4321 | // |
4322 | // Let's say we multiply 2 64 bit numbers. The resulting value can be held in |
4323 | // 128 bits that are cut into 4 32-bit parts: |
4324 | // |
4325 | // HH HL LH LL |
4326 | // |---32---|---32---|---32---|---32---| |
4327 | // 128 96 64 32 0 |
4328 | // |
4329 | // |------VTSize-----| |
4330 | // |
4331 | // |NVTSize-| |
4332 | // |
4333 | // The resulting Lo and Hi would normally be in LL and LH after the shift. But |
4334 | // to avoid unneccessary shifting of all 4 parts, we can adjust the shift |
4335 | // amount and get Lo and Hi using two funnel shifts. Or for the special case |
4336 | // when Scale is a multiple of NVTSize we can just pick the result without |
4337 | // shifting. |
4338 | uint64_t Part0 = Scale / NVTSize; // Part holding lowest bit needed. |
4339 | if (Scale % NVTSize) { |
4340 | SDValue ShiftAmount = DAG.getShiftAmountConstant(Val: Scale % NVTSize, VT: NVT, DL: dl); |
4341 | Lo = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT: NVT, N1: Result[Part0 + 1], N2: Result[Part0], |
4342 | N3: ShiftAmount); |
4343 | Hi = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT: NVT, N1: Result[Part0 + 2], N2: Result[Part0 + 1], |
4344 | N3: ShiftAmount); |
4345 | } else { |
4346 | Lo = Result[Part0]; |
4347 | Hi = Result[Part0 + 1]; |
4348 | } |
4349 | |
4350 | // Unless saturation is requested we are done. The result is in <Hi,Lo>. |
4351 | if (!Saturating) |
4352 | return; |
4353 | |
4354 | // Can not overflow when there is no integer part. |
4355 | if (Scale == VTSize) |
4356 | return; |
4357 | |
4358 | // To handle saturation we must check for overflow in the multiplication. |
4359 | // |
4360 | // Unsigned overflow happened if the upper (VTSize - Scale) bits (of Result) |
4361 | // aren't all zeroes. |
4362 | // |
4363 | // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of Result) |
4364 | // aren't all ones or all zeroes. |
4365 | // |
4366 | // We cannot overflow past HH when multiplying 2 ints of size VTSize, so the |
4367 | // highest bit of HH determines saturation direction in the event of signed |
4368 | // saturation. |
4369 | |
4370 | SDValue ResultHL = Result[2]; |
4371 | SDValue ResultHH = Result[3]; |
4372 | |
4373 | SDValue SatMax, SatMin; |
4374 | SDValue NVTZero = DAG.getConstant(Val: 0, DL: dl, VT: NVT); |
4375 | SDValue NVTNeg1 = DAG.getConstant(Val: -1, DL: dl, VT: NVT); |
4376 | EVT BoolNVT = getSetCCResultType(VT: NVT); |
4377 | |
4378 | if (!Signed) { |
4379 | if (Scale < NVTSize) { |
4380 | // Overflow happened if ((HH | (HL >> Scale)) != 0). |
4381 | SDValue HLAdjusted = |
4382 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: ResultHL, |
4383 | N2: DAG.getShiftAmountConstant(Val: Scale, VT: NVT, DL: dl)); |
4384 | SDValue Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NVT, N1: HLAdjusted, N2: ResultHH); |
4385 | SatMax = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: Tmp, RHS: NVTZero, Cond: ISD::SETNE); |
4386 | } else if (Scale == NVTSize) { |
4387 | // Overflow happened if (HH != 0). |
4388 | SatMax = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTZero, Cond: ISD::SETNE); |
4389 | } else if (Scale < VTSize) { |
4390 | // Overflow happened if ((HH >> (Scale - NVTSize)) != 0). |
4391 | SDValue HLAdjusted = |
4392 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: ResultHL, |
4393 | N2: DAG.getShiftAmountConstant(Val: Scale - NVTSize, VT: NVT, DL: dl)); |
4394 | SatMax = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: HLAdjusted, RHS: NVTZero, Cond: ISD::SETNE); |
4395 | } else |
4396 | llvm_unreachable("Scale must be less or equal to VTSize for UMULFIXSAT" |
4397 | "(and saturation can't happen with Scale==VTSize)." ); |
4398 | |
4399 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMax, LHS: NVTNeg1, RHS: Hi); |
4400 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMax, LHS: NVTNeg1, RHS: Lo); |
4401 | return; |
4402 | } |
4403 | |
4404 | if (Scale < NVTSize) { |
4405 | // The number of overflow bits we can check are VTSize - Scale + 1 (we |
4406 | // include the sign bit). If these top bits are > 0, then we overflowed past |
4407 | // the max value. If these top bits are < -1, then we overflowed past the |
4408 | // min value. Otherwise, we did not overflow. |
4409 | unsigned OverflowBits = VTSize - Scale + 1; |
4410 | assert(OverflowBits <= VTSize && OverflowBits > NVTSize && |
4411 | "Extent of overflow bits must start within HL" ); |
4412 | SDValue HLHiMask = DAG.getConstant( |
4413 | Val: APInt::getHighBitsSet(numBits: NVTSize, hiBitsSet: OverflowBits - NVTSize), DL: dl, VT: NVT); |
4414 | SDValue HLLoMask = DAG.getConstant( |
4415 | Val: APInt::getLowBitsSet(numBits: NVTSize, loBitsSet: VTSize - OverflowBits), DL: dl, VT: NVT); |
4416 | // We overflow max if HH > 0 or (HH == 0 && HL > HLLoMask). |
4417 | SDValue HHGT0 = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTZero, Cond: ISD::SETGT); |
4418 | SDValue HHEQ0 = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTZero, Cond: ISD::SETEQ); |
4419 | SDValue HLUGT = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHL, RHS: HLLoMask, Cond: ISD::SETUGT); |
4420 | SatMax = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BoolNVT, N1: HHGT0, |
4421 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolNVT, N1: HHEQ0, N2: HLUGT)); |
4422 | // We overflow min if HH < -1 or (HH == -1 && HL < HLHiMask). |
4423 | SDValue HHLT = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTNeg1, Cond: ISD::SETLT); |
4424 | SDValue HHEQ = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTNeg1, Cond: ISD::SETEQ); |
4425 | SDValue HLULT = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHL, RHS: HLHiMask, Cond: ISD::SETULT); |
4426 | SatMin = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BoolNVT, N1: HHLT, |
4427 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolNVT, N1: HHEQ, N2: HLULT)); |
4428 | } else if (Scale == NVTSize) { |
4429 | // We overflow max if HH > 0 or (HH == 0 && HL sign bit is 1). |
4430 | SDValue HHGT0 = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTZero, Cond: ISD::SETGT); |
4431 | SDValue HHEQ0 = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTZero, Cond: ISD::SETEQ); |
4432 | SDValue HLNeg = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHL, RHS: NVTZero, Cond: ISD::SETLT); |
4433 | SatMax = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BoolNVT, N1: HHGT0, |
4434 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolNVT, N1: HHEQ0, N2: HLNeg)); |
4435 | // We overflow min if HH < -1 or (HH == -1 && HL sign bit is 0). |
4436 | SDValue HHLT = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTNeg1, Cond: ISD::SETLT); |
4437 | SDValue HHEQ = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: NVTNeg1, Cond: ISD::SETEQ); |
4438 | SDValue HLPos = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHL, RHS: NVTZero, Cond: ISD::SETGE); |
4439 | SatMin = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BoolNVT, N1: HHLT, |
4440 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolNVT, N1: HHEQ, N2: HLPos)); |
4441 | } else if (Scale < VTSize) { |
4442 | // This is similar to the case when we saturate if Scale < NVTSize, but we |
4443 | // only need to check HH. |
4444 | unsigned OverflowBits = VTSize - Scale + 1; |
4445 | SDValue HHHiMask = DAG.getConstant( |
4446 | Val: APInt::getHighBitsSet(numBits: NVTSize, hiBitsSet: OverflowBits), DL: dl, VT: NVT); |
4447 | SDValue HHLoMask = DAG.getConstant( |
4448 | Val: APInt::getLowBitsSet(numBits: NVTSize, loBitsSet: NVTSize - OverflowBits), DL: dl, VT: NVT); |
4449 | SatMax = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: HHLoMask, Cond: ISD::SETGT); |
4450 | SatMin = DAG.getSetCC(DL: dl, VT: BoolNVT, LHS: ResultHH, RHS: HHHiMask, Cond: ISD::SETLT); |
4451 | } else |
4452 | llvm_unreachable("Illegal scale for signed fixed point mul." ); |
4453 | |
4454 | // Saturate to signed maximum. |
4455 | APInt MaxHi = APInt::getSignedMaxValue(numBits: NVTSize); |
4456 | APInt MaxLo = APInt::getAllOnes(numBits: NVTSize); |
4457 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMax, LHS: DAG.getConstant(Val: MaxHi, DL: dl, VT: NVT), RHS: Hi); |
4458 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMax, LHS: DAG.getConstant(Val: MaxLo, DL: dl, VT: NVT), RHS: Lo); |
4459 | // Saturate to signed minimum. |
4460 | APInt MinHi = APInt::getSignedMinValue(numBits: NVTSize); |
4461 | Hi = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMin, LHS: DAG.getConstant(Val: MinHi, DL: dl, VT: NVT), RHS: Hi); |
4462 | Lo = DAG.getSelect(DL: dl, VT: NVT, Cond: SatMin, LHS: NVTZero, RHS: Lo); |
4463 | } |
4464 | |
4465 | void DAGTypeLegalizer::ExpandIntRes_DIVFIX(SDNode *N, SDValue &Lo, |
4466 | SDValue &Hi) { |
4467 | SDLoc dl(N); |
4468 | // Try expanding in the existing type first. |
4469 | SDValue Res = TLI.expandFixedPointDiv(Opcode: N->getOpcode(), dl, LHS: N->getOperand(Num: 0), |
4470 | RHS: N->getOperand(Num: 1), |
4471 | Scale: N->getConstantOperandVal(Num: 2), DAG); |
4472 | |
4473 | if (!Res) |
4474 | Res = earlyExpandDIVFIX(N, LHS: N->getOperand(Num: 0), RHS: N->getOperand(Num: 1), |
4475 | Scale: N->getConstantOperandVal(Num: 2), TLI, DAG); |
4476 | SplitInteger(Op: Res, Lo, Hi); |
4477 | } |
4478 | |
4479 | void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node, |
4480 | SDValue &Lo, SDValue &Hi) { |
4481 | assert((Node->getOpcode() == ISD::SADDO || Node->getOpcode() == ISD::SSUBO) && |
4482 | "Node has unexpected Opcode" ); |
4483 | SDValue LHS = Node->getOperand(Num: 0); |
4484 | SDValue RHS = Node->getOperand(Num: 1); |
4485 | SDLoc dl(Node); |
4486 | |
4487 | SDValue Ovf; |
4488 | |
4489 | bool IsAdd = Node->getOpcode() == ISD::SADDO; |
4490 | unsigned CarryOp = IsAdd ? ISD::SADDO_CARRY : ISD::SSUBO_CARRY; |
4491 | |
4492 | bool HasCarryOp = TLI.isOperationLegalOrCustom( |
4493 | Op: CarryOp, VT: TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: LHS.getValueType())); |
4494 | |
4495 | if (HasCarryOp) { |
4496 | // Expand the subcomponents. |
4497 | SDValue LHSL, LHSH, RHSL, RHSH; |
4498 | GetExpandedInteger(Op: LHS, Lo&: LHSL, Hi&: LHSH); |
4499 | GetExpandedInteger(Op: RHS, Lo&: RHSL, Hi&: RHSH); |
4500 | SDVTList VTList = DAG.getVTList(VT1: LHSL.getValueType(), VT2: Node->getValueType(ResNo: 1)); |
4501 | |
4502 | Lo = DAG.getNode(Opcode: IsAdd ? ISD::UADDO : ISD::USUBO, DL: dl, VTList, Ops: {LHSL, RHSL}); |
4503 | Hi = DAG.getNode(Opcode: CarryOp, DL: dl, VTList, Ops: { LHSH, RHSH, Lo.getValue(R: 1) }); |
4504 | |
4505 | Ovf = Hi.getValue(R: 1); |
4506 | } else { |
4507 | // Expand the result by simply replacing it with the equivalent |
4508 | // non-overflow-checking operation. |
4509 | SDValue Sum = DAG.getNode(Opcode: Node->getOpcode() == ISD::SADDO ? |
4510 | ISD::ADD : ISD::SUB, DL: dl, VT: LHS.getValueType(), |
4511 | N1: LHS, N2: RHS); |
4512 | SplitInteger(Op: Sum, Lo, Hi); |
4513 | |
4514 | // Compute the overflow. |
4515 | // |
4516 | // LHSSign -> LHS < 0 |
4517 | // RHSSign -> RHS < 0 |
4518 | // SumSign -> Sum < 0 |
4519 | // |
4520 | // Add: |
4521 | // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) |
4522 | // Sub: |
4523 | // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) |
4524 | // |
4525 | // To get better codegen we can rewrite this by doing bitwise math on |
4526 | // the integers and extract the final sign bit at the end. So the |
4527 | // above becomes: |
4528 | // |
4529 | // Add: |
4530 | // Overflow -> (~(LHS ^ RHS) & (LHS ^ Sum)) < 0 |
4531 | // Sub: |
4532 | // Overflow -> ((LHS ^ RHS) & (LHS ^ Sum)) < 0 |
4533 | // |
4534 | // NOTE: This is different than the expansion we do in expandSADDSUBO |
4535 | // because it is more costly to determine the RHS is > 0 for SSUBO with the |
4536 | // integers split. |
4537 | EVT VT = LHS.getValueType(); |
4538 | SDValue SignsMatch = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
4539 | if (IsAdd) |
4540 | SignsMatch = DAG.getNOT(DL: dl, Val: SignsMatch, VT); |
4541 | |
4542 | SDValue SumSignNE = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: Sum); |
4543 | Ovf = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: SignsMatch, N2: SumSignNE); |
4544 | EVT OType = Node->getValueType(ResNo: 1); |
4545 | Ovf = DAG.getSetCC(DL: dl, VT: OType, LHS: Ovf, RHS: DAG.getConstant(Val: 0, DL: dl, VT), Cond: ISD::SETLT); |
4546 | } |
4547 | |
4548 | // Use the calculated overflow everywhere. |
4549 | ReplaceValueWith(From: SDValue(Node, 1), To: Ovf); |
4550 | } |
4551 | |
4552 | void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N, |
4553 | SDValue &Lo, SDValue &Hi) { |
4554 | EVT VT = N->getValueType(ResNo: 0); |
4555 | SDLoc dl(N); |
4556 | SDValue Ops[2] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
4557 | |
4558 | if (TLI.getOperationAction(Op: ISD::SDIVREM, VT) == TargetLowering::Custom) { |
4559 | SDValue Res = DAG.getNode(Opcode: ISD::SDIVREM, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), Ops); |
4560 | SplitInteger(Op: Res.getValue(R: 0), Lo, Hi); |
4561 | return; |
4562 | } |
4563 | |
4564 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
4565 | if (VT == MVT::i16) |
4566 | LC = RTLIB::SDIV_I16; |
4567 | else if (VT == MVT::i32) |
4568 | LC = RTLIB::SDIV_I32; |
4569 | else if (VT == MVT::i64) |
4570 | LC = RTLIB::SDIV_I64; |
4571 | else if (VT == MVT::i128) |
4572 | LC = RTLIB::SDIV_I128; |
4573 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!" ); |
4574 | |
4575 | TargetLowering::MakeLibCallOptions CallOptions; |
4576 | CallOptions.setSExt(true); |
4577 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, Lo, Hi); |
4578 | } |
4579 | |
4580 | void DAGTypeLegalizer::ExpandIntRes_ShiftThroughStack(SDNode *N, SDValue &Lo, |
4581 | SDValue &Hi) { |
4582 | SDLoc dl(N); |
4583 | SDValue Shiftee = N->getOperand(Num: 0); |
4584 | EVT VT = Shiftee.getValueType(); |
4585 | SDValue ShAmt = N->getOperand(Num: 1); |
4586 | EVT ShAmtVT = ShAmt.getValueType(); |
4587 | |
4588 | // This legalization is optimal when the shift is by a multiple of byte width, |
4589 | // %x * 8 <-> %x << 3 so 3 low bits should be be known zero. |
4590 | bool ShiftByByteMultiple = |
4591 | DAG.computeKnownBits(Op: ShAmt).countMinTrailingZeros() >= 3; |
4592 | |
4593 | // If we can't do it as one step, we'll have two uses of shift amount, |
4594 | // and thus must freeze it. |
4595 | if (!ShiftByByteMultiple) |
4596 | ShAmt = DAG.getFreeze(V: ShAmt); |
4597 | |
4598 | unsigned VTBitWidth = VT.getScalarSizeInBits(); |
4599 | assert(VTBitWidth % 8 == 0 && "Shifting a not byte multiple value?" ); |
4600 | unsigned VTByteWidth = VTBitWidth / 8; |
4601 | assert(isPowerOf2_32(VTByteWidth) && |
4602 | "Shiftee type size is not a power of two!" ); |
4603 | unsigned StackSlotByteWidth = 2 * VTByteWidth; |
4604 | unsigned StackSlotBitWidth = 8 * StackSlotByteWidth; |
4605 | EVT StackSlotVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: StackSlotBitWidth); |
4606 | |
4607 | // Get a temporary stack slot 2x the width of our VT. |
4608 | // FIXME: reuse stack slots? |
4609 | // FIXME: should we be more picky about alignment? |
4610 | Align StackSlotAlignment(1); |
4611 | SDValue StackPtr = DAG.CreateStackTemporary( |
4612 | Bytes: TypeSize::getFixed(ExactSize: StackSlotByteWidth), Alignment: StackSlotAlignment); |
4613 | EVT PtrTy = StackPtr.getValueType(); |
4614 | SDValue Ch = DAG.getEntryNode(); |
4615 | |
4616 | MachinePointerInfo StackPtrInfo = MachinePointerInfo::getFixedStack( |
4617 | MF&: DAG.getMachineFunction(), |
4618 | FI: cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex()); |
4619 | |
4620 | // Extend the value, that is being shifted, to the entire stack slot's width. |
4621 | SDValue Init; |
4622 | if (N->getOpcode() != ISD::SHL) { |
4623 | unsigned WideningOpc = |
4624 | N->getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
4625 | Init = DAG.getNode(Opcode: WideningOpc, DL: dl, VT: StackSlotVT, Operand: Shiftee); |
4626 | } else { |
4627 | // For left-shifts, pad the Shiftee's LSB with zeros to twice it's width. |
4628 | SDValue AllZeros = DAG.getConstant(Val: 0, DL: dl, VT); |
4629 | Init = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: StackSlotVT, N1: AllZeros, N2: Shiftee); |
4630 | } |
4631 | // And spill it into the stack slot. |
4632 | Ch = DAG.getStore(Chain: Ch, dl, Val: Init, Ptr: StackPtr, PtrInfo: StackPtrInfo, Alignment: StackSlotAlignment); |
4633 | |
4634 | // Now, compute the full-byte offset into stack slot from where we can load. |
4635 | // We have shift amount, which is in bits, but in multiples of byte. |
4636 | // So just divide by CHAR_BIT. |
4637 | SDNodeFlags Flags; |
4638 | if (ShiftByByteMultiple) |
4639 | Flags.setExact(true); |
4640 | SDValue ByteOffset = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShAmtVT, N1: ShAmt, |
4641 | N2: DAG.getConstant(Val: 3, DL: dl, VT: ShAmtVT), Flags); |
4642 | // And clamp it, because OOB load is an immediate UB, |
4643 | // while shift overflow would have *just* been poison. |
4644 | ByteOffset = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ByteOffset, |
4645 | N2: DAG.getConstant(Val: VTByteWidth - 1, DL: dl, VT: ShAmtVT)); |
4646 | // We have exactly two strategies on indexing into stack slot here: |
4647 | // 1. upwards starting from the beginning of the slot |
4648 | // 2. downwards starting from the middle of the slot |
4649 | // On little-endian machine, we pick 1. for right shifts and 2. for left-shift |
4650 | // and vice versa on big-endian machine. |
4651 | bool WillIndexUpwards = N->getOpcode() != ISD::SHL; |
4652 | if (DAG.getDataLayout().isBigEndian()) |
4653 | WillIndexUpwards = !WillIndexUpwards; |
4654 | |
4655 | SDValue AdjStackPtr; |
4656 | if (WillIndexUpwards) { |
4657 | AdjStackPtr = StackPtr; |
4658 | } else { |
4659 | AdjStackPtr = DAG.getMemBasePlusOffset( |
4660 | Base: StackPtr, Offset: DAG.getConstant(Val: VTByteWidth, DL: dl, VT: PtrTy), DL: dl); |
4661 | ByteOffset = DAG.getNegative(Val: ByteOffset, DL: dl, VT: ShAmtVT); |
4662 | } |
4663 | |
4664 | // Get the pointer somewhere into the stack slot from which we need to load. |
4665 | ByteOffset = DAG.getSExtOrTrunc(Op: ByteOffset, DL: dl, VT: PtrTy); |
4666 | AdjStackPtr = DAG.getMemBasePlusOffset(Base: AdjStackPtr, Offset: ByteOffset, DL: dl); |
4667 | |
4668 | // And load it! While the load is not legal, legalizing it is obvious. |
4669 | SDValue Res = DAG.getLoad( |
4670 | VT, dl, Chain: Ch, Ptr: AdjStackPtr, |
4671 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction()), Alignment: Align(1)); |
4672 | // We've performed the shift by a CHAR_BIT * [_ShAmt / CHAR_BIT_] |
4673 | |
4674 | // If we may still have a less-than-CHAR_BIT to shift by, do so now. |
4675 | if (!ShiftByByteMultiple) { |
4676 | SDValue ShAmtRem = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ShAmt, |
4677 | N2: DAG.getConstant(Val: 7, DL: dl, VT: ShAmtVT)); |
4678 | Res = DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT, N1: Res, N2: ShAmtRem); |
4679 | } |
4680 | |
4681 | // Finally, split the computed value. |
4682 | SplitInteger(Op: Res, Lo, Hi); |
4683 | } |
4684 | |
4685 | void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N, |
4686 | SDValue &Lo, SDValue &Hi) { |
4687 | EVT VT = N->getValueType(ResNo: 0); |
4688 | unsigned Opc = N->getOpcode(); |
4689 | SDLoc dl(N); |
4690 | |
4691 | // If we can emit an efficient shift operation, do so now. Check to see if |
4692 | // the RHS is a constant. |
4693 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1))) |
4694 | return ExpandShiftByConstant(N, Amt: CN->getAPIntValue(), Lo, Hi); |
4695 | |
4696 | // If we can determine that the high bit of the shift is zero or one, even if |
4697 | // the low bits are variable, emit this shift in an optimized form. |
4698 | if (ExpandShiftWithKnownAmountBit(N, Lo, Hi)) |
4699 | return; |
4700 | |
4701 | // If this target supports shift_PARTS, use it. First, map to the _PARTS opc. |
4702 | unsigned PartsOpc; |
4703 | if (Opc == ISD::SHL) { |
4704 | PartsOpc = ISD::SHL_PARTS; |
4705 | } else if (Opc == ISD::SRL) { |
4706 | PartsOpc = ISD::SRL_PARTS; |
4707 | } else { |
4708 | assert(Opc == ISD::SRA && "Unknown shift!" ); |
4709 | PartsOpc = ISD::SRA_PARTS; |
4710 | } |
4711 | |
4712 | // Next check to see if the target supports this SHL_PARTS operation or if it |
4713 | // will custom expand it. Don't lower this to SHL_PARTS when we optimise for |
4714 | // size, but create a libcall instead. |
4715 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
4716 | TargetLowering::LegalizeAction Action = TLI.getOperationAction(Op: PartsOpc, VT: NVT); |
4717 | const bool LegalOrCustom = |
4718 | (Action == TargetLowering::Legal && TLI.isTypeLegal(VT: NVT)) || |
4719 | Action == TargetLowering::Custom; |
4720 | |
4721 | unsigned ExpansionFactor = 1; |
4722 | // That VT->NVT expansion is one step. But will we re-expand NVT? |
4723 | for (EVT TmpVT = NVT;;) { |
4724 | EVT NewTMPVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: TmpVT); |
4725 | if (NewTMPVT == TmpVT) |
4726 | break; |
4727 | TmpVT = NewTMPVT; |
4728 | ++ExpansionFactor; |
4729 | } |
4730 | |
4731 | TargetLowering::ShiftLegalizationStrategy S = |
4732 | TLI.preferredShiftLegalizationStrategy(DAG, N, ExpansionFactor); |
4733 | |
4734 | if (S == TargetLowering::ShiftLegalizationStrategy::ExpandThroughStack) |
4735 | return ExpandIntRes_ShiftThroughStack(N, Lo, Hi); |
4736 | |
4737 | if (LegalOrCustom && |
4738 | S != TargetLowering::ShiftLegalizationStrategy::LowerToLibcall) { |
4739 | // Expand the subcomponents. |
4740 | SDValue LHSL, LHSH; |
4741 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: LHSL, Hi&: LHSH); |
4742 | EVT VT = LHSL.getValueType(); |
4743 | |
4744 | // If the shift amount operand is coming from a vector legalization it may |
4745 | // have an illegal type. Fix that first by casting the operand, otherwise |
4746 | // the new SHL_PARTS operation would need further legalization. |
4747 | SDValue ShiftOp = N->getOperand(Num: 1); |
4748 | EVT ShiftTy = TLI.getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
4749 | if (ShiftOp.getValueType() != ShiftTy) |
4750 | ShiftOp = DAG.getZExtOrTrunc(Op: ShiftOp, DL: dl, VT: ShiftTy); |
4751 | |
4752 | SDValue Ops[] = { LHSL, LHSH, ShiftOp }; |
4753 | Lo = DAG.getNode(Opcode: PartsOpc, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), Ops); |
4754 | Hi = Lo.getValue(R: 1); |
4755 | return; |
4756 | } |
4757 | |
4758 | // Otherwise, emit a libcall. |
4759 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
4760 | bool isSigned; |
4761 | if (Opc == ISD::SHL) { |
4762 | isSigned = false; /*sign irrelevant*/ |
4763 | if (VT == MVT::i16) |
4764 | LC = RTLIB::SHL_I16; |
4765 | else if (VT == MVT::i32) |
4766 | LC = RTLIB::SHL_I32; |
4767 | else if (VT == MVT::i64) |
4768 | LC = RTLIB::SHL_I64; |
4769 | else if (VT == MVT::i128) |
4770 | LC = RTLIB::SHL_I128; |
4771 | } else if (Opc == ISD::SRL) { |
4772 | isSigned = false; |
4773 | if (VT == MVT::i16) |
4774 | LC = RTLIB::SRL_I16; |
4775 | else if (VT == MVT::i32) |
4776 | LC = RTLIB::SRL_I32; |
4777 | else if (VT == MVT::i64) |
4778 | LC = RTLIB::SRL_I64; |
4779 | else if (VT == MVT::i128) |
4780 | LC = RTLIB::SRL_I128; |
4781 | } else { |
4782 | assert(Opc == ISD::SRA && "Unknown shift!" ); |
4783 | isSigned = true; |
4784 | if (VT == MVT::i16) |
4785 | LC = RTLIB::SRA_I16; |
4786 | else if (VT == MVT::i32) |
4787 | LC = RTLIB::SRA_I32; |
4788 | else if (VT == MVT::i64) |
4789 | LC = RTLIB::SRA_I64; |
4790 | else if (VT == MVT::i128) |
4791 | LC = RTLIB::SRA_I128; |
4792 | } |
4793 | |
4794 | if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(Call: LC)) { |
4795 | EVT ShAmtTy = |
4796 | EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: DAG.getLibInfo().getIntSize()); |
4797 | SDValue ShAmt = DAG.getZExtOrTrunc(Op: N->getOperand(Num: 1), DL: dl, VT: ShAmtTy); |
4798 | SDValue Ops[2] = {N->getOperand(Num: 0), ShAmt}; |
4799 | TargetLowering::MakeLibCallOptions CallOptions; |
4800 | CallOptions.setSExt(isSigned); |
4801 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, Lo, Hi); |
4802 | return; |
4803 | } |
4804 | |
4805 | if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi)) |
4806 | llvm_unreachable("Unsupported shift!" ); |
4807 | } |
4808 | |
4809 | void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N, |
4810 | SDValue &Lo, SDValue &Hi) { |
4811 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
4812 | SDLoc dl(N); |
4813 | SDValue Op = N->getOperand(Num: 0); |
4814 | if (Op.getValueType().bitsLE(VT: NVT)) { |
4815 | // The low part is sign extension of the input (degenerates to a copy). |
4816 | Lo = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
4817 | // The high part is obtained by SRA'ing all but one of the bits of low part. |
4818 | unsigned LoSize = NVT.getSizeInBits(); |
4819 | Hi = DAG.getNode( |
4820 | Opcode: ISD::SRA, DL: dl, VT: NVT, N1: Lo, |
4821 | N2: DAG.getConstant(Val: LoSize - 1, DL: dl, VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
4822 | } else { |
4823 | // For example, extension of an i48 to an i64. The operand type necessarily |
4824 | // promotes to the result type, so will end up being expanded too. |
4825 | assert(getTypeAction(Op.getValueType()) == |
4826 | TargetLowering::TypePromoteInteger && |
4827 | "Only know how to promote this result!" ); |
4828 | SDValue Res = GetPromotedInteger(Op); |
4829 | assert(Res.getValueType() == N->getValueType(0) && |
4830 | "Operand over promoted?" ); |
4831 | // Split the promoted operand. This will simplify when it is expanded. |
4832 | SplitInteger(Op: Res, Lo, Hi); |
4833 | unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits(); |
4834 | Hi = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Hi.getValueType(), N1: Hi, |
4835 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), |
4836 | BitWidth: ExcessBits))); |
4837 | } |
4838 | } |
4839 | |
4840 | void DAGTypeLegalizer:: |
4841 | ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) { |
4842 | SDLoc dl(N); |
4843 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
4844 | EVT EVT = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT(); |
4845 | |
4846 | if (EVT.bitsLE(VT: Lo.getValueType())) { |
4847 | // sext_inreg the low part if needed. |
4848 | Lo = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Lo.getValueType(), N1: Lo, |
4849 | N2: N->getOperand(Num: 1)); |
4850 | |
4851 | // The high part gets the sign extension from the lo-part. This handles |
4852 | // things like sextinreg V:i64 from i8. |
4853 | Hi = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: Hi.getValueType(), N1: Lo, |
4854 | N2: DAG.getConstant(Val: Hi.getValueSizeInBits() - 1, DL: dl, |
4855 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
4856 | } else { |
4857 | // For example, extension of an i48 to an i64. Leave the low part alone, |
4858 | // sext_inreg the high part. |
4859 | unsigned ExcessBits = EVT.getSizeInBits() - Lo.getValueSizeInBits(); |
4860 | Hi = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Hi.getValueType(), N1: Hi, |
4861 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), |
4862 | BitWidth: ExcessBits))); |
4863 | } |
4864 | } |
4865 | |
4866 | void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N, |
4867 | SDValue &Lo, SDValue &Hi) { |
4868 | EVT VT = N->getValueType(ResNo: 0); |
4869 | SDLoc dl(N); |
4870 | SDValue Ops[2] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
4871 | |
4872 | if (TLI.getOperationAction(Op: ISD::SDIVREM, VT) == TargetLowering::Custom) { |
4873 | SDValue Res = DAG.getNode(Opcode: ISD::SDIVREM, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), Ops); |
4874 | SplitInteger(Op: Res.getValue(R: 1), Lo, Hi); |
4875 | return; |
4876 | } |
4877 | |
4878 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
4879 | if (VT == MVT::i16) |
4880 | LC = RTLIB::SREM_I16; |
4881 | else if (VT == MVT::i32) |
4882 | LC = RTLIB::SREM_I32; |
4883 | else if (VT == MVT::i64) |
4884 | LC = RTLIB::SREM_I64; |
4885 | else if (VT == MVT::i128) |
4886 | LC = RTLIB::SREM_I128; |
4887 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!" ); |
4888 | |
4889 | TargetLowering::MakeLibCallOptions CallOptions; |
4890 | CallOptions.setSExt(true); |
4891 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, Lo, Hi); |
4892 | } |
4893 | |
4894 | void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N, |
4895 | SDValue &Lo, SDValue &Hi) { |
4896 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
4897 | SDLoc dl(N); |
4898 | Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
4899 | Hi = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: N->getOperand(Num: 0).getValueType(), |
4900 | N1: N->getOperand(Num: 0), |
4901 | N2: DAG.getConstant(Val: NVT.getSizeInBits(), DL: dl, |
4902 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
4903 | Hi = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: NVT, Operand: Hi); |
4904 | } |
4905 | |
4906 | void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N, |
4907 | SDValue &Lo, SDValue &Hi) { |
4908 | EVT VT = N->getValueType(ResNo: 0); |
4909 | SDLoc dl(N); |
4910 | |
4911 | if (N->getOpcode() == ISD::UMULO) { |
4912 | // This section expands the operation into the following sequence of |
4913 | // instructions. `iNh` here refers to a type which has half the bit width of |
4914 | // the type the original operation operated on. |
4915 | // |
4916 | // %0 = %LHS.HI != 0 && %RHS.HI != 0 |
4917 | // %1 = { iNh, i1 } @umul.with.overflow.iNh(iNh %LHS.HI, iNh %RHS.LO) |
4918 | // %2 = { iNh, i1 } @umul.with.overflow.iNh(iNh %RHS.HI, iNh %LHS.LO) |
4919 | // %3 = mul nuw iN (%LHS.LOW as iN), (%RHS.LOW as iN) |
4920 | // %4 = add iNh %1.0, %2.0 as iN |
4921 | // %5 = { iNh, i1 } @uadd.with.overflow.iNh(iNh %4, iNh %3.HIGH) |
4922 | // |
4923 | // %lo = %3.LO |
4924 | // %hi = %5.0 |
4925 | // %ovf = %0 || %1.1 || %2.1 || %5.1 |
4926 | SDValue LHS = N->getOperand(Num: 0), RHS = N->getOperand(Num: 1); |
4927 | SDValue LHSHigh, LHSLow, RHSHigh, RHSLow; |
4928 | GetExpandedInteger(Op: LHS, Lo&: LHSLow, Hi&: LHSHigh); |
4929 | GetExpandedInteger(Op: RHS, Lo&: RHSLow, Hi&: RHSHigh); |
4930 | EVT HalfVT = LHSLow.getValueType(); |
4931 | EVT BitVT = N->getValueType(ResNo: 1); |
4932 | SDVTList VTHalfWithO = DAG.getVTList(VT1: HalfVT, VT2: BitVT); |
4933 | |
4934 | SDValue HalfZero = DAG.getConstant(Val: 0, DL: dl, VT: HalfVT); |
4935 | SDValue Overflow = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BitVT, |
4936 | N1: DAG.getSetCC(DL: dl, VT: BitVT, LHS: LHSHigh, RHS: HalfZero, Cond: ISD::SETNE), |
4937 | N2: DAG.getSetCC(DL: dl, VT: BitVT, LHS: RHSHigh, RHS: HalfZero, Cond: ISD::SETNE)); |
4938 | |
4939 | SDValue One = DAG.getNode(Opcode: ISD::UMULO, DL: dl, VTList: VTHalfWithO, N1: LHSHigh, N2: RHSLow); |
4940 | Overflow = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BitVT, N1: Overflow, N2: One.getValue(R: 1)); |
4941 | |
4942 | SDValue Two = DAG.getNode(Opcode: ISD::UMULO, DL: dl, VTList: VTHalfWithO, N1: RHSHigh, N2: LHSLow); |
4943 | Overflow = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BitVT, N1: Overflow, N2: Two.getValue(R: 1)); |
4944 | |
4945 | SDValue HighSum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HalfVT, N1: One, N2: Two); |
4946 | |
4947 | // Cannot use `UMUL_LOHI` directly, because some 32-bit targets (ARM) do not |
4948 | // know how to expand `i64,i64 = umul_lohi a, b` and abort (why isn’t this |
4949 | // operation recursively legalized?). |
4950 | // |
4951 | // Many backends understand this pattern and will convert into LOHI |
4952 | // themselves, if applicable. |
4953 | SDValue Three = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, |
4954 | N1: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: LHSLow), |
4955 | N2: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: RHSLow)); |
4956 | SplitInteger(Op: Three, Lo, Hi); |
4957 | |
4958 | Hi = DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList: VTHalfWithO, N1: Hi, N2: HighSum); |
4959 | Overflow = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: BitVT, N1: Overflow, N2: Hi.getValue(R: 1)); |
4960 | ReplaceValueWith(From: SDValue(N, 1), To: Overflow); |
4961 | return; |
4962 | } |
4963 | |
4964 | Type *RetTy = VT.getTypeForEVT(Context&: *DAG.getContext()); |
4965 | EVT PtrVT = TLI.getPointerTy(DL: DAG.getDataLayout()); |
4966 | Type *PtrTy = PtrVT.getTypeForEVT(Context&: *DAG.getContext()); |
4967 | |
4968 | // Replace this with a libcall that will check overflow. |
4969 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
4970 | if (VT == MVT::i32) |
4971 | LC = RTLIB::MULO_I32; |
4972 | else if (VT == MVT::i64) |
4973 | LC = RTLIB::MULO_I64; |
4974 | else if (VT == MVT::i128) |
4975 | LC = RTLIB::MULO_I128; |
4976 | |
4977 | // If we don't have the libcall or if the function we are compiling is the |
4978 | // implementation of the expected libcall (avoid inf-loop), expand inline. |
4979 | if (LC == RTLIB::UNKNOWN_LIBCALL || !TLI.getLibcallName(Call: LC) || |
4980 | TLI.getLibcallName(Call: LC) == DAG.getMachineFunction().getName()) { |
4981 | // FIXME: This is not an optimal expansion, but better than crashing. |
4982 | EVT WideVT = |
4983 | EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getScalarSizeInBits() * 2); |
4984 | SDValue LHS = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: N->getOperand(Num: 0)); |
4985 | SDValue RHS = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: N->getOperand(Num: 1)); |
4986 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: LHS, N2: RHS); |
4987 | SDValue MulLo, MulHi; |
4988 | SplitInteger(Op: Mul, Lo&: MulLo, Hi&: MulHi); |
4989 | SDValue SRA = |
4990 | DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: MulLo, |
4991 | N2: DAG.getConstant(Val: VT.getScalarSizeInBits() - 1, DL: dl, VT)); |
4992 | SDValue Overflow = |
4993 | DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: MulHi, RHS: SRA, Cond: ISD::SETNE); |
4994 | SplitInteger(Op: MulLo, Lo, Hi); |
4995 | ReplaceValueWith(From: SDValue(N, 1), To: Overflow); |
4996 | return; |
4997 | } |
4998 | |
4999 | SDValue Temp = DAG.CreateStackTemporary(VT: PtrVT); |
5000 | // Temporary for the overflow value, default it to zero. |
5001 | SDValue Chain = |
5002 | DAG.getStore(Chain: DAG.getEntryNode(), dl, Val: DAG.getConstant(Val: 0, DL: dl, VT: PtrVT), Ptr: Temp, |
5003 | PtrInfo: MachinePointerInfo()); |
5004 | |
5005 | TargetLowering::ArgListTy Args; |
5006 | TargetLowering::ArgListEntry Entry; |
5007 | for (const SDValue &Op : N->op_values()) { |
5008 | EVT ArgVT = Op.getValueType(); |
5009 | Type *ArgTy = ArgVT.getTypeForEVT(Context&: *DAG.getContext()); |
5010 | Entry.Node = Op; |
5011 | Entry.Ty = ArgTy; |
5012 | Entry.IsSExt = true; |
5013 | Entry.IsZExt = false; |
5014 | Args.push_back(x: Entry); |
5015 | } |
5016 | |
5017 | // Also pass the address of the overflow check. |
5018 | Entry.Node = Temp; |
5019 | Entry.Ty = PointerType::getUnqual(C&: PtrTy->getContext()); |
5020 | Entry.IsSExt = true; |
5021 | Entry.IsZExt = false; |
5022 | Args.push_back(x: Entry); |
5023 | |
5024 | SDValue Func = DAG.getExternalSymbol(Sym: TLI.getLibcallName(Call: LC), VT: PtrVT); |
5025 | |
5026 | TargetLowering::CallLoweringInfo CLI(DAG); |
5027 | CLI.setDebugLoc(dl) |
5028 | .setChain(Chain) |
5029 | .setLibCallee(CC: TLI.getLibcallCallingConv(Call: LC), ResultType: RetTy, Target: Func, ArgsList: std::move(Args)) |
5030 | .setSExtResult(); |
5031 | |
5032 | std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); |
5033 | |
5034 | SplitInteger(Op: CallInfo.first, Lo, Hi); |
5035 | SDValue Temp2 = |
5036 | DAG.getLoad(VT: PtrVT, dl, Chain: CallInfo.second, Ptr: Temp, PtrInfo: MachinePointerInfo()); |
5037 | SDValue Ofl = DAG.getSetCC(DL: dl, VT: N->getValueType(ResNo: 1), LHS: Temp2, |
5038 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: PtrVT), |
5039 | Cond: ISD::SETNE); |
5040 | // Use the overflow from the libcall everywhere. |
5041 | ReplaceValueWith(From: SDValue(N, 1), To: Ofl); |
5042 | } |
5043 | |
5044 | void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N, |
5045 | SDValue &Lo, SDValue &Hi) { |
5046 | EVT VT = N->getValueType(ResNo: 0); |
5047 | SDLoc dl(N); |
5048 | SDValue Ops[2] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
5049 | |
5050 | if (TLI.getOperationAction(Op: ISD::UDIVREM, VT) == TargetLowering::Custom) { |
5051 | SDValue Res = DAG.getNode(Opcode: ISD::UDIVREM, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), Ops); |
5052 | SplitInteger(Op: Res.getValue(R: 0), Lo, Hi); |
5053 | return; |
5054 | } |
5055 | |
5056 | // Try to expand UDIV by constant. |
5057 | if (isa<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
5058 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
5059 | // Only if the new type is legal. |
5060 | if (isTypeLegal(VT: NVT)) { |
5061 | SDValue InL, InH; |
5062 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: InL, Hi&: InH); |
5063 | SmallVector<SDValue> Result; |
5064 | if (TLI.expandDIVREMByConstant(N, Result, HiLoVT: NVT, DAG, LL: InL, LH: InH)) { |
5065 | Lo = Result[0]; |
5066 | Hi = Result[1]; |
5067 | return; |
5068 | } |
5069 | } |
5070 | } |
5071 | |
5072 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
5073 | if (VT == MVT::i16) |
5074 | LC = RTLIB::UDIV_I16; |
5075 | else if (VT == MVT::i32) |
5076 | LC = RTLIB::UDIV_I32; |
5077 | else if (VT == MVT::i64) |
5078 | LC = RTLIB::UDIV_I64; |
5079 | else if (VT == MVT::i128) |
5080 | LC = RTLIB::UDIV_I128; |
5081 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!" ); |
5082 | |
5083 | TargetLowering::MakeLibCallOptions CallOptions; |
5084 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, Lo, Hi); |
5085 | } |
5086 | |
5087 | void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N, |
5088 | SDValue &Lo, SDValue &Hi) { |
5089 | EVT VT = N->getValueType(ResNo: 0); |
5090 | SDLoc dl(N); |
5091 | SDValue Ops[2] = { N->getOperand(Num: 0), N->getOperand(Num: 1) }; |
5092 | |
5093 | if (TLI.getOperationAction(Op: ISD::UDIVREM, VT) == TargetLowering::Custom) { |
5094 | SDValue Res = DAG.getNode(Opcode: ISD::UDIVREM, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), Ops); |
5095 | SplitInteger(Op: Res.getValue(R: 1), Lo, Hi); |
5096 | return; |
5097 | } |
5098 | |
5099 | // Try to expand UREM by constant. |
5100 | if (isa<ConstantSDNode>(Val: N->getOperand(Num: 1))) { |
5101 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
5102 | // Only if the new type is legal. |
5103 | if (isTypeLegal(VT: NVT)) { |
5104 | SDValue InL, InH; |
5105 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: InL, Hi&: InH); |
5106 | SmallVector<SDValue> Result; |
5107 | if (TLI.expandDIVREMByConstant(N, Result, HiLoVT: NVT, DAG, LL: InL, LH: InH)) { |
5108 | Lo = Result[0]; |
5109 | Hi = Result[1]; |
5110 | return; |
5111 | } |
5112 | } |
5113 | } |
5114 | |
5115 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
5116 | if (VT == MVT::i16) |
5117 | LC = RTLIB::UREM_I16; |
5118 | else if (VT == MVT::i32) |
5119 | LC = RTLIB::UREM_I32; |
5120 | else if (VT == MVT::i64) |
5121 | LC = RTLIB::UREM_I64; |
5122 | else if (VT == MVT::i128) |
5123 | LC = RTLIB::UREM_I128; |
5124 | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!" ); |
5125 | |
5126 | TargetLowering::MakeLibCallOptions CallOptions; |
5127 | SplitInteger(Op: TLI.makeLibCall(DAG, LC, RetVT: VT, Ops, CallOptions, dl).first, Lo, Hi); |
5128 | } |
5129 | |
5130 | void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N, |
5131 | SDValue &Lo, SDValue &Hi) { |
5132 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
5133 | SDLoc dl(N); |
5134 | SDValue Op = N->getOperand(Num: 0); |
5135 | if (Op.getValueType().bitsLE(VT: NVT)) { |
5136 | // The low part is zero extension of the input (degenerates to a copy). |
5137 | Lo = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
5138 | Hi = DAG.getConstant(Val: 0, DL: dl, VT: NVT); // The high part is just a zero. |
5139 | } else { |
5140 | // For example, extension of an i48 to an i64. The operand type necessarily |
5141 | // promotes to the result type, so will end up being expanded too. |
5142 | assert(getTypeAction(Op.getValueType()) == |
5143 | TargetLowering::TypePromoteInteger && |
5144 | "Only know how to promote this result!" ); |
5145 | SDValue Res = GetPromotedInteger(Op); |
5146 | assert(Res.getValueType() == N->getValueType(0) && |
5147 | "Operand over promoted?" ); |
5148 | // Split the promoted operand. This will simplify when it is expanded. |
5149 | SplitInteger(Op: Res, Lo, Hi); |
5150 | unsigned ExcessBits = Op.getValueSizeInBits() - NVT.getSizeInBits(); |
5151 | Hi = DAG.getZeroExtendInReg(Op: Hi, DL: dl, |
5152 | VT: EVT::getIntegerVT(Context&: *DAG.getContext(), |
5153 | BitWidth: ExcessBits)); |
5154 | } |
5155 | } |
5156 | |
5157 | void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N, |
5158 | SDValue &Lo, SDValue &Hi) { |
5159 | SDLoc dl(N); |
5160 | EVT VT = cast<AtomicSDNode>(Val: N)->getMemoryVT(); |
5161 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: MVT::i1, VT3: MVT::Other); |
5162 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
5163 | SDValue Swap = DAG.getAtomicCmpSwap( |
5164 | Opcode: ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, |
5165 | MemVT: cast<AtomicSDNode>(Val: N)->getMemoryVT(), VTs, Chain: N->getOperand(Num: 0), |
5166 | Ptr: N->getOperand(Num: 1), Cmp: Zero, Swp: Zero, MMO: cast<AtomicSDNode>(Val: N)->getMemOperand()); |
5167 | |
5168 | ReplaceValueWith(From: SDValue(N, 0), To: Swap.getValue(R: 0)); |
5169 | ReplaceValueWith(From: SDValue(N, 1), To: Swap.getValue(R: 2)); |
5170 | } |
5171 | |
5172 | void DAGTypeLegalizer::ExpandIntRes_VECREDUCE(SDNode *N, |
5173 | SDValue &Lo, SDValue &Hi) { |
5174 | // TODO For VECREDUCE_(AND|OR|XOR) we could split the vector and calculate |
5175 | // both halves independently. |
5176 | SDValue Res = TLI.expandVecReduce(Node: N, DAG); |
5177 | SplitInteger(Op: Res, Lo, Hi); |
5178 | } |
5179 | |
5180 | void DAGTypeLegalizer::ExpandIntRes_Rotate(SDNode *N, |
5181 | SDValue &Lo, SDValue &Hi) { |
5182 | // Delegate to funnel-shift expansion. |
5183 | SDLoc DL(N); |
5184 | unsigned Opcode = N->getOpcode() == ISD::ROTL ? ISD::FSHL : ISD::FSHR; |
5185 | SDValue Res = DAG.getNode(Opcode, DL, VT: N->getValueType(ResNo: 0), N1: N->getOperand(Num: 0), |
5186 | N2: N->getOperand(Num: 0), N3: N->getOperand(Num: 1)); |
5187 | SplitInteger(Op: Res, Lo, Hi); |
5188 | } |
5189 | |
5190 | void DAGTypeLegalizer::ExpandIntRes_FunnelShift(SDNode *N, SDValue &Lo, |
5191 | SDValue &Hi) { |
5192 | // Values numbered from least significant to most significant. |
5193 | SDValue In1, In2, In3, In4; |
5194 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: In3, Hi&: In4); |
5195 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo&: In1, Hi&: In2); |
5196 | EVT HalfVT = In1.getValueType(); |
5197 | |
5198 | SDLoc DL(N); |
5199 | unsigned Opc = N->getOpcode(); |
5200 | SDValue ShAmt = N->getOperand(Num: 2); |
5201 | EVT ShAmtVT = ShAmt.getValueType(); |
5202 | EVT ShAmtCCVT = getSetCCResultType(VT: ShAmtVT); |
5203 | |
5204 | // If the shift amount is at least half the bitwidth, swap the inputs. |
5205 | unsigned HalfVTBits = HalfVT.getScalarSizeInBits(); |
5206 | SDValue AndNode = DAG.getNode(Opcode: ISD::AND, DL, VT: ShAmtVT, N1: ShAmt, |
5207 | N2: DAG.getConstant(Val: HalfVTBits, DL, VT: ShAmtVT)); |
5208 | SDValue Cond = |
5209 | DAG.getSetCC(DL, VT: ShAmtCCVT, LHS: AndNode, RHS: DAG.getConstant(Val: 0, DL, VT: ShAmtVT), |
5210 | Cond: Opc == ISD::FSHL ? ISD::SETNE : ISD::SETEQ); |
5211 | |
5212 | // Expand to a pair of funnel shifts. |
5213 | EVT NewShAmtVT = TLI.getShiftAmountTy(LHSTy: HalfVT, DL: DAG.getDataLayout()); |
5214 | SDValue NewShAmt = DAG.getAnyExtOrTrunc(Op: ShAmt, DL, VT: NewShAmtVT); |
5215 | |
5216 | SDValue Select1 = DAG.getNode(Opcode: ISD::SELECT, DL, VT: HalfVT, N1: Cond, N2: In1, N3: In2); |
5217 | SDValue Select2 = DAG.getNode(Opcode: ISD::SELECT, DL, VT: HalfVT, N1: Cond, N2: In2, N3: In3); |
5218 | SDValue Select3 = DAG.getNode(Opcode: ISD::SELECT, DL, VT: HalfVT, N1: Cond, N2: In3, N3: In4); |
5219 | Lo = DAG.getNode(Opcode: Opc, DL, VT: HalfVT, N1: Select2, N2: Select1, N3: NewShAmt); |
5220 | Hi = DAG.getNode(Opcode: Opc, DL, VT: HalfVT, N1: Select3, N2: Select2, N3: NewShAmt); |
5221 | } |
5222 | |
5223 | void DAGTypeLegalizer::ExpandIntRes_VSCALE(SDNode *N, SDValue &Lo, |
5224 | SDValue &Hi) { |
5225 | EVT VT = N->getValueType(ResNo: 0); |
5226 | EVT HalfVT = |
5227 | EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: N->getValueSizeInBits(ResNo: 0) / 2); |
5228 | SDLoc dl(N); |
5229 | |
5230 | // We assume VSCALE(1) fits into a legal integer. |
5231 | APInt One(HalfVT.getSizeInBits(), 1); |
5232 | SDValue VScaleBase = DAG.getVScale(DL: dl, VT: HalfVT, MulImm: One); |
5233 | VScaleBase = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: VScaleBase); |
5234 | SDValue Res = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: VScaleBase, N2: N->getOperand(Num: 0)); |
5235 | SplitInteger(Op: Res, Lo, Hi); |
5236 | } |
5237 | |
5238 | //===----------------------------------------------------------------------===// |
5239 | // Integer Operand Expansion |
5240 | //===----------------------------------------------------------------------===// |
5241 | |
5242 | /// ExpandIntegerOperand - This method is called when the specified operand of |
5243 | /// the specified node is found to need expansion. At this point, all of the |
5244 | /// result types of the node are known to be legal, but other operands of the |
5245 | /// node may need promotion or expansion as well as the specified one. |
5246 | bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) { |
5247 | LLVM_DEBUG(dbgs() << "Expand integer operand: " ; N->dump(&DAG)); |
5248 | SDValue Res = SDValue(); |
5249 | |
5250 | if (CustomLowerNode(N, VT: N->getOperand(Num: OpNo).getValueType(), LegalizeResult: false)) |
5251 | return false; |
5252 | |
5253 | switch (N->getOpcode()) { |
5254 | default: |
5255 | #ifndef NDEBUG |
5256 | dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": " ; |
5257 | N->dump(&DAG); dbgs() << "\n" ; |
5258 | #endif |
5259 | report_fatal_error(reason: "Do not know how to expand this operator's operand!" ); |
5260 | |
5261 | case ISD::BITCAST: Res = ExpandOp_BITCAST(N); break; |
5262 | case ISD::BR_CC: Res = ExpandIntOp_BR_CC(N); break; |
5263 | case ISD::BUILD_VECTOR: Res = ExpandOp_BUILD_VECTOR(N); break; |
5264 | case ISD::EXTRACT_ELEMENT: Res = ExpandOp_EXTRACT_ELEMENT(N); break; |
5265 | case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break; |
5266 | case ISD::SCALAR_TO_VECTOR: Res = ExpandOp_SCALAR_TO_VECTOR(N); break; |
5267 | case ISD::EXPERIMENTAL_VP_SPLAT: |
5268 | case ISD::SPLAT_VECTOR: Res = ExpandIntOp_SPLAT_VECTOR(N); break; |
5269 | case ISD::SELECT_CC: Res = ExpandIntOp_SELECT_CC(N); break; |
5270 | case ISD::SETCC: Res = ExpandIntOp_SETCC(N); break; |
5271 | case ISD::SETCCCARRY: Res = ExpandIntOp_SETCCCARRY(N); break; |
5272 | case ISD::STRICT_SINT_TO_FP: |
5273 | case ISD::SINT_TO_FP: |
5274 | case ISD::STRICT_UINT_TO_FP: |
5275 | case ISD::UINT_TO_FP: Res = ExpandIntOp_XINT_TO_FP(N); break; |
5276 | case ISD::STORE: Res = ExpandIntOp_STORE(N: cast<StoreSDNode>(Val: N), OpNo); break; |
5277 | case ISD::TRUNCATE: Res = ExpandIntOp_TRUNCATE(N); break; |
5278 | |
5279 | case ISD::SHL: |
5280 | case ISD::SRA: |
5281 | case ISD::SRL: |
5282 | case ISD::ROTL: |
5283 | case ISD::ROTR: Res = ExpandIntOp_Shift(N); break; |
5284 | case ISD::RETURNADDR: |
5285 | case ISD::FRAMEADDR: Res = ExpandIntOp_RETURNADDR(N); break; |
5286 | |
5287 | case ISD::SCMP: |
5288 | case ISD::UCMP: Res = ExpandIntOp_CMP(N); break; |
5289 | |
5290 | case ISD::ATOMIC_STORE: Res = ExpandIntOp_ATOMIC_STORE(N); break; |
5291 | case ISD::STACKMAP: |
5292 | Res = ExpandIntOp_STACKMAP(N, OpNo); |
5293 | break; |
5294 | case ISD::PATCHPOINT: |
5295 | Res = ExpandIntOp_PATCHPOINT(N, OpNo); |
5296 | break; |
5297 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
5298 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
5299 | Res = ExpandIntOp_VP_STRIDED(N, OpNo); |
5300 | break; |
5301 | } |
5302 | |
5303 | // If the result is null, the sub-method took care of registering results etc. |
5304 | if (!Res.getNode()) return false; |
5305 | |
5306 | // If the result is N, the sub-method updated N in place. Tell the legalizer |
5307 | // core about this. |
5308 | if (Res.getNode() == N) |
5309 | return true; |
5310 | |
5311 | assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 && |
5312 | "Invalid operand expansion" ); |
5313 | |
5314 | ReplaceValueWith(From: SDValue(N, 0), To: Res); |
5315 | return false; |
5316 | } |
5317 | |
5318 | /// IntegerExpandSetCCOperands - Expand the operands of a comparison. This code |
5319 | /// is shared among BR_CC, SELECT_CC, and SETCC handlers. |
5320 | void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS, |
5321 | SDValue &NewRHS, |
5322 | ISD::CondCode &CCCode, |
5323 | const SDLoc &dl) { |
5324 | SDValue LHSLo, LHSHi, RHSLo, RHSHi; |
5325 | GetExpandedInteger(Op: NewLHS, Lo&: LHSLo, Hi&: LHSHi); |
5326 | GetExpandedInteger(Op: NewRHS, Lo&: RHSLo, Hi&: RHSHi); |
5327 | |
5328 | if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) { |
5329 | if (RHSLo == RHSHi && isAllOnesConstant(V: RHSLo)) { |
5330 | // Equality comparison to -1. |
5331 | NewLHS = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: LHSLo.getValueType(), N1: LHSLo, N2: LHSHi); |
5332 | NewRHS = RHSLo; |
5333 | return; |
5334 | } |
5335 | |
5336 | NewLHS = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: LHSLo.getValueType(), N1: LHSLo, N2: RHSLo); |
5337 | NewRHS = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: LHSLo.getValueType(), N1: LHSHi, N2: RHSHi); |
5338 | NewLHS = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: NewLHS.getValueType(), N1: NewLHS, N2: NewRHS); |
5339 | NewRHS = DAG.getConstant(Val: 0, DL: dl, VT: NewLHS.getValueType()); |
5340 | return; |
5341 | } |
5342 | |
5343 | // If this is a comparison of the sign bit, just look at the top part. |
5344 | // X > -1, x < 0 |
5345 | if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Val&: NewRHS)) |
5346 | if ((CCCode == ISD::SETLT && CST->isZero()) || // X < 0 |
5347 | (CCCode == ISD::SETGT && CST->isAllOnes())) { // X > -1 |
5348 | NewLHS = LHSHi; |
5349 | NewRHS = RHSHi; |
5350 | return; |
5351 | } |
5352 | |
5353 | // FIXME: This generated code sucks. |
5354 | ISD::CondCode LowCC; |
5355 | switch (CCCode) { |
5356 | default: llvm_unreachable("Unknown integer setcc!" ); |
5357 | case ISD::SETLT: |
5358 | case ISD::SETULT: LowCC = ISD::SETULT; break; |
5359 | case ISD::SETGT: |
5360 | case ISD::SETUGT: LowCC = ISD::SETUGT; break; |
5361 | case ISD::SETLE: |
5362 | case ISD::SETULE: LowCC = ISD::SETULE; break; |
5363 | case ISD::SETGE: |
5364 | case ISD::SETUGE: LowCC = ISD::SETUGE; break; |
5365 | } |
5366 | |
5367 | // LoCmp = lo(op1) < lo(op2) // Always unsigned comparison |
5368 | // HiCmp = hi(op1) < hi(op2) // Signedness depends on operands |
5369 | // dest = hi(op1) == hi(op2) ? LoCmp : HiCmp; |
5370 | |
5371 | // NOTE: on targets without efficient SELECT of bools, we can always use |
5372 | // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3) |
5373 | TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, AfterLegalizeTypes, true, |
5374 | nullptr); |
5375 | SDValue LoCmp, HiCmp; |
5376 | if (TLI.isTypeLegal(VT: LHSLo.getValueType()) && |
5377 | TLI.isTypeLegal(VT: RHSLo.getValueType())) |
5378 | LoCmp = TLI.SimplifySetCC(VT: getSetCCResultType(VT: LHSLo.getValueType()), N0: LHSLo, |
5379 | N1: RHSLo, Cond: LowCC, foldBooleans: false, DCI&: DagCombineInfo, dl); |
5380 | if (!LoCmp.getNode()) |
5381 | LoCmp = DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: LHSLo.getValueType()), LHS: LHSLo, |
5382 | RHS: RHSLo, Cond: LowCC); |
5383 | if (TLI.isTypeLegal(VT: LHSHi.getValueType()) && |
5384 | TLI.isTypeLegal(VT: RHSHi.getValueType())) |
5385 | HiCmp = TLI.SimplifySetCC(VT: getSetCCResultType(VT: LHSHi.getValueType()), N0: LHSHi, |
5386 | N1: RHSHi, Cond: CCCode, foldBooleans: false, DCI&: DagCombineInfo, dl); |
5387 | if (!HiCmp.getNode()) |
5388 | HiCmp = |
5389 | DAG.getNode(Opcode: ISD::SETCC, DL: dl, VT: getSetCCResultType(VT: LHSHi.getValueType()), |
5390 | N1: LHSHi, N2: RHSHi, N3: DAG.getCondCode(Cond: CCCode)); |
5391 | |
5392 | ConstantSDNode *LoCmpC = dyn_cast<ConstantSDNode>(Val: LoCmp.getNode()); |
5393 | ConstantSDNode *HiCmpC = dyn_cast<ConstantSDNode>(Val: HiCmp.getNode()); |
5394 | |
5395 | bool EqAllowed = ISD::isTrueWhenEqual(Cond: CCCode); |
5396 | |
5397 | // FIXME: Is the HiCmpC->isOne() here correct for |
5398 | // ZeroOrNegativeOneBooleanContent. |
5399 | if ((EqAllowed && (HiCmpC && HiCmpC->isZero())) || |
5400 | (!EqAllowed && |
5401 | ((HiCmpC && HiCmpC->isOne()) || (LoCmpC && LoCmpC->isZero())))) { |
5402 | // For LE / GE, if high part is known false, ignore the low part. |
5403 | // For LT / GT: if low part is known false, return the high part. |
5404 | // if high part is known true, ignore the low part. |
5405 | NewLHS = HiCmp; |
5406 | NewRHS = SDValue(); |
5407 | return; |
5408 | } |
5409 | |
5410 | if (LHSHi == RHSHi) { |
5411 | // Comparing the low bits is enough. |
5412 | NewLHS = LoCmp; |
5413 | NewRHS = SDValue(); |
5414 | return; |
5415 | } |
5416 | |
5417 | // Lower with SETCCCARRY if the target supports it. |
5418 | EVT HiVT = LHSHi.getValueType(); |
5419 | EVT ExpandVT = TLI.getTypeToExpandTo(Context&: *DAG.getContext(), VT: HiVT); |
5420 | bool HasSETCCCARRY = TLI.isOperationLegalOrCustom(Op: ISD::SETCCCARRY, VT: ExpandVT); |
5421 | |
5422 | // FIXME: Make all targets support this, then remove the other lowering. |
5423 | if (HasSETCCCARRY) { |
5424 | // SETCCCARRY can detect < and >= directly. For > and <=, flip |
5425 | // operands and condition code. |
5426 | bool FlipOperands = false; |
5427 | switch (CCCode) { |
5428 | case ISD::SETGT: CCCode = ISD::SETLT; FlipOperands = true; break; |
5429 | case ISD::SETUGT: CCCode = ISD::SETULT; FlipOperands = true; break; |
5430 | case ISD::SETLE: CCCode = ISD::SETGE; FlipOperands = true; break; |
5431 | case ISD::SETULE: CCCode = ISD::SETUGE; FlipOperands = true; break; |
5432 | default: break; |
5433 | } |
5434 | if (FlipOperands) { |
5435 | std::swap(a&: LHSLo, b&: RHSLo); |
5436 | std::swap(a&: LHSHi, b&: RHSHi); |
5437 | } |
5438 | // Perform a wide subtraction, feeding the carry from the low part into |
5439 | // SETCCCARRY. The SETCCCARRY operation is essentially looking at the high |
5440 | // part of the result of LHS - RHS. It is negative iff LHS < RHS. It is |
5441 | // zero or positive iff LHS >= RHS. |
5442 | EVT LoVT = LHSLo.getValueType(); |
5443 | SDVTList VTList = DAG.getVTList(VT1: LoVT, VT2: getSetCCResultType(VT: LoVT)); |
5444 | SDValue LowCmp = DAG.getNode(Opcode: ISD::USUBO, DL: dl, VTList, N1: LHSLo, N2: RHSLo); |
5445 | SDValue Res = DAG.getNode(Opcode: ISD::SETCCCARRY, DL: dl, VT: getSetCCResultType(VT: HiVT), |
5446 | N1: LHSHi, N2: RHSHi, N3: LowCmp.getValue(R: 1), |
5447 | N4: DAG.getCondCode(Cond: CCCode)); |
5448 | NewLHS = Res; |
5449 | NewRHS = SDValue(); |
5450 | return; |
5451 | } |
5452 | |
5453 | NewLHS = TLI.SimplifySetCC(VT: getSetCCResultType(VT: HiVT), N0: LHSHi, N1: RHSHi, Cond: ISD::SETEQ, |
5454 | foldBooleans: false, DCI&: DagCombineInfo, dl); |
5455 | if (!NewLHS.getNode()) |
5456 | NewLHS = |
5457 | DAG.getSetCC(DL: dl, VT: getSetCCResultType(VT: HiVT), LHS: LHSHi, RHS: RHSHi, Cond: ISD::SETEQ); |
5458 | NewLHS = DAG.getSelect(DL: dl, VT: LoCmp.getValueType(), Cond: NewLHS, LHS: LoCmp, RHS: HiCmp); |
5459 | NewRHS = SDValue(); |
5460 | } |
5461 | |
5462 | SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) { |
5463 | SDValue NewLHS = N->getOperand(Num: 2), NewRHS = N->getOperand(Num: 3); |
5464 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val: N->getOperand(Num: 1))->get(); |
5465 | IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, dl: SDLoc(N)); |
5466 | |
5467 | // If ExpandSetCCOperands returned a scalar, we need to compare the result |
5468 | // against zero to select between true and false values. |
5469 | if (!NewRHS.getNode()) { |
5470 | NewRHS = DAG.getConstant(Val: 0, DL: SDLoc(N), VT: NewLHS.getValueType()); |
5471 | CCCode = ISD::SETNE; |
5472 | } |
5473 | |
5474 | // Update N to have the operands specified. |
5475 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), |
5476 | Op2: DAG.getCondCode(Cond: CCCode), Op3: NewLHS, Op4: NewRHS, |
5477 | Op5: N->getOperand(Num: 4)), 0); |
5478 | } |
5479 | |
5480 | SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) { |
5481 | SDValue NewLHS = N->getOperand(Num: 0), NewRHS = N->getOperand(Num: 1); |
5482 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val: N->getOperand(Num: 4))->get(); |
5483 | IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, dl: SDLoc(N)); |
5484 | |
5485 | // If ExpandSetCCOperands returned a scalar, we need to compare the result |
5486 | // against zero to select between true and false values. |
5487 | if (!NewRHS.getNode()) { |
5488 | NewRHS = DAG.getConstant(Val: 0, DL: SDLoc(N), VT: NewLHS.getValueType()); |
5489 | CCCode = ISD::SETNE; |
5490 | } |
5491 | |
5492 | // Update N to have the operands specified. |
5493 | return SDValue(DAG.UpdateNodeOperands(N, Op1: NewLHS, Op2: NewRHS, |
5494 | Op3: N->getOperand(Num: 2), Op4: N->getOperand(Num: 3), |
5495 | Op5: DAG.getCondCode(Cond: CCCode)), 0); |
5496 | } |
5497 | |
5498 | SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) { |
5499 | SDValue NewLHS = N->getOperand(Num: 0), NewRHS = N->getOperand(Num: 1); |
5500 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val: N->getOperand(Num: 2))->get(); |
5501 | IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, dl: SDLoc(N)); |
5502 | |
5503 | // If ExpandSetCCOperands returned a scalar, use it. |
5504 | if (!NewRHS.getNode()) { |
5505 | assert(NewLHS.getValueType() == N->getValueType(0) && |
5506 | "Unexpected setcc expansion!" ); |
5507 | return NewLHS; |
5508 | } |
5509 | |
5510 | // Otherwise, update N to have the operands specified. |
5511 | return SDValue( |
5512 | DAG.UpdateNodeOperands(N, Op1: NewLHS, Op2: NewRHS, Op3: DAG.getCondCode(Cond: CCCode)), 0); |
5513 | } |
5514 | |
5515 | SDValue DAGTypeLegalizer::ExpandIntOp_SETCCCARRY(SDNode *N) { |
5516 | SDValue LHS = N->getOperand(Num: 0); |
5517 | SDValue RHS = N->getOperand(Num: 1); |
5518 | SDValue Carry = N->getOperand(Num: 2); |
5519 | SDValue Cond = N->getOperand(Num: 3); |
5520 | SDLoc dl = SDLoc(N); |
5521 | |
5522 | SDValue LHSLo, LHSHi, RHSLo, RHSHi; |
5523 | GetExpandedInteger(Op: LHS, Lo&: LHSLo, Hi&: LHSHi); |
5524 | GetExpandedInteger(Op: RHS, Lo&: RHSLo, Hi&: RHSHi); |
5525 | |
5526 | // Expand to a USUBO_CARRY for the low part and a SETCCCARRY for the high. |
5527 | SDVTList VTList = DAG.getVTList(VT1: LHSLo.getValueType(), VT2: Carry.getValueType()); |
5528 | SDValue LowCmp = |
5529 | DAG.getNode(Opcode: ISD::USUBO_CARRY, DL: dl, VTList, N1: LHSLo, N2: RHSLo, N3: Carry); |
5530 | return DAG.getNode(Opcode: ISD::SETCCCARRY, DL: dl, VT: N->getValueType(ResNo: 0), N1: LHSHi, N2: RHSHi, |
5531 | N3: LowCmp.getValue(R: 1), N4: Cond); |
5532 | } |
5533 | |
5534 | SDValue DAGTypeLegalizer::ExpandIntOp_SPLAT_VECTOR(SDNode *N) { |
5535 | // Split the operand and replace with SPLAT_VECTOR_PARTS. |
5536 | SDValue Lo, Hi; |
5537 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
5538 | return DAG.getNode(Opcode: ISD::SPLAT_VECTOR_PARTS, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), N1: Lo, |
5539 | N2: Hi); |
5540 | } |
5541 | |
5542 | SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) { |
5543 | // The value being shifted is legal, but the shift amount is too big. |
5544 | // It follows that either the result of the shift is undefined, or the |
5545 | // upper half of the shift amount is zero. Just use the lower half. |
5546 | SDValue Lo, Hi; |
5547 | GetExpandedInteger(Op: N->getOperand(Num: 1), Lo, Hi); |
5548 | return SDValue(DAG.UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: Lo), 0); |
5549 | } |
5550 | |
5551 | SDValue DAGTypeLegalizer::ExpandIntOp_CMP(SDNode *N) { |
5552 | return TLI.expandCMP(Node: N, DAG); |
5553 | } |
5554 | |
5555 | SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) { |
5556 | // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant. This |
5557 | // surely makes pretty nice problems on 8/16 bit targets. Just truncate this |
5558 | // constant to valid type. |
5559 | SDValue Lo, Hi; |
5560 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo, Hi); |
5561 | return SDValue(DAG.UpdateNodeOperands(N, Op: Lo), 0); |
5562 | } |
5563 | |
5564 | SDValue DAGTypeLegalizer::ExpandIntOp_XINT_TO_FP(SDNode *N) { |
5565 | bool IsStrict = N->isStrictFPOpcode(); |
5566 | bool IsSigned = N->getOpcode() == ISD::SINT_TO_FP || |
5567 | N->getOpcode() == ISD::STRICT_SINT_TO_FP; |
5568 | SDValue Chain = IsStrict ? N->getOperand(Num: 0) : SDValue(); |
5569 | SDValue Op = N->getOperand(Num: IsStrict ? 1 : 0); |
5570 | EVT DstVT = N->getValueType(ResNo: 0); |
5571 | RTLIB::Libcall LC = IsSigned ? RTLIB::getSINTTOFP(OpVT: Op.getValueType(), RetVT: DstVT) |
5572 | : RTLIB::getUINTTOFP(OpVT: Op.getValueType(), RetVT: DstVT); |
5573 | assert(LC != RTLIB::UNKNOWN_LIBCALL && |
5574 | "Don't know how to expand this XINT_TO_FP!" ); |
5575 | TargetLowering::MakeLibCallOptions CallOptions; |
5576 | CallOptions.setSExt(true); |
5577 | std::pair<SDValue, SDValue> Tmp = |
5578 | TLI.makeLibCall(DAG, LC, RetVT: DstVT, Ops: Op, CallOptions, dl: SDLoc(N), Chain); |
5579 | |
5580 | if (!IsStrict) |
5581 | return Tmp.first; |
5582 | |
5583 | ReplaceValueWith(From: SDValue(N, 1), To: Tmp.second); |
5584 | ReplaceValueWith(From: SDValue(N, 0), To: Tmp.first); |
5585 | return SDValue(); |
5586 | } |
5587 | |
5588 | SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) { |
5589 | assert(!N->isAtomic() && "Should have been a ATOMIC_STORE?" ); |
5590 | |
5591 | if (ISD::isNormalStore(N)) |
5592 | return ExpandOp_NormalStore(N, OpNo); |
5593 | |
5594 | assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!" ); |
5595 | assert(OpNo == 1 && "Can only expand the stored value so far" ); |
5596 | |
5597 | EVT VT = N->getOperand(Num: 1).getValueType(); |
5598 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
5599 | SDValue Ch = N->getChain(); |
5600 | SDValue Ptr = N->getBasePtr(); |
5601 | MachineMemOperand::Flags MMOFlags = N->getMemOperand()->getFlags(); |
5602 | AAMDNodes AAInfo = N->getAAInfo(); |
5603 | SDLoc dl(N); |
5604 | SDValue Lo, Hi; |
5605 | |
5606 | assert(NVT.isByteSized() && "Expanded type not byte sized!" ); |
5607 | |
5608 | if (N->getMemoryVT().bitsLE(VT: NVT)) { |
5609 | GetExpandedInteger(Op: N->getValue(), Lo, Hi); |
5610 | return DAG.getTruncStore(Chain: Ch, dl, Val: Lo, Ptr, PtrInfo: N->getPointerInfo(), |
5611 | SVT: N->getMemoryVT(), Alignment: N->getOriginalAlign(), MMOFlags, |
5612 | AAInfo); |
5613 | } |
5614 | |
5615 | if (DAG.getDataLayout().isLittleEndian()) { |
5616 | // Little-endian - low bits are at low addresses. |
5617 | GetExpandedInteger(Op: N->getValue(), Lo, Hi); |
5618 | |
5619 | Lo = DAG.getStore(Chain: Ch, dl, Val: Lo, Ptr, PtrInfo: N->getPointerInfo(), |
5620 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
5621 | |
5622 | unsigned ExcessBits = |
5623 | N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits(); |
5624 | EVT NEVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: ExcessBits); |
5625 | |
5626 | // Increment the pointer to the other half. |
5627 | unsigned IncrementSize = NVT.getSizeInBits()/8; |
5628 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
5629 | Hi = DAG.getTruncStore(Chain: Ch, dl, Val: Hi, Ptr, |
5630 | PtrInfo: N->getPointerInfo().getWithOffset(O: IncrementSize), |
5631 | SVT: NEVT, Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
5632 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo, N2: Hi); |
5633 | } |
5634 | |
5635 | // Big-endian - high bits are at low addresses. Favor aligned stores at |
5636 | // the cost of some bit-fiddling. |
5637 | GetExpandedInteger(Op: N->getValue(), Lo, Hi); |
5638 | |
5639 | EVT ExtVT = N->getMemoryVT(); |
5640 | unsigned EBytes = ExtVT.getStoreSize(); |
5641 | unsigned IncrementSize = NVT.getSizeInBits()/8; |
5642 | unsigned ExcessBits = (EBytes - IncrementSize)*8; |
5643 | EVT HiVT = EVT::getIntegerVT(Context&: *DAG.getContext(), |
5644 | BitWidth: ExtVT.getSizeInBits() - ExcessBits); |
5645 | |
5646 | if (ExcessBits < NVT.getSizeInBits()) { |
5647 | // Transfer high bits from the top of Lo to the bottom of Hi. |
5648 | Hi = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: Hi, |
5649 | N2: DAG.getConstant(Val: NVT.getSizeInBits() - ExcessBits, DL: dl, |
5650 | VT: TLI.getPointerTy(DL: DAG.getDataLayout()))); |
5651 | Hi = DAG.getNode( |
5652 | Opcode: ISD::OR, DL: dl, VT: NVT, N1: Hi, |
5653 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: NVT, N1: Lo, |
5654 | N2: DAG.getConstant(Val: ExcessBits, DL: dl, |
5655 | VT: TLI.getPointerTy(DL: DAG.getDataLayout())))); |
5656 | } |
5657 | |
5658 | // Store both the high bits and maybe some of the low bits. |
5659 | Hi = DAG.getTruncStore(Chain: Ch, dl, Val: Hi, Ptr, PtrInfo: N->getPointerInfo(), SVT: HiVT, |
5660 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
5661 | |
5662 | // Increment the pointer to the other half. |
5663 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
5664 | // Store the lowest ExcessBits bits in the second half. |
5665 | Lo = DAG.getTruncStore(Chain: Ch, dl, Val: Lo, Ptr, |
5666 | PtrInfo: N->getPointerInfo().getWithOffset(O: IncrementSize), |
5667 | SVT: EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: ExcessBits), |
5668 | Alignment: N->getOriginalAlign(), MMOFlags, AAInfo); |
5669 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo, N2: Hi); |
5670 | } |
5671 | |
5672 | SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) { |
5673 | SDValue InL, InH; |
5674 | GetExpandedInteger(Op: N->getOperand(Num: 0), Lo&: InL, Hi&: InH); |
5675 | // Just truncate the low part of the source. |
5676 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: SDLoc(N), VT: N->getValueType(ResNo: 0), Operand: InL); |
5677 | } |
5678 | |
5679 | SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) { |
5680 | SDLoc dl(N); |
5681 | SDValue Swap = |
5682 | DAG.getAtomic(Opcode: ISD::ATOMIC_SWAP, dl, MemVT: cast<AtomicSDNode>(Val: N)->getMemoryVT(), |
5683 | Chain: N->getOperand(Num: 0), Ptr: N->getOperand(Num: 2), Val: N->getOperand(Num: 1), |
5684 | MMO: cast<AtomicSDNode>(Val: N)->getMemOperand()); |
5685 | return Swap.getValue(R: 1); |
5686 | } |
5687 | |
5688 | SDValue DAGTypeLegalizer::ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo) { |
5689 | assert((N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD && OpNo == 3) || |
5690 | (N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE && OpNo == 4)); |
5691 | |
5692 | SDValue Hi; // The upper half is dropped out. |
5693 | SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end()); |
5694 | GetExpandedInteger(Op: NewOps[OpNo], Lo&: NewOps[OpNo], Hi); |
5695 | |
5696 | return SDValue(DAG.UpdateNodeOperands(N, Ops: NewOps), 0); |
5697 | } |
5698 | |
5699 | SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SPLICE(SDNode *N) { |
5700 | SDLoc dl(N); |
5701 | |
5702 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
5703 | SDValue V1 = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
5704 | EVT OutVT = V0.getValueType(); |
5705 | |
5706 | return DAG.getNode(Opcode: ISD::VECTOR_SPLICE, DL: dl, VT: OutVT, N1: V0, N2: V1, N3: N->getOperand(Num: 2)); |
5707 | } |
5708 | |
5709 | SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N) { |
5710 | SDLoc dl(N); |
5711 | |
5712 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
5713 | SDValue V1 = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
5714 | EVT ResVT = V0.getValueType(); |
5715 | SDValue Res = DAG.getNode(Opcode: N->getOpcode(), DL: dl, |
5716 | VTList: DAG.getVTList(VT1: ResVT, VT2: ResVT), N1: V0, N2: V1); |
5717 | SetPromotedInteger(Op: SDValue(N, 0), Result: Res.getValue(R: 0)); |
5718 | SetPromotedInteger(Op: SDValue(N, 1), Result: Res.getValue(R: 1)); |
5719 | return SDValue(); |
5720 | } |
5721 | |
5722 | SDValue DAGTypeLegalizer::(SDNode *N) { |
5723 | |
5724 | EVT OutVT = N->getValueType(ResNo: 0); |
5725 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5726 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
5727 | EVT NOutVTElem = NOutVT.getVectorElementType(); |
5728 | |
5729 | SDLoc dl(N); |
5730 | SDValue BaseIdx = N->getOperand(Num: 1); |
5731 | |
5732 | // TODO: We may be able to use this for types other than scalable |
5733 | // vectors and fix those tests that expect BUILD_VECTOR to be used |
5734 | if (OutVT.isScalableVector()) { |
5735 | SDValue InOp0 = N->getOperand(Num: 0); |
5736 | EVT InVT = InOp0.getValueType(); |
5737 | |
5738 | // Try and extract from a smaller type so that it eventually falls |
5739 | // into the promotion code below. |
5740 | if (getTypeAction(VT: InVT) == TargetLowering::TypeSplitVector || |
5741 | getTypeAction(VT: InVT) == TargetLowering::TypeLegal) { |
5742 | EVT NInVT = InVT.getHalfNumVectorElementsVT(Context&: *DAG.getContext()); |
5743 | unsigned NElts = NInVT.getVectorMinNumElements(); |
5744 | uint64_t IdxVal = BaseIdx->getAsZExtVal(); |
5745 | |
5746 | SDValue Step1 = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: NInVT, N1: InOp0, |
5747 | N2: DAG.getConstant(Val: alignDown(Value: IdxVal, Align: NElts), DL: dl, |
5748 | VT: BaseIdx.getValueType())); |
5749 | SDValue Step2 = DAG.getNode( |
5750 | Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: OutVT, N1: Step1, |
5751 | N2: DAG.getConstant(Val: IdxVal % NElts, DL: dl, VT: BaseIdx.getValueType())); |
5752 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: Step2); |
5753 | } |
5754 | |
5755 | // Try and extract from a widened type. |
5756 | if (getTypeAction(VT: InVT) == TargetLowering::TypeWidenVector) { |
5757 | SDValue Ops[] = {GetWidenedVector(Op: InOp0), BaseIdx}; |
5758 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: SDLoc(N), VT: OutVT, Ops); |
5759 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: Ext); |
5760 | } |
5761 | |
5762 | // Promote operands and see if this is handled by target lowering, |
5763 | // Otherwise, use the BUILD_VECTOR approach below |
5764 | if (getTypeAction(VT: InVT) == TargetLowering::TypePromoteInteger) { |
5765 | // Collect the (promoted) operands |
5766 | SDValue Ops[] = { GetPromotedInteger(Op: InOp0), BaseIdx }; |
5767 | |
5768 | EVT PromEltVT = Ops[0].getValueType().getVectorElementType(); |
5769 | assert(PromEltVT.bitsLE(NOutVTElem) && |
5770 | "Promoted operand has an element type greater than result" ); |
5771 | |
5772 | EVT ExtVT = NOutVT.changeVectorElementType(EltVT: PromEltVT); |
5773 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: SDLoc(N), VT: ExtVT, Ops); |
5774 | return DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutVT, Operand: Ext); |
5775 | } |
5776 | } |
5777 | |
5778 | if (OutVT.isScalableVector()) |
5779 | report_fatal_error(reason: "Unable to promote scalable types using BUILD_VECTOR" ); |
5780 | |
5781 | SDValue InOp0 = N->getOperand(Num: 0); |
5782 | if (getTypeAction(VT: InOp0.getValueType()) == TargetLowering::TypePromoteInteger) |
5783 | InOp0 = GetPromotedInteger(Op: InOp0); |
5784 | |
5785 | EVT InVT = InOp0.getValueType(); |
5786 | EVT InSVT = InVT.getVectorElementType(); |
5787 | |
5788 | unsigned OutNumElems = OutVT.getVectorNumElements(); |
5789 | SmallVector<SDValue, 8> Ops; |
5790 | Ops.reserve(N: OutNumElems); |
5791 | for (unsigned i = 0; i != OutNumElems; ++i) { |
5792 | // Extract the element from the original vector. |
5793 | SDValue Index = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: BaseIdx.getValueType(), N1: BaseIdx, |
5794 | N2: DAG.getConstant(Val: i, DL: dl, VT: BaseIdx.getValueType())); |
5795 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: InSVT, |
5796 | N1: N->getOperand(Num: 0), N2: Index); |
5797 | SDValue Op = DAG.getAnyExtOrTrunc(Op: Ext, DL: dl, VT: NOutVTElem); |
5798 | // Insert the converted element to the new vector. |
5799 | Ops.push_back(Elt: Op); |
5800 | } |
5801 | |
5802 | return DAG.getBuildVector(VT: NOutVT, DL: dl, Ops); |
5803 | } |
5804 | |
5805 | SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_SUBVECTOR(SDNode *N) { |
5806 | EVT OutVT = N->getValueType(ResNo: 0); |
5807 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5808 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
5809 | |
5810 | SDLoc dl(N); |
5811 | SDValue Vec = N->getOperand(Num: 0); |
5812 | SDValue SubVec = N->getOperand(Num: 1); |
5813 | SDValue Idx = N->getOperand(Num: 2); |
5814 | |
5815 | EVT SubVecVT = SubVec.getValueType(); |
5816 | EVT NSubVT = |
5817 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: NOutVT.getVectorElementType(), |
5818 | EC: SubVecVT.getVectorElementCount()); |
5819 | |
5820 | Vec = GetPromotedInteger(Op: Vec); |
5821 | SubVec = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NSubVT, Operand: SubVec); |
5822 | |
5823 | return DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT: NOutVT, N1: Vec, N2: SubVec, N3: Idx); |
5824 | } |
5825 | |
5826 | SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_REVERSE(SDNode *N) { |
5827 | SDLoc dl(N); |
5828 | |
5829 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
5830 | EVT OutVT = V0.getValueType(); |
5831 | |
5832 | return DAG.getNode(Opcode: ISD::VECTOR_REVERSE, DL: dl, VT: OutVT, Operand: V0); |
5833 | } |
5834 | |
5835 | SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) { |
5836 | ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(Val: N); |
5837 | EVT VT = N->getValueType(ResNo: 0); |
5838 | SDLoc dl(N); |
5839 | |
5840 | ArrayRef<int> NewMask = SV->getMask().slice(N: 0, M: VT.getVectorNumElements()); |
5841 | |
5842 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
5843 | SDValue V1 = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
5844 | EVT OutVT = V0.getValueType(); |
5845 | |
5846 | return DAG.getVectorShuffle(VT: OutVT, dl, N1: V0, N2: V1, Mask: NewMask); |
5847 | } |
5848 | |
5849 | SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) { |
5850 | EVT OutVT = N->getValueType(ResNo: 0); |
5851 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5852 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
5853 | unsigned NumElems = N->getNumOperands(); |
5854 | EVT NOutVTElem = NOutVT.getVectorElementType(); |
5855 | TargetLoweringBase::BooleanContent NOutBoolType = TLI.getBooleanContents(Type: NOutVT); |
5856 | unsigned NOutExtOpc = TargetLowering::getExtendForContent(Content: NOutBoolType); |
5857 | SDLoc dl(N); |
5858 | |
5859 | SmallVector<SDValue, 8> Ops; |
5860 | Ops.reserve(N: NumElems); |
5861 | for (unsigned i = 0; i != NumElems; ++i) { |
5862 | SDValue Op = N->getOperand(Num: i); |
5863 | EVT OpVT = Op.getValueType(); |
5864 | // BUILD_VECTOR integer operand types are allowed to be larger than the |
5865 | // result's element type. This may still be true after the promotion. For |
5866 | // example, we might be promoting (<v?i1> = BV <i32>, <i32>, ...) to |
5867 | // (v?i16 = BV <i32>, <i32>, ...), and we can't any_extend <i32> to <i16>. |
5868 | if (OpVT.bitsLT(VT: NOutVTElem)) { |
5869 | unsigned ExtOpc = ISD::ANY_EXTEND; |
5870 | // Attempt to extend constant bool vectors to match target's BooleanContent. |
5871 | // While not necessary, this improves chances of the constant correctly |
5872 | // folding with compare results (e.g. for NOT patterns). |
5873 | if (OpVT == MVT::i1 && Op.getOpcode() == ISD::Constant) |
5874 | ExtOpc = NOutExtOpc; |
5875 | Op = DAG.getNode(Opcode: ExtOpc, DL: dl, VT: NOutVTElem, Operand: Op); |
5876 | } |
5877 | Ops.push_back(Elt: Op); |
5878 | } |
5879 | |
5880 | return DAG.getBuildVector(VT: NOutVT, DL: dl, Ops); |
5881 | } |
5882 | |
5883 | SDValue DAGTypeLegalizer::PromoteIntRes_ScalarOp(SDNode *N) { |
5884 | |
5885 | SDLoc dl(N); |
5886 | |
5887 | assert(!N->getOperand(0).getValueType().isVector() && |
5888 | "Input must be a scalar" ); |
5889 | |
5890 | EVT OutVT = N->getValueType(ResNo: 0); |
5891 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5892 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
5893 | EVT NOutElemVT = NOutVT.getVectorElementType(); |
5894 | |
5895 | SDValue Op = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NOutElemVT, Operand: N->getOperand(Num: 0)); |
5896 | if (N->isVPOpcode()) |
5897 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NOutVT, N1: Op, N2: N->getOperand(Num: 1), |
5898 | N3: N->getOperand(Num: 2)); |
5899 | |
5900 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NOutVT, Operand: Op); |
5901 | } |
5902 | |
5903 | SDValue DAGTypeLegalizer::PromoteIntRes_STEP_VECTOR(SDNode *N) { |
5904 | SDLoc dl(N); |
5905 | EVT OutVT = N->getValueType(ResNo: 0); |
5906 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5907 | assert(NOutVT.isScalableVector() && |
5908 | "Type must be promoted to a scalable vector type" ); |
5909 | const APInt &StepVal = N->getConstantOperandAPInt(Num: 0); |
5910 | return DAG.getStepVector(DL: dl, ResVT: NOutVT, |
5911 | StepVal: StepVal.sext(width: NOutVT.getScalarSizeInBits())); |
5912 | } |
5913 | |
5914 | SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) { |
5915 | SDLoc dl(N); |
5916 | |
5917 | EVT OutVT = N->getValueType(ResNo: 0); |
5918 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
5919 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
5920 | |
5921 | unsigned NumOperands = N->getNumOperands(); |
5922 | unsigned NumOutElem = NOutVT.getVectorMinNumElements(); |
5923 | EVT OutElemTy = NOutVT.getVectorElementType(); |
5924 | if (OutVT.isScalableVector()) { |
5925 | // Find the largest promoted element type for each of the operands. |
5926 | SDUse *MaxSizedValue = std::max_element( |
5927 | first: N->op_begin(), last: N->op_end(), comp: [](const SDValue &A, const SDValue &B) { |
5928 | EVT AVT = A.getValueType().getVectorElementType(); |
5929 | EVT BVT = B.getValueType().getVectorElementType(); |
5930 | return AVT.getScalarSizeInBits() < BVT.getScalarSizeInBits(); |
5931 | }); |
5932 | EVT MaxElementVT = MaxSizedValue->getValueType().getVectorElementType(); |
5933 | |
5934 | // Then promote all vectors to the largest element type. |
5935 | SmallVector<SDValue, 8> Ops; |
5936 | for (unsigned I = 0; I < NumOperands; ++I) { |
5937 | SDValue Op = N->getOperand(Num: I); |
5938 | EVT OpVT = Op.getValueType(); |
5939 | if (getTypeAction(VT: OpVT) == TargetLowering::TypePromoteInteger) |
5940 | Op = GetPromotedInteger(Op); |
5941 | else |
5942 | assert(getTypeAction(OpVT) == TargetLowering::TypeLegal && |
5943 | "Unhandled legalization type" ); |
5944 | |
5945 | if (OpVT.getVectorElementType().getScalarSizeInBits() < |
5946 | MaxElementVT.getScalarSizeInBits()) |
5947 | Op = DAG.getAnyExtOrTrunc(Op, DL: dl, |
5948 | VT: OpVT.changeVectorElementType(EltVT: MaxElementVT)); |
5949 | Ops.push_back(Elt: Op); |
5950 | } |
5951 | |
5952 | // Do the CONCAT on the promoted type and finally truncate to (the promoted) |
5953 | // NOutVT. |
5954 | return DAG.getAnyExtOrTrunc( |
5955 | Op: DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, |
5956 | VT: OutVT.changeVectorElementType(EltVT: MaxElementVT), Ops), |
5957 | DL: dl, VT: NOutVT); |
5958 | } |
5959 | |
5960 | unsigned NumElem = N->getOperand(Num: 0).getValueType().getVectorNumElements(); |
5961 | assert(NumElem * NumOperands == NumOutElem && |
5962 | "Unexpected number of elements" ); |
5963 | |
5964 | // Take the elements from the first vector. |
5965 | SmallVector<SDValue, 8> Ops(NumOutElem); |
5966 | for (unsigned i = 0; i < NumOperands; ++i) { |
5967 | SDValue Op = N->getOperand(Num: i); |
5968 | if (getTypeAction(VT: Op.getValueType()) == TargetLowering::TypePromoteInteger) |
5969 | Op = GetPromotedInteger(Op); |
5970 | EVT SclrTy = Op.getValueType().getVectorElementType(); |
5971 | assert(NumElem == Op.getValueType().getVectorNumElements() && |
5972 | "Unexpected number of elements" ); |
5973 | |
5974 | for (unsigned j = 0; j < NumElem; ++j) { |
5975 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: SclrTy, N1: Op, |
5976 | N2: DAG.getVectorIdxConstant(Val: j, DL: dl)); |
5977 | Ops[i * NumElem + j] = DAG.getAnyExtOrTrunc(Op: Ext, DL: dl, VT: OutElemTy); |
5978 | } |
5979 | } |
5980 | |
5981 | return DAG.getBuildVector(VT: NOutVT, DL: dl, Ops); |
5982 | } |
5983 | |
5984 | SDValue DAGTypeLegalizer::PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N) { |
5985 | EVT VT = N->getValueType(ResNo: 0); |
5986 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
5987 | assert(NVT.isVector() && "This type must be promoted to a vector type" ); |
5988 | |
5989 | SDLoc dl(N); |
5990 | |
5991 | // For operands whose TypeAction is to promote, extend the promoted node |
5992 | // appropriately (ZERO_EXTEND or SIGN_EXTEND) from the original pre-promotion |
5993 | // type, and then construct a new *_EXTEND_VECTOR_INREG node to the promote-to |
5994 | // type.. |
5995 | if (getTypeAction(VT: N->getOperand(Num: 0).getValueType()) |
5996 | == TargetLowering::TypePromoteInteger) { |
5997 | SDValue Promoted; |
5998 | |
5999 | switch(N->getOpcode()) { |
6000 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
6001 | Promoted = SExtPromotedInteger(Op: N->getOperand(Num: 0)); |
6002 | break; |
6003 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
6004 | Promoted = ZExtPromotedInteger(Op: N->getOperand(Num: 0)); |
6005 | break; |
6006 | case ISD::ANY_EXTEND_VECTOR_INREG: |
6007 | Promoted = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
6008 | break; |
6009 | default: |
6010 | llvm_unreachable("Node has unexpected Opcode" ); |
6011 | } |
6012 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: Promoted); |
6013 | } |
6014 | |
6015 | // Directly extend to the appropriate transform-to type. |
6016 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Operand: N->getOperand(Num: 0)); |
6017 | } |
6018 | |
6019 | SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) { |
6020 | EVT OutVT = N->getValueType(ResNo: 0); |
6021 | EVT NOutVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: OutVT); |
6022 | assert(NOutVT.isVector() && "This type must be promoted to a vector type" ); |
6023 | |
6024 | EVT NOutVTElem = NOutVT.getVectorElementType(); |
6025 | |
6026 | SDLoc dl(N); |
6027 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
6028 | |
6029 | SDValue ConvElem = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, |
6030 | VT: NOutVTElem, Operand: N->getOperand(Num: 1)); |
6031 | return DAG.getNode(Opcode: ISD::INSERT_VECTOR_ELT, DL: dl, VT: NOutVT, |
6032 | N1: V0, N2: ConvElem, N3: N->getOperand(Num: 2)); |
6033 | } |
6034 | |
6035 | SDValue DAGTypeLegalizer::PromoteIntRes_VECREDUCE(SDNode *N) { |
6036 | // The VECREDUCE result size may be larger than the element size, so |
6037 | // we can simply change the result type. |
6038 | SDLoc dl(N); |
6039 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
6040 | return DAG.getNode(Opcode: N->getOpcode(), DL: dl, VT: NVT, Ops: N->ops()); |
6041 | } |
6042 | |
6043 | SDValue DAGTypeLegalizer::PromoteIntRes_VP_REDUCE(SDNode *N) { |
6044 | // The VP_REDUCE result size may be larger than the element size, so we can |
6045 | // simply change the result type. However the start value and result must be |
6046 | // the same. |
6047 | SDLoc DL(N); |
6048 | SDValue Start = PromoteIntOpVectorReduction(N, V: N->getOperand(Num: 0)); |
6049 | return DAG.getNode(Opcode: N->getOpcode(), DL, VT: Start.getValueType(), N1: Start, |
6050 | N2: N->getOperand(Num: 1), N3: N->getOperand(Num: 2), N4: N->getOperand(Num: 3)); |
6051 | } |
6052 | |
6053 | SDValue DAGTypeLegalizer::PromoteIntRes_PATCHPOINT(SDNode *N) { |
6054 | EVT NVT = TLI.getTypeToTransformTo(Context&: *DAG.getContext(), VT: N->getValueType(ResNo: 0)); |
6055 | SDLoc dl(N); |
6056 | |
6057 | assert(N->getNumValues() == 3 && "Expected 3 values for PATCHPOINT" ); |
6058 | SDVTList VTList = DAG.getVTList(VTs: {NVT, MVT::Other, MVT::Glue}); |
6059 | |
6060 | SmallVector<SDValue> Ops(N->ops()); |
6061 | SDValue Res = DAG.getNode(Opcode: ISD::PATCHPOINT, DL: dl, VTList, Ops); |
6062 | |
6063 | // Replace chain and glue uses with the new patchpoint. |
6064 | SDValue From[] = {SDValue(N, 1), SDValue(N, 2)}; |
6065 | SDValue To[] = {Res.getValue(R: 1), Res.getValue(R: 2)}; |
6066 | DAG.ReplaceAllUsesOfValuesWith(From, To, Num: 2); |
6067 | |
6068 | return Res.getValue(R: 0); |
6069 | } |
6070 | |
6071 | SDValue DAGTypeLegalizer::(SDNode *N) { |
6072 | SDLoc dl(N); |
6073 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
6074 | SDValue V1 = DAG.getZExtOrTrunc(Op: N->getOperand(Num: 1), DL: dl, |
6075 | VT: TLI.getVectorIdxTy(DL: DAG.getDataLayout())); |
6076 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, |
6077 | VT: V0->getValueType(ResNo: 0).getScalarType(), N1: V0, N2: V1); |
6078 | |
6079 | // EXTRACT_VECTOR_ELT can return types which are wider than the incoming |
6080 | // element types. If this is the case then we need to expand the outgoing |
6081 | // value and not truncate it. |
6082 | return DAG.getAnyExtOrTrunc(Op: Ext, DL: dl, VT: N->getValueType(ResNo: 0)); |
6083 | } |
6084 | |
6085 | SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_SUBVECTOR(SDNode *N) { |
6086 | SDLoc dl(N); |
6087 | // The result type is equal to the first input operand's type, so the |
6088 | // type that needs promoting must be the second source vector. |
6089 | SDValue V0 = N->getOperand(Num: 0); |
6090 | SDValue V1 = GetPromotedInteger(Op: N->getOperand(Num: 1)); |
6091 | SDValue Idx = N->getOperand(Num: 2); |
6092 | EVT PromVT = EVT::getVectorVT(Context&: *DAG.getContext(), |
6093 | VT: V1.getValueType().getVectorElementType(), |
6094 | EC: V0.getValueType().getVectorElementCount()); |
6095 | V0 = DAG.getAnyExtOrTrunc(Op: V0, DL: dl, VT: PromVT); |
6096 | SDValue Ext = DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT: PromVT, N1: V0, N2: V1, N3: Idx); |
6097 | return DAG.getAnyExtOrTrunc(Op: Ext, DL: dl, VT: N->getValueType(ResNo: 0)); |
6098 | } |
6099 | |
6100 | SDValue DAGTypeLegalizer::(SDNode *N) { |
6101 | SDLoc dl(N); |
6102 | SDValue V0 = GetPromotedInteger(Op: N->getOperand(Num: 0)); |
6103 | MVT InVT = V0.getValueType().getSimpleVT(); |
6104 | MVT OutVT = MVT::getVectorVT(VT: InVT.getVectorElementType(), |
6105 | NumElements: N->getValueType(ResNo: 0).getVectorNumElements()); |
6106 | SDValue Ext = DAG.getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: OutVT, N1: V0, N2: N->getOperand(Num: 1)); |
6107 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: N->getValueType(ResNo: 0), Operand: Ext); |
6108 | } |
6109 | |
6110 | SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) { |
6111 | SDLoc dl(N); |
6112 | |
6113 | EVT ResVT = N->getValueType(ResNo: 0); |
6114 | unsigned NumElems = N->getNumOperands(); |
6115 | |
6116 | if (ResVT.isScalableVector()) { |
6117 | SDValue ResVec = DAG.getUNDEF(VT: ResVT); |
6118 | |
6119 | for (unsigned OpIdx = 0; OpIdx < NumElems; ++OpIdx) { |
6120 | SDValue Op = N->getOperand(Num: OpIdx); |
6121 | unsigned OpNumElts = Op.getValueType().getVectorMinNumElements(); |
6122 | ResVec = DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT: ResVT, N1: ResVec, N2: Op, |
6123 | N3: DAG.getIntPtrConstant(Val: OpIdx * OpNumElts, DL: dl)); |
6124 | } |
6125 | |
6126 | return ResVec; |
6127 | } |
6128 | |
6129 | EVT RetSclrTy = N->getValueType(ResNo: 0).getVectorElementType(); |
6130 | |
6131 | SmallVector<SDValue, 8> NewOps; |
6132 | NewOps.reserve(N: NumElems); |
6133 | |
6134 | // For each incoming vector |
6135 | for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) { |
6136 | SDValue Incoming = GetPromotedInteger(Op: N->getOperand(Num: VecIdx)); |
6137 | EVT SclrTy = Incoming->getValueType(ResNo: 0).getVectorElementType(); |
6138 | unsigned NumElem = Incoming->getValueType(ResNo: 0).getVectorNumElements(); |
6139 | |
6140 | for (unsigned i=0; i<NumElem; ++i) { |
6141 | // Extract element from incoming vector |
6142 | SDValue Ex = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: SclrTy, N1: Incoming, |
6143 | N2: DAG.getVectorIdxConstant(Val: i, DL: dl)); |
6144 | SDValue Tr = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: RetSclrTy, Operand: Ex); |
6145 | NewOps.push_back(Elt: Tr); |
6146 | } |
6147 | } |
6148 | |
6149 | return DAG.getBuildVector(VT: N->getValueType(ResNo: 0), DL: dl, Ops: NewOps); |
6150 | } |
6151 | |
6152 | SDValue DAGTypeLegalizer::ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo) { |
6153 | assert(OpNo > 1); |
6154 | SDValue Op = N->getOperand(Num: OpNo); |
6155 | |
6156 | // FIXME: Non-constant operands are not yet handled: |
6157 | // - https://github.com/llvm/llvm-project/issues/26431 |
6158 | // - https://github.com/llvm/llvm-project/issues/55957 |
6159 | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val&: Op); |
6160 | if (!CN) |
6161 | return SDValue(); |
6162 | |
6163 | // Copy operands before the one being expanded. |
6164 | SmallVector<SDValue> NewOps; |
6165 | for (unsigned I = 0; I < OpNo; I++) |
6166 | NewOps.push_back(Elt: N->getOperand(Num: I)); |
6167 | |
6168 | EVT Ty = Op.getValueType(); |
6169 | SDLoc DL = SDLoc(N); |
6170 | if (CN->getConstantIntValue()->getValue().getActiveBits() < 64) { |
6171 | NewOps.push_back( |
6172 | Elt: DAG.getTargetConstant(Val: StackMaps::ConstantOp, DL, VT: MVT::i64)); |
6173 | NewOps.push_back(Elt: DAG.getTargetConstant(Val: CN->getZExtValue(), DL, VT: Ty)); |
6174 | } else { |
6175 | // FIXME: https://github.com/llvm/llvm-project/issues/55609 |
6176 | return SDValue(); |
6177 | } |
6178 | |
6179 | // Copy remaining operands. |
6180 | for (unsigned I = OpNo + 1; I < N->getNumOperands(); I++) |
6181 | NewOps.push_back(Elt: N->getOperand(Num: I)); |
6182 | |
6183 | SDValue NewNode = DAG.getNode(Opcode: N->getOpcode(), DL, VTList: N->getVTList(), Ops: NewOps); |
6184 | |
6185 | for (unsigned ResNum = 0; ResNum < N->getNumValues(); ResNum++) |
6186 | ReplaceValueWith(From: SDValue(N, ResNum), To: NewNode.getValue(R: ResNum)); |
6187 | |
6188 | return SDValue(); // Signal that we have replaced the node already. |
6189 | } |
6190 | |
6191 | SDValue DAGTypeLegalizer::ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo) { |
6192 | assert(OpNo >= 7); |
6193 | SDValue Op = N->getOperand(Num: OpNo); |
6194 | |
6195 | // FIXME: Non-constant operands are not yet handled: |
6196 | // - https://github.com/llvm/llvm-project/issues/26431 |
6197 | // - https://github.com/llvm/llvm-project/issues/55957 |
6198 | ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val&: Op); |
6199 | if (!CN) |
6200 | return SDValue(); |
6201 | |
6202 | // Copy operands before the one being expanded. |
6203 | SmallVector<SDValue> NewOps; |
6204 | for (unsigned I = 0; I < OpNo; I++) |
6205 | NewOps.push_back(Elt: N->getOperand(Num: I)); |
6206 | |
6207 | EVT Ty = Op.getValueType(); |
6208 | SDLoc DL = SDLoc(N); |
6209 | if (CN->getConstantIntValue()->getValue().getActiveBits() < 64) { |
6210 | NewOps.push_back( |
6211 | Elt: DAG.getTargetConstant(Val: StackMaps::ConstantOp, DL, VT: MVT::i64)); |
6212 | NewOps.push_back(Elt: DAG.getTargetConstant(Val: CN->getZExtValue(), DL, VT: Ty)); |
6213 | } else { |
6214 | // FIXME: https://github.com/llvm/llvm-project/issues/55609 |
6215 | return SDValue(); |
6216 | } |
6217 | |
6218 | // Copy remaining operands. |
6219 | for (unsigned I = OpNo + 1; I < N->getNumOperands(); I++) |
6220 | NewOps.push_back(Elt: N->getOperand(Num: I)); |
6221 | |
6222 | SDValue NewNode = DAG.getNode(Opcode: N->getOpcode(), DL, VTList: N->getVTList(), Ops: NewOps); |
6223 | |
6224 | for (unsigned ResNum = 0; ResNum < N->getNumValues(); ResNum++) |
6225 | ReplaceValueWith(From: SDValue(N, ResNum), To: NewNode.getValue(R: ResNum)); |
6226 | |
6227 | return SDValue(); // Signal that we have replaced the node already. |
6228 | } |
6229 | |