1 | //===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | /// \file |
10 | /// This pass implements instructions packetization for R600. It unsets isLast |
11 | /// bit of instructions inside a bundle and substitutes src register with |
12 | /// PreviousVector when applicable. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "MCTargetDesc/R600MCTargetDesc.h" |
17 | #include "R600.h" |
18 | #include "R600Subtarget.h" |
19 | #include "llvm/CodeGen/DFAPacketizer.h" |
20 | #include "llvm/CodeGen/MachineDominators.h" |
21 | #include "llvm/CodeGen/MachineLoopInfo.h" |
22 | #include "llvm/CodeGen/ScheduleDAG.h" |
23 | |
24 | using namespace llvm; |
25 | |
26 | #define DEBUG_TYPE "packets" |
27 | |
28 | namespace { |
29 | |
30 | class R600Packetizer : public MachineFunctionPass { |
31 | |
32 | public: |
33 | static char ID; |
34 | R600Packetizer() : MachineFunctionPass(ID) {} |
35 | |
36 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
37 | AU.setPreservesCFG(); |
38 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
39 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
40 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
41 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
42 | MachineFunctionPass::getAnalysisUsage(AU); |
43 | } |
44 | |
45 | StringRef getPassName() const override { return "R600 Packetizer" ; } |
46 | |
47 | bool runOnMachineFunction(MachineFunction &Fn) override; |
48 | }; |
49 | |
50 | class R600PacketizerList : public VLIWPacketizerList { |
51 | private: |
52 | const R600InstrInfo *TII; |
53 | const R600RegisterInfo &TRI; |
54 | bool VLIW5; |
55 | bool ConsideredInstUsesAlreadyWrittenVectorElement; |
56 | |
57 | unsigned getSlot(const MachineInstr &MI) const { |
58 | return TRI.getHWRegChan(reg: MI.getOperand(i: 0).getReg()); |
59 | } |
60 | |
61 | /// \returns register to PV chan mapping for bundle/single instructions that |
62 | /// immediately precedes I. |
63 | DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I) |
64 | const { |
65 | DenseMap<unsigned, unsigned> Result; |
66 | I--; |
67 | if (!TII->isALUInstr(Opcode: I->getOpcode()) && !I->isBundle()) |
68 | return Result; |
69 | MachineBasicBlock::instr_iterator BI = I.getInstrIterator(); |
70 | if (I->isBundle()) |
71 | BI++; |
72 | int LastDstChan = -1; |
73 | do { |
74 | bool isTrans = false; |
75 | int BISlot = getSlot(MI: *BI); |
76 | if (LastDstChan >= BISlot) |
77 | isTrans = true; |
78 | LastDstChan = BISlot; |
79 | if (TII->isPredicated(MI: *BI)) |
80 | continue; |
81 | int OperandIdx = TII->getOperandIdx(Opcode: BI->getOpcode(), Op: R600::OpName::write); |
82 | if (OperandIdx > -1 && BI->getOperand(i: OperandIdx).getImm() == 0) |
83 | continue; |
84 | int DstIdx = TII->getOperandIdx(Opcode: BI->getOpcode(), Op: R600::OpName::dst); |
85 | if (DstIdx == -1) { |
86 | continue; |
87 | } |
88 | Register Dst = BI->getOperand(i: DstIdx).getReg(); |
89 | if (isTrans || TII->isTransOnly(MI: *BI)) { |
90 | Result[Dst] = R600::PS; |
91 | continue; |
92 | } |
93 | if (BI->getOpcode() == R600::DOT4_r600 || |
94 | BI->getOpcode() == R600::DOT4_eg) { |
95 | Result[Dst] = R600::PV_X; |
96 | continue; |
97 | } |
98 | if (Dst == R600::OQAP) { |
99 | continue; |
100 | } |
101 | unsigned PVReg = 0; |
102 | switch (TRI.getHWRegChan(reg: Dst)) { |
