1 | //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //==-----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// Defines an instruction selector for the AMDGPU target. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "AMDGPUISelDAGToDAG.h" |
15 | #include "AMDGPU.h" |
16 | #include "AMDGPUInstrInfo.h" |
17 | #include "AMDGPUSubtarget.h" |
18 | #include "AMDGPUTargetMachine.h" |
19 | #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
20 | #include "MCTargetDesc/R600MCTargetDesc.h" |
21 | #include "R600RegisterInfo.h" |
22 | #include "SIISelLowering.h" |
23 | #include "SIMachineFunctionInfo.h" |
24 | #include "llvm/Analysis/UniformityAnalysis.h" |
25 | #include "llvm/Analysis/ValueTracking.h" |
26 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
27 | #include "llvm/CodeGen/SelectionDAG.h" |
28 | #include "llvm/CodeGen/SelectionDAGISel.h" |
29 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
30 | #include "llvm/IR/IntrinsicsAMDGPU.h" |
31 | #include "llvm/InitializePasses.h" |
32 | #include "llvm/Support/ErrorHandling.h" |
33 | |
34 | #ifdef EXPENSIVE_CHECKS |
35 | #include "llvm/Analysis/LoopInfo.h" |
36 | #include "llvm/IR/Dominators.h" |
37 | #endif |
38 | |
39 | #define DEBUG_TYPE "amdgpu-isel" |
40 | |
41 | using namespace llvm; |
42 | |
43 | //===----------------------------------------------------------------------===// |
44 | // Instruction Selector Implementation |
45 | //===----------------------------------------------------------------------===// |
46 | |
47 | namespace { |
48 | static SDValue stripBitcast(SDValue Val) { |
49 | return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(i: 0) : Val; |
50 | } |
51 | |
52 | // Figure out if this is really an extract of the high 16-bits of a dword. |
53 | static bool (SDValue In, SDValue &Out) { |
54 | In = stripBitcast(Val: In); |
55 | |
56 | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
57 | if (ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1))) { |
58 | if (!Idx->isOne()) |
59 | return false; |
60 | Out = In.getOperand(i: 0); |
61 | return true; |
62 | } |
63 | } |
64 | |
65 | if (In.getOpcode() != ISD::TRUNCATE) |
66 | return false; |
67 | |
68 | SDValue Srl = In.getOperand(i: 0); |
69 | if (Srl.getOpcode() == ISD::SRL) { |
70 | if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: Srl.getOperand(i: 1))) { |
71 | if (ShiftAmt->getZExtValue() == 16) { |
72 | Out = stripBitcast(Val: Srl.getOperand(i: 0)); |
73 | return true; |
74 | } |
75 | } |
76 | } |
77 | |
78 | return false; |
79 | } |
80 | |
81 | // Look through operations that obscure just looking at the low 16-bits of the |
82 | // same register. |
83 | static SDValue (SDValue In) { |
84 | if (In.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
85 | SDValue Idx = In.getOperand(i: 1); |
86 | if (isNullConstant(V: Idx) && In.getValueSizeInBits() <= 32) |
87 | return In.getOperand(i: 0); |
88 | } |
89 | |
90 | if (In.getOpcode() == ISD::TRUNCATE) { |
91 | SDValue Src = In.getOperand(i: 0); |
92 | if (Src.getValueType().getSizeInBits() == 32) |
93 | return stripBitcast(Val: Src); |
94 | } |
95 | |
96 | return In; |
97 | } |
98 | |
99 | } // end anonymous namespace |
100 | |
101 | INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel" , |
102 | "AMDGPU DAG->DAG Pattern Instruction Selection" , false, |
103 | false) |
104 | INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo) |
105 | INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis) |
106 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
107 | #ifdef EXPENSIVE_CHECKS |
108 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
109 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
110 | #endif |
111 | INITIALIZE_PASS_END(AMDGPUDAGToDAGISelLegacy, "amdgpu-isel" , |
112 | "AMDGPU DAG->DAG Pattern Instruction Selection" , false, |
113 | false) |
114 | |
115 | /// This pass converts a legalized DAG into a AMDGPU-specific |
116 | // DAG, ready for instruction scheduling. |
117 | FunctionPass *llvm::createAMDGPUISelDag(TargetMachine &TM, |
118 | CodeGenOptLevel OptLevel) { |
119 | return new AMDGPUDAGToDAGISelLegacy(TM, OptLevel); |
120 | } |
121 | |
122 | AMDGPUDAGToDAGISel::AMDGPUDAGToDAGISel(TargetMachine &TM, |
123 | CodeGenOptLevel OptLevel) |
124 | : SelectionDAGISel(TM, OptLevel) { |
125 | EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG; |
126 | } |
127 | |
128 | bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { |
129 | Subtarget = &MF.getSubtarget<GCNSubtarget>(); |
130 | Subtarget->checkSubtargetFeatures(F: MF.getFunction()); |
131 | Mode = SIModeRegisterDefaults(MF.getFunction(), *Subtarget); |
132 | return SelectionDAGISel::runOnMachineFunction(mf&: MF); |
133 | } |
134 | |
135 | bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc) const { |
136 | // XXX - only need to list legal operations. |
137 | switch (Opc) { |
138 | case ISD::FADD: |
139 | case ISD::FSUB: |
140 | case ISD::FMUL: |
141 | case ISD::FDIV: |
142 | case ISD::FREM: |
143 | case ISD::FCANONICALIZE: |
144 | case ISD::UINT_TO_FP: |
145 | case ISD::SINT_TO_FP: |
146 | case ISD::FABS: |
147 | // Fabs is lowered to a bit operation, but it's an and which will clear the |
148 | // high bits anyway. |
149 | case ISD::FSQRT: |
150 | case ISD::FSIN: |
151 | case ISD::FCOS: |
152 | case ISD::FPOWI: |
153 | case ISD::FPOW: |
154 | case ISD::FLOG: |
155 | case ISD::FLOG2: |
156 | case ISD::FLOG10: |
157 | case ISD::FEXP: |
158 | case ISD::FEXP2: |
159 | case ISD::FCEIL: |
160 | case ISD::FTRUNC: |
161 | case ISD::FRINT: |
162 | case ISD::FNEARBYINT: |
163 | case ISD::FROUNDEVEN: |
164 | case ISD::FROUND: |
165 | case ISD::FFLOOR: |
166 | case ISD::FMINNUM: |
167 | case ISD::FMAXNUM: |
168 | case ISD::FLDEXP: |
169 | case AMDGPUISD::FRACT: |
170 | case AMDGPUISD::CLAMP: |
171 | case AMDGPUISD::COS_HW: |
172 | case AMDGPUISD::SIN_HW: |
173 | case AMDGPUISD::FMIN3: |
174 | case AMDGPUISD::FMAX3: |
175 | case AMDGPUISD::FMED3: |
176 | case AMDGPUISD::FMAD_FTZ: |
177 | case AMDGPUISD::RCP: |
178 | case AMDGPUISD::RSQ: |
179 | case AMDGPUISD::RCP_IFLAG: |
180 | // On gfx10, all 16-bit instructions preserve the high bits. |
181 | return Subtarget->getGeneration() <= AMDGPUSubtarget::GFX9; |
182 | case ISD::FP_ROUND: |
183 | // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the |
184 | // high bits on gfx9. |
185 | // TODO: If we had the source node we could see if the source was fma/mad |
186 | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
187 | case ISD::FMA: |
188 | case ISD::FMAD: |
189 | case AMDGPUISD::DIV_FIXUP: |
190 | return Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
191 | default: |
192 | // fcopysign, select and others may be lowered to 32-bit bit operations |
193 | // which don't zero the high bits. |
194 | return false; |
195 | } |
196 | } |
197 | |
198 | bool AMDGPUDAGToDAGISelLegacy::runOnMachineFunction(MachineFunction &MF) { |
199 | #ifdef EXPENSIVE_CHECKS |
200 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
201 | LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
202 | for (auto &L : LI->getLoopsInPreorder()) { |
203 | assert(L->isLCSSAForm(DT)); |
204 | } |
205 | #endif |
206 | return SelectionDAGISelLegacy::runOnMachineFunction(MF); |
207 | } |
208 | |
209 | void AMDGPUDAGToDAGISelLegacy::getAnalysisUsage(AnalysisUsage &AU) const { |
210 | AU.addRequired<AMDGPUArgumentUsageInfo>(); |
211 | AU.addRequired<UniformityInfoWrapperPass>(); |
212 | #ifdef EXPENSIVE_CHECKS |
213 | AU.addRequired<DominatorTreeWrapperPass>(); |
214 | AU.addRequired<LoopInfoWrapperPass>(); |
215 | #endif |
216 | SelectionDAGISelLegacy::getAnalysisUsage(AU); |
217 | } |
218 | |
219 | bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const { |
220 | assert(Subtarget->d16PreservesUnusedBits()); |
221 | MVT VT = N->getValueType(ResNo: 0).getSimpleVT(); |
222 | if (VT != MVT::v2i16 && VT != MVT::v2f16) |
223 | return false; |
224 | |
225 | SDValue Lo = N->getOperand(Num: 0); |
226 | SDValue Hi = N->getOperand(Num: 1); |
227 | |
228 | LoadSDNode *LdHi = dyn_cast<LoadSDNode>(Val: stripBitcast(Val: Hi)); |
229 | |
230 | // build_vector lo, (load ptr) -> load_d16_hi ptr, lo |
231 | // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo |
232 | // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo |
233 | |
234 | // Need to check for possible indirect dependencies on the other half of the |
235 | // vector to avoid introducing a cycle. |
236 | if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(N: Lo.getNode())) { |
237 | SDVTList VTList = CurDAG->getVTList(VT1: VT, VT2: MVT::Other); |
238 | |
239 | SDValue TiedIn = CurDAG->getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: SDLoc(N), VT, Operand: Lo); |
240 | SDValue Ops[] = { |
241 | LdHi->getChain(), LdHi->getBasePtr(), TiedIn |
242 | }; |
243 | |
244 | unsigned LoadOp = AMDGPUISD::LOAD_D16_HI; |
245 | if (LdHi->getMemoryVT() == MVT::i8) { |
246 | LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ? |
247 | AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8; |
248 | } else { |
249 | assert(LdHi->getMemoryVT() == MVT::i16); |
250 | } |
251 | |
252 | SDValue NewLoadHi = |
253 | CurDAG->getMemIntrinsicNode(Opcode: LoadOp, dl: SDLoc(LdHi), VTList, |
254 | Ops, MemVT: LdHi->getMemoryVT(), |
255 | MMO: LdHi->getMemOperand()); |
256 | |
257 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: NewLoadHi); |
258 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(LdHi, 1), To: NewLoadHi.getValue(R: 1)); |
259 | return true; |
260 | } |
261 | |
262 | // build_vector (load ptr), hi -> load_d16_lo ptr, hi |
263 | // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi |
264 | // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi |
265 | LoadSDNode *LdLo = dyn_cast<LoadSDNode>(Val: stripBitcast(Val: Lo)); |
266 | if (LdLo && Lo.hasOneUse()) { |
267 | SDValue TiedIn = getHi16Elt(In: Hi); |
268 | if (!TiedIn || LdLo->isPredecessorOf(N: TiedIn.getNode())) |
269 | return false; |
270 | |
271 | SDVTList VTList = CurDAG->getVTList(VT1: VT, VT2: MVT::Other); |
272 | unsigned LoadOp = AMDGPUISD::LOAD_D16_LO; |
273 | if (LdLo->getMemoryVT() == MVT::i8) { |
274 | LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ? |
275 | AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8; |
276 | } else { |
277 | assert(LdLo->getMemoryVT() == MVT::i16); |
278 | } |
279 | |
280 | TiedIn = CurDAG->getNode(Opcode: ISD::BITCAST, DL: SDLoc(N), VT, Operand: TiedIn); |
281 | |
282 | SDValue Ops[] = { |
283 | LdLo->getChain(), LdLo->getBasePtr(), TiedIn |
284 | }; |
285 | |
286 | SDValue NewLoadLo = |
287 | CurDAG->getMemIntrinsicNode(Opcode: LoadOp, dl: SDLoc(LdLo), VTList, |
288 | Ops, MemVT: LdLo->getMemoryVT(), |
289 | MMO: LdLo->getMemOperand()); |
290 | |
291 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: NewLoadLo); |
292 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(LdLo, 1), To: NewLoadLo.getValue(R: 1)); |
293 | return true; |
294 | } |
295 | |
296 | return false; |
297 | } |
298 | |
299 | void AMDGPUDAGToDAGISel::PreprocessISelDAG() { |
300 | if (!Subtarget->d16PreservesUnusedBits()) |
301 | return; |
302 | |
303 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end(); |
304 | |
305 | bool MadeChange = false; |
306 | while (Position != CurDAG->allnodes_begin()) { |
307 | SDNode *N = &*--Position; |
308 | if (N->use_empty()) |
309 | continue; |
310 | |
311 | switch (N->getOpcode()) { |
312 | case ISD::BUILD_VECTOR: |
313 | // TODO: Match load d16 from shl (extload:i16), 16 |
314 | MadeChange |= matchLoadD16FromBuildVector(N); |
315 | break; |
316 | default: |
317 | break; |
318 | } |
319 | } |
320 | |
321 | if (MadeChange) { |
322 | CurDAG->RemoveDeadNodes(); |
323 | LLVM_DEBUG(dbgs() << "After PreProcess:\n" ; |
324 | CurDAG->dump();); |
325 | } |
326 | } |
327 | |
328 | bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N) const { |
329 | if (N->isUndef()) |
330 | return true; |
331 | |
332 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
333 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N)) |
334 | return TII->isInlineConstant(Imm: C->getAPIntValue()); |
335 | |
336 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val: N)) |
337 | return TII->isInlineConstant(Imm: C->getValueAPF()); |
338 | |
339 | return false; |
340 | } |
341 | |
342 | /// Determine the register class for \p OpNo |
343 | /// \returns The register class of the virtual register that will be used for |
344 | /// the given operand number \OpNo or NULL if the register class cannot be |
345 | /// determined. |
346 | const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N, |
347 | unsigned OpNo) const { |
348 | if (!N->isMachineOpcode()) { |
349 | if (N->getOpcode() == ISD::CopyToReg) { |
350 | Register Reg = cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg(); |
351 | if (Reg.isVirtual()) { |
352 | MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo(); |
353 | return MRI.getRegClass(Reg); |
354 | } |
355 | |
356 | const SIRegisterInfo *TRI |
357 | = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo(); |
358 | return TRI->getPhysRegBaseClass(Reg); |
359 | } |
360 | |
361 | return nullptr; |
362 | } |
363 | |
364 | switch (N->getMachineOpcode()) { |
365 | default: { |
366 | const MCInstrDesc &Desc = |
367 | Subtarget->getInstrInfo()->get(Opcode: N->getMachineOpcode()); |
368 | unsigned OpIdx = Desc.getNumDefs() + OpNo; |
369 | if (OpIdx >= Desc.getNumOperands()) |
370 | return nullptr; |
371 | int RegClass = Desc.operands()[OpIdx].RegClass; |
372 | if (RegClass == -1) |
373 | return nullptr; |
374 | |
375 | return Subtarget->getRegisterInfo()->getRegClass(RCID: RegClass); |
376 | } |
377 | case AMDGPU::REG_SEQUENCE: { |
378 | unsigned RCID = N->getConstantOperandVal(Num: 0); |
379 | const TargetRegisterClass *SuperRC = |
380 | Subtarget->getRegisterInfo()->getRegClass(RCID); |
381 | |
382 | SDValue SubRegOp = N->getOperand(Num: OpNo + 1); |
383 | unsigned SubRegIdx = SubRegOp->getAsZExtVal(); |
384 | return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC, |
385 | SubRegIdx); |
386 | } |
387 | } |
388 | } |
389 | |
390 | SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain, |
391 | SDValue Glue) const { |
392 | SmallVector <SDValue, 8> Ops; |
393 | Ops.push_back(Elt: NewChain); // Replace the chain. |
394 | for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
395 | Ops.push_back(Elt: N->getOperand(Num: i)); |
396 | |
397 | Ops.push_back(Elt: Glue); |
398 | return CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: N->getVTList(), Ops); |
399 | } |
400 | |
401 | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const { |
402 | const SITargetLowering& Lowering = |
403 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
404 | |
405 | assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain" ); |
406 | |
407 | SDValue M0 = Lowering.copyToM0(DAG&: *CurDAG, Chain: N->getOperand(Num: 0), DL: SDLoc(N), V: Val); |
408 | return glueCopyToOp(N, NewChain: M0, Glue: M0.getValue(R: 1)); |
409 | } |
410 | |
411 | SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const { |
412 | unsigned AS = cast<MemSDNode>(Val: N)->getAddressSpace(); |
413 | if (AS == AMDGPUAS::LOCAL_ADDRESS) { |
414 | if (Subtarget->ldsRequiresM0Init()) |
415 | return glueCopyToM0(N, Val: CurDAG->getTargetConstant(Val: -1, DL: SDLoc(N), VT: MVT::i32)); |
416 | } else if (AS == AMDGPUAS::REGION_ADDRESS) { |
417 | MachineFunction &MF = CurDAG->getMachineFunction(); |
418 | unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize(); |
419 | return |
420 | glueCopyToM0(N, Val: CurDAG->getTargetConstant(Val: Value, DL: SDLoc(N), VT: MVT::i32)); |
421 | } |
422 | return N; |
423 | } |
424 | |
425 | MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm, |
426 | EVT VT) const { |
427 | SDNode *Lo = CurDAG->getMachineNode( |
428 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
429 | Op1: CurDAG->getTargetConstant(Val: Imm & 0xFFFFFFFF, DL, VT: MVT::i32)); |
430 | SDNode *Hi = |
431 | CurDAG->getMachineNode(Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
432 | Op1: CurDAG->getTargetConstant(Val: Imm >> 32, DL, VT: MVT::i32)); |
433 | const SDValue Ops[] = { |
434 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32), |
435 | SDValue(Lo, 0), CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32), |
436 | SDValue(Hi, 0), CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32)}; |
437 | |
438 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT, Ops); |
439 | } |
440 | |
441 | void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) { |
442 | EVT VT = N->getValueType(ResNo: 0); |
443 | unsigned NumVectorElts = VT.getVectorNumElements(); |
444 | EVT EltVT = VT.getVectorElementType(); |
445 | SDLoc DL(N); |
446 | SDValue RegClass = CurDAG->getTargetConstant(Val: RegClassID, DL, VT: MVT::i32); |
447 | |
448 | if (NumVectorElts == 1) { |
449 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::COPY_TO_REGCLASS, VT: EltVT, Op1: N->getOperand(Num: 0), |
450 | Op2: RegClass); |
451 | return; |
452 | } |
453 | |
454 | assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not " |
455 | "supported yet" ); |
456 | // 32 = Max Num Vector Elements |
457 | // 2 = 2 REG_SEQUENCE operands per element (value, subreg index) |
458 | // 1 = Vector Register Class |
459 | SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1); |
460 | |
461 | bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() == |
462 | Triple::amdgcn; |
463 | RegSeqArgs[0] = CurDAG->getTargetConstant(Val: RegClassID, DL, VT: MVT::i32); |
464 | bool IsRegSeq = true; |
465 | unsigned NOps = N->getNumOperands(); |
466 | for (unsigned i = 0; i < NOps; i++) { |
467 | // XXX: Why is this here? |
468 | if (isa<RegisterSDNode>(Val: N->getOperand(Num: i))) { |
469 | IsRegSeq = false; |
470 | break; |
471 | } |
472 | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(Channel: i) |
473 | : R600RegisterInfo::getSubRegFromChannel(Channel: i); |
474 | RegSeqArgs[1 + (2 * i)] = N->getOperand(Num: i); |
475 | RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Val: Sub, DL, VT: MVT::i32); |
476 | } |
477 | if (NOps != NumVectorElts) { |
478 | // Fill in the missing undef elements if this was a scalar_to_vector. |
479 | assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts); |
480 | MachineSDNode *ImpDef = CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, |
481 | dl: DL, VT: EltVT); |
482 | for (unsigned i = NOps; i < NumVectorElts; ++i) { |
483 | unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(Channel: i) |
484 | : R600RegisterInfo::getSubRegFromChannel(Channel: i); |
485 | RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0); |
486 | RegSeqArgs[1 + (2 * i) + 1] = |
487 | CurDAG->getTargetConstant(Val: Sub, DL, VT: MVT::i32); |
488 | } |
489 | } |
490 | |
491 | if (!IsRegSeq) |
492 | SelectCode(N); |
493 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::REG_SEQUENCE, VTs: N->getVTList(), Ops: RegSeqArgs); |
494 | } |
495 | |
496 | void AMDGPUDAGToDAGISel::Select(SDNode *N) { |
497 | unsigned int Opc = N->getOpcode(); |
498 | if (N->isMachineOpcode()) { |
499 | N->setNodeId(-1); |
500 | return; // Already selected. |
501 | } |
502 | |
503 | // isa<MemSDNode> almost works but is slightly too permissive for some DS |
504 | // intrinsics. |
505 | if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(Val: N)) { |
506 | N = glueCopyToM0LDSInit(N); |
507 | SelectCode(N); |
508 | return; |
509 | } |
510 | |
511 | switch (Opc) { |
512 | default: |
513 | break; |
514 | // We are selecting i64 ADD here instead of custom lower it during |
515 | // DAG legalization, so we can fold some i64 ADDs used for address |
516 | // calculation into the LOAD and STORE instructions. |
517 | case ISD::ADDC: |
518 | case ISD::ADDE: |
519 | case ISD::SUBC: |
520 | case ISD::SUBE: { |
521 | if (N->getValueType(ResNo: 0) != MVT::i64) |
522 | break; |
523 | |
524 | SelectADD_SUB_I64(N); |
525 | return; |
526 | } |
527 | case ISD::UADDO_CARRY: |
528 | case ISD::USUBO_CARRY: |
529 | if (N->getValueType(ResNo: 0) != MVT::i32) |
530 | break; |
531 | |
532 | SelectAddcSubb(N); |
533 | return; |
534 | case ISD::UADDO: |
535 | case ISD::USUBO: { |
536 | SelectUADDO_USUBO(N); |
537 | return; |
538 | } |
539 | case AMDGPUISD::FMUL_W_CHAIN: { |
540 | SelectFMUL_W_CHAIN(N); |
541 | return; |
542 | } |
543 | case AMDGPUISD::FMA_W_CHAIN: { |
544 | SelectFMA_W_CHAIN(N); |
545 | return; |
546 | } |
547 | |
548 | case ISD::SCALAR_TO_VECTOR: |
549 | case ISD::BUILD_VECTOR: { |
550 | EVT VT = N->getValueType(ResNo: 0); |
551 | unsigned NumVectorElts = VT.getVectorNumElements(); |
552 | if (VT.getScalarSizeInBits() == 16) { |
553 | if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) { |
554 | if (SDNode *Packed = packConstantV2I16(N, DAG&: *CurDAG)) { |
555 | ReplaceNode(F: N, T: Packed); |
556 | return; |
557 | } |
558 | } |
559 | |
560 | break; |
561 | } |
562 | |
563 | assert(VT.getVectorElementType().bitsEq(MVT::i32)); |
564 | unsigned RegClassID = |
565 | SIRegisterInfo::getSGPRClassForBitWidth(BitWidth: NumVectorElts * 32)->getID(); |
566 | SelectBuildVector(N, RegClassID); |
567 | return; |
568 | } |
569 | case ISD::BUILD_PAIR: { |
570 | SDValue RC, SubReg0, SubReg1; |
571 | SDLoc DL(N); |
572 | if (N->getValueType(ResNo: 0) == MVT::i128) { |
573 | RC = CurDAG->getTargetConstant(Val: AMDGPU::SGPR_128RegClassID, DL, VT: MVT::i32); |
574 | SubReg0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0_sub1, DL, VT: MVT::i32); |
575 | SubReg1 = CurDAG->getTargetConstant(Val: AMDGPU::sub2_sub3, DL, VT: MVT::i32); |
576 | } else if (N->getValueType(ResNo: 0) == MVT::i64) { |
577 | RC = CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32); |
578 | SubReg0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
579 | SubReg1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
580 | } else { |
581 | llvm_unreachable("Unhandled value type for BUILD_PAIR" ); |
582 | } |
583 | const SDValue Ops[] = { RC, N->getOperand(Num: 0), SubReg0, |
584 | N->getOperand(Num: 1), SubReg1 }; |
585 | ReplaceNode(F: N, T: CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, |
586 | VT: N->getValueType(ResNo: 0), Ops)); |
587 | return; |
588 | } |
589 | |
590 | case ISD::Constant: |
591 | case ISD::ConstantFP: { |
592 | if (N->getValueType(ResNo: 0).getSizeInBits() != 64 || isInlineImmediate(N)) |
593 | break; |
594 | |
595 | uint64_t Imm; |
596 | if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(Val: N)) { |
597 | Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue(); |
598 | if (AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: true)) |
599 | break; |
600 | } else { |
601 | ConstantSDNode *C = cast<ConstantSDNode>(Val: N); |
602 | Imm = C->getZExtValue(); |
603 | if (AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: false)) |
604 | break; |
605 | } |
606 | |
607 | SDLoc DL(N); |
608 | ReplaceNode(F: N, T: buildSMovImm64(DL, Imm, VT: N->getValueType(ResNo: 0))); |
609 | return; |
610 | } |
611 | case AMDGPUISD::BFE_I32: |
612 | case AMDGPUISD::BFE_U32: { |
613 | // There is a scalar version available, but unlike the vector version which |
614 | // has a separate operand for the offset and width, the scalar version packs |
615 | // the width and offset into a single operand. Try to move to the scalar |
616 | // version if the offsets are constant, so that we can try to keep extended |
617 | // loads of kernel arguments in SGPRs. |
618 | |
619 | // TODO: Technically we could try to pattern match scalar bitshifts of |
620 | // dynamic values, but it's probably not useful. |
621 | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
622 | if (!Offset) |
623 | break; |
624 | |
625 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 2)); |
626 | if (!Width) |
627 | break; |
628 | |
629 | bool Signed = Opc == AMDGPUISD::BFE_I32; |
630 | |
631 | uint32_t OffsetVal = Offset->getZExtValue(); |
632 | uint32_t WidthVal = Width->getZExtValue(); |
633 | |
634 | ReplaceNode(F: N, T: getBFE32(IsSigned: Signed, DL: SDLoc(N), Val: N->getOperand(Num: 0), Offset: OffsetVal, |
635 | Width: WidthVal)); |
636 | return; |
637 | } |
638 | case AMDGPUISD::DIV_SCALE: { |
639 | SelectDIV_SCALE(N); |
640 | return; |
641 | } |
642 | case AMDGPUISD::MAD_I64_I32: |
643 | case AMDGPUISD::MAD_U64_U32: { |
644 | SelectMAD_64_32(N); |
645 | return; |
646 | } |
647 | case ISD::SMUL_LOHI: |
648 | case ISD::UMUL_LOHI: |
649 | return SelectMUL_LOHI(N); |
650 | case ISD::CopyToReg: { |
651 | const SITargetLowering& Lowering = |
652 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
653 | N = Lowering.legalizeTargetIndependentNode(Node: N, DAG&: *CurDAG); |
654 | break; |
655 | } |
656 | case ISD::AND: |
657 | case ISD::SRL: |
658 | case ISD::SRA: |
659 | case ISD::SIGN_EXTEND_INREG: |
660 | if (N->getValueType(ResNo: 0) != MVT::i32) |
661 | break; |
662 | |
663 | SelectS_BFE(N); |
664 | return; |
665 | case ISD::BRCOND: |
666 | SelectBRCOND(N); |
667 | return; |
668 | case ISD::FP_EXTEND: |
669 | SelectFP_EXTEND(N); |
670 | return; |
671 | case AMDGPUISD::CVT_PKRTZ_F16_F32: |
672 | case AMDGPUISD::CVT_PKNORM_I16_F32: |
673 | case AMDGPUISD::CVT_PKNORM_U16_F32: |
674 | case AMDGPUISD::CVT_PK_U16_U32: |
675 | case AMDGPUISD::CVT_PK_I16_I32: { |
676 | // Hack around using a legal type if f16 is illegal. |
677 | if (N->getValueType(ResNo: 0) == MVT::i32) { |
678 | MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16; |
679 | N = CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: CurDAG->getVTList(VT: NewVT), |
680 | Ops: { N->getOperand(Num: 0), N->getOperand(Num: 1) }); |
681 | SelectCode(N); |
682 | return; |
683 | } |
684 | |
685 | break; |
686 | } |
687 | case ISD::INTRINSIC_W_CHAIN: { |
688 | SelectINTRINSIC_W_CHAIN(N); |
689 | return; |
690 | } |
691 | case ISD::INTRINSIC_WO_CHAIN: { |
692 | SelectINTRINSIC_WO_CHAIN(N); |
693 | return; |
694 | } |
695 | case ISD::INTRINSIC_VOID: { |
696 | SelectINTRINSIC_VOID(N); |
697 | return; |
698 | } |
699 | case AMDGPUISD::WAVE_ADDRESS: { |
700 | SelectWAVE_ADDRESS(N); |
701 | return; |
702 | } |
703 | case ISD::STACKRESTORE: { |
704 | SelectSTACKRESTORE(N); |
705 | return; |
706 | } |
707 | } |
708 | |
709 | SelectCode(N); |
710 | } |
711 | |
712 | bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const { |
713 | const BasicBlock *BB = FuncInfo->MBB->getBasicBlock(); |
714 | const Instruction *Term = BB->getTerminator(); |
715 | return Term->getMetadata(Kind: "amdgpu.uniform" ) || |
716 | Term->getMetadata(Kind: "structurizecfg.uniform" ); |
717 | } |
718 | |
719 | bool AMDGPUDAGToDAGISel::isUnneededShiftMask(const SDNode *N, |
720 | unsigned ShAmtBits) const { |
721 | assert(N->getOpcode() == ISD::AND); |
722 | |
723 | const APInt &RHS = N->getConstantOperandAPInt(Num: 1); |
724 | if (RHS.countr_one() >= ShAmtBits) |
725 | return true; |
726 | |
727 | const APInt &LHSKnownZeros = CurDAG->computeKnownBits(Op: N->getOperand(Num: 0)).Zero; |
728 | return (LHSKnownZeros | RHS).countr_one() >= ShAmtBits; |
729 | } |
730 | |
731 | static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr, |
732 | SDValue &N0, SDValue &N1) { |
733 | if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST && |
734 | Addr.getOperand(i: 0).getOpcode() == ISD::BUILD_VECTOR) { |
735 | // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e. |
736 | // (i64 (bitcast (v2i32 (build_vector |
737 | // (or (extract_vector_elt V, 0), OFFSET), |
738 | // (extract_vector_elt V, 1))))) |
739 | SDValue Lo = Addr.getOperand(i: 0).getOperand(i: 0); |
740 | if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Op: Lo)) { |
741 | SDValue BaseLo = Lo.getOperand(i: 0); |
742 | SDValue BaseHi = Addr.getOperand(i: 0).getOperand(i: 1); |
743 | // Check that split base (Lo and Hi) are extracted from the same one. |
744 | if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
745 | BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT && |
746 | BaseLo.getOperand(i: 0) == BaseHi.getOperand(i: 0) && |
747 | // Lo is statically extracted from index 0. |
748 | isa<ConstantSDNode>(Val: BaseLo.getOperand(i: 1)) && |
749 | BaseLo.getConstantOperandVal(i: 1) == 0 && |
750 | // Hi is statically extracted from index 0. |
751 | isa<ConstantSDNode>(Val: BaseHi.getOperand(i: 1)) && |
752 | BaseHi.getConstantOperandVal(i: 1) == 1) { |
753 | N0 = BaseLo.getOperand(i: 0).getOperand(i: 0); |
754 | N1 = Lo.getOperand(i: 1); |
755 | return true; |
756 | } |
757 | } |
758 | } |
759 | return false; |
760 | } |
761 | |
762 | bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr, SDValue &LHS, |
763 | SDValue &RHS) const { |
764 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
765 | LHS = Addr.getOperand(i: 0); |
766 | RHS = Addr.getOperand(i: 1); |
767 | return true; |
768 | } |
769 | |
770 | if (getBaseWithOffsetUsingSplitOR(DAG&: *CurDAG, Addr, N0&: LHS, N1&: RHS)) { |
771 | assert(LHS && RHS && isa<ConstantSDNode>(RHS)); |
772 | return true; |
773 | } |
774 | |
775 | return false; |
776 | } |
777 | |
778 | StringRef AMDGPUDAGToDAGISelLegacy::getPassName() const { |
779 | return "AMDGPU DAG->DAG Pattern Instruction Selection" ; |
780 | } |
781 | |
782 | AMDGPUISelDAGToDAGPass::AMDGPUISelDAGToDAGPass(TargetMachine &TM) |
783 | : SelectionDAGISelPass( |
784 | std::make_unique<AMDGPUDAGToDAGISel>(args&: TM, args: TM.getOptLevel())) {} |
785 | |
786 | PreservedAnalyses |
787 | AMDGPUISelDAGToDAGPass::run(MachineFunction &MF, |
788 | MachineFunctionAnalysisManager &MFAM) { |
789 | #ifdef EXPENSIVE_CHECKS |
790 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(MF) |
791 | .getManager(); |
792 | auto &F = MF.getFunction(); |
793 | DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F); |
794 | LoopInfo &LI = FAM.getResult<LoopAnalysis>(F); |
795 | for (auto &L : LI.getLoopsInPreorder()) |
796 | assert(L->isLCSSAForm(DT) && "Loop is not in LCSSA form!" ); |
797 | #endif |
798 | return SelectionDAGISelPass::run(MF, MFAM); |
799 | } |
800 | |
801 | //===----------------------------------------------------------------------===// |
802 | // Complex Patterns |
803 | //===----------------------------------------------------------------------===// |
804 | |
805 | bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base, |
806 | SDValue &Offset) { |
807 | return false; |
808 | } |
809 | |
810 | bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base, |
811 | SDValue &Offset) { |
812 | ConstantSDNode *C; |
813 | SDLoc DL(Addr); |
814 | |
815 | if ((C = dyn_cast<ConstantSDNode>(Val&: Addr))) { |
816 | Base = CurDAG->getRegister(Reg: R600::INDIRECT_BASE_ADDR, VT: MVT::i32); |
817 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
818 | } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) && |
819 | (C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0)))) { |
820 | Base = CurDAG->getRegister(Reg: R600::INDIRECT_BASE_ADDR, VT: MVT::i32); |
821 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
822 | } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) && |
823 | (C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)))) { |
824 | Base = Addr.getOperand(i: 0); |
825 | Offset = CurDAG->getTargetConstant(Val: C->getZExtValue(), DL, VT: MVT::i32); |
826 | } else { |
827 | Base = Addr; |
828 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
829 | } |
830 | |
831 | return true; |
832 | } |
833 | |
834 | SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val, |
835 | const SDLoc &DL) const { |
836 | SDNode *Mov = CurDAG->getMachineNode( |
837 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
838 | Op1: CurDAG->getTargetConstant(Val, DL, VT: MVT::i32)); |
839 | return SDValue(Mov, 0); |
840 | } |
841 | |
842 | // FIXME: Should only handle uaddo_carry/usubo_carry |
843 | void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) { |
844 | SDLoc DL(N); |
845 | SDValue LHS = N->getOperand(Num: 0); |
846 | SDValue RHS = N->getOperand(Num: 1); |
847 | |
848 | unsigned Opcode = N->getOpcode(); |
849 | bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE); |
850 | bool ProduceCarry = |
851 | ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC; |
852 | bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE; |
853 | |
854 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
855 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
856 | |
857 | SDNode *Lo0 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
858 | dl: DL, VT: MVT::i32, Op1: LHS, Op2: Sub0); |
859 | SDNode *Hi0 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
860 | dl: DL, VT: MVT::i32, Op1: LHS, Op2: Sub1); |
861 | |
862 | SDNode *Lo1 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
863 | dl: DL, VT: MVT::i32, Op1: RHS, Op2: Sub0); |
864 | SDNode *Hi1 = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
865 | dl: DL, VT: MVT::i32, Op1: RHS, Op2: Sub1); |
866 | |
867 | SDVTList VTList = CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::Glue); |
868 | |
869 | static const unsigned OpcMap[2][2][2] = { |
870 | {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32}, |
871 | {AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}}, |
872 | {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32}, |
873 | {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}}; |
874 | |
875 | unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd]; |
876 | unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd]; |
877 | |
878 | SDNode *AddLo; |
879 | if (!ConsumeCarry) { |
880 | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) }; |
881 | AddLo = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VTs: VTList, Ops: Args); |
882 | } else { |
883 | SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(Num: 2) }; |
884 | AddLo = CurDAG->getMachineNode(Opcode: CarryOpc, dl: DL, VTs: VTList, Ops: Args); |
885 | } |
886 | SDValue AddHiArgs[] = { |
887 | SDValue(Hi0, 0), |
888 | SDValue(Hi1, 0), |
889 | SDValue(AddLo, 1) |
890 | }; |
891 | SDNode *AddHi = CurDAG->getMachineNode(Opcode: CarryOpc, dl: DL, VTs: VTList, Ops: AddHiArgs); |
892 | |
893 | SDValue RegSequenceArgs[] = { |
894 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64RegClassID, DL, VT: MVT::i32), |
895 | SDValue(AddLo,0), |
896 | Sub0, |
897 | SDValue(AddHi,0), |
898 | Sub1, |
899 | }; |
900 | SDNode *RegSequence = CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: DL, |
901 | VT: MVT::i64, Ops: RegSequenceArgs); |
902 | |
903 | if (ProduceCarry) { |
904 | // Replace the carry-use |
905 | ReplaceUses(F: SDValue(N, 1), T: SDValue(AddHi, 1)); |
906 | } |
907 | |
908 | // Replace the remaining uses. |
909 | ReplaceNode(F: N, T: RegSequence); |
910 | } |
911 | |
912 | void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) { |
913 | SDLoc DL(N); |
914 | SDValue LHS = N->getOperand(Num: 0); |
915 | SDValue RHS = N->getOperand(Num: 1); |
916 | SDValue CI = N->getOperand(Num: 2); |
917 | |
918 | if (N->isDivergent()) { |
919 | unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::V_ADDC_U32_e64 |
920 | : AMDGPU::V_SUBB_U32_e64; |
921 | CurDAG->SelectNodeTo( |
922 | N, MachineOpc: Opc, VTs: N->getVTList(), |
923 | Ops: {LHS, RHS, CI, |
924 | CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1) /*clamp bit*/}); |
925 | } else { |
926 | unsigned Opc = N->getOpcode() == ISD::UADDO_CARRY ? AMDGPU::S_ADD_CO_PSEUDO |
927 | : AMDGPU::S_SUB_CO_PSEUDO; |
928 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops: {LHS, RHS, CI}); |
929 | } |
930 | } |
931 | |
932 | void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) { |
933 | // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned |
934 | // carry out despite the _i32 name. These were renamed in VI to _U32. |
935 | // FIXME: We should probably rename the opcodes here. |
936 | bool IsAdd = N->getOpcode() == ISD::UADDO; |
937 | bool IsVALU = N->isDivergent(); |
938 | |
939 | for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E; |
940 | ++UI) |
941 | if (UI.getUse().getResNo() == 1) { |
942 | if ((IsAdd && (UI->getOpcode() != ISD::UADDO_CARRY)) || |
943 | (!IsAdd && (UI->getOpcode() != ISD::USUBO_CARRY))) { |
944 | IsVALU = true; |
945 | break; |
946 | } |
947 | } |
948 | |
949 | if (IsVALU) { |
950 | unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64; |
951 | |
952 | CurDAG->SelectNodeTo( |
953 | N, MachineOpc: Opc, VTs: N->getVTList(), |
954 | Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1), |
955 | CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1) /*clamp bit*/}); |
956 | } else { |
957 | unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO |
958 | : AMDGPU::S_USUBO_PSEUDO; |
959 | |
960 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), |
961 | Ops: {N->getOperand(Num: 0), N->getOperand(Num: 1)}); |
962 | } |
963 | } |
964 | |
965 | void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) { |
966 | SDLoc SL(N); |
967 | // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod |
968 | SDValue Ops[10]; |
969 | |
970 | SelectVOP3Mods0(In: N->getOperand(Num: 1), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[6], Omod&: Ops[7]); |
971 | SelectVOP3Mods(In: N->getOperand(Num: 2), Src&: Ops[3], SrcMods&: Ops[2]); |
972 | SelectVOP3Mods(In: N->getOperand(Num: 3), Src&: Ops[5], SrcMods&: Ops[4]); |
973 | Ops[8] = N->getOperand(Num: 0); |
974 | Ops[9] = N->getOperand(Num: 4); |
975 | |
976 | // If there are no source modifiers, prefer fmac over fma because it can use |
977 | // the smaller VOP2 encoding. |
978 | bool UseFMAC = Subtarget->hasDLInsts() && |
979 | cast<ConstantSDNode>(Val&: Ops[0])->isZero() && |
980 | cast<ConstantSDNode>(Val&: Ops[2])->isZero() && |
981 | cast<ConstantSDNode>(Val&: Ops[4])->isZero(); |
982 | unsigned Opcode = UseFMAC ? AMDGPU::V_FMAC_F32_e64 : AMDGPU::V_FMA_F32_e64; |
983 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops); |
984 | } |
985 | |
986 | void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) { |
987 | SDLoc SL(N); |
988 | // src0_modifiers, src0, src1_modifiers, src1, clamp, omod |
989 | SDValue Ops[8]; |
990 | |
991 | SelectVOP3Mods0(In: N->getOperand(Num: 1), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[4], Omod&: Ops[5]); |
992 | SelectVOP3Mods(In: N->getOperand(Num: 2), Src&: Ops[3], SrcMods&: Ops[2]); |
993 | Ops[6] = N->getOperand(Num: 0); |
994 | Ops[7] = N->getOperand(Num: 3); |
995 | |
996 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::V_MUL_F32_e64, VTs: N->getVTList(), Ops); |
997 | } |
998 | |
999 | // We need to handle this here because tablegen doesn't support matching |
1000 | // instructions with multiple outputs. |
1001 | void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) { |
1002 | SDLoc SL(N); |
1003 | EVT VT = N->getValueType(ResNo: 0); |
1004 | |
1005 | assert(VT == MVT::f32 || VT == MVT::f64); |
1006 | |
1007 | unsigned Opc |
1008 | = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64_e64 : AMDGPU::V_DIV_SCALE_F32_e64; |
1009 | |
1010 | // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, |
1011 | // omod |
1012 | SDValue Ops[8]; |
1013 | SelectVOP3BMods0(In: N->getOperand(Num: 0), Src&: Ops[1], SrcMods&: Ops[0], Clamp&: Ops[6], Omod&: Ops[7]); |
1014 | SelectVOP3BMods(In: N->getOperand(Num: 1), Src&: Ops[3], SrcMods&: Ops[2]); |
1015 | SelectVOP3BMods(In: N->getOperand(Num: 2), Src&: Ops[5], SrcMods&: Ops[4]); |
1016 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
1017 | } |
1018 | |
1019 | // We need to handle this here because tablegen doesn't support matching |
1020 | // instructions with multiple outputs. |
1021 | void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) { |
1022 | SDLoc SL(N); |
1023 | bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32; |
1024 | unsigned Opc; |
1025 | if (Subtarget->hasMADIntraFwdBug()) |
1026 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 |
1027 | : AMDGPU::V_MAD_U64_U32_gfx11_e64; |
1028 | else |
1029 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
1030 | |
1031 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i1); |
1032 | SDValue Ops[] = { N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2), |
1033 | Clamp }; |
1034 | CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
1035 | } |
1036 | |
1037 | // We need to handle this here because tablegen doesn't support matching |
1038 | // instructions with multiple outputs. |
1039 | void AMDGPUDAGToDAGISel::SelectMUL_LOHI(SDNode *N) { |
1040 | SDLoc SL(N); |
1041 | bool Signed = N->getOpcode() == ISD::SMUL_LOHI; |
1042 | unsigned Opc; |
1043 | if (Subtarget->hasMADIntraFwdBug()) |
1044 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_gfx11_e64 |
1045 | : AMDGPU::V_MAD_U64_U32_gfx11_e64; |
1046 | else |
1047 | Opc = Signed ? AMDGPU::V_MAD_I64_I32_e64 : AMDGPU::V_MAD_U64_U32_e64; |
1048 | |
1049 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i64); |
1050 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i1); |
1051 | SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), Zero, Clamp}; |
1052 | SDNode *Mad = CurDAG->getMachineNode(Opcode: Opc, dl: SL, VTs: N->getVTList(), Ops); |
1053 | if (!SDValue(N, 0).use_empty()) { |
1054 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32); |
1055 | SDNode *Lo = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: SL, |
1056 | VT: MVT::i32, Op1: SDValue(Mad, 0), Op2: Sub0); |
1057 | ReplaceUses(F: SDValue(N, 0), T: SDValue(Lo, 0)); |
1058 | } |
1059 | if (!SDValue(N, 1).use_empty()) { |
1060 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32); |
1061 | SDNode *Hi = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, dl: SL, |
1062 | VT: MVT::i32, Op1: SDValue(Mad, 0), Op2: Sub1); |
1063 | ReplaceUses(F: SDValue(N, 1), T: SDValue(Hi, 0)); |
1064 | } |
1065 | CurDAG->RemoveDeadNode(N); |
1066 | } |
1067 | |
1068 | bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset) const { |
1069 | if (!isUInt<16>(x: Offset)) |
1070 | return false; |
1071 | |
1072 | if (!Base || Subtarget->hasUsableDSOffset() || |
1073 | Subtarget->unsafeDSOffsetFoldingEnabled()) |
1074 | return true; |
1075 | |
1076 | // On Southern Islands instruction with a negative base value and an offset |
1077 | // don't seem to work. |
1078 | return CurDAG->SignBitIsZero(Op: Base); |
1079 | } |
1080 | |
1081 | bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base, |
1082 | SDValue &Offset) const { |
1083 | SDLoc DL(Addr); |
1084 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1085 | SDValue N0 = Addr.getOperand(i: 0); |
1086 | SDValue N1 = Addr.getOperand(i: 1); |
1087 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
1088 | if (isDSOffsetLegal(Base: N0, Offset: C1->getSExtValue())) { |
1089 | // (add n0, c0) |
1090 | Base = N0; |
1091 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i16); |
1092 | return true; |
1093 | } |
1094 | } else if (Addr.getOpcode() == ISD::SUB) { |
1095 | // sub C, x -> add (sub 0, x), C |
1096 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0))) { |
1097 | int64_t ByteOffset = C->getSExtValue(); |
1098 | if (isDSOffsetLegal(Base: SDValue(), Offset: ByteOffset)) { |
1099 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1100 | |
1101 | // XXX - This is kind of hacky. Create a dummy sub node so we can check |
1102 | // the known bits in isDSOffsetLegal. We need to emit the selected node |
1103 | // here, so this is thrown away. |
1104 | SDValue Sub = CurDAG->getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, |
1105 | N1: Zero, N2: Addr.getOperand(i: 1)); |
1106 | |
1107 | if (isDSOffsetLegal(Base: Sub, Offset: ByteOffset)) { |
1108 | SmallVector<SDValue, 3> Opnds; |
1109 | Opnds.push_back(Elt: Zero); |
1110 | Opnds.push_back(Elt: Addr.getOperand(i: 1)); |
1111 | |
1112 | // FIXME: Select to VOP3 version for with-carry. |
1113 | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
1114 | if (Subtarget->hasAddNoCarry()) { |
1115 | SubOp = AMDGPU::V_SUB_U32_e64; |
1116 | Opnds.push_back( |
1117 | Elt: CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1)); // clamp bit |
1118 | } |
1119 | |
1120 | MachineSDNode *MachineSub = |
1121 | CurDAG->getMachineNode(Opcode: SubOp, dl: DL, VT: MVT::i32, Ops: Opnds); |
1122 | |
1123 | Base = SDValue(MachineSub, 0); |
1124 | Offset = CurDAG->getTargetConstant(Val: ByteOffset, DL, VT: MVT::i16); |
1125 | return true; |
1126 | } |
1127 | } |
1128 | } |
1129 | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1130 | // If we have a constant address, prefer to put the constant into the |
1131 | // offset. This can save moves to load the constant address since multiple |
1132 | // operations can share the zero base address register, and enables merging |
1133 | // into read2 / write2 instructions. |
1134 | |
1135 | SDLoc DL(Addr); |
1136 | |
1137 | if (isDSOffsetLegal(Base: SDValue(), Offset: CAddr->getZExtValue())) { |
1138 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1139 | MachineSDNode *MovZero = CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, |
1140 | dl: DL, VT: MVT::i32, Op1: Zero); |
1141 | Base = SDValue(MovZero, 0); |
1142 | Offset = CurDAG->getTargetConstant(Val: CAddr->getZExtValue(), DL, VT: MVT::i16); |
1143 | return true; |
1144 | } |
1145 | } |
1146 | |
1147 | // default case |
1148 | Base = Addr; |
1149 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: MVT::i16); |
1150 | return true; |
1151 | } |
1152 | |
1153 | bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base, unsigned Offset0, |
1154 | unsigned Offset1, |
1155 | unsigned Size) const { |
1156 | if (Offset0 % Size != 0 || Offset1 % Size != 0) |
1157 | return false; |
1158 | if (!isUInt<8>(x: Offset0 / Size) || !isUInt<8>(x: Offset1 / Size)) |
1159 | return false; |
1160 | |
1161 | if (!Base || Subtarget->hasUsableDSOffset() || |
1162 | Subtarget->unsafeDSOffsetFoldingEnabled()) |
1163 | return true; |
1164 | |
1165 | // On Southern Islands instruction with a negative base value and an offset |
1166 | // don't seem to work. |
1167 | return CurDAG->SignBitIsZero(Op: Base); |
1168 | } |
1169 | |
1170 | // Return whether the operation has NoUnsignedWrap property. |
1171 | static bool isNoUnsignedWrap(SDValue Addr) { |
1172 | return (Addr.getOpcode() == ISD::ADD && |
1173 | Addr->getFlags().hasNoUnsignedWrap()) || |
1174 | Addr->getOpcode() == ISD::OR; |
1175 | } |
1176 | |
1177 | // Check that the base address of flat scratch load/store in the form of `base + |
1178 | // offset` is legal to be put in SGPR/VGPR (i.e. unsigned per hardware |
1179 | // requirement). We always treat the first operand as the base address here. |
1180 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegal(SDValue Addr) const { |
1181 | if (isNoUnsignedWrap(Addr)) |
1182 | return true; |
1183 | |
1184 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1185 | // values. |
1186 | if (Subtarget->hasSignedScratchOffsets()) |
1187 | return true; |
1188 | |
1189 | auto LHS = Addr.getOperand(i: 0); |
1190 | auto RHS = Addr.getOperand(i: 1); |
1191 | |
1192 | // If the immediate offset is negative and within certain range, the base |
1193 | // address cannot also be negative. If the base is also negative, the sum |
1194 | // would be either negative or much larger than the valid range of scratch |
1195 | // memory a thread can access. |
1196 | ConstantSDNode *ImmOp = nullptr; |
1197 | if (Addr.getOpcode() == ISD::ADD && (ImmOp = dyn_cast<ConstantSDNode>(Val&: RHS))) { |
1198 | if (ImmOp->getSExtValue() < 0 && ImmOp->getSExtValue() > -0x40000000) |
1199 | return true; |
1200 | } |
1201 | |
1202 | return CurDAG->SignBitIsZero(Op: LHS); |
1203 | } |
1204 | |
1205 | // Check address value in SGPR/VGPR are legal for flat scratch in the form |
1206 | // of: SGPR + VGPR. |
1207 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSV(SDValue Addr) const { |
1208 | if (isNoUnsignedWrap(Addr)) |
1209 | return true; |
1210 | |
1211 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1212 | // values. |
1213 | if (Subtarget->hasSignedScratchOffsets()) |
1214 | return true; |
1215 | |
1216 | auto LHS = Addr.getOperand(i: 0); |
1217 | auto RHS = Addr.getOperand(i: 1); |
1218 | return CurDAG->SignBitIsZero(Op: RHS) && CurDAG->SignBitIsZero(Op: LHS); |
1219 | } |
1220 | |
1221 | // Check address value in SGPR/VGPR are legal for flat scratch in the form |
1222 | // of: SGPR + VGPR + Imm. |
1223 | bool AMDGPUDAGToDAGISel::isFlatScratchBaseLegalSVImm(SDValue Addr) const { |
1224 | // Starting with GFX12, VADDR and SADDR fields in VSCRATCH can use negative |
1225 | // values. |
1226 | if (AMDGPU::isGFX12Plus(STI: *Subtarget)) |
1227 | return true; |
1228 | |
1229 | auto Base = Addr.getOperand(i: 0); |
1230 | auto *RHSImm = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1231 | // If the immediate offset is negative and within certain range, the base |
1232 | // address cannot also be negative. If the base is also negative, the sum |
1233 | // would be either negative or much larger than the valid range of scratch |
1234 | // memory a thread can access. |
1235 | if (isNoUnsignedWrap(Addr: Base) && |
1236 | (isNoUnsignedWrap(Addr) || |
1237 | (RHSImm->getSExtValue() < 0 && RHSImm->getSExtValue() > -0x40000000))) |
1238 | return true; |
1239 | |
1240 | auto LHS = Base.getOperand(i: 0); |
1241 | auto RHS = Base.getOperand(i: 1); |
1242 | return CurDAG->SignBitIsZero(Op: RHS) && CurDAG->SignBitIsZero(Op: LHS); |
1243 | } |
1244 | |
1245 | // TODO: If offset is too big, put low 16-bit into offset. |
1246 | bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base, |
1247 | SDValue &Offset0, |
1248 | SDValue &Offset1) const { |
1249 | return SelectDSReadWrite2(Ptr: Addr, Base, Offset0, Offset1, Size: 4); |
1250 | } |
1251 | |
1252 | bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base, |
1253 | SDValue &Offset0, |
1254 | SDValue &Offset1) const { |
1255 | return SelectDSReadWrite2(Ptr: Addr, Base, Offset0, Offset1, Size: 8); |
1256 | } |
1257 | |
1258 | bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base, |
1259 | SDValue &Offset0, SDValue &Offset1, |
1260 | unsigned Size) const { |
1261 | SDLoc DL(Addr); |
1262 | |
1263 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1264 | SDValue N0 = Addr.getOperand(i: 0); |
1265 | SDValue N1 = Addr.getOperand(i: 1); |
1266 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
1267 | unsigned OffsetValue0 = C1->getZExtValue(); |
1268 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1269 | |
1270 | // (add n0, c0) |
1271 | if (isDSOffset2Legal(Base: N0, Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1272 | Base = N0; |
1273 | Offset0 = CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i8); |
1274 | Offset1 = CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i8); |
1275 | return true; |
1276 | } |
1277 | } else if (Addr.getOpcode() == ISD::SUB) { |
1278 | // sub C, x -> add (sub 0, x), C |
1279 | if (const ConstantSDNode *C = |
1280 | dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 0))) { |
1281 | unsigned OffsetValue0 = C->getZExtValue(); |
1282 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1283 | |
1284 | if (isDSOffset2Legal(Base: SDValue(), Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1285 | SDLoc DL(Addr); |
1286 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1287 | |
1288 | // XXX - This is kind of hacky. Create a dummy sub node so we can check |
1289 | // the known bits in isDSOffsetLegal. We need to emit the selected node |
1290 | // here, so this is thrown away. |
1291 | SDValue Sub = |
1292 | CurDAG->getNode(Opcode: ISD::SUB, DL, VT: MVT::i32, N1: Zero, N2: Addr.getOperand(i: 1)); |
1293 | |
1294 | if (isDSOffset2Legal(Base: Sub, Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1295 | SmallVector<SDValue, 3> Opnds; |
1296 | Opnds.push_back(Elt: Zero); |
1297 | Opnds.push_back(Elt: Addr.getOperand(i: 1)); |
1298 | unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32; |
1299 | if (Subtarget->hasAddNoCarry()) { |
1300 | SubOp = AMDGPU::V_SUB_U32_e64; |
1301 | Opnds.push_back( |
1302 | Elt: CurDAG->getTargetConstant(Val: 0, DL: {}, VT: MVT::i1)); // clamp bit |
1303 | } |
1304 | |
1305 | MachineSDNode *MachineSub = CurDAG->getMachineNode( |
1306 | Opcode: SubOp, dl: DL, VT: MVT::getIntegerVT(BitWidth: Size * 8), Ops: Opnds); |
1307 | |
1308 | Base = SDValue(MachineSub, 0); |
1309 | Offset0 = CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i8); |
1310 | Offset1 = CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i8); |
1311 | return true; |
1312 | } |
1313 | } |
1314 | } |
1315 | } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1316 | unsigned OffsetValue0 = CAddr->getZExtValue(); |
1317 | unsigned OffsetValue1 = OffsetValue0 + Size; |
1318 | |
1319 | if (isDSOffset2Legal(Base: SDValue(), Offset0: OffsetValue0, Offset1: OffsetValue1, Size)) { |
1320 | SDValue Zero = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1321 | MachineSDNode *MovZero = |
1322 | CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, dl: DL, VT: MVT::i32, Op1: Zero); |
1323 | Base = SDValue(MovZero, 0); |
1324 | Offset0 = CurDAG->getTargetConstant(Val: OffsetValue0 / Size, DL, VT: MVT::i8); |
1325 | Offset1 = CurDAG->getTargetConstant(Val: OffsetValue1 / Size, DL, VT: MVT::i8); |
1326 | return true; |
1327 | } |
1328 | } |
1329 | |
1330 | // default case |
1331 | |
1332 | Base = Addr; |
1333 | Offset0 = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i8); |
1334 | Offset1 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i8); |
1335 | return true; |
1336 | } |
1337 | |
1338 | bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr, SDValue &VAddr, |
1339 | SDValue &SOffset, SDValue &Offset, |
1340 | SDValue &Offen, SDValue &Idxen, |
1341 | SDValue &Addr64) const { |
1342 | // Subtarget prefers to use flat instruction |
1343 | // FIXME: This should be a pattern predicate and not reach here |
1344 | if (Subtarget->useFlatForGlobal()) |
1345 | return false; |
1346 | |
1347 | SDLoc DL(Addr); |
1348 | |
1349 | Idxen = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1350 | Offen = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1351 | Addr64 = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1352 | SOffset = Subtarget->hasRestrictedSOffset() |
1353 | ? CurDAG->getRegister(Reg: AMDGPU::SGPR_NULL, VT: MVT::i32) |
1354 | : CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1355 | |
1356 | ConstantSDNode *C1 = nullptr; |
1357 | SDValue N0 = Addr; |
1358 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1359 | C1 = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1360 | if (isUInt<32>(x: C1->getZExtValue())) |
1361 | N0 = Addr.getOperand(i: 0); |
1362 | else |
1363 | C1 = nullptr; |
1364 | } |
1365 | |
1366 | if (N0.getOpcode() == ISD::ADD) { |
1367 | // (add N2, N3) -> addr64, or |
1368 | // (add (add N2, N3), C1) -> addr64 |
1369 | SDValue N2 = N0.getOperand(i: 0); |
1370 | SDValue N3 = N0.getOperand(i: 1); |
1371 | Addr64 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i1); |
1372 | |
1373 | if (N2->isDivergent()) { |
1374 | if (N3->isDivergent()) { |
1375 | // Both N2 and N3 are divergent. Use N0 (the result of the add) as the |
1376 | // addr64, and construct the resource from a 0 address. |
1377 | Ptr = SDValue(buildSMovImm64(DL, Imm: 0, VT: MVT::v2i32), 0); |
1378 | VAddr = N0; |
1379 | } else { |
1380 | // N2 is divergent, N3 is not. |
1381 | Ptr = N3; |
1382 | VAddr = N2; |
1383 | } |
1384 | } else { |
1385 | // N2 is not divergent. |
1386 | Ptr = N2; |
1387 | VAddr = N3; |
1388 | } |
1389 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1390 | } else if (N0->isDivergent()) { |
1391 | // N0 is divergent. Use it as the addr64, and construct the resource from a |
1392 | // 0 address. |
1393 | Ptr = SDValue(buildSMovImm64(DL, Imm: 0, VT: MVT::v2i32), 0); |
1394 | VAddr = N0; |
1395 | Addr64 = CurDAG->getTargetConstant(Val: 1, DL, VT: MVT::i1); |
1396 | } else { |
1397 | // N0 -> offset, or |
1398 | // (N0 + C1) -> offset |
1399 | VAddr = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1400 | Ptr = N0; |
1401 | } |
1402 | |
1403 | if (!C1) { |
1404 | // No offset. |
1405 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1406 | return true; |
1407 | } |
1408 | |
1409 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1410 | if (TII->isLegalMUBUFImmOffset(Imm: C1->getZExtValue())) { |
1411 | // Legal offset for instruction. |
1412 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32); |
1413 | return true; |
1414 | } |
1415 | |
1416 | // Illegal offset, store it in soffset. |
1417 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1418 | SOffset = |
1419 | SDValue(CurDAG->getMachineNode( |
1420 | Opcode: AMDGPU::S_MOV_B32, dl: DL, VT: MVT::i32, |
1421 | Op1: CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32)), |
1422 | 0); |
1423 | return true; |
1424 | } |
1425 | |
1426 | bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, |
1427 | SDValue &VAddr, SDValue &SOffset, |
1428 | SDValue &Offset) const { |
1429 | SDValue Ptr, Offen, Idxen, Addr64; |
1430 | |
1431 | // addr64 bit was removed for volcanic islands. |
1432 | // FIXME: This should be a pattern predicate and not reach here |
1433 | if (!Subtarget->hasAddr64()) |
1434 | return false; |
1435 | |
1436 | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
1437 | return false; |
1438 | |
1439 | ConstantSDNode *C = cast<ConstantSDNode>(Val&: Addr64); |
1440 | if (C->getSExtValue()) { |
1441 | SDLoc DL(Addr); |
1442 | |
1443 | const SITargetLowering& Lowering = |
1444 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
1445 | |
1446 | SRsrc = SDValue(Lowering.wrapAddr64Rsrc(DAG&: *CurDAG, DL, Ptr), 0); |
1447 | return true; |
1448 | } |
1449 | |
1450 | return false; |
1451 | } |
1452 | |
1453 | std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const { |
1454 | SDLoc DL(N); |
1455 | |
1456 | auto *FI = dyn_cast<FrameIndexSDNode>(Val&: N); |
1457 | SDValue TFI = |
1458 | FI ? CurDAG->getTargetFrameIndex(FI: FI->getIndex(), VT: FI->getValueType(ResNo: 0)) : N; |
1459 | |
1460 | // We rebase the base address into an absolute stack address and hence |
1461 | // use constant 0 for soffset. This value must be retained until |
1462 | // frame elimination and eliminateFrameIndex will choose the appropriate |
1463 | // frame register if need be. |
1464 | return std::pair(TFI, CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32)); |
1465 | } |
1466 | |
1467 | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent, |
1468 | SDValue Addr, SDValue &Rsrc, |
1469 | SDValue &VAddr, SDValue &SOffset, |
1470 | SDValue &ImmOffset) const { |
1471 | |
1472 | SDLoc DL(Addr); |
1473 | MachineFunction &MF = CurDAG->getMachineFunction(); |
1474 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
1475 | |
1476 | Rsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1477 | |
1478 | if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) { |
1479 | int64_t Imm = CAddr->getSExtValue(); |
1480 | const int64_t NullPtr = |
1481 | AMDGPUTargetMachine::getNullPointerValue(AddrSpace: AMDGPUAS::PRIVATE_ADDRESS); |
1482 | // Don't fold null pointer. |
1483 | if (Imm != NullPtr) { |
1484 | const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST: *Subtarget); |
1485 | SDValue HighBits = |
1486 | CurDAG->getTargetConstant(Val: Imm & ~MaxOffset, DL, VT: MVT::i32); |
1487 | MachineSDNode *MovHighBits = CurDAG->getMachineNode( |
1488 | Opcode: AMDGPU::V_MOV_B32_e32, dl: DL, VT: MVT::i32, Op1: HighBits); |
1489 | VAddr = SDValue(MovHighBits, 0); |
1490 | |
1491 | SOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1492 | ImmOffset = CurDAG->getTargetConstant(Val: Imm & MaxOffset, DL, VT: MVT::i32); |
1493 | return true; |
1494 | } |
1495 | } |
1496 | |
1497 | if (CurDAG->isBaseWithConstantOffset(Op: Addr)) { |
1498 | // (add n0, c1) |
1499 | |
1500 | SDValue N0 = Addr.getOperand(i: 0); |
1501 | uint64_t C1 = Addr.getConstantOperandVal(i: 1); |
1502 | |
1503 | // Offsets in vaddr must be positive if range checking is enabled. |
1504 | // |
1505 | // The total computation of vaddr + soffset + offset must not overflow. If |
1506 | // vaddr is negative, even if offset is 0 the sgpr offset add will end up |
1507 | // overflowing. |
1508 | // |
1509 | // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would |
1510 | // always perform a range check. If a negative vaddr base index was used, |
1511 | // this would fail the range check. The overall address computation would |
1512 | // compute a valid address, but this doesn't happen due to the range |
1513 | // check. For out-of-bounds MUBUF loads, a 0 is returned. |
1514 | // |
1515 | // Therefore it should be safe to fold any VGPR offset on gfx9 into the |
1516 | // MUBUF vaddr, but not on older subtargets which can only do this if the |
1517 | // sign bit is known 0. |
1518 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1519 | if (TII->isLegalMUBUFImmOffset(Imm: C1) && |
1520 | (!Subtarget->privateMemoryResourceIsRangeChecked() || |
1521 | CurDAG->SignBitIsZero(Op: N0))) { |
1522 | std::tie(args&: VAddr, args&: SOffset) = foldFrameIndex(N: N0); |
1523 | ImmOffset = CurDAG->getTargetConstant(Val: C1, DL, VT: MVT::i32); |
1524 | return true; |
1525 | } |
1526 | } |
1527 | |
1528 | // (node) |
1529 | std::tie(args&: VAddr, args&: SOffset) = foldFrameIndex(N: Addr); |
1530 | ImmOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1531 | return true; |
1532 | } |
1533 | |
1534 | static bool IsCopyFromSGPR(const SIRegisterInfo &TRI, SDValue Val) { |
1535 | if (Val.getOpcode() != ISD::CopyFromReg) |
1536 | return false; |
1537 | auto Reg = cast<RegisterSDNode>(Val: Val.getOperand(i: 1))->getReg(); |
1538 | if (!Reg.isPhysical()) |
1539 | return false; |
1540 | auto RC = TRI.getPhysRegBaseClass(Reg); |
1541 | return RC && TRI.isSGPRClass(RC); |
1542 | } |
1543 | |
1544 | bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent, |
1545 | SDValue Addr, |
1546 | SDValue &SRsrc, |
1547 | SDValue &SOffset, |
1548 | SDValue &Offset) const { |
1549 | const SIRegisterInfo *TRI = |
1550 | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
1551 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1552 | MachineFunction &MF = CurDAG->getMachineFunction(); |
1553 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
1554 | SDLoc DL(Addr); |
1555 | |
1556 | // CopyFromReg <sgpr> |
1557 | if (IsCopyFromSGPR(TRI: *TRI, Val: Addr)) { |
1558 | SRsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1559 | SOffset = Addr; |
1560 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1561 | return true; |
1562 | } |
1563 | |
1564 | ConstantSDNode *CAddr; |
1565 | if (Addr.getOpcode() == ISD::ADD) { |
1566 | // Add (CopyFromReg <sgpr>) <constant> |
1567 | CAddr = dyn_cast<ConstantSDNode>(Val: Addr.getOperand(i: 1)); |
1568 | if (!CAddr || !TII->isLegalMUBUFImmOffset(Imm: CAddr->getZExtValue())) |
1569 | return false; |
1570 | if (!IsCopyFromSGPR(TRI: *TRI, Val: Addr.getOperand(i: 0))) |
1571 | return false; |
1572 | |
1573 | SOffset = Addr.getOperand(i: 0); |
1574 | } else if ((CAddr = dyn_cast<ConstantSDNode>(Val&: Addr)) && |
1575 | TII->isLegalMUBUFImmOffset(Imm: CAddr->getZExtValue())) { |
1576 | // <constant> |
1577 | SOffset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
1578 | } else { |
1579 | return false; |
1580 | } |
1581 | |
1582 | SRsrc = CurDAG->getRegister(Reg: Info->getScratchRSrcReg(), VT: MVT::v4i32); |
1583 | |
1584 | Offset = CurDAG->getTargetConstant(Val: CAddr->getZExtValue(), DL, VT: MVT::i32); |
1585 | return true; |
1586 | } |
1587 | |
1588 | bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, |
1589 | SDValue &SOffset, SDValue &Offset |
1590 | ) const { |
1591 | SDValue Ptr, VAddr, Offen, Idxen, Addr64; |
1592 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1593 | |
1594 | if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64)) |
1595 | return false; |
1596 | |
1597 | if (!cast<ConstantSDNode>(Val&: Offen)->getSExtValue() && |
1598 | !cast<ConstantSDNode>(Val&: Idxen)->getSExtValue() && |
1599 | !cast<ConstantSDNode>(Val&: Addr64)->getSExtValue()) { |
1600 | uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | |
1601 | APInt::getAllOnes(numBits: 32).getZExtValue(); // Size |
1602 | SDLoc DL(Addr); |
1603 | |
1604 | const SITargetLowering& Lowering = |
1605 | *static_cast<const SITargetLowering*>(getTargetLowering()); |
1606 | |
1607 | SRsrc = SDValue(Lowering.buildRSRC(DAG&: *CurDAG, DL, Ptr, RsrcDword1: 0, RsrcDword2And3: Rsrc), 0); |
1608 | return true; |
1609 | } |
1610 | return false; |
1611 | } |
1612 | |
1613 | bool AMDGPUDAGToDAGISel::SelectBUFSOffset(SDValue ByteOffsetNode, |
1614 | SDValue &SOffset) const { |
1615 | if (Subtarget->hasRestrictedSOffset() && isNullConstant(V: ByteOffsetNode)) { |
1616 | SOffset = CurDAG->getRegister(Reg: AMDGPU::SGPR_NULL, VT: MVT::i32); |
1617 | return true; |
1618 | } |
1619 | |
1620 | SOffset = ByteOffsetNode; |
1621 | return true; |
1622 | } |
1623 | |
1624 | // Find a load or store from corresponding pattern root. |
1625 | // Roots may be build_vector, bitconvert or their combinations. |
1626 | static MemSDNode* findMemSDNode(SDNode *N) { |
1627 | N = AMDGPUTargetLowering::stripBitcast(Val: SDValue(N,0)).getNode(); |
1628 | if (MemSDNode *MN = dyn_cast<MemSDNode>(Val: N)) |
1629 | return MN; |
1630 | assert(isa<BuildVectorSDNode>(N)); |
1631 | for (SDValue V : N->op_values()) |
1632 | if (MemSDNode *MN = |
1633 | dyn_cast<MemSDNode>(Val: AMDGPUTargetLowering::stripBitcast(Val: V))) |
1634 | return MN; |
1635 | llvm_unreachable("cannot find MemSDNode in the pattern!" ); |
1636 | } |
1637 | |
1638 | bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode *N, SDValue Addr, |
1639 | SDValue &VAddr, SDValue &Offset, |
1640 | uint64_t FlatVariant) const { |
1641 | int64_t OffsetVal = 0; |
1642 | |
1643 | unsigned AS = findMemSDNode(N)->getAddressSpace(); |
1644 | |
1645 | bool CanHaveFlatSegmentOffsetBug = |
1646 | Subtarget->hasFlatSegmentOffsetBug() && |
1647 | FlatVariant == SIInstrFlags::FLAT && |
1648 | (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::GLOBAL_ADDRESS); |
1649 | |
1650 | if (Subtarget->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug) { |
1651 | SDValue N0, N1; |
1652 | if (isBaseWithConstantOffset64(Addr, LHS&: N0, RHS&: N1) && |
1653 | (FlatVariant != SIInstrFlags::FlatScratch || |
1654 | isFlatScratchBaseLegal(Addr))) { |
1655 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: N1)->getSExtValue(); |
1656 | |
1657 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1658 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AS, FlatVariant)) { |
1659 | Addr = N0; |
1660 | OffsetVal = COffsetVal; |
1661 | } else { |
1662 | // If the offset doesn't fit, put the low bits into the offset field and |
1663 | // add the rest. |
1664 | // |
1665 | // For a FLAT instruction the hardware decides whether to access |
1666 | // global/scratch/shared memory based on the high bits of vaddr, |
1667 | // ignoring the offset field, so we have to ensure that when we add |
1668 | // remainder to vaddr it still points into the same underlying object. |
1669 | // The easiest way to do that is to make sure that we split the offset |
1670 | // into two pieces that are both >= 0 or both <= 0. |
1671 | |
1672 | SDLoc DL(N); |
1673 | uint64_t RemainderOffset; |
1674 | |
1675 | std::tie(args&: OffsetVal, args&: RemainderOffset) = |
1676 | TII->splitFlatOffset(COffsetVal, AddrSpace: AS, FlatVariant); |
1677 | |
1678 | SDValue AddOffsetLo = |
1679 | getMaterializedScalarImm32(Val: Lo_32(Value: RemainderOffset), DL); |
1680 | SDValue Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
1681 | |
1682 | if (Addr.getValueType().getSizeInBits() == 32) { |
1683 | SmallVector<SDValue, 3> Opnds; |
1684 | Opnds.push_back(Elt: N0); |
1685 | Opnds.push_back(Elt: AddOffsetLo); |
1686 | unsigned AddOp = AMDGPU::V_ADD_CO_U32_e32; |
1687 | if (Subtarget->hasAddNoCarry()) { |
1688 | AddOp = AMDGPU::V_ADD_U32_e64; |
1689 | Opnds.push_back(Elt: Clamp); |
1690 | } |
1691 | Addr = SDValue(CurDAG->getMachineNode(Opcode: AddOp, dl: DL, VT: MVT::i32, Ops: Opnds), 0); |
1692 | } else { |
1693 | // TODO: Should this try to use a scalar add pseudo if the base address |
1694 | // is uniform and saddr is usable? |
1695 | SDValue Sub0 = CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL, VT: MVT::i32); |
1696 | SDValue Sub1 = CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL, VT: MVT::i32); |
1697 | |
1698 | SDNode *N0Lo = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
1699 | dl: DL, VT: MVT::i32, Op1: N0, Op2: Sub0); |
1700 | SDNode *N0Hi = CurDAG->getMachineNode(Opcode: TargetOpcode::EXTRACT_SUBREG, |
1701 | dl: DL, VT: MVT::i32, Op1: N0, Op2: Sub1); |
1702 | |
1703 | SDValue AddOffsetHi = |
1704 | getMaterializedScalarImm32(Val: Hi_32(Value: RemainderOffset), DL); |
1705 | |
1706 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::i32, VT2: MVT::i1); |
1707 | |
1708 | SDNode *Add = |
1709 | CurDAG->getMachineNode(Opcode: AMDGPU::V_ADD_CO_U32_e64, dl: DL, VTs, |
1710 | Ops: {AddOffsetLo, SDValue(N0Lo, 0), Clamp}); |
1711 | |
1712 | SDNode *Addc = CurDAG->getMachineNode( |
1713 | Opcode: AMDGPU::V_ADDC_U32_e64, dl: DL, VTs, |
1714 | Ops: {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp}); |
1715 | |
1716 | SDValue RegSequenceArgs[] = { |
1717 | CurDAG->getTargetConstant(Val: AMDGPU::VReg_64RegClassID, DL, VT: MVT::i32), |
1718 | SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1}; |
1719 | |
1720 | Addr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: DL, |
1721 | VT: MVT::i64, Ops: RegSequenceArgs), |
1722 | 0); |
1723 | } |
1724 | } |
1725 | } |
1726 | } |
1727 | |
1728 | VAddr = Addr; |
1729 | Offset = CurDAG->getTargetConstant(Val: OffsetVal, DL: SDLoc(), VT: MVT::i32); |
1730 | return true; |
1731 | } |
1732 | |
1733 | bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N, SDValue Addr, |
1734 | SDValue &VAddr, |
1735 | SDValue &Offset) const { |
1736 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, FlatVariant: SIInstrFlags::FLAT); |
1737 | } |
1738 | |
1739 | bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode *N, SDValue Addr, |
1740 | SDValue &VAddr, |
1741 | SDValue &Offset) const { |
1742 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, FlatVariant: SIInstrFlags::FlatGlobal); |
1743 | } |
1744 | |
1745 | bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode *N, SDValue Addr, |
1746 | SDValue &VAddr, |
1747 | SDValue &Offset) const { |
1748 | return SelectFlatOffsetImpl(N, Addr, VAddr, Offset, |
1749 | FlatVariant: SIInstrFlags::FlatScratch); |
1750 | } |
1751 | |
1752 | // If this matches zero_extend i32:x, return x |
1753 | static SDValue matchZExtFromI32(SDValue Op) { |
1754 | if (Op.getOpcode() != ISD::ZERO_EXTEND) |
1755 | return SDValue(); |
1756 | |
1757 | SDValue ExtSrc = Op.getOperand(i: 0); |
1758 | return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue(); |
1759 | } |
1760 | |
1761 | // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset) |
1762 | bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N, |
1763 | SDValue Addr, |
1764 | SDValue &SAddr, |
1765 | SDValue &VOffset, |
1766 | SDValue &Offset) const { |
1767 | int64_t ImmOffset = 0; |
1768 | |
1769 | // Match the immediate offset first, which canonically is moved as low as |
1770 | // possible. |
1771 | |
1772 | SDValue LHS, RHS; |
1773 | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { |
1774 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: RHS)->getSExtValue(); |
1775 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1776 | |
1777 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::GLOBAL_ADDRESS, |
1778 | FlatVariant: SIInstrFlags::FlatGlobal)) { |
1779 | Addr = LHS; |
1780 | ImmOffset = COffsetVal; |
1781 | } else if (!LHS->isDivergent()) { |
1782 | if (COffsetVal > 0) { |
1783 | SDLoc SL(N); |
1784 | // saddr + large_offset -> saddr + |
1785 | // (voffset = large_offset & ~MaxOffset) + |
1786 | // (large_offset & MaxOffset); |
1787 | int64_t SplitImmOffset, RemainderOffset; |
1788 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) = TII->splitFlatOffset( |
1789 | COffsetVal, AddrSpace: AMDGPUAS::GLOBAL_ADDRESS, FlatVariant: SIInstrFlags::FlatGlobal); |
1790 | |
1791 | if (isUInt<32>(x: RemainderOffset)) { |
1792 | SDNode *VMov = CurDAG->getMachineNode( |
1793 | Opcode: AMDGPU::V_MOV_B32_e32, dl: SL, VT: MVT::i32, |
1794 | Op1: CurDAG->getTargetConstant(Val: RemainderOffset, DL: SDLoc(), VT: MVT::i32)); |
1795 | VOffset = SDValue(VMov, 0); |
1796 | SAddr = LHS; |
1797 | Offset = CurDAG->getTargetConstant(Val: SplitImmOffset, DL: SDLoc(), VT: MVT::i32); |
1798 | return true; |
1799 | } |
1800 | } |
1801 | |
1802 | // We are adding a 64 bit SGPR and a constant. If constant bus limit |
1803 | // is 1 we would need to perform 1 or 2 extra moves for each half of |
1804 | // the constant and it is better to do a scalar add and then issue a |
1805 | // single VALU instruction to materialize zero. Otherwise it is less |
1806 | // instructions to perform VALU adds with immediates or inline literals. |
1807 | unsigned NumLiterals = |
1808 | !TII->isInlineConstant(Imm: APInt(32, COffsetVal & 0xffffffff)) + |
1809 | !TII->isInlineConstant(Imm: APInt(32, COffsetVal >> 32)); |
1810 | if (Subtarget->getConstantBusLimit(Opcode: AMDGPU::V_ADD_U32_e64) > NumLiterals) |
1811 | return false; |
1812 | } |
1813 | } |
1814 | |
1815 | // Match the variable offset. |
1816 | if (Addr.getOpcode() == ISD::ADD) { |
1817 | LHS = Addr.getOperand(i: 0); |
1818 | RHS = Addr.getOperand(i: 1); |
1819 | |
1820 | if (!LHS->isDivergent()) { |
1821 | // add (i64 sgpr), (zero_extend (i32 vgpr)) |
1822 | if (SDValue ZextRHS = matchZExtFromI32(Op: RHS)) { |
1823 | SAddr = LHS; |
1824 | VOffset = ZextRHS; |
1825 | } |
1826 | } |
1827 | |
1828 | if (!SAddr && !RHS->isDivergent()) { |
1829 | // add (zero_extend (i32 vgpr)), (i64 sgpr) |
1830 | if (SDValue ZextLHS = matchZExtFromI32(Op: LHS)) { |
1831 | SAddr = RHS; |
1832 | VOffset = ZextLHS; |
1833 | } |
1834 | } |
1835 | |
1836 | if (SAddr) { |
1837 | Offset = CurDAG->getTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i32); |
1838 | return true; |
1839 | } |
1840 | } |
1841 | |
1842 | if (Addr->isDivergent() || Addr.getOpcode() == ISD::UNDEF || |
1843 | isa<ConstantSDNode>(Val: Addr)) |
1844 | return false; |
1845 | |
1846 | // It's cheaper to materialize a single 32-bit zero for vaddr than the two |
1847 | // moves required to copy a 64-bit SGPR to VGPR. |
1848 | SAddr = Addr; |
1849 | SDNode *VMov = |
1850 | CurDAG->getMachineNode(Opcode: AMDGPU::V_MOV_B32_e32, dl: SDLoc(Addr), VT: MVT::i32, |
1851 | Op1: CurDAG->getTargetConstant(Val: 0, DL: SDLoc(), VT: MVT::i32)); |
1852 | VOffset = SDValue(VMov, 0); |
1853 | Offset = CurDAG->getTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i32); |
1854 | return true; |
1855 | } |
1856 | |
1857 | static SDValue SelectSAddrFI(SelectionDAG *CurDAG, SDValue SAddr) { |
1858 | if (auto FI = dyn_cast<FrameIndexSDNode>(Val&: SAddr)) { |
1859 | SAddr = CurDAG->getTargetFrameIndex(FI: FI->getIndex(), VT: FI->getValueType(ResNo: 0)); |
1860 | } else if (SAddr.getOpcode() == ISD::ADD && |
1861 | isa<FrameIndexSDNode>(Val: SAddr.getOperand(i: 0))) { |
1862 | // Materialize this into a scalar move for scalar address to avoid |
1863 | // readfirstlane. |
1864 | auto FI = cast<FrameIndexSDNode>(Val: SAddr.getOperand(i: 0)); |
1865 | SDValue TFI = CurDAG->getTargetFrameIndex(FI: FI->getIndex(), |
1866 | VT: FI->getValueType(ResNo: 0)); |
1867 | SAddr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_ADD_I32, dl: SDLoc(SAddr), |
1868 | VT: MVT::i32, Op1: TFI, Op2: SAddr.getOperand(i: 1)), |
1869 | 0); |
1870 | } |
1871 | |
1872 | return SAddr; |
1873 | } |
1874 | |
1875 | // Match (32-bit SGPR base) + sext(imm offset) |
1876 | bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode *Parent, SDValue Addr, |
1877 | SDValue &SAddr, |
1878 | SDValue &Offset) const { |
1879 | if (Addr->isDivergent()) |
1880 | return false; |
1881 | |
1882 | SDLoc DL(Addr); |
1883 | |
1884 | int64_t COffsetVal = 0; |
1885 | |
1886 | if (CurDAG->isBaseWithConstantOffset(Op: Addr) && isFlatScratchBaseLegal(Addr)) { |
1887 | COffsetVal = cast<ConstantSDNode>(Val: Addr.getOperand(i: 1))->getSExtValue(); |
1888 | SAddr = Addr.getOperand(i: 0); |
1889 | } else { |
1890 | SAddr = Addr; |
1891 | } |
1892 | |
1893 | SAddr = SelectSAddrFI(CurDAG, SAddr); |
1894 | |
1895 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1896 | |
1897 | if (!TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, |
1898 | FlatVariant: SIInstrFlags::FlatScratch)) { |
1899 | int64_t SplitImmOffset, RemainderOffset; |
1900 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) = TII->splitFlatOffset( |
1901 | COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: SIInstrFlags::FlatScratch); |
1902 | |
1903 | COffsetVal = SplitImmOffset; |
1904 | |
1905 | SDValue AddOffset = |
1906 | SAddr.getOpcode() == ISD::TargetFrameIndex |
1907 | ? getMaterializedScalarImm32(Val: Lo_32(Value: RemainderOffset), DL) |
1908 | : CurDAG->getTargetConstant(Val: RemainderOffset, DL, VT: MVT::i32); |
1909 | SAddr = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_ADD_I32, dl: DL, VT: MVT::i32, |
1910 | Op1: SAddr, Op2: AddOffset), |
1911 | 0); |
1912 | } |
1913 | |
1914 | Offset = CurDAG->getTargetConstant(Val: COffsetVal, DL, VT: MVT::i16); |
1915 | |
1916 | return true; |
1917 | } |
1918 | |
1919 | // Check whether the flat scratch SVS swizzle bug affects this access. |
1920 | bool AMDGPUDAGToDAGISel::checkFlatScratchSVSSwizzleBug( |
1921 | SDValue VAddr, SDValue SAddr, uint64_t ImmOffset) const { |
1922 | if (!Subtarget->hasFlatScratchSVSSwizzleBug()) |
1923 | return false; |
1924 | |
1925 | // The bug affects the swizzling of SVS accesses if there is any carry out |
1926 | // from the two low order bits (i.e. from bit 1 into bit 2) when adding |
1927 | // voffset to (soffset + inst_offset). |
1928 | KnownBits VKnown = CurDAG->computeKnownBits(Op: VAddr); |
1929 | KnownBits SKnown = KnownBits::computeForAddSub( |
1930 | /*Add=*/true, /*NSW=*/false, /*NUW=*/false, |
1931 | LHS: CurDAG->computeKnownBits(Op: SAddr), |
1932 | RHS: KnownBits::makeConstant(C: APInt(32, ImmOffset))); |
1933 | uint64_t VMax = VKnown.getMaxValue().getZExtValue(); |
1934 | uint64_t SMax = SKnown.getMaxValue().getZExtValue(); |
1935 | return (VMax & 3) + (SMax & 3) >= 4; |
1936 | } |
1937 | |
1938 | bool AMDGPUDAGToDAGISel::SelectScratchSVAddr(SDNode *N, SDValue Addr, |
1939 | SDValue &VAddr, SDValue &SAddr, |
1940 | SDValue &Offset) const { |
1941 | int64_t ImmOffset = 0; |
1942 | |
1943 | SDValue LHS, RHS; |
1944 | SDValue OrigAddr = Addr; |
1945 | if (isBaseWithConstantOffset64(Addr, LHS, RHS)) { |
1946 | int64_t COffsetVal = cast<ConstantSDNode>(Val&: RHS)->getSExtValue(); |
1947 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
1948 | |
1949 | if (TII->isLegalFLATOffset(Offset: COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: true)) { |
1950 | Addr = LHS; |
1951 | ImmOffset = COffsetVal; |
1952 | } else if (!LHS->isDivergent() && COffsetVal > 0) { |
1953 | SDLoc SL(N); |
1954 | // saddr + large_offset -> saddr + (vaddr = large_offset & ~MaxOffset) + |
1955 | // (large_offset & MaxOffset); |
1956 | int64_t SplitImmOffset, RemainderOffset; |
1957 | std::tie(args&: SplitImmOffset, args&: RemainderOffset) |
1958 | = TII->splitFlatOffset(COffsetVal, AddrSpace: AMDGPUAS::PRIVATE_ADDRESS, FlatVariant: true); |
1959 | |
1960 | if (isUInt<32>(x: RemainderOffset)) { |
1961 | SDNode *VMov = CurDAG->getMachineNode( |
1962 | Opcode: AMDGPU::V_MOV_B32_e32, dl: SL, VT: MVT::i32, |
1963 | Op1: CurDAG->getTargetConstant(Val: RemainderOffset, DL: SDLoc(), VT: MVT::i32)); |
1964 | VAddr = SDValue(VMov, 0); |
1965 | SAddr = LHS; |
1966 | if (!isFlatScratchBaseLegal(Addr)) |
1967 | return false; |
1968 | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset: SplitImmOffset)) |
1969 | return false; |
1970 | Offset = CurDAG->getTargetConstant(Val: SplitImmOffset, DL: SDLoc(), VT: MVT::i16); |
1971 | return true; |
1972 | } |
1973 | } |
1974 | } |
1975 | |
1976 | if (Addr.getOpcode() != ISD::ADD) |
1977 | return false; |
1978 | |
1979 | LHS = Addr.getOperand(i: 0); |
1980 | RHS = Addr.getOperand(i: 1); |
1981 | |
1982 | if (!LHS->isDivergent() && RHS->isDivergent()) { |
1983 | SAddr = LHS; |
1984 | VAddr = RHS; |
1985 | } else if (!RHS->isDivergent() && LHS->isDivergent()) { |
1986 | SAddr = RHS; |
1987 | VAddr = LHS; |
1988 | } else { |
1989 | return false; |
1990 | } |
1991 | |
1992 | if (OrigAddr != Addr) { |
1993 | if (!isFlatScratchBaseLegalSVImm(Addr: OrigAddr)) |
1994 | return false; |
1995 | } else { |
1996 | if (!isFlatScratchBaseLegalSV(Addr: OrigAddr)) |
1997 | return false; |
1998 | } |
1999 | |
2000 | if (checkFlatScratchSVSSwizzleBug(VAddr, SAddr, ImmOffset)) |
2001 | return false; |
2002 | SAddr = SelectSAddrFI(CurDAG, SAddr); |
2003 | Offset = CurDAG->getTargetConstant(Val: ImmOffset, DL: SDLoc(), VT: MVT::i16); |
2004 | return true; |
2005 | } |
2006 | |
2007 | // For unbuffered smem loads, it is illegal for the Immediate Offset to be |
2008 | // negative if the resulting (Offset + (M0 or SOffset or zero) is negative. |
2009 | // Handle the case where the Immediate Offset + SOffset is negative. |
2010 | bool AMDGPUDAGToDAGISel::isSOffsetLegalWithImmOffset(SDValue *SOffset, |
2011 | bool Imm32Only, |
2012 | bool IsBuffer, |
2013 | int64_t ImmOffset) const { |
2014 | if (!IsBuffer && !Imm32Only && ImmOffset < 0 && |
2015 | AMDGPU::hasSMRDSignedImmOffset(ST: *Subtarget)) { |
2016 | KnownBits SKnown = CurDAG->computeKnownBits(Op: *SOffset); |
2017 | if (ImmOffset + SKnown.getMinValue().getSExtValue() < 0) |
2018 | return false; |
2019 | } |
2020 | |
2021 | return true; |
2022 | } |
2023 | |
2024 | // Match an immediate (if Offset is not null) or an SGPR (if SOffset is |
2025 | // not null) offset. If Imm32Only is true, match only 32-bit immediate |
2026 | // offsets available on CI. |
2027 | bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode, |
2028 | SDValue *SOffset, SDValue *Offset, |
2029 | bool Imm32Only, bool IsBuffer, |
2030 | bool HasSOffset, |
2031 | int64_t ImmOffset) const { |
2032 | assert((!SOffset || !Offset) && |
2033 | "Cannot match both soffset and offset at the same time!" ); |
2034 | |
2035 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: ByteOffsetNode); |
2036 | if (!C) { |
2037 | if (!SOffset) |
2038 | return false; |
2039 | |
2040 | if (ByteOffsetNode.getValueType().isScalarInteger() && |
2041 | ByteOffsetNode.getValueType().getSizeInBits() == 32) { |
2042 | *SOffset = ByteOffsetNode; |
2043 | return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, |
2044 | ImmOffset); |
2045 | } |
2046 | if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) { |
2047 | if (ByteOffsetNode.getOperand(i: 0).getValueType().getSizeInBits() == 32) { |
2048 | *SOffset = ByteOffsetNode.getOperand(i: 0); |
2049 | return isSOffsetLegalWithImmOffset(SOffset, Imm32Only, IsBuffer, |
2050 | ImmOffset); |
2051 | } |
2052 | } |
2053 | return false; |
2054 | } |
2055 | |
2056 | SDLoc SL(ByteOffsetNode); |
2057 | |
2058 | // GFX9 and GFX10 have signed byte immediate offsets. The immediate |
2059 | // offset for S_BUFFER instructions is unsigned. |
2060 | int64_t ByteOffset = IsBuffer ? C->getZExtValue() : C->getSExtValue(); |
2061 | std::optional<int64_t> EncodedOffset = AMDGPU::getSMRDEncodedOffset( |
2062 | ST: *Subtarget, ByteOffset, IsBuffer, HasSOffset); |
2063 | if (EncodedOffset && Offset && !Imm32Only) { |
2064 | *Offset = CurDAG->getTargetConstant(Val: *EncodedOffset, DL: SL, VT: MVT::i32); |
2065 | return true; |
2066 | } |
2067 | |
2068 | // SGPR and literal offsets are unsigned. |
2069 | if (ByteOffset < 0) |
2070 | return false; |
2071 | |
2072 | EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(ST: *Subtarget, ByteOffset); |
2073 | if (EncodedOffset && Offset && Imm32Only) { |
2074 | *Offset = CurDAG->getTargetConstant(Val: *EncodedOffset, DL: SL, VT: MVT::i32); |
2075 | return true; |
2076 | } |
2077 | |
2078 | if (!isUInt<32>(x: ByteOffset) && !isInt<32>(x: ByteOffset)) |
2079 | return false; |
2080 | |
2081 | if (SOffset) { |
2082 | SDValue C32Bit = CurDAG->getTargetConstant(Val: ByteOffset, DL: SL, VT: MVT::i32); |
2083 | *SOffset = SDValue( |
2084 | CurDAG->getMachineNode(Opcode: AMDGPU::S_MOV_B32, dl: SL, VT: MVT::i32, Op1: C32Bit), 0); |
2085 | return true; |
2086 | } |
2087 | |
2088 | return false; |
2089 | } |
2090 | |
2091 | SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const { |
2092 | if (Addr.getValueType() != MVT::i32) |
2093 | return Addr; |
2094 | |
2095 | // Zero-extend a 32-bit address. |
2096 | SDLoc SL(Addr); |
2097 | |
2098 | const MachineFunction &MF = CurDAG->getMachineFunction(); |
2099 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
2100 | unsigned AddrHiVal = Info->get32BitAddressHighBits(); |
2101 | SDValue AddrHi = CurDAG->getTargetConstant(Val: AddrHiVal, DL: SL, VT: MVT::i32); |
2102 | |
2103 | const SDValue Ops[] = { |
2104 | CurDAG->getTargetConstant(Val: AMDGPU::SReg_64_XEXECRegClassID, DL: SL, VT: MVT::i32), |
2105 | Addr, |
2106 | CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32), |
2107 | SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_MOV_B32, dl: SL, VT: MVT::i32, Op1: AddrHi), |
2108 | 0), |
2109 | CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32), |
2110 | }; |
2111 | |
2112 | return SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::REG_SEQUENCE, dl: SL, VT: MVT::i64, |
2113 | Ops), 0); |
2114 | } |
2115 | |
2116 | // Match a base and an immediate (if Offset is not null) or an SGPR (if |
2117 | // SOffset is not null) or an immediate+SGPR offset. If Imm32Only is |
2118 | // true, match only 32-bit immediate offsets available on CI. |
2119 | bool AMDGPUDAGToDAGISel::SelectSMRDBaseOffset(SDValue Addr, SDValue &SBase, |
2120 | SDValue *SOffset, SDValue *Offset, |
2121 | bool Imm32Only, bool IsBuffer, |
2122 | bool HasSOffset, |
2123 | int64_t ImmOffset) const { |
2124 | if (SOffset && Offset) { |
2125 | assert(!Imm32Only && !IsBuffer); |
2126 | SDValue B; |
2127 | |
2128 | if (!SelectSMRDBaseOffset(Addr, SBase&: B, SOffset: nullptr, Offset, Imm32Only: false, IsBuffer: false, HasSOffset: true)) |
2129 | return false; |
2130 | |
2131 | int64_t ImmOff = 0; |
2132 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: *Offset)) |
2133 | ImmOff = C->getSExtValue(); |
2134 | |
2135 | return SelectSMRDBaseOffset(Addr: B, SBase, SOffset, Offset: nullptr, Imm32Only: false, IsBuffer: false, HasSOffset: true, |
2136 | ImmOffset: ImmOff); |
2137 | } |
2138 | |
2139 | // A 32-bit (address + offset) should not cause unsigned 32-bit integer |
2140 | // wraparound, because s_load instructions perform the addition in 64 bits. |
2141 | if (Addr.getValueType() == MVT::i32 && Addr.getOpcode() == ISD::ADD && |
2142 | !Addr->getFlags().hasNoUnsignedWrap()) |
2143 | return false; |
2144 | |
2145 | SDValue N0, N1; |
2146 | // Extract the base and offset if possible. |
2147 | if (CurDAG->isBaseWithConstantOffset(Op: Addr) || Addr.getOpcode() == ISD::ADD) { |
2148 | N0 = Addr.getOperand(i: 0); |
2149 | N1 = Addr.getOperand(i: 1); |
2150 | } else if (getBaseWithOffsetUsingSplitOR(DAG&: *CurDAG, Addr, N0, N1)) { |
2151 | assert(N0 && N1 && isa<ConstantSDNode>(N1)); |
2152 | } |
2153 | if (!N0 || !N1) |
2154 | return false; |
2155 | |
2156 | if (SelectSMRDOffset(ByteOffsetNode: N1, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, |
2157 | ImmOffset)) { |
2158 | SBase = N0; |
2159 | return true; |
2160 | } |
2161 | if (SelectSMRDOffset(ByteOffsetNode: N0, SOffset, Offset, Imm32Only, IsBuffer, HasSOffset, |
2162 | ImmOffset)) { |
2163 | SBase = N1; |
2164 | return true; |
2165 | } |
2166 | return false; |
2167 | } |
2168 | |
2169 | bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase, |
2170 | SDValue *SOffset, SDValue *Offset, |
2171 | bool Imm32Only) const { |
2172 | if (SelectSMRDBaseOffset(Addr, SBase, SOffset, Offset, Imm32Only)) { |
2173 | SBase = Expand32BitAddress(Addr: SBase); |
2174 | return true; |
2175 | } |
2176 | |
2177 | if (Addr.getValueType() == MVT::i32 && Offset && !SOffset) { |
2178 | SBase = Expand32BitAddress(Addr); |
2179 | *Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(Addr), VT: MVT::i32); |
2180 | return true; |
2181 | } |
2182 | |
2183 | return false; |
2184 | } |
2185 | |
2186 | bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase, |
2187 | SDValue &Offset) const { |
2188 | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, Offset: &Offset); |
2189 | } |
2190 | |
2191 | bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase, |
2192 | SDValue &Offset) const { |
2193 | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
2194 | return SelectSMRD(Addr, SBase, /* SOffset */ nullptr, Offset: &Offset, |
2195 | /* Imm32Only */ true); |
2196 | } |
2197 | |
2198 | bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase, |
2199 | SDValue &SOffset) const { |
2200 | return SelectSMRD(Addr, SBase, SOffset: &SOffset, /* Offset */ nullptr); |
2201 | } |
2202 | |
2203 | bool AMDGPUDAGToDAGISel::SelectSMRDSgprImm(SDValue Addr, SDValue &SBase, |
2204 | SDValue &SOffset, |
2205 | SDValue &Offset) const { |
2206 | return SelectSMRD(Addr, SBase, SOffset: &SOffset, Offset: &Offset); |
2207 | } |
2208 | |
2209 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue N, SDValue &Offset) const { |
2210 | return SelectSMRDOffset(ByteOffsetNode: N, /* SOffset */ nullptr, Offset: &Offset, |
2211 | /* Imm32Only */ false, /* IsBuffer */ true); |
2212 | } |
2213 | |
2214 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue N, |
2215 | SDValue &Offset) const { |
2216 | assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS); |
2217 | return SelectSMRDOffset(ByteOffsetNode: N, /* SOffset */ nullptr, Offset: &Offset, |
2218 | /* Imm32Only */ true, /* IsBuffer */ true); |
2219 | } |
2220 | |
2221 | bool AMDGPUDAGToDAGISel::SelectSMRDBufferSgprImm(SDValue N, SDValue &SOffset, |
2222 | SDValue &Offset) const { |
2223 | // Match the (soffset + offset) pair as a 32-bit register base and |
2224 | // an immediate offset. |
2225 | return N.getValueType() == MVT::i32 && |
2226 | SelectSMRDBaseOffset(Addr: N, /* SBase */ SOffset, /* SOffset*/ nullptr, |
2227 | Offset: &Offset, /* Imm32Only */ false, |
2228 | /* IsBuffer */ true); |
2229 | } |
2230 | |
2231 | bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index, |
2232 | SDValue &Base, |
2233 | SDValue &Offset) const { |
2234 | SDLoc DL(Index); |
2235 | |
2236 | if (CurDAG->isBaseWithConstantOffset(Op: Index)) { |
2237 | SDValue N0 = Index.getOperand(i: 0); |
2238 | SDValue N1 = Index.getOperand(i: 1); |
2239 | ConstantSDNode *C1 = cast<ConstantSDNode>(Val&: N1); |
2240 | |
2241 | // (add n0, c0) |
2242 | // Don't peel off the offset (c0) if doing so could possibly lead |
2243 | // the base (n0) to be negative. |
2244 | // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset. |
2245 | if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(Op: N0) || |
2246 | (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) { |
2247 | Base = N0; |
2248 | Offset = CurDAG->getTargetConstant(Val: C1->getZExtValue(), DL, VT: MVT::i32); |
2249 | return true; |
2250 | } |
2251 | } |
2252 | |
2253 | if (isa<ConstantSDNode>(Val: Index)) |
2254 | return false; |
2255 | |
2256 | Base = Index; |
2257 | Offset = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32); |
2258 | return true; |
2259 | } |
2260 | |
2261 | SDNode *AMDGPUDAGToDAGISel::getBFE32(bool IsSigned, const SDLoc &DL, |
2262 | SDValue Val, uint32_t Offset, |
2263 | uint32_t Width) { |
2264 | if (Val->isDivergent()) { |
2265 | unsigned Opcode = IsSigned ? AMDGPU::V_BFE_I32_e64 : AMDGPU::V_BFE_U32_e64; |
2266 | SDValue Off = CurDAG->getTargetConstant(Val: Offset, DL, VT: MVT::i32); |
2267 | SDValue W = CurDAG->getTargetConstant(Val: Width, DL, VT: MVT::i32); |
2268 | |
2269 | return CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::i32, Op1: Val, Op2: Off, Op3: W); |
2270 | } |
2271 | unsigned Opcode = IsSigned ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32; |
2272 | // Transformation function, pack the offset and width of a BFE into |
2273 | // the format expected by the S_BFE_I32 / S_BFE_U32. In the second |
2274 | // source, bits [5:0] contain the offset and bits [22:16] the width. |
2275 | uint32_t PackedVal = Offset | (Width << 16); |
2276 | SDValue PackedConst = CurDAG->getTargetConstant(Val: PackedVal, DL, VT: MVT::i32); |
2277 | |
2278 | return CurDAG->getMachineNode(Opcode, dl: DL, VT: MVT::i32, Op1: Val, Op2: PackedConst); |
2279 | } |
2280 | |
2281 | void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) { |
2282 | // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c) |
2283 | // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c) |
2284 | // Predicate: 0 < b <= c < 32 |
2285 | |
2286 | const SDValue &Shl = N->getOperand(Num: 0); |
2287 | ConstantSDNode *B = dyn_cast<ConstantSDNode>(Val: Shl->getOperand(Num: 1)); |
2288 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2289 | |
2290 | if (B && C) { |
2291 | uint32_t BVal = B->getZExtValue(); |
2292 | uint32_t CVal = C->getZExtValue(); |
2293 | |
2294 | if (0 < BVal && BVal <= CVal && CVal < 32) { |
2295 | bool Signed = N->getOpcode() == ISD::SRA; |
2296 | ReplaceNode(F: N, T: getBFE32(IsSigned: Signed, DL: SDLoc(N), Val: Shl.getOperand(i: 0), Offset: CVal - BVal, |
2297 | Width: 32 - CVal)); |
2298 | return; |
2299 | } |
2300 | } |
2301 | SelectCode(N); |
2302 | } |
2303 | |
2304 | void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) { |
2305 | switch (N->getOpcode()) { |
2306 | case ISD::AND: |
2307 | if (N->getOperand(Num: 0).getOpcode() == ISD::SRL) { |
2308 | // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)" |
2309 | // Predicate: isMask(mask) |
2310 | const SDValue &Srl = N->getOperand(Num: 0); |
2311 | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Val: Srl.getOperand(i: 1)); |
2312 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2313 | |
2314 | if (Shift && Mask) { |
2315 | uint32_t ShiftVal = Shift->getZExtValue(); |
2316 | uint32_t MaskVal = Mask->getZExtValue(); |
2317 | |
2318 | if (isMask_32(Value: MaskVal)) { |
2319 | uint32_t WidthVal = llvm::popcount(Value: MaskVal); |
2320 | ReplaceNode(F: N, T: getBFE32(IsSigned: false, DL: SDLoc(N), Val: Srl.getOperand(i: 0), Offset: ShiftVal, |
2321 | Width: WidthVal)); |
2322 | return; |
2323 | } |
2324 | } |
2325 | } |
2326 | break; |
2327 | case ISD::SRL: |
2328 | if (N->getOperand(Num: 0).getOpcode() == ISD::AND) { |
2329 | // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)" |
2330 | // Predicate: isMask(mask >> b) |
2331 | const SDValue &And = N->getOperand(Num: 0); |
2332 | ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
2333 | ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Val: And->getOperand(Num: 1)); |
2334 | |
2335 | if (Shift && Mask) { |
2336 | uint32_t ShiftVal = Shift->getZExtValue(); |
2337 | uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal; |
2338 | |
2339 | if (isMask_32(Value: MaskVal)) { |
2340 | uint32_t WidthVal = llvm::popcount(Value: MaskVal); |
2341 | ReplaceNode(F: N, T: getBFE32(IsSigned: false, DL: SDLoc(N), Val: And.getOperand(i: 0), Offset: ShiftVal, |
2342 | Width: WidthVal)); |
2343 | return; |
2344 | } |
2345 | } |
2346 | } else if (N->getOperand(Num: 0).getOpcode() == ISD::SHL) { |
2347 | SelectS_BFEFromShifts(N); |
2348 | return; |
2349 | } |
2350 | break; |
2351 | case ISD::SRA: |
2352 | if (N->getOperand(Num: 0).getOpcode() == ISD::SHL) { |
2353 | SelectS_BFEFromShifts(N); |
2354 | return; |
2355 | } |
2356 | break; |
2357 | |
2358 | case ISD::SIGN_EXTEND_INREG: { |
2359 | // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8 |
2360 | SDValue Src = N->getOperand(Num: 0); |
2361 | if (Src.getOpcode() != ISD::SRL) |
2362 | break; |
2363 | |
2364 | const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Val: Src.getOperand(i: 1)); |
2365 | if (!Amt) |
2366 | break; |
2367 | |
2368 | unsigned Width = cast<VTSDNode>(Val: N->getOperand(Num: 1))->getVT().getSizeInBits(); |
2369 | ReplaceNode(F: N, T: getBFE32(IsSigned: true, DL: SDLoc(N), Val: Src.getOperand(i: 0), |
2370 | Offset: Amt->getZExtValue(), Width)); |
2371 | return; |
2372 | } |
2373 | } |
2374 | |
2375 | SelectCode(N); |
2376 | } |
2377 | |
2378 | bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const { |
2379 | assert(N->getOpcode() == ISD::BRCOND); |
2380 | if (!N->hasOneUse()) |
2381 | return false; |
2382 | |
2383 | SDValue Cond = N->getOperand(Num: 1); |
2384 | if (Cond.getOpcode() == ISD::CopyToReg) |
2385 | Cond = Cond.getOperand(i: 2); |
2386 | |
2387 | if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse()) |
2388 | return false; |
2389 | |
2390 | MVT VT = Cond.getOperand(i: 0).getSimpleValueType(); |
2391 | if (VT == MVT::i32) |
2392 | return true; |
2393 | |
2394 | if (VT == MVT::i64) { |
2395 | auto ST = static_cast<const GCNSubtarget *>(Subtarget); |
2396 | |
2397 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Cond.getOperand(i: 2))->get(); |
2398 | return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64(); |
2399 | } |
2400 | |
2401 | return false; |
2402 | } |
2403 | |
2404 | static SDValue combineBallotPattern(SDValue VCMP, bool &Negate) { |
2405 | assert(VCMP->getOpcode() == AMDGPUISD::SETCC); |
2406 | // Special case for amdgcn.ballot: |
2407 | // %Cond = i1 (and/or combination of i1 ISD::SETCCs) |
2408 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC (ext %Cond), 0, setne/seteq |
2409 | // => |
2410 | // Use i1 %Cond value instead of i(WaveSize) %VCMP. |
2411 | // This is possible because divergent ISD::SETCC is selected as V_CMP and |
2412 | // Cond becomes a i(WaveSize) full mask value. |
2413 | // Note that ballot doesn't use SETEQ condition but its easy to support it |
2414 | // here for completeness, so in this case Negate is set true on return. |
2415 | auto VCMP_CC = cast<CondCodeSDNode>(Val: VCMP.getOperand(i: 2))->get(); |
2416 | if ((VCMP_CC == ISD::SETEQ || VCMP_CC == ISD::SETNE) && |
2417 | isNullConstant(V: VCMP.getOperand(i: 1))) { |
2418 | |
2419 | auto Cond = VCMP.getOperand(i: 0); |
2420 | if (ISD::isExtOpcode(Opcode: Cond->getOpcode())) // Skip extension. |
2421 | Cond = Cond.getOperand(i: 0); |
2422 | |
2423 | if (isBoolSGPR(V: Cond)) { |
2424 | Negate = VCMP_CC == ISD::SETEQ; |
2425 | return Cond; |
2426 | } |
2427 | } |
2428 | return SDValue(); |
2429 | } |
2430 | |
2431 | void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) { |
2432 | SDValue Cond = N->getOperand(Num: 1); |
2433 | |
2434 | if (Cond.isUndef()) { |
2435 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::SI_BR_UNDEF, VT: MVT::Other, |
2436 | Op1: N->getOperand(Num: 2), Op2: N->getOperand(Num: 0)); |
2437 | return; |
2438 | } |
2439 | |
2440 | const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget); |
2441 | const SIRegisterInfo *TRI = ST->getRegisterInfo(); |
2442 | |
2443 | bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N); |
2444 | bool AndExec = !UseSCCBr; |
2445 | bool Negate = false; |
2446 | |
2447 | if (Cond.getOpcode() == ISD::SETCC && |
2448 | Cond->getOperand(Num: 0)->getOpcode() == AMDGPUISD::SETCC) { |
2449 | SDValue VCMP = Cond->getOperand(Num: 0); |
2450 | auto CC = cast<CondCodeSDNode>(Val: Cond->getOperand(Num: 2))->get(); |
2451 | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && |
2452 | isNullConstant(V: Cond->getOperand(Num: 1)) && |
2453 | // We may encounter ballot.i64 in wave32 mode on -O0. |
2454 | VCMP.getValueType().getSizeInBits() == ST->getWavefrontSize()) { |
2455 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... |
2456 | // %C = i1 ISD::SETCC %VCMP, 0, setne/seteq |
2457 | // BRCOND i1 %C, %BB |
2458 | // => |
2459 | // %VCMP = i(WaveSize) AMDGPUISD::SETCC ... |
2460 | // VCC = COPY i(WaveSize) %VCMP |
2461 | // S_CBRANCH_VCCNZ/VCCZ %BB |
2462 | Negate = CC == ISD::SETEQ; |
2463 | bool NegatedBallot = false; |
2464 | if (auto BallotCond = combineBallotPattern(VCMP, Negate&: NegatedBallot)) { |
2465 | Cond = BallotCond; |
2466 | UseSCCBr = !BallotCond->isDivergent(); |
2467 | Negate = Negate ^ NegatedBallot; |
2468 | } else { |
2469 | // TODO: don't use SCC here assuming that AMDGPUISD::SETCC is always |
2470 | // selected as V_CMP, but this may change for uniform condition. |
2471 | Cond = VCMP; |
2472 | UseSCCBr = false; |
2473 | } |
2474 | } |
2475 | // Cond is either V_CMP resulted from AMDGPUISD::SETCC or a combination of |
2476 | // V_CMPs resulted from ballot or ballot has uniform condition and SCC is |
2477 | // used. |
2478 | AndExec = false; |
2479 | } |
2480 | |
2481 | unsigned BrOp = |
2482 | UseSCCBr ? (Negate ? AMDGPU::S_CBRANCH_SCC0 : AMDGPU::S_CBRANCH_SCC1) |
2483 | : (Negate ? AMDGPU::S_CBRANCH_VCCZ : AMDGPU::S_CBRANCH_VCCNZ); |
2484 | Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC(); |
2485 | SDLoc SL(N); |
2486 | |
2487 | if (AndExec) { |
2488 | // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not |
2489 | // analyzed what generates the vcc value, so we do not know whether vcc |
2490 | // bits for disabled lanes are 0. Thus we need to mask out bits for |
2491 | // disabled lanes. |
2492 | // |
2493 | // For the case that we select S_CBRANCH_SCC1 and it gets |
2494 | // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls |
2495 | // SIInstrInfo::moveToVALU which inserts the S_AND). |
2496 | // |
2497 | // We could add an analysis of what generates the vcc value here and omit |
2498 | // the S_AND when is unnecessary. But it would be better to add a separate |
2499 | // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it |
2500 | // catches both cases. |
2501 | Cond = SDValue(CurDAG->getMachineNode(Opcode: ST->isWave32() ? AMDGPU::S_AND_B32 |
2502 | : AMDGPU::S_AND_B64, |
2503 | dl: SL, VT: MVT::i1, |
2504 | Op1: CurDAG->getRegister(Reg: ST->isWave32() ? AMDGPU::EXEC_LO |
2505 | : AMDGPU::EXEC, |
2506 | VT: MVT::i1), |
2507 | Op2: Cond), |
2508 | 0); |
2509 | } |
2510 | |
2511 | SDValue VCC = CurDAG->getCopyToReg(Chain: N->getOperand(Num: 0), dl: SL, Reg: CondReg, N: Cond); |
2512 | CurDAG->SelectNodeTo(N, MachineOpc: BrOp, VT: MVT::Other, |
2513 | Op1: N->getOperand(Num: 2), // Basic Block |
2514 | Op2: VCC.getValue(R: 0)); |
2515 | } |
2516 | |
2517 | void AMDGPUDAGToDAGISel::SelectFP_EXTEND(SDNode *N) { |
2518 | if (Subtarget->hasSALUFloatInsts() && N->getValueType(ResNo: 0) == MVT::f32 && |
2519 | !N->isDivergent()) { |
2520 | SDValue Src = N->getOperand(Num: 0); |
2521 | if (Src.getValueType() == MVT::f16) { |
2522 | if (isExtractHiElt(In: Src, Out&: Src)) { |
2523 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::S_CVT_HI_F32_F16, VTs: N->getVTList(), |
2524 | Ops: {Src}); |
2525 | return; |
2526 | } |
2527 | } |
2528 | } |
2529 | |
2530 | SelectCode(N); |
2531 | } |
2532 | |
2533 | void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) { |
2534 | // The address is assumed to be uniform, so if it ends up in a VGPR, it will |
2535 | // be copied to an SGPR with readfirstlane. |
2536 | unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ? |
2537 | AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME; |
2538 | |
2539 | SDValue Chain = N->getOperand(Num: 0); |
2540 | SDValue Ptr = N->getOperand(Num: 2); |
2541 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2542 | MachineMemOperand *MMO = M->getMemOperand(); |
2543 | bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS; |
2544 | |
2545 | SDValue Offset; |
2546 | if (CurDAG->isBaseWithConstantOffset(Op: Ptr)) { |
2547 | SDValue PtrBase = Ptr.getOperand(i: 0); |
2548 | SDValue PtrOffset = Ptr.getOperand(i: 1); |
2549 | |
2550 | const APInt &OffsetVal = PtrOffset->getAsAPIntVal(); |
2551 | if (isDSOffsetLegal(Base: PtrBase, Offset: OffsetVal.getZExtValue())) { |
2552 | N = glueCopyToM0(N, Val: PtrBase); |
2553 | Offset = CurDAG->getTargetConstant(Val: OffsetVal, DL: SDLoc(), VT: MVT::i32); |
2554 | } |
2555 | } |
2556 | |
2557 | if (!Offset) { |
2558 | N = glueCopyToM0(N, Val: Ptr); |
2559 | Offset = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(), VT: MVT::i32); |
2560 | } |
2561 | |
2562 | SDValue Ops[] = { |
2563 | Offset, |
2564 | CurDAG->getTargetConstant(Val: IsGDS, DL: SDLoc(), VT: MVT::i32), |
2565 | Chain, |
2566 | N->getOperand(Num: N->getNumOperands() - 1) // New glue |
2567 | }; |
2568 | |
2569 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2570 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2571 | } |
2572 | |
2573 | // We need to handle this here because tablegen doesn't support matching |
2574 | // instructions with multiple outputs. |
2575 | void AMDGPUDAGToDAGISel::SelectDSBvhStackIntrinsic(SDNode *N) { |
2576 | unsigned Opc = AMDGPU::DS_BVH_STACK_RTN_B32; |
2577 | SDValue Ops[] = {N->getOperand(Num: 2), N->getOperand(Num: 3), N->getOperand(Num: 4), |
2578 | N->getOperand(Num: 5), N->getOperand(Num: 0)}; |
2579 | |
2580 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2581 | MachineMemOperand *MMO = M->getMemOperand(); |
2582 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2583 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2584 | } |
2585 | |
2586 | static unsigned gwsIntrinToOpcode(unsigned IntrID) { |
2587 | switch (IntrID) { |
2588 | case Intrinsic::amdgcn_ds_gws_init: |
2589 | return AMDGPU::DS_GWS_INIT; |
2590 | case Intrinsic::amdgcn_ds_gws_barrier: |
2591 | return AMDGPU::DS_GWS_BARRIER; |
2592 | case Intrinsic::amdgcn_ds_gws_sema_v: |
2593 | return AMDGPU::DS_GWS_SEMA_V; |
2594 | case Intrinsic::amdgcn_ds_gws_sema_br: |
2595 | return AMDGPU::DS_GWS_SEMA_BR; |
2596 | case Intrinsic::amdgcn_ds_gws_sema_p: |
2597 | return AMDGPU::DS_GWS_SEMA_P; |
2598 | case Intrinsic::amdgcn_ds_gws_sema_release_all: |
2599 | return AMDGPU::DS_GWS_SEMA_RELEASE_ALL; |
2600 | default: |
2601 | llvm_unreachable("not a gws intrinsic" ); |
2602 | } |
2603 | } |
2604 | |
2605 | void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) { |
2606 | if (!Subtarget->hasGWS() || |
2607 | (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all && |
2608 | !Subtarget->hasGWSSemaReleaseAll())) { |
2609 | // Let this error. |
2610 | SelectCode(N); |
2611 | return; |
2612 | } |
2613 | |
2614 | // Chain, intrinsic ID, vsrc, offset |
2615 | const bool HasVSrc = N->getNumOperands() == 4; |
2616 | assert(HasVSrc || N->getNumOperands() == 3); |
2617 | |
2618 | SDLoc SL(N); |
2619 | SDValue BaseOffset = N->getOperand(Num: HasVSrc ? 3 : 2); |
2620 | int ImmOffset = 0; |
2621 | MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(Val: N); |
2622 | MachineMemOperand *MMO = M->getMemOperand(); |
2623 | |
2624 | // Don't worry if the offset ends up in a VGPR. Only one lane will have |
2625 | // effect, so SIFixSGPRCopies will validly insert readfirstlane. |
2626 | |
2627 | // The resource id offset is computed as (<isa opaque base> + M0[21:16] + |
2628 | // offset field) % 64. Some versions of the programming guide omit the m0 |
2629 | // part, or claim it's from offset 0. |
2630 | if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(Val&: BaseOffset)) { |
2631 | // If we have a constant offset, try to use the 0 in m0 as the base. |
2632 | // TODO: Look into changing the default m0 initialization value. If the |
2633 | // default -1 only set the low 16-bits, we could leave it as-is and add 1 to |
2634 | // the immediate offset. |
2635 | glueCopyToM0(N, Val: CurDAG->getTargetConstant(Val: 0, DL: SL, VT: MVT::i32)); |
2636 | ImmOffset = ConstOffset->getZExtValue(); |
2637 | } else { |
2638 | if (CurDAG->isBaseWithConstantOffset(Op: BaseOffset)) { |
2639 | ImmOffset = BaseOffset.getConstantOperandVal(i: 1); |
2640 | BaseOffset = BaseOffset.getOperand(i: 0); |
2641 | } |
2642 | |
2643 | // Prefer to do the shift in an SGPR since it should be possible to use m0 |
2644 | // as the result directly. If it's already an SGPR, it will be eliminated |
2645 | // later. |
2646 | SDNode *SGPROffset |
2647 | = CurDAG->getMachineNode(Opcode: AMDGPU::V_READFIRSTLANE_B32, dl: SL, VT: MVT::i32, |
2648 | Op1: BaseOffset); |
2649 | // Shift to offset in m0 |
2650 | SDNode *M0Base |
2651 | = CurDAG->getMachineNode(Opcode: AMDGPU::S_LSHL_B32, dl: SL, VT: MVT::i32, |
2652 | Op1: SDValue(SGPROffset, 0), |
2653 | Op2: CurDAG->getTargetConstant(Val: 16, DL: SL, VT: MVT::i32)); |
2654 | glueCopyToM0(N, Val: SDValue(M0Base, 0)); |
2655 | } |
2656 | |
2657 | SDValue Chain = N->getOperand(Num: 0); |
2658 | SDValue OffsetField = CurDAG->getTargetConstant(Val: ImmOffset, DL: SL, VT: MVT::i32); |
2659 | |
2660 | const unsigned Opc = gwsIntrinToOpcode(IntrID); |
2661 | SmallVector<SDValue, 5> Ops; |
2662 | if (HasVSrc) |
2663 | Ops.push_back(Elt: N->getOperand(Num: 2)); |
2664 | Ops.push_back(Elt: OffsetField); |
2665 | Ops.push_back(Elt: Chain); |
2666 | |
2667 | SDNode *Selected = CurDAG->SelectNodeTo(N, MachineOpc: Opc, VTs: N->getVTList(), Ops); |
2668 | CurDAG->setNodeMemRefs(N: cast<MachineSDNode>(Val: Selected), NewMemRefs: {MMO}); |
2669 | } |
2670 | |
2671 | void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) { |
2672 | if (Subtarget->getLDSBankCount() != 16) { |
2673 | // This is a single instruction with a pattern. |
2674 | SelectCode(N); |
2675 | return; |
2676 | } |
2677 | |
2678 | SDLoc DL(N); |
2679 | |
2680 | // This requires 2 instructions. It is possible to write a pattern to support |
2681 | // this, but the generated isel emitter doesn't correctly deal with multiple |
2682 | // output instructions using the same physical register input. The copy to m0 |
2683 | // is incorrectly placed before the second instruction. |
2684 | // |
2685 | // TODO: Match source modifiers. |
2686 | // |
2687 | // def : Pat < |
2688 | // (int_amdgcn_interp_p1_f16 |
2689 | // (VOP3Mods f32:$src0, i32:$src0_modifiers), |
2690 | // (i32 timm:$attrchan), (i32 timm:$attr), |
2691 | // (i1 timm:$high), M0), |
2692 | // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr, |
2693 | // timm:$attrchan, 0, |
2694 | // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> { |
2695 | // let Predicates = [has16BankLDS]; |
2696 | // } |
2697 | |
2698 | // 16 bank LDS |
2699 | SDValue ToM0 = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl: DL, Reg: AMDGPU::M0, |
2700 | N: N->getOperand(Num: 5), Glue: SDValue()); |
2701 | |
2702 | SDVTList VTs = CurDAG->getVTList(VT1: MVT::f32, VT2: MVT::Other); |
2703 | |
2704 | SDNode *InterpMov = |
2705 | CurDAG->getMachineNode(Opcode: AMDGPU::V_INTERP_MOV_F32, dl: DL, VTs, Ops: { |
2706 | CurDAG->getTargetConstant(Val: 2, DL, VT: MVT::i32), // P0 |
2707 | N->getOperand(Num: 3), // Attr |
2708 | N->getOperand(Num: 2), // Attrchan |
2709 | ToM0.getValue(R: 1) // In glue |
2710 | }); |
2711 | |
2712 | SDNode *InterpP1LV = |
2713 | CurDAG->getMachineNode(Opcode: AMDGPU::V_INTERP_P1LV_F16, dl: DL, VT: MVT::f32, Ops: { |
2714 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $src0_modifiers |
2715 | N->getOperand(Num: 1), // Src0 |
2716 | N->getOperand(Num: 3), // Attr |
2717 | N->getOperand(Num: 2), // Attrchan |
2718 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $src2_modifiers |
2719 | SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high |
2720 | N->getOperand(Num: 4), // high |
2721 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1), // $clamp |
2722 | CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i32), // $omod |
2723 | SDValue(InterpMov, 1) |
2724 | }); |
2725 | |
2726 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: SDValue(InterpP1LV, 0)); |
2727 | } |
2728 | |
2729 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) { |
2730 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
2731 | switch (IntrID) { |
2732 | case Intrinsic::amdgcn_ds_append: |
2733 | case Intrinsic::amdgcn_ds_consume: { |
2734 | if (N->getValueType(ResNo: 0) != MVT::i32) |
2735 | break; |
2736 | SelectDSAppendConsume(N, IntrID); |
2737 | return; |
2738 | } |
2739 | case Intrinsic::amdgcn_ds_bvh_stack_rtn: |
2740 | SelectDSBvhStackIntrinsic(N); |
2741 | return; |
2742 | } |
2743 | |
2744 | SelectCode(N); |
2745 | } |
2746 | |
2747 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) { |
2748 | unsigned IntrID = N->getConstantOperandVal(Num: 0); |
2749 | unsigned Opcode = AMDGPU::INSTRUCTION_LIST_END; |
2750 | SDNode *ConvGlueNode = N->getGluedNode(); |
2751 | if (ConvGlueNode) { |
2752 | // FIXME: Possibly iterate over multiple glue nodes? |
2753 | assert(ConvGlueNode->getOpcode() == ISD::CONVERGENCECTRL_GLUE); |
2754 | ConvGlueNode = ConvGlueNode->getOperand(Num: 0).getNode(); |
2755 | ConvGlueNode = |
2756 | CurDAG->getMachineNode(Opcode: TargetOpcode::CONVERGENCECTRL_GLUE, dl: {}, |
2757 | VT: MVT::Glue, Op1: SDValue(ConvGlueNode, 0)); |
2758 | } else { |
2759 | ConvGlueNode = nullptr; |
2760 | } |
2761 | switch (IntrID) { |
2762 | case Intrinsic::amdgcn_wqm: |
2763 | Opcode = AMDGPU::WQM; |
2764 | break; |
2765 | case Intrinsic::amdgcn_softwqm: |
2766 | Opcode = AMDGPU::SOFT_WQM; |
2767 | break; |
2768 | case Intrinsic::amdgcn_wwm: |
2769 | case Intrinsic::amdgcn_strict_wwm: |
2770 | Opcode = AMDGPU::STRICT_WWM; |
2771 | break; |
2772 | case Intrinsic::amdgcn_strict_wqm: |
2773 | Opcode = AMDGPU::STRICT_WQM; |
2774 | break; |
2775 | case Intrinsic::amdgcn_interp_p1_f16: |
2776 | SelectInterpP1F16(N); |
2777 | return; |
2778 | default: |
2779 | SelectCode(N); |
2780 | break; |
2781 | } |
2782 | |
2783 | if (Opcode != AMDGPU::INSTRUCTION_LIST_END) { |
2784 | SDValue Src = N->getOperand(Num: 1); |
2785 | CurDAG->SelectNodeTo(N, MachineOpc: Opcode, VTs: N->getVTList(), Ops: {Src}); |
2786 | } |
2787 | |
2788 | if (ConvGlueNode) { |
2789 | SmallVector<SDValue, 4> NewOps(N->op_begin(), N->op_end()); |
2790 | NewOps.push_back(Elt: SDValue(ConvGlueNode, 0)); |
2791 | CurDAG->MorphNodeTo(N, Opc: N->getOpcode(), VTs: N->getVTList(), Ops: NewOps); |
2792 | } |
2793 | } |
2794 | |
2795 | void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) { |
2796 | unsigned IntrID = N->getConstantOperandVal(Num: 1); |
2797 | switch (IntrID) { |
2798 | case Intrinsic::amdgcn_ds_gws_init: |
2799 | case Intrinsic::amdgcn_ds_gws_barrier: |
2800 | case Intrinsic::amdgcn_ds_gws_sema_v: |
2801 | case Intrinsic::amdgcn_ds_gws_sema_br: |
2802 | case Intrinsic::amdgcn_ds_gws_sema_p: |
2803 | case Intrinsic::amdgcn_ds_gws_sema_release_all: |
2804 | SelectDS_GWS(N, IntrID); |
2805 | return; |
2806 | default: |
2807 | break; |
2808 | } |
2809 | |
2810 | SelectCode(N); |
2811 | } |
2812 | |
2813 | void AMDGPUDAGToDAGISel::SelectWAVE_ADDRESS(SDNode *N) { |
2814 | SDValue Log2WaveSize = |
2815 | CurDAG->getTargetConstant(Val: Subtarget->getWavefrontSizeLog2(), DL: SDLoc(N), VT: MVT::i32); |
2816 | CurDAG->SelectNodeTo(N, MachineOpc: AMDGPU::S_LSHR_B32, VTs: N->getVTList(), |
2817 | Ops: {N->getOperand(Num: 0), Log2WaveSize}); |
2818 | } |
2819 | |
2820 | void AMDGPUDAGToDAGISel::SelectSTACKRESTORE(SDNode *N) { |
2821 | SDValue SrcVal = N->getOperand(Num: 1); |
2822 | if (SrcVal.getValueType() != MVT::i32) { |
2823 | SelectCode(N); // Emit default error |
2824 | return; |
2825 | } |
2826 | |
2827 | SDValue CopyVal; |
2828 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
2829 | SDLoc SL(N); |
2830 | |
2831 | if (SrcVal.getOpcode() == AMDGPUISD::WAVE_ADDRESS) { |
2832 | CopyVal = SrcVal.getOperand(i: 0); |
2833 | } else { |
2834 | SDValue Log2WaveSize = CurDAG->getTargetConstant( |
2835 | Val: Subtarget->getWavefrontSizeLog2(), DL: SL, VT: MVT::i32); |
2836 | |
2837 | if (N->isDivergent()) { |
2838 | SrcVal = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::V_READFIRSTLANE_B32, dl: SL, |
2839 | VT: MVT::i32, Op1: SrcVal), |
2840 | 0); |
2841 | } |
2842 | |
2843 | CopyVal = SDValue(CurDAG->getMachineNode(Opcode: AMDGPU::S_LSHL_B32, dl: SL, VT: MVT::i32, |
2844 | Ops: {SrcVal, Log2WaveSize}), |
2845 | 0); |
2846 | } |
2847 | |
2848 | SDValue CopyToSP = CurDAG->getCopyToReg(Chain: N->getOperand(Num: 0), dl: SL, Reg: SP, N: CopyVal); |
2849 | CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: CopyToSP); |
2850 | } |
2851 | |
2852 | bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src, |
2853 | unsigned &Mods, |
2854 | bool IsCanonicalizing, |
2855 | bool AllowAbs) const { |
2856 | Mods = SISrcMods::NONE; |
2857 | Src = In; |
2858 | |
2859 | if (Src.getOpcode() == ISD::FNEG) { |
2860 | Mods |= SISrcMods::NEG; |
2861 | Src = Src.getOperand(i: 0); |
2862 | } else if (Src.getOpcode() == ISD::FSUB && IsCanonicalizing) { |
2863 | // Fold fsub [+-]0 into fneg. This may not have folded depending on the |
2864 | // denormal mode, but we're implicitly canonicalizing in a source operand. |
2865 | auto *LHS = dyn_cast<ConstantFPSDNode>(Val: Src.getOperand(i: 0)); |
2866 | if (LHS && LHS->isZero()) { |
2867 | Mods |= SISrcMods::NEG; |
2868 | Src = Src.getOperand(i: 1); |
2869 | } |
2870 | } |
2871 | |
2872 | if (AllowAbs && Src.getOpcode() == ISD::FABS) { |
2873 | Mods |= SISrcMods::ABS; |
2874 | Src = Src.getOperand(i: 0); |
2875 | } |
2876 | |
2877 | return true; |
2878 | } |
2879 | |
2880 | bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src, |
2881 | SDValue &SrcMods) const { |
2882 | unsigned Mods; |
2883 | if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/true, |
2884 | /*AllowAbs=*/true)) { |
2885 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
2886 | return true; |
2887 | } |
2888 | |
2889 | return false; |
2890 | } |
2891 | |
2892 | bool AMDGPUDAGToDAGISel::SelectVOP3ModsNonCanonicalizing( |
2893 | SDValue In, SDValue &Src, SDValue &SrcMods) const { |
2894 | unsigned Mods; |
2895 | if (SelectVOP3ModsImpl(In, Src, Mods, /*IsCanonicalizing=*/false, |
2896 | /*AllowAbs=*/true)) { |
2897 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
2898 | return true; |
2899 | } |
2900 | |
2901 | return false; |
2902 | } |
2903 | |
2904 | bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In, SDValue &Src, |
2905 | SDValue &SrcMods) const { |
2906 | unsigned Mods; |
2907 | if (SelectVOP3ModsImpl(In, Src, Mods, |
2908 | /*IsCanonicalizing=*/true, |
2909 | /*AllowAbs=*/false)) { |
2910 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
2911 | return true; |
2912 | } |
2913 | |
2914 | return false; |
2915 | } |
2916 | |
2917 | bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const { |
2918 | if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG) |
2919 | return false; |
2920 | |
2921 | Src = In; |
2922 | return true; |
2923 | } |
2924 | |
2925 | bool AMDGPUDAGToDAGISel::SelectVINTERPModsImpl(SDValue In, SDValue &Src, |
2926 | SDValue &SrcMods, |
2927 | bool OpSel) const { |
2928 | unsigned Mods; |
2929 | if (SelectVOP3ModsImpl(In, Src, Mods, |
2930 | /*IsCanonicalizing=*/true, |
2931 | /*AllowAbs=*/false)) { |
2932 | if (OpSel) |
2933 | Mods |= SISrcMods::OP_SEL_0; |
2934 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
2935 | return true; |
2936 | } |
2937 | |
2938 | return false; |
2939 | } |
2940 | |
2941 | bool AMDGPUDAGToDAGISel::SelectVINTERPMods(SDValue In, SDValue &Src, |
2942 | SDValue &SrcMods) const { |
2943 | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ false); |
2944 | } |
2945 | |
2946 | bool AMDGPUDAGToDAGISel::SelectVINTERPModsHi(SDValue In, SDValue &Src, |
2947 | SDValue &SrcMods) const { |
2948 | return SelectVINTERPModsImpl(In, Src, SrcMods, /* OpSel */ true); |
2949 | } |
2950 | |
2951 | bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src, |
2952 | SDValue &SrcMods, SDValue &Clamp, |
2953 | SDValue &Omod) const { |
2954 | SDLoc DL(In); |
2955 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2956 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2957 | |
2958 | return SelectVOP3Mods(In, Src, SrcMods); |
2959 | } |
2960 | |
2961 | bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In, SDValue &Src, |
2962 | SDValue &SrcMods, SDValue &Clamp, |
2963 | SDValue &Omod) const { |
2964 | SDLoc DL(In); |
2965 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2966 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2967 | |
2968 | return SelectVOP3BMods(In, Src, SrcMods); |
2969 | } |
2970 | |
2971 | bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src, |
2972 | SDValue &Clamp, SDValue &Omod) const { |
2973 | Src = In; |
2974 | |
2975 | SDLoc DL(In); |
2976 | Clamp = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2977 | Omod = CurDAG->getTargetConstant(Val: 0, DL, VT: MVT::i1); |
2978 | |
2979 | return true; |
2980 | } |
2981 | |
2982 | bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src, |
2983 | SDValue &SrcMods, bool IsDOT) const { |
2984 | unsigned Mods = SISrcMods::NONE; |
2985 | Src = In; |
2986 | |
2987 | // TODO: Handle G_FSUB 0 as fneg |
2988 | if (Src.getOpcode() == ISD::FNEG) { |
2989 | Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI); |
2990 | Src = Src.getOperand(i: 0); |
2991 | } |
2992 | |
2993 | if (Src.getOpcode() == ISD::BUILD_VECTOR && Src.getNumOperands() == 2 && |
2994 | (!IsDOT || !Subtarget->hasDOTOpSelHazard())) { |
2995 | unsigned VecMods = Mods; |
2996 | |
2997 | SDValue Lo = stripBitcast(Val: Src.getOperand(i: 0)); |
2998 | SDValue Hi = stripBitcast(Val: Src.getOperand(i: 1)); |
2999 | |
3000 | if (Lo.getOpcode() == ISD::FNEG) { |
3001 | Lo = stripBitcast(Val: Lo.getOperand(i: 0)); |
3002 | Mods ^= SISrcMods::NEG; |
3003 | } |
3004 | |
3005 | if (Hi.getOpcode() == ISD::FNEG) { |
3006 | Hi = stripBitcast(Val: Hi.getOperand(i: 0)); |
3007 | Mods ^= SISrcMods::NEG_HI; |
3008 | } |
3009 | |
3010 | if (isExtractHiElt(In: Lo, Out&: Lo)) |
3011 | Mods |= SISrcMods::OP_SEL_0; |
3012 | |
3013 | if (isExtractHiElt(In: Hi, Out&: Hi)) |
3014 | Mods |= SISrcMods::OP_SEL_1; |
3015 | |
3016 | unsigned VecSize = Src.getValueSizeInBits(); |
3017 | Lo = stripExtractLoElt(In: Lo); |
3018 | Hi = stripExtractLoElt(In: Hi); |
3019 | |
3020 | if (Lo.getValueSizeInBits() > VecSize) { |
3021 | Lo = CurDAG->getTargetExtractSubreg( |
3022 | SRIdx: (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, DL: SDLoc(In), |
3023 | VT: MVT::getIntegerVT(BitWidth: VecSize), Operand: Lo); |
3024 | } |
3025 | |
3026 | if (Hi.getValueSizeInBits() > VecSize) { |
3027 | Hi = CurDAG->getTargetExtractSubreg( |
3028 | SRIdx: (VecSize > 32) ? AMDGPU::sub0_sub1 : AMDGPU::sub0, DL: SDLoc(In), |
3029 | VT: MVT::getIntegerVT(BitWidth: VecSize), Operand: Hi); |
3030 | } |
3031 | |
3032 | assert(Lo.getValueSizeInBits() <= VecSize && |
3033 | Hi.getValueSizeInBits() <= VecSize); |
3034 | |
3035 | if (Lo == Hi && !isInlineImmediate(N: Lo.getNode())) { |
3036 | // Really a scalar input. Just select from the low half of the register to |
3037 | // avoid packing. |
3038 | |
3039 | if (VecSize == 32 || VecSize == Lo.getValueSizeInBits()) { |
3040 | Src = Lo; |
3041 | } else { |
3042 | assert(Lo.getValueSizeInBits() == 32 && VecSize == 64); |
3043 | |
3044 | SDLoc SL(In); |
3045 | SDValue Undef = SDValue( |
3046 | CurDAG->getMachineNode(Opcode: TargetOpcode::IMPLICIT_DEF, dl: SL, |
3047 | VT: Lo.getValueType()), 0); |
3048 | auto RC = Lo->isDivergent() ? AMDGPU::VReg_64RegClassID |
3049 | : AMDGPU::SReg_64RegClassID; |
3050 | const SDValue Ops[] = { |
3051 | CurDAG->getTargetConstant(Val: RC, DL: SL, VT: MVT::i32), |
3052 | Lo, CurDAG->getTargetConstant(Val: AMDGPU::sub0, DL: SL, VT: MVT::i32), |
3053 | Undef, CurDAG->getTargetConstant(Val: AMDGPU::sub1, DL: SL, VT: MVT::i32) }; |
3054 | |
3055 | Src = SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: SL, |
3056 | VT: Src.getValueType(), Ops), 0); |
3057 | } |
3058 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3059 | return true; |
3060 | } |
3061 | |
3062 | if (VecSize == 64 && Lo == Hi && isa<ConstantFPSDNode>(Val: Lo)) { |
3063 | uint64_t Lit = cast<ConstantFPSDNode>(Val&: Lo)->getValueAPF() |
3064 | .bitcastToAPInt().getZExtValue(); |
3065 | if (AMDGPU::isInlinableLiteral32(Literal: Lit, HasInv2Pi: Subtarget->hasInv2PiInlineImm())) { |
3066 | Src = CurDAG->getTargetConstant(Val: Lit, DL: SDLoc(In), VT: MVT::i64); |
3067 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3068 | return true; |
3069 | } |
3070 | } |
3071 | |
3072 | Mods = VecMods; |
3073 | } |
3074 | |
3075 | // Packed instructions do not have abs modifiers. |
3076 | Mods |= SISrcMods::OP_SEL_1; |
3077 | |
3078 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3079 | return true; |
3080 | } |
3081 | |
3082 | bool AMDGPUDAGToDAGISel::SelectVOP3PModsDOT(SDValue In, SDValue &Src, |
3083 | SDValue &SrcMods) const { |
3084 | return SelectVOP3PMods(In, Src, SrcMods, IsDOT: true); |
3085 | } |
3086 | |
3087 | bool AMDGPUDAGToDAGISel::SelectVOP3PModsNeg(SDValue In, SDValue &Src) const { |
3088 | const ConstantSDNode *C = cast<ConstantSDNode>(Val&: In); |
3089 | // Literal i1 value set in intrinsic, represents SrcMods for the next operand. |
3090 | // 1 promotes packed values to signed, 0 treats them as unsigned. |
3091 | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value" ); |
3092 | |
3093 | unsigned Mods = SISrcMods::OP_SEL_1; |
3094 | unsigned SrcSign = C->getZExtValue(); |
3095 | if (SrcSign == 1) |
3096 | Mods ^= SISrcMods::NEG; |
3097 | |
3098 | Src = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3099 | return true; |
3100 | } |
3101 | |
3102 | bool AMDGPUDAGToDAGISel::SelectWMMAOpSelVOP3PMods(SDValue In, |
3103 | SDValue &Src) const { |
3104 | const ConstantSDNode *C = cast<ConstantSDNode>(Val&: In); |
3105 | assert(C->getAPIntValue().getBitWidth() == 1 && "expected i1 value" ); |
3106 | |
3107 | unsigned Mods = SISrcMods::OP_SEL_1; |
3108 | unsigned SrcVal = C->getZExtValue(); |
3109 | if (SrcVal == 1) |
3110 | Mods |= SISrcMods::OP_SEL_0; |
3111 | |
3112 | Src = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3113 | return true; |
3114 | } |
3115 | |
3116 | static MachineSDNode *buildRegSequence32(SmallVectorImpl<SDValue> &Elts, |
3117 | llvm::SelectionDAG *CurDAG, |
3118 | const SDLoc &DL) { |
3119 | unsigned DstRegClass; |
3120 | EVT DstTy; |
3121 | switch (Elts.size()) { |
3122 | case 8: |
3123 | DstRegClass = AMDGPU::VReg_256RegClassID; |
3124 | DstTy = MVT::v8i32; |
3125 | break; |
3126 | case 4: |
3127 | DstRegClass = AMDGPU::VReg_128RegClassID; |
3128 | DstTy = MVT::v4i32; |
3129 | break; |
3130 | case 2: |
3131 | DstRegClass = AMDGPU::VReg_64RegClassID; |
3132 | DstTy = MVT::v2i32; |
3133 | break; |
3134 | default: |
3135 | llvm_unreachable("unhandled Reg sequence size" ); |
3136 | } |
3137 | |
3138 | SmallVector<SDValue, 17> Ops; |
3139 | Ops.push_back(Elt: CurDAG->getTargetConstant(Val: DstRegClass, DL, VT: MVT::i32)); |
3140 | for (unsigned i = 0; i < Elts.size(); ++i) { |
3141 | Ops.push_back(Elt: Elts[i]); |
3142 | Ops.push_back(Elt: CurDAG->getTargetConstant( |
3143 | Val: SIRegisterInfo::getSubRegFromChannel(Channel: i), DL, VT: MVT::i32)); |
3144 | } |
3145 | return CurDAG->getMachineNode(Opcode: TargetOpcode::REG_SEQUENCE, dl: DL, VT: DstTy, Ops); |
3146 | } |
3147 | |
3148 | static MachineSDNode *buildRegSequence16(SmallVectorImpl<SDValue> &Elts, |
3149 | llvm::SelectionDAG *CurDAG, |
3150 | const SDLoc &DL) { |
3151 | SmallVector<SDValue, 8> PackedElts; |
3152 | assert("unhandled Reg sequence size" && |
3153 | (Elts.size() == 8 || Elts.size() == 16)); |
3154 | |
3155 | // Pack 16-bit elements in pairs into 32-bit register. If both elements are |
3156 | // unpacked from 32-bit source use it, otherwise pack them using v_perm. |
3157 | for (unsigned i = 0; i < Elts.size(); i += 2) { |
3158 | SDValue LoSrc = stripExtractLoElt(In: stripBitcast(Val: Elts[i])); |
3159 | SDValue HiSrc; |
3160 | if (isExtractHiElt(In: Elts[i + 1], Out&: HiSrc) && LoSrc == HiSrc) { |
3161 | PackedElts.push_back(Elt: HiSrc); |
3162 | } else { |
3163 | SDValue PackLoLo = CurDAG->getTargetConstant(Val: 0x05040100, DL, VT: MVT::i32); |
3164 | MachineSDNode *Packed = |
3165 | CurDAG->getMachineNode(Opcode: AMDGPU::V_PERM_B32_e64, dl: DL, VT: MVT::i32, |
3166 | Ops: {Elts[i + 1], Elts[i], PackLoLo}); |
3167 | PackedElts.push_back(Elt: SDValue(Packed, 0)); |
3168 | } |
3169 | } |
3170 | |
3171 | return buildRegSequence32(Elts&: PackedElts, CurDAG, DL); |
3172 | } |
3173 | |
3174 | static MachineSDNode *buildRegSequence(SmallVectorImpl<SDValue> &Elts, |
3175 | llvm::SelectionDAG *CurDAG, |
3176 | const SDLoc &DL, unsigned ElementSize) { |
3177 | if (ElementSize == 16) |
3178 | return buildRegSequence16(Elts, CurDAG, DL); |
3179 | if (ElementSize == 32) |
3180 | return buildRegSequence32(Elts, CurDAG, DL); |
3181 | llvm_unreachable("Unhandled element size" ); |
3182 | } |
3183 | |
3184 | static void selectWMMAModsNegAbs(unsigned ModOpcode, unsigned &Mods, |
3185 | SmallVectorImpl<SDValue> &Elts, SDValue &Src, |
3186 | llvm::SelectionDAG *CurDAG, const SDLoc &DL, |
3187 | unsigned ElementSize) { |
3188 | if (ModOpcode == ISD::FNEG) { |
3189 | Mods |= SISrcMods::NEG; |
3190 | // Check if all elements also have abs modifier |
3191 | SmallVector<SDValue, 8> NegAbsElts; |
3192 | for (auto El : Elts) { |
3193 | if (El.getOpcode() != ISD::FABS) |
3194 | break; |
3195 | NegAbsElts.push_back(Elt: El->getOperand(Num: 0)); |
3196 | } |
3197 | if (Elts.size() != NegAbsElts.size()) { |
3198 | // Neg |
3199 | Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); |
3200 | } else { |
3201 | // Neg and Abs |
3202 | Mods |= SISrcMods::NEG_HI; |
3203 | Src = SDValue(buildRegSequence(Elts&: NegAbsElts, CurDAG, DL, ElementSize), 0); |
3204 | } |
3205 | } else { |
3206 | assert(ModOpcode == ISD::FABS); |
3207 | // Abs |
3208 | Mods |= SISrcMods::NEG_HI; |
3209 | Src = SDValue(buildRegSequence(Elts, CurDAG, DL, ElementSize), 0); |
3210 | } |
3211 | } |
3212 | |
3213 | // Check all f16 elements for modifiers while looking through b32 and v2b16 |
3214 | // build vector, stop if element does not satisfy ModifierCheck. |
3215 | static void |
3216 | checkWMMAElementsModifiersF16(BuildVectorSDNode *BV, |
3217 | std::function<bool(SDValue)> ModifierCheck) { |
3218 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3219 | if (auto *F16Pair = |
3220 | dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: BV->getOperand(Num: i)))) { |
3221 | for (unsigned i = 0; i < F16Pair->getNumOperands(); ++i) { |
3222 | SDValue ElF16 = stripBitcast(Val: F16Pair->getOperand(Num: i)); |
3223 | if (!ModifierCheck(ElF16)) |
3224 | break; |
3225 | } |
3226 | } |
3227 | } |
3228 | } |
3229 | |
3230 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF16Neg(SDValue In, SDValue &Src, |
3231 | SDValue &SrcMods) const { |
3232 | Src = In; |
3233 | unsigned Mods = SISrcMods::OP_SEL_1; |
3234 | |
3235 | // mods are on f16 elements |
3236 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3237 | SmallVector<SDValue, 8> EltsF16; |
3238 | |
3239 | checkWMMAElementsModifiersF16(BV, ModifierCheck: [&](SDValue Element) -> bool { |
3240 | if (Element.getOpcode() != ISD::FNEG) |
3241 | return false; |
3242 | EltsF16.push_back(Elt: Element.getOperand(i: 0)); |
3243 | return true; |
3244 | }); |
3245 | |
3246 | // All elements have neg modifier |
3247 | if (BV->getNumOperands() * 2 == EltsF16.size()) { |
3248 | Src = SDValue(buildRegSequence16(Elts&: EltsF16, CurDAG, DL: SDLoc(In)), 0); |
3249 | Mods |= SISrcMods::NEG; |
3250 | Mods |= SISrcMods::NEG_HI; |
3251 | } |
3252 | } |
3253 | |
3254 | // mods are on v2f16 elements |
3255 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3256 | SmallVector<SDValue, 8> EltsV2F16; |
3257 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3258 | SDValue ElV2f16 = stripBitcast(Val: BV->getOperand(Num: i)); |
3259 | // Based on first element decide which mod we match, neg or abs |
3260 | if (ElV2f16.getOpcode() != ISD::FNEG) |
3261 | break; |
3262 | EltsV2F16.push_back(Elt: ElV2f16.getOperand(i: 0)); |
3263 | } |
3264 | |
3265 | // All pairs of elements have neg modifier |
3266 | if (BV->getNumOperands() == EltsV2F16.size()) { |
3267 | Src = SDValue(buildRegSequence32(Elts&: EltsV2F16, CurDAG, DL: SDLoc(In)), 0); |
3268 | Mods |= SISrcMods::NEG; |
3269 | Mods |= SISrcMods::NEG_HI; |
3270 | } |
3271 | } |
3272 | |
3273 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3274 | return true; |
3275 | } |
3276 | |
3277 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF16NegAbs(SDValue In, SDValue &Src, |
3278 | SDValue &SrcMods) const { |
3279 | Src = In; |
3280 | unsigned Mods = SISrcMods::OP_SEL_1; |
3281 | unsigned ModOpcode; |
3282 | |
3283 | // mods are on f16 elements |
3284 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3285 | SmallVector<SDValue, 8> EltsF16; |
3286 | checkWMMAElementsModifiersF16(BV, ModifierCheck: [&](SDValue ElF16) -> bool { |
3287 | // Based on first element decide which mod we match, neg or abs |
3288 | if (EltsF16.empty()) |
3289 | ModOpcode = (ElF16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3290 | if (ElF16.getOpcode() != ModOpcode) |
3291 | return false; |
3292 | EltsF16.push_back(Elt: ElF16.getOperand(i: 0)); |
3293 | return true; |
3294 | }); |
3295 | |
3296 | // All elements have ModOpcode modifier |
3297 | if (BV->getNumOperands() * 2 == EltsF16.size()) |
3298 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsF16, Src, CurDAG, DL: SDLoc(In), |
3299 | ElementSize: 16); |
3300 | } |
3301 | |
3302 | // mods are on v2f16 elements |
3303 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3304 | SmallVector<SDValue, 8> EltsV2F16; |
3305 | |
3306 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3307 | SDValue ElV2f16 = stripBitcast(Val: BV->getOperand(Num: i)); |
3308 | // Based on first element decide which mod we match, neg or abs |
3309 | if (EltsV2F16.empty()) |
3310 | ModOpcode = (ElV2f16.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3311 | if (ElV2f16->getOpcode() != ModOpcode) |
3312 | break; |
3313 | EltsV2F16.push_back(Elt: ElV2f16->getOperand(Num: 0)); |
3314 | } |
3315 | |
3316 | // All elements have ModOpcode modifier |
3317 | if (BV->getNumOperands() == EltsV2F16.size()) |
3318 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsV2F16, Src, CurDAG, DL: SDLoc(In), |
3319 | ElementSize: 32); |
3320 | } |
3321 | |
3322 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3323 | return true; |
3324 | } |
3325 | |
3326 | bool AMDGPUDAGToDAGISel::SelectWMMAModsF32NegAbs(SDValue In, SDValue &Src, |
3327 | SDValue &SrcMods) const { |
3328 | Src = In; |
3329 | unsigned Mods = SISrcMods::OP_SEL_1; |
3330 | SmallVector<SDValue, 8> EltsF32; |
3331 | |
3332 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val: stripBitcast(Val: In))) { |
3333 | assert(BV->getNumOperands() > 0); |
3334 | // Based on first element decide which mod we match, neg or abs |
3335 | SDValue ElF32 = stripBitcast(Val: BV->getOperand(Num: 0)); |
3336 | unsigned ModOpcode = |
3337 | (ElF32.getOpcode() == ISD::FNEG) ? ISD::FNEG : ISD::FABS; |
3338 | for (unsigned i = 0; i < BV->getNumOperands(); ++i) { |
3339 | SDValue ElF32 = stripBitcast(Val: BV->getOperand(Num: i)); |
3340 | if (ElF32.getOpcode() != ModOpcode) |
3341 | break; |
3342 | EltsF32.push_back(Elt: ElF32.getOperand(i: 0)); |
3343 | } |
3344 | |
3345 | // All elements had ModOpcode modifier |
3346 | if (BV->getNumOperands() == EltsF32.size()) |
3347 | selectWMMAModsNegAbs(ModOpcode, Mods, Elts&: EltsF32, Src, CurDAG, DL: SDLoc(In), |
3348 | ElementSize: 32); |
3349 | } |
3350 | |
3351 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3352 | return true; |
3353 | } |
3354 | |
3355 | bool AMDGPUDAGToDAGISel::SelectWMMAVISrc(SDValue In, SDValue &Src) const { |
3356 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val&: In)) { |
3357 | BitVector UndefElements; |
3358 | if (SDValue Splat = BV->getSplatValue(UndefElements: &UndefElements)) |
3359 | if (isInlineImmediate(N: Splat.getNode())) { |
3360 | if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Splat)) { |
3361 | unsigned Imm = C->getAPIntValue().getSExtValue(); |
3362 | Src = CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(In), VT: MVT::i32); |
3363 | return true; |
3364 | } |
3365 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Splat)) { |
3366 | unsigned Imm = C->getValueAPF().bitcastToAPInt().getSExtValue(); |
3367 | Src = CurDAG->getTargetConstant(Val: Imm, DL: SDLoc(In), VT: MVT::i32); |
3368 | return true; |
3369 | } |
3370 | llvm_unreachable("unhandled Constant node" ); |
3371 | } |
3372 | } |
3373 | |
3374 | // 16 bit splat |
3375 | SDValue SplatSrc32 = stripBitcast(Val: In); |
3376 | if (auto *SplatSrc32BV = dyn_cast<BuildVectorSDNode>(Val&: SplatSrc32)) |
3377 | if (SDValue Splat32 = SplatSrc32BV->getSplatValue()) { |
3378 | SDValue SplatSrc16 = stripBitcast(Val: Splat32); |
3379 | if (auto *SplatSrc16BV = dyn_cast<BuildVectorSDNode>(Val&: SplatSrc16)) |
3380 | if (SDValue Splat = SplatSrc16BV->getSplatValue()) { |
3381 | const SIInstrInfo *TII = Subtarget->getInstrInfo(); |
3382 | std::optional<APInt> RawValue; |
3383 | if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: Splat)) |
3384 | RawValue = C->getValueAPF().bitcastToAPInt(); |
3385 | else if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: Splat)) |
3386 | RawValue = C->getAPIntValue(); |
3387 | |
3388 | if (RawValue.has_value()) { |
3389 | EVT VT = In.getValueType().getScalarType(); |
3390 | if (VT.getSimpleVT() == MVT::f16 || VT.getSimpleVT() == MVT::bf16) { |
3391 | APFloat FloatVal(VT.getSimpleVT() == MVT::f16 |
3392 | ? APFloatBase::IEEEhalf() |
3393 | : APFloatBase::BFloat(), |
3394 | RawValue.value()); |
3395 | if (TII->isInlineConstant(Imm: FloatVal)) { |
3396 | Src = CurDAG->getTargetConstant(Val: RawValue.value(), DL: SDLoc(In), |
3397 | VT: MVT::i16); |
3398 | return true; |
3399 | } |
3400 | } else if (VT.getSimpleVT() == MVT::i16) { |
3401 | if (TII->isInlineConstant(Imm: RawValue.value())) { |
3402 | Src = CurDAG->getTargetConstant(Val: RawValue.value(), DL: SDLoc(In), |
3403 | VT: MVT::i16); |
3404 | return true; |
3405 | } |
3406 | } else |
3407 | llvm_unreachable("unknown 16-bit type" ); |
3408 | } |
3409 | } |
3410 | } |
3411 | |
3412 | return false; |
3413 | } |
3414 | |
3415 | bool AMDGPUDAGToDAGISel::SelectSWMMACIndex8(SDValue In, SDValue &Src, |
3416 | SDValue &IndexKey) const { |
3417 | unsigned Key = 0; |
3418 | Src = In; |
3419 | |
3420 | if (In.getOpcode() == ISD::SRL) { |
3421 | const llvm::SDValue &ShiftSrc = In.getOperand(i: 0); |
3422 | ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1)); |
3423 | if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && |
3424 | ShiftAmt->getZExtValue() % 8 == 0) { |
3425 | Key = ShiftAmt->getZExtValue() / 8; |
3426 | Src = ShiftSrc; |
3427 | } |
3428 | } |
3429 | |
3430 | IndexKey = CurDAG->getTargetConstant(Val: Key, DL: SDLoc(In), VT: MVT::i32); |
3431 | return true; |
3432 | } |
3433 | |
3434 | bool AMDGPUDAGToDAGISel::SelectSWMMACIndex16(SDValue In, SDValue &Src, |
3435 | SDValue &IndexKey) const { |
3436 | unsigned Key = 0; |
3437 | Src = In; |
3438 | |
3439 | if (In.getOpcode() == ISD::SRL) { |
3440 | const llvm::SDValue &ShiftSrc = In.getOperand(i: 0); |
3441 | ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Val: In.getOperand(i: 1)); |
3442 | if (ShiftSrc.getValueType().getSizeInBits() == 32 && ShiftAmt && |
3443 | ShiftAmt->getZExtValue() == 16) { |
3444 | Key = 1; |
3445 | Src = ShiftSrc; |
3446 | } |
3447 | } |
3448 | |
3449 | IndexKey = CurDAG->getTargetConstant(Val: Key, DL: SDLoc(In), VT: MVT::i32); |
3450 | return true; |
3451 | } |
3452 | |
3453 | bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src, |
3454 | SDValue &SrcMods) const { |
3455 | Src = In; |
3456 | // FIXME: Handle op_sel |
3457 | SrcMods = CurDAG->getTargetConstant(Val: 0, DL: SDLoc(In), VT: MVT::i32); |
3458 | return true; |
3459 | } |
3460 | |
3461 | bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src, |
3462 | SDValue &SrcMods) const { |
3463 | // FIXME: Handle op_sel |
3464 | return SelectVOP3Mods(In, Src, SrcMods); |
3465 | } |
3466 | |
3467 | // The return value is not whether the match is possible (which it always is), |
3468 | // but whether or not it a conversion is really used. |
3469 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, |
3470 | unsigned &Mods) const { |
3471 | Mods = 0; |
3472 | SelectVOP3ModsImpl(In, Src, Mods); |
3473 | |
3474 | if (Src.getOpcode() == ISD::FP_EXTEND) { |
3475 | Src = Src.getOperand(i: 0); |
3476 | assert(Src.getValueType() == MVT::f16); |
3477 | Src = stripBitcast(Val: Src); |
3478 | |
3479 | // Be careful about folding modifiers if we already have an abs. fneg is |
3480 | // applied last, so we don't want to apply an earlier fneg. |
3481 | if ((Mods & SISrcMods::ABS) == 0) { |
3482 | unsigned ModsTmp; |
3483 | SelectVOP3ModsImpl(In: Src, Src, Mods&: ModsTmp); |
3484 | |
3485 | if ((ModsTmp & SISrcMods::NEG) != 0) |
3486 | Mods ^= SISrcMods::NEG; |
3487 | |
3488 | if ((ModsTmp & SISrcMods::ABS) != 0) |
3489 | Mods |= SISrcMods::ABS; |
3490 | } |
3491 | |
3492 | // op_sel/op_sel_hi decide the source type and source. |
3493 | // If the source's op_sel_hi is set, it indicates to do a conversion from fp16. |
3494 | // If the sources's op_sel is set, it picks the high half of the source |
3495 | // register. |
3496 | |
3497 | Mods |= SISrcMods::OP_SEL_1; |
3498 | if (isExtractHiElt(In: Src, Out&: Src)) { |
3499 | Mods |= SISrcMods::OP_SEL_0; |
3500 | |
3501 | // TODO: Should we try to look for neg/abs here? |
3502 | } |
3503 | |
3504 | return true; |
3505 | } |
3506 | |
3507 | return false; |
3508 | } |
3509 | |
3510 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsExt(SDValue In, SDValue &Src, |
3511 | SDValue &SrcMods) const { |
3512 | unsigned Mods = 0; |
3513 | if (!SelectVOP3PMadMixModsImpl(In, Src, Mods)) |
3514 | return false; |
3515 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3516 | return true; |
3517 | } |
3518 | |
3519 | bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src, |
3520 | SDValue &SrcMods) const { |
3521 | unsigned Mods = 0; |
3522 | SelectVOP3PMadMixModsImpl(In, Src, Mods); |
3523 | SrcMods = CurDAG->getTargetConstant(Val: Mods, DL: SDLoc(In), VT: MVT::i32); |
3524 | return true; |
3525 | } |
3526 | |
3527 | SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const { |
3528 | if (In.isUndef()) |
3529 | return CurDAG->getUNDEF(VT: MVT::i32); |
3530 | |
3531 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val&: In)) { |
3532 | SDLoc SL(In); |
3533 | return CurDAG->getConstant(Val: C->getZExtValue() << 16, DL: SL, VT: MVT::i32); |
3534 | } |
3535 | |
3536 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val&: In)) { |
3537 | SDLoc SL(In); |
3538 | return CurDAG->getConstant( |
3539 | Val: C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, DL: SL, VT: MVT::i32); |
3540 | } |
3541 | |
3542 | SDValue Src; |
3543 | if (isExtractHiElt(In, Out&: Src)) |
3544 | return Src; |
3545 | |
3546 | return SDValue(); |
3547 | } |
3548 | |
3549 | bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const { |
3550 | assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn); |
3551 | |
3552 | const SIRegisterInfo *SIRI = |
3553 | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); |
3554 | const SIInstrInfo * SII = |
3555 | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); |
3556 | |
3557 | unsigned Limit = 0; |
3558 | bool AllUsesAcceptSReg = true; |
3559 | for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end(); |
3560 | Limit < 10 && U != E; ++U, ++Limit) { |
3561 | const TargetRegisterClass *RC = getOperandRegClass(N: *U, OpNo: U.getOperandNo()); |
3562 | |
3563 | // If the register class is unknown, it could be an unknown |
3564 | // register class that needs to be an SGPR, e.g. an inline asm |
3565 | // constraint |
3566 | if (!RC || SIRI->isSGPRClass(RC)) |
3567 | return false; |
3568 | |
3569 | if (RC != &AMDGPU::VS_32RegClass && RC != &AMDGPU::VS_64RegClass) { |
3570 | AllUsesAcceptSReg = false; |
3571 | SDNode * User = *U; |
3572 | if (User->isMachineOpcode()) { |
3573 | unsigned Opc = User->getMachineOpcode(); |
3574 | const MCInstrDesc &Desc = SII->get(Opcode: Opc); |
3575 | if (Desc.isCommutable()) { |
3576 | unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo(); |
3577 | unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; |
3578 | if (SII->findCommutedOpIndices(Desc, SrcOpIdx0&: OpIdx, SrcOpIdx1&: CommuteIdx1)) { |
3579 | unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs(); |
3580 | const TargetRegisterClass *CommutedRC = getOperandRegClass(N: *U, OpNo: CommutedOpNo); |
3581 | if (CommutedRC == &AMDGPU::VS_32RegClass || |
3582 | CommutedRC == &AMDGPU::VS_64RegClass) |
3583 | AllUsesAcceptSReg = true; |
3584 | } |
3585 | } |
3586 | } |
3587 | // If "AllUsesAcceptSReg == false" so far we haven't succeeded |
3588 | // commuting current user. This means have at least one use |
3589 | // that strictly require VGPR. Thus, we will not attempt to commute |
3590 | // other user instructions. |
3591 | if (!AllUsesAcceptSReg) |
3592 | break; |
3593 | } |
3594 | } |
3595 | return !AllUsesAcceptSReg && (Limit < 10); |
3596 | } |
3597 | |
3598 | bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode *N) const { |
3599 | auto Ld = cast<LoadSDNode>(Val: N); |
3600 | |
3601 | const MachineMemOperand *MMO = Ld->getMemOperand(); |
3602 | if (N->isDivergent() && !AMDGPUInstrInfo::isUniformMMO(MMO)) |
3603 | return false; |
3604 | |
3605 | return MMO->getSize().hasValue() && |
3606 | Ld->getAlign() >= |
3607 | Align(std::min(a: MMO->getSize().getValue().getKnownMinValue(), |
3608 | b: uint64_t(4))) && |
3609 | ((Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS || |
3610 | Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) || |
3611 | (Subtarget->getScalarizeGlobalBehavior() && |
3612 | Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS && |
3613 | Ld->isSimple() && |
3614 | static_cast<const SITargetLowering *>(getTargetLowering()) |
3615 | ->isMemOpHasNoClobberedMemOperand(N))); |
3616 | } |
3617 | |
3618 | void AMDGPUDAGToDAGISel::PostprocessISelDAG() { |
3619 | const AMDGPUTargetLowering& Lowering = |
3620 | *static_cast<const AMDGPUTargetLowering*>(getTargetLowering()); |
3621 | bool IsModified = false; |
3622 | do { |
3623 | IsModified = false; |
3624 | |
3625 | // Go over all selected nodes and try to fold them a bit more |
3626 | SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin(); |
3627 | while (Position != CurDAG->allnodes_end()) { |
3628 | SDNode *Node = &*Position++; |
3629 | MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Val: Node); |
3630 | if (!MachineNode) |
3631 | continue; |
3632 | |
3633 | SDNode *ResNode = Lowering.PostISelFolding(N: MachineNode, DAG&: *CurDAG); |
3634 | if (ResNode != Node) { |
3635 | if (ResNode) |
3636 | ReplaceUses(F: Node, T: ResNode); |
3637 | IsModified = true; |
3638 | } |
3639 | } |
3640 | CurDAG->RemoveDeadNodes(); |
3641 | } while (IsModified); |
3642 | } |
3643 | |
3644 | AMDGPUDAGToDAGISelLegacy::AMDGPUDAGToDAGISelLegacy(TargetMachine &TM, |
3645 | CodeGenOptLevel OptLevel) |
3646 | : SelectionDAGISelLegacy( |
3647 | ID, std::make_unique<AMDGPUDAGToDAGISel>(args&: TM, args&: OptLevel)) {} |
3648 | |
3649 | char AMDGPUDAGToDAGISelLegacy::ID = 0; |
3650 | |