1 | //===-- AArch64Subtarget.cpp - AArch64 Subtarget Information ----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the AArch64 specific subclass of TargetSubtarget. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "AArch64Subtarget.h" |
14 | |
15 | #include "AArch64.h" |
16 | #include "AArch64InstrInfo.h" |
17 | #include "AArch64PBQPRegAlloc.h" |
18 | #include "AArch64TargetMachine.h" |
19 | #include "GISel/AArch64CallLowering.h" |
20 | #include "GISel/AArch64LegalizerInfo.h" |
21 | #include "GISel/AArch64RegisterBankInfo.h" |
22 | #include "MCTargetDesc/AArch64AddressingModes.h" |
23 | #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" |
24 | #include "llvm/CodeGen/MachineFrameInfo.h" |
25 | #include "llvm/CodeGen/MachineScheduler.h" |
26 | #include "llvm/IR/GlobalValue.h" |
27 | #include "llvm/Support/SipHash.h" |
28 | #include "llvm/TargetParser/AArch64TargetParser.h" |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "aarch64-subtarget" |
33 | |
34 | #define GET_SUBTARGETINFO_CTOR |
35 | #define GET_SUBTARGETINFO_TARGET_DESC |
36 | #include "AArch64GenSubtargetInfo.inc" |
37 | |
38 | static cl::opt<bool> |
39 | EnableEarlyIfConvert("aarch64-early-ifcvt" , cl::desc("Enable the early if " |
40 | "converter pass" ), cl::init(Val: true), cl::Hidden); |
41 | |
42 | // If OS supports TBI, use this flag to enable it. |
43 | static cl::opt<bool> |
44 | UseAddressTopByteIgnored("aarch64-use-tbi" , cl::desc("Assume that top byte of " |
45 | "an address is ignored" ), cl::init(Val: false), cl::Hidden); |
46 | |
47 | static cl::opt<bool> MachOUseNonLazyBind( |
48 | "aarch64-macho-enable-nonlazybind" , |
49 | cl::desc("Call nonlazybind functions via direct GOT load for Mach-O" ), |
50 | cl::Hidden); |
51 | |
52 | static cl::opt<bool> UseAA("aarch64-use-aa" , cl::init(Val: true), |
53 | cl::desc("Enable the use of AA during codegen." )); |
54 | |
55 | static cl::opt<unsigned> ( |
56 | "aarch64-insert-extract-base-cost" , |
57 | cl::desc("Base cost of vector insert/extract element" ), cl::Hidden); |
58 | |
59 | // Reserve a list of X# registers, so they are unavailable for register |
60 | // allocator, but can still be used as ABI requests, such as passing arguments |
61 | // to function call. |
62 | static cl::list<std::string> |
63 | ReservedRegsForRA("reserve-regs-for-regalloc" , cl::desc("Reserve physical " |
64 | "registers, so they can't be used by register allocator. " |
65 | "Should only be used for testing register allocator." ), |
66 | cl::CommaSeparated, cl::Hidden); |
67 | |
68 | static cl::opt<AArch64PAuth::AuthCheckMethod> |
69 | AuthenticatedLRCheckMethod("aarch64-authenticated-lr-check-method" , |
70 | cl::Hidden, |
71 | cl::desc("Override the variant of check applied " |
72 | "to authenticated LR during tail call" ), |
73 | cl::values(AUTH_CHECK_METHOD_CL_VALUES_LR)); |
74 | |
75 | static cl::opt<unsigned> AArch64MinimumJumpTableEntries( |
76 | "aarch64-min-jump-table-entries" , cl::init(Val: 13), cl::Hidden, |
77 | cl::desc("Set minimum number of entries to use a jump table on AArch64" )); |
78 | |
79 | unsigned AArch64Subtarget::() const { |
80 | if (OverrideVectorInsertExtractBaseCost.getNumOccurrences() > 0) |
81 | return OverrideVectorInsertExtractBaseCost; |
82 | return VectorInsertExtractBaseCost; |
83 | } |
84 | |
85 | AArch64Subtarget &AArch64Subtarget::initializeSubtargetDependencies( |
86 | StringRef FS, StringRef CPUString, StringRef TuneCPUString, |
87 | bool HasMinSize) { |
88 | // Determine default and user-specified characteristics |
89 | |
90 | if (CPUString.empty()) |
91 | CPUString = "generic" ; |
92 | |
93 | if (TuneCPUString.empty()) |
94 | TuneCPUString = CPUString; |
95 | |
96 | ParseSubtargetFeatures(CPU: CPUString, TuneCPU: TuneCPUString, FS); |
97 | initializeProperties(HasMinSize); |
98 | |
99 | return *this; |
100 | } |
101 | |
102 | void AArch64Subtarget::initializeProperties(bool HasMinSize) { |
103 | // Initialize CPU specific properties. We should add a tablegen feature for |
104 | // this in the future so we can specify it together with the subtarget |
105 | // features. |
106 | switch (ARMProcFamily) { |
107 | case Others: |
108 | break; |
109 | case Carmel: |
110 | CacheLineSize = 64; |
111 | break; |
112 | case CortexA35: |
113 | case CortexA53: |
114 | case CortexA55: |
115 | case CortexR82: |
116 | case CortexR82AE: |
117 | PrefFunctionAlignment = Align(16); |
118 | PrefLoopAlignment = Align(16); |
119 | MaxBytesForLoopAlignment = 8; |
120 | break; |
121 | case CortexA57: |
122 | MaxInterleaveFactor = 4; |
123 | PrefFunctionAlignment = Align(16); |
124 | PrefLoopAlignment = Align(16); |
125 | MaxBytesForLoopAlignment = 8; |
126 | break; |
127 | case CortexA65: |
128 | PrefFunctionAlignment = Align(8); |
129 | break; |
130 | case CortexA72: |
131 | case CortexA73: |
132 | case CortexA75: |
133 | PrefFunctionAlignment = Align(16); |
134 | PrefLoopAlignment = Align(16); |
135 | MaxBytesForLoopAlignment = 8; |
136 | break; |
137 | case CortexA76: |
138 | case CortexA77: |
139 | case CortexA78: |
140 | case CortexA78AE: |
141 | case CortexA78C: |
142 | case CortexX1: |
143 | PrefFunctionAlignment = Align(16); |
144 | PrefLoopAlignment = Align(32); |
145 | MaxBytesForLoopAlignment = 16; |
146 | break; |
147 | case CortexA510: |
148 | case CortexA520: |
149 | PrefFunctionAlignment = Align(16); |
150 | VScaleForTuning = 1; |
151 | PrefLoopAlignment = Align(16); |
152 | MaxBytesForLoopAlignment = 8; |
153 | break; |
154 | case CortexA710: |
155 | case CortexA715: |
156 | case CortexA720: |
157 | case CortexA725: |
158 | case CortexX2: |
159 | case CortexX3: |
160 | case CortexX4: |
161 | case CortexX925: |
162 | PrefFunctionAlignment = Align(16); |
163 | VScaleForTuning = 1; |
164 | PrefLoopAlignment = Align(32); |
165 | MaxBytesForLoopAlignment = 16; |
166 | break; |
167 | case A64FX: |
168 | CacheLineSize = 256; |
169 | PrefFunctionAlignment = Align(8); |
170 | PrefLoopAlignment = Align(4); |
171 | MaxInterleaveFactor = 4; |
172 | PrefetchDistance = 128; |
173 | MinPrefetchStride = 1024; |
174 | MaxPrefetchIterationsAhead = 4; |
175 | VScaleForTuning = 4; |
176 | break; |
177 | case AppleA7: |
178 | case AppleA10: |
179 | case AppleA11: |
180 | case AppleA12: |
181 | case AppleA13: |
182 | case AppleA14: |
183 | case AppleA15: |
184 | case AppleA16: |
185 | case AppleA17: |
186 | case AppleM4: |
187 | CacheLineSize = 64; |
188 | PrefetchDistance = 280; |
189 | MinPrefetchStride = 2048; |
190 | MaxPrefetchIterationsAhead = 3; |
191 | switch (ARMProcFamily) { |
192 | case AppleA14: |
193 | case AppleA15: |
194 | case AppleA16: |
195 | case AppleA17: |
196 | case AppleM4: |
197 | MaxInterleaveFactor = 4; |
198 | break; |
199 | default: |
200 | break; |
201 | } |
202 | break; |
203 | case ExynosM3: |
204 | MaxInterleaveFactor = 4; |
205 | MaxJumpTableSize = 20; |
206 | PrefFunctionAlignment = Align(32); |
207 | PrefLoopAlignment = Align(16); |
208 | break; |
209 | case Falkor: |
210 | MaxInterleaveFactor = 4; |
211 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
212 | MinVectorRegisterBitWidth = 128; |
213 | CacheLineSize = 128; |
214 | PrefetchDistance = 820; |
215 | MinPrefetchStride = 2048; |
216 | MaxPrefetchIterationsAhead = 8; |
217 | break; |
218 | case Kryo: |
219 | MaxInterleaveFactor = 4; |
220 | VectorInsertExtractBaseCost = 2; |
221 | CacheLineSize = 128; |
222 | PrefetchDistance = 740; |
223 | MinPrefetchStride = 1024; |
224 | MaxPrefetchIterationsAhead = 11; |
225 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
226 | MinVectorRegisterBitWidth = 128; |
227 | break; |
228 | case NeoverseE1: |
229 | PrefFunctionAlignment = Align(8); |
230 | break; |
231 | case NeoverseN1: |
232 | PrefFunctionAlignment = Align(16); |
233 | PrefLoopAlignment = Align(32); |
234 | MaxBytesForLoopAlignment = 16; |
235 | break; |
236 | case NeoverseN2: |
237 | case NeoverseN3: |
238 | case NeoverseV2: |
239 | case NeoverseV3: |
240 | PrefFunctionAlignment = Align(16); |
241 | PrefLoopAlignment = Align(32); |
242 | MaxBytesForLoopAlignment = 16; |
243 | VScaleForTuning = 1; |
244 | break; |
245 | case NeoverseV1: |
246 | PrefFunctionAlignment = Align(16); |
247 | PrefLoopAlignment = Align(32); |
248 | MaxBytesForLoopAlignment = 16; |
249 | VScaleForTuning = 2; |
250 | DefaultSVETFOpts = TailFoldingOpts::Simple; |
251 | break; |
252 | case Neoverse512TVB: |
253 | PrefFunctionAlignment = Align(16); |
254 | VScaleForTuning = 1; |
255 | MaxInterleaveFactor = 4; |
256 | break; |
257 | case Saphira: |
258 | MaxInterleaveFactor = 4; |
259 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
260 | MinVectorRegisterBitWidth = 128; |
261 | break; |
262 | case ThunderX2T99: |
263 | CacheLineSize = 64; |
264 | PrefFunctionAlignment = Align(8); |
265 | PrefLoopAlignment = Align(4); |
266 | MaxInterleaveFactor = 4; |
267 | PrefetchDistance = 128; |
268 | MinPrefetchStride = 1024; |
269 | MaxPrefetchIterationsAhead = 4; |
270 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
271 | MinVectorRegisterBitWidth = 128; |
272 | break; |
273 | case ThunderX: |
274 | case ThunderXT88: |
275 | case ThunderXT81: |
276 | case ThunderXT83: |
277 | CacheLineSize = 128; |
278 | PrefFunctionAlignment = Align(8); |
279 | PrefLoopAlignment = Align(4); |
280 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
281 | MinVectorRegisterBitWidth = 128; |
282 | break; |
283 | case TSV110: |
284 | CacheLineSize = 64; |
285 | PrefFunctionAlignment = Align(16); |
286 | PrefLoopAlignment = Align(4); |
287 | break; |
288 | case ThunderX3T110: |
289 | CacheLineSize = 64; |
290 | PrefFunctionAlignment = Align(16); |
291 | PrefLoopAlignment = Align(4); |
292 | MaxInterleaveFactor = 4; |
293 | PrefetchDistance = 128; |
294 | MinPrefetchStride = 1024; |
295 | MaxPrefetchIterationsAhead = 4; |
296 | // FIXME: remove this to enable 64-bit SLP if performance looks good. |
297 | MinVectorRegisterBitWidth = 128; |
298 | break; |
299 | case Ampere1: |
300 | case Ampere1A: |
301 | case Ampere1B: |
302 | CacheLineSize = 64; |
303 | PrefFunctionAlignment = Align(64); |
304 | PrefLoopAlignment = Align(64); |
305 | MaxInterleaveFactor = 4; |
306 | break; |
307 | case Oryon: |
308 | CacheLineSize = 64; |
309 | PrefFunctionAlignment = Align(16); |
310 | MaxInterleaveFactor = 4; |
311 | PrefetchDistance = 128; |
312 | MinPrefetchStride = 1024; |
313 | break; |
314 | } |
315 | |
316 | if (AArch64MinimumJumpTableEntries.getNumOccurrences() > 0 || !HasMinSize) |
317 | MinimumJumpTableEntries = AArch64MinimumJumpTableEntries; |
318 | } |
319 | |
320 | AArch64Subtarget::AArch64Subtarget(const Triple &TT, StringRef CPU, |
321 | StringRef TuneCPU, StringRef FS, |
322 | const TargetMachine &TM, bool LittleEndian, |
323 | unsigned MinSVEVectorSizeInBitsOverride, |
324 | unsigned MaxSVEVectorSizeInBitsOverride, |
325 | bool IsStreaming, bool IsStreamingCompatible, |
326 | bool HasMinSize) |
327 | : AArch64GenSubtargetInfo(TT, CPU, TuneCPU, FS), |
328 | ReserveXRegister(AArch64::GPR64commonRegClass.getNumRegs()), |
329 | ReserveXRegisterForRA(AArch64::GPR64commonRegClass.getNumRegs()), |
330 | CustomCallSavedXRegs(AArch64::GPR64commonRegClass.getNumRegs()), |
331 | IsLittle(LittleEndian), IsStreaming(IsStreaming), |
332 | IsStreamingCompatible(IsStreamingCompatible), |
333 | MinSVEVectorSizeInBits(MinSVEVectorSizeInBitsOverride), |
334 | MaxSVEVectorSizeInBits(MaxSVEVectorSizeInBitsOverride), TargetTriple(TT), |
335 | InstrInfo(initializeSubtargetDependencies(FS, CPUString: CPU, TuneCPUString: TuneCPU, HasMinSize)), |
336 | TLInfo(TM, *this) { |
337 | if (AArch64::isX18ReservedByDefault(TT)) |
338 | ReserveXRegister.set(18); |
339 | |
340 | CallLoweringInfo.reset(p: new AArch64CallLowering(*getTargetLowering())); |
341 | InlineAsmLoweringInfo.reset(p: new InlineAsmLowering(getTargetLowering())); |
342 | Legalizer.reset(p: new AArch64LegalizerInfo(*this)); |
343 | |
344 | auto *RBI = new AArch64RegisterBankInfo(*getRegisterInfo()); |
345 | |
346 | // FIXME: At this point, we can't rely on Subtarget having RBI. |
347 | // It's awkward to mix passing RBI and the Subtarget; should we pass |
348 | // TII/TRI as well? |
349 | InstSelector.reset(p: createAArch64InstructionSelector( |
350 | *static_cast<const AArch64TargetMachine *>(&TM), *this, *RBI)); |
351 | |
352 | RegBankInfo.reset(p: RBI); |
353 | |
354 | auto TRI = getRegisterInfo(); |
355 | StringSet<> ReservedRegNames; |
356 | ReservedRegNames.insert(begin: ReservedRegsForRA.begin(), end: ReservedRegsForRA.end()); |
357 | for (unsigned i = 0; i < 29; ++i) { |
358 | if (ReservedRegNames.count(Key: TRI->getName(RegNo: AArch64::X0 + i))) |
359 | ReserveXRegisterForRA.set(i); |
360 | } |
361 | // X30 is named LR, so we can't use TRI->getName to check X30. |
362 | if (ReservedRegNames.count(Key: "X30" ) || ReservedRegNames.count(Key: "LR" )) |
363 | ReserveXRegisterForRA.set(30); |
364 | // X29 is named FP, so we can't use TRI->getName to check X29. |
365 | if (ReservedRegNames.count(Key: "X29" ) || ReservedRegNames.count(Key: "FP" )) |
366 | ReserveXRegisterForRA.set(29); |
367 | |
368 | AddressCheckPSV.reset(p: new AddressCheckPseudoSourceValue(TM)); |
369 | } |
370 | |
371 | const CallLowering *AArch64Subtarget::getCallLowering() const { |
372 | return CallLoweringInfo.get(); |
373 | } |
374 | |
375 | const InlineAsmLowering *AArch64Subtarget::getInlineAsmLowering() const { |
376 | return InlineAsmLoweringInfo.get(); |
377 | } |
378 | |
379 | InstructionSelector *AArch64Subtarget::getInstructionSelector() const { |
380 | return InstSelector.get(); |
381 | } |
382 | |
383 | const LegalizerInfo *AArch64Subtarget::getLegalizerInfo() const { |
384 | return Legalizer.get(); |
385 | } |
386 | |
387 | const RegisterBankInfo *AArch64Subtarget::getRegBankInfo() const { |
388 | return RegBankInfo.get(); |
389 | } |
390 | |
391 | /// Find the target operand flags that describe how a global value should be |
392 | /// referenced for the current subtarget. |
393 | unsigned |
394 | AArch64Subtarget::ClassifyGlobalReference(const GlobalValue *GV, |
395 | const TargetMachine &TM) const { |
396 | // MachO large model always goes via a GOT, simply to get a single 8-byte |
397 | // absolute relocation on all global addresses. |
398 | if (TM.getCodeModel() == CodeModel::Large && isTargetMachO()) |
399 | return AArch64II::MO_GOT; |
400 | |
401 | // All globals dynamically protected by MTE must have their address tags |
402 | // synthesized. This is done by having the loader stash the tag in the GOT |
403 | // entry. Force all tagged globals (even ones with internal linkage) through |
404 | // the GOT. |
405 | if (GV->isTagged()) |
406 | return AArch64II::MO_GOT; |
407 | |
408 | if (!TM.shouldAssumeDSOLocal(GV)) { |
409 | if (GV->hasDLLImportStorageClass()) { |
410 | return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT; |
411 | } |
412 | if (getTargetTriple().isOSWindows()) |
413 | return AArch64II::MO_GOT | AArch64II::MO_COFFSTUB; |
414 | return AArch64II::MO_GOT; |
415 | } |
416 | |
417 | // The small code model's direct accesses use ADRP, which cannot |
418 | // necessarily produce the value 0 (if the code is above 4GB). |
419 | // Same for the tiny code model, where we have a pc relative LDR. |
420 | if ((useSmallAddressing() || TM.getCodeModel() == CodeModel::Tiny) && |
421 | GV->hasExternalWeakLinkage()) |
422 | return AArch64II::MO_GOT; |
423 | |
424 | // References to tagged globals are marked with MO_NC | MO_TAGGED to indicate |
425 | // that their nominal addresses are tagged and outside of the code model. In |
426 | // AArch64ExpandPseudo::expandMI we emit an additional instruction to set the |
427 | // tag if necessary based on MO_TAGGED. |
428 | if (AllowTaggedGlobals && !isa<FunctionType>(Val: GV->getValueType())) |
429 | return AArch64II::MO_NC | AArch64II::MO_TAGGED; |
430 | |
431 | return AArch64II::MO_NO_FLAG; |
432 | } |
433 | |
434 | unsigned AArch64Subtarget::classifyGlobalFunctionReference( |
435 | const GlobalValue *GV, const TargetMachine &TM) const { |
436 | // MachO large model always goes via a GOT, because we don't have the |
437 | // relocations available to do anything else.. |
438 | if (TM.getCodeModel() == CodeModel::Large && isTargetMachO() && |
439 | !GV->hasInternalLinkage()) |
440 | return AArch64II::MO_GOT; |
441 | |
442 | // NonLazyBind goes via GOT unless we know it's available locally. |
443 | auto *F = dyn_cast<Function>(Val: GV); |
444 | if ((!isTargetMachO() || MachOUseNonLazyBind) && F && |
445 | F->hasFnAttribute(Kind: Attribute::NonLazyBind) && !TM.shouldAssumeDSOLocal(GV)) |
446 | return AArch64II::MO_GOT; |
447 | |
448 | if (getTargetTriple().isOSWindows()) { |
449 | if (isWindowsArm64EC() && GV->getValueType()->isFunctionTy()) { |
450 | if (GV->hasDLLImportStorageClass()) { |
451 | // On Arm64EC, if we're calling a symbol from the import table |
452 | // directly, use MO_ARM64EC_CALLMANGLE. |
453 | return AArch64II::MO_GOT | AArch64II::MO_DLLIMPORT | |
454 | AArch64II::MO_ARM64EC_CALLMANGLE; |
455 | } |
456 | if (GV->hasExternalLinkage()) { |
457 | // If we're calling a symbol directly, use the mangled form in the |
458 | // call instruction. |
459 | return AArch64II::MO_ARM64EC_CALLMANGLE; |
460 | } |
461 | } |
462 | |
463 | // Use ClassifyGlobalReference for setting MO_DLLIMPORT/MO_COFFSTUB. |
464 | return ClassifyGlobalReference(GV, TM); |
465 | } |
466 | |
467 | return AArch64II::MO_NO_FLAG; |
468 | } |
469 | |
470 | void AArch64Subtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, |
471 | unsigned NumRegionInstrs) const { |
472 | // LNT run (at least on Cyclone) showed reasonably significant gains for |
473 | // bi-directional scheduling. 253.perlbmk. |
474 | Policy.OnlyTopDown = false; |
475 | Policy.OnlyBottomUp = false; |
476 | // Enabling or Disabling the latency heuristic is a close call: It seems to |
477 | // help nearly no benchmark on out-of-order architectures, on the other hand |
478 | // it regresses register pressure on a few benchmarking. |
479 | Policy.DisableLatencyHeuristic = DisableLatencySchedHeuristic; |
480 | } |
481 | |
482 | void AArch64Subtarget::adjustSchedDependency( |
483 | SUnit *Def, int DefOpIdx, SUnit *Use, int UseOpIdx, SDep &Dep, |
484 | const TargetSchedModel *SchedModel) const { |
485 | if (!SchedModel || Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || |
486 | !Def->isInstr() || !Use->isInstr() || |
487 | (Def->getInstr()->getOpcode() != TargetOpcode::BUNDLE && |
488 | Use->getInstr()->getOpcode() != TargetOpcode::BUNDLE)) |
489 | return; |
490 | |
491 | // If the Def is a BUNDLE, find the last instruction in the bundle that defs |
492 | // the register. |
493 | const MachineInstr *DefMI = Def->getInstr(); |
494 | if (DefMI->getOpcode() == TargetOpcode::BUNDLE) { |
495 | Register Reg = DefMI->getOperand(i: DefOpIdx).getReg(); |
496 | for (const auto &Op : const_mi_bundle_ops(MI: *DefMI)) { |
497 | if (Op.isReg() && Op.isDef() && Op.getReg() == Reg) { |
498 | DefMI = Op.getParent(); |
499 | DefOpIdx = Op.getOperandNo(); |
500 | } |
501 | } |
502 | } |
503 | |
504 | // If the Use is a BUNDLE, find the first instruction that uses the Reg. |
505 | const MachineInstr *UseMI = Use->getInstr(); |
506 | if (UseMI->getOpcode() == TargetOpcode::BUNDLE) { |
507 | Register Reg = UseMI->getOperand(i: UseOpIdx).getReg(); |
508 | for (const auto &Op : const_mi_bundle_ops(MI: *UseMI)) { |
509 | if (Op.isReg() && Op.isUse() && Op.getReg() == Reg) { |
510 | UseMI = Op.getParent(); |
511 | UseOpIdx = Op.getOperandNo(); |
512 | break; |
513 | } |
514 | } |
515 | } |
516 | |
517 | Dep.setLatency( |
518 | SchedModel->computeOperandLatency(DefMI, DefOperIdx: DefOpIdx, UseMI, UseOperIdx: UseOpIdx)); |
519 | } |
520 | |
521 | bool AArch64Subtarget::enableEarlyIfConversion() const { |
522 | return EnableEarlyIfConvert; |
523 | } |
524 | |
525 | bool AArch64Subtarget::supportsAddressTopByteIgnored() const { |
526 | if (!UseAddressTopByteIgnored) |
527 | return false; |
528 | |
529 | if (TargetTriple.isDriverKit()) |
530 | return true; |
531 | if (TargetTriple.isiOS()) { |
532 | return TargetTriple.getiOSVersion() >= VersionTuple(8); |
533 | } |
534 | |
535 | return false; |
536 | } |
537 | |
538 | std::unique_ptr<PBQPRAConstraint> |
539 | AArch64Subtarget::getCustomPBQPConstraints() const { |
540 | return balanceFPOps() ? std::make_unique<A57ChainingConstraint>() : nullptr; |
541 | } |
542 | |
543 | void AArch64Subtarget::mirFileLoaded(MachineFunction &MF) const { |
544 | // We usually compute max call frame size after ISel. Do the computation now |
545 | // if the .mir file didn't specify it. Note that this will probably give you |
546 | // bogus values after PEI has eliminated the callframe setup/destroy pseudo |
547 | // instructions, specify explicitly if you need it to be correct. |
548 | MachineFrameInfo &MFI = MF.getFrameInfo(); |
549 | if (!MFI.isMaxCallFrameSizeComputed()) |
550 | MFI.computeMaxCallFrameSize(MF); |
551 | } |
552 | |
553 | bool AArch64Subtarget::useAA() const { return UseAA; } |
554 | |
555 | // If return address signing is enabled, tail calls are emitted as follows: |
556 | // |
557 | // ``` |
558 | // <authenticate LR> |
559 | // <check LR> |
560 | // TCRETURN ; the callee may sign and spill the LR in its prologue |
561 | // ``` |
562 | // |
563 | // LR may require explicit checking because if FEAT_FPAC is not implemented |
564 | // and LR was tampered with, then `<authenticate LR>` will not generate an |
565 | // exception on its own. Later, if the callee spills the signed LR value and |
566 | // neither FEAT_PAuth2 nor FEAT_EPAC are implemented, the valid PAC replaces |
567 | // the higher bits of LR thus hiding the authentication failure. |
568 | AArch64PAuth::AuthCheckMethod AArch64Subtarget::getAuthenticatedLRCheckMethod( |
569 | const MachineFunction &MF) const { |
570 | // TODO: Check subtarget for the scheme. Present variant is a default for |
571 | // pauthtest ABI. |
572 | if (MF.getFunction().hasFnAttribute(Kind: "ptrauth-returns" ) && |
573 | MF.getFunction().hasFnAttribute(Kind: "ptrauth-auth-traps" )) |
574 | return AArch64PAuth::AuthCheckMethod::HighBitsNoTBI; |
575 | if (AuthenticatedLRCheckMethod.getNumOccurrences()) |
576 | return AuthenticatedLRCheckMethod; |
577 | |
578 | // At now, use None by default because checks may introduce an unexpected |
579 | // performance regression or incompatibility with execute-only mappings. |
580 | return AArch64PAuth::AuthCheckMethod::None; |
581 | } |
582 | |
583 | std::optional<uint16_t> |
584 | AArch64Subtarget::getPtrAuthBlockAddressDiscriminatorIfEnabled( |
585 | const Function &ParentFn) const { |
586 | if (!ParentFn.hasFnAttribute(Kind: "ptrauth-indirect-gotos" )) |
587 | return std::nullopt; |
588 | // We currently have one simple mechanism for all targets. |
589 | // This isn't ABI, so we can always do better in the future. |
590 | return getPointerAuthStableSipHash( |
591 | S: (Twine(ParentFn.getName()) + " blockaddress" ).str()); |
592 | } |
593 | |
594 | bool AArch64Subtarget::enableMachinePipeliner() const { |
595 | return getSchedModel().hasInstrSchedModel(); |
596 | } |
597 | |