103 | case 0: |
104 | PVReg = R600::PV_X; |
105 | break; |
106 | case 1: |
107 | PVReg = R600::PV_Y; |
108 | break; |
109 | case 2: |
110 | PVReg = R600::PV_Z; |
111 | break; |
112 | case 3: |
113 | PVReg = R600::PV_W; |
114 | break; |
115 | default: |
116 | llvm_unreachable("Invalid Chan" ); |
117 | } |
118 | Result[Dst] = PVReg; |
119 | } while ((++BI)->isBundledWithPred()); |
120 | return Result; |
121 | } |
122 | |
123 | void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs) |
124 | const { |
125 | unsigned Ops[] = { |
126 | R600::OpName::src0, |
127 | R600::OpName::src1, |
128 | R600::OpName::src2 |
129 | }; |
130 | for (unsigned Op : Ops) { |
131 | int OperandIdx = TII->getOperandIdx(Opcode: MI.getOpcode(), Op); |
132 | if (OperandIdx < 0) |
133 | continue; |
134 | Register Src = MI.getOperand(i: OperandIdx).getReg(); |
135 | const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Val: Src); |
136 | if (It != PVs.end()) |
137 | MI.getOperand(i: OperandIdx).setReg(It->second); |
138 | } |
139 | } |
140 | public: |
141 | // Ctor. |
142 | R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST, |
143 | MachineLoopInfo &MLI) |
144 | : VLIWPacketizerList(MF, MLI, nullptr), |
145 | TII(ST.getInstrInfo()), |
146 | TRI(TII->getRegisterInfo()) { |
147 | VLIW5 = !ST.hasCaymanISA(); |
148 | } |
149 | |
150 | // initPacketizerState - initialize some internal flags. |
151 | void initPacketizerState() override { |
152 | ConsideredInstUsesAlreadyWrittenVectorElement = false; |
153 | } |
154 | |
155 | // ignorePseudoInstruction - Ignore bundling of pseudo instructions. |
156 | bool ignorePseudoInstruction(const MachineInstr &MI, |
157 | const MachineBasicBlock *MBB) override { |
158 | return false; |
159 | } |
160 | |
161 | // isSoloInstruction - return true if instruction MI can not be packetized |
162 | // with any other instruction, which means that MI itself is a packet. |
163 | bool isSoloInstruction(const MachineInstr &MI) override { |
164 | if (TII->isVector(MI)) |
165 | return true; |
166 | if (!TII->isALUInstr(Opcode: MI.getOpcode())) |
167 | return true; |
168 | if (MI.getOpcode() == R600::GROUP_BARRIER) |
169 | return true; |
170 | // XXX: This can be removed once the packetizer properly handles all the |
171 | // LDS instruction group restrictions. |
172 | return TII->isLDSInstr(Opcode: MI.getOpcode()); |
173 | } |
174 | |
175 | // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ |
176 | // together. |
177 | bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override { |
178 | MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr(); |
179 | if (getSlot(MI: *MII) == getSlot(MI: *MIJ)) |
180 | ConsideredInstUsesAlreadyWrittenVectorElement = true; |
181 | // Does MII and MIJ share the same pred_sel ? |
182 | int OpI = TII->getOperandIdx(Opcode: MII->getOpcode(), Op: R600::OpName::pred_sel), |
183 | OpJ = TII->getOperandIdx(Opcode: MIJ->getOpcode(), Op: R600::OpName::pred_sel); |
184 | Register PredI = (OpI > -1)?MII->getOperand(i: OpI).getReg() : Register(), |
185 | PredJ = (OpJ > -1)?MIJ->getOperand(i: OpJ).getReg() : Register(); |
186 | if (PredI != PredJ) |
187 | return false; |
188 | if (SUJ->isSucc(N: SUI)) { |
189 | for (const SDep &Dep : SUJ->Succs) { |
190 | if (Dep.getSUnit() != SUI) |
191 | continue; |
192 | if (Dep.getKind() == SDep::Anti) |
193 | continue; |
194 | if (Dep.getKind() == SDep::Output) |
195 | if (MII->getOperand(i: 0).getReg() != MIJ->getOperand(i: 0).getReg()) |
196 | continue; |
197 | return false; |
198 | } |
199 | } |
200 | |
201 | bool ARDef = |
202 | TII->definesAddressRegister(MI&: *MII) || TII->definesAddressRegister(MI&: *MIJ); |
203 | bool ARUse = |
204 | TII->usesAddressRegister(MI&: *MII) || TII->usesAddressRegister(MI&: *MIJ); |
205 | |
206 | return !ARDef || !ARUse; |
207 | } |
208 | |
209 | // isLegalToPruneDependencies - Is it legal to prune dependency between SUI |
210 | // and SUJ. |
211 | bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override { |
212 | return false; |
213 | } |
214 | |
215 | void setIsLastBit(MachineInstr *MI, unsigned Bit) const { |
216 | unsigned LastOp = TII->getOperandIdx(Opcode: MI->getOpcode(), Op: R600::OpName::last); |
217 | MI->getOperand(i: LastOp).setImm(Bit); |
218 | } |
219 | |
220 | bool isBundlableWithCurrentPMI(MachineInstr &MI, |
221 | const DenseMap<unsigned, unsigned> &PV, |
222 | std::vector<R600InstrInfo::BankSwizzle> &BS, |
223 | bool &isTransSlot) { |
224 | isTransSlot = TII->isTransOnly(MI); |
225 | assert (!isTransSlot || VLIW5); |
226 | |
227 | // Is the dst reg sequence legal ? |
228 | if (!isTransSlot && !CurrentPacketMIs.empty()) { |
229 | if (getSlot(MI) <= getSlot(MI: *CurrentPacketMIs.back())) { |
230 | if (ConsideredInstUsesAlreadyWrittenVectorElement && |
231 | !TII->isVectorOnly(MI) && VLIW5) { |
232 | isTransSlot = true; |
233 | LLVM_DEBUG({ |
234 | dbgs() << "Considering as Trans Inst :" ; |
235 | MI.dump(); |
236 | }); |
237 | } |
238 | else |
239 | return false; |
240 | } |
241 | } |
242 | |
243 | // Are the Constants limitations met ? |
244 | CurrentPacketMIs.push_back(x: &MI); |
245 | if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) { |
246 | LLVM_DEBUG({ |
247 | dbgs() << "Couldn't pack :\n" ; |
248 | MI.dump(); |
249 | dbgs() << "with the following packets :\n" ; |
250 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
251 | CurrentPacketMIs[i]->dump(); |
252 | dbgs() << "\n" ; |
253 | } |
254 | dbgs() << "because of Consts read limitations\n" ; |
255 | }); |
256 | CurrentPacketMIs.pop_back(); |
257 | return false; |
258 | } |
259 | |
260 | // Is there a BankSwizzle set that meet Read Port limitations ? |
261 | if (!TII->fitsReadPortLimitations(MIs: CurrentPacketMIs, |
262 | PV, BS, isLastAluTrans: isTransSlot)) { |
263 | LLVM_DEBUG({ |
264 | dbgs() << "Couldn't pack :\n" ; |
265 | MI.dump(); |
266 | dbgs() << "with the following packets :\n" ; |
267 | for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) { |
268 | CurrentPacketMIs[i]->dump(); |
269 | dbgs() << "\n" ; |
270 | } |
271 | dbgs() << "because of Read port limitations\n" ; |
272 | }); |
273 | CurrentPacketMIs.pop_back(); |
274 | return false; |
275 | } |
276 | |
277 | // We cannot read LDS source registers from the Trans slot. |
278 | if (isTransSlot && TII->readsLDSSrcReg(MI)) |
279 | return false; |
280 | |
281 | CurrentPacketMIs.pop_back(); |
282 | return true; |
283 | } |
284 | |
285 | MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override { |
286 | MachineBasicBlock::iterator FirstInBundle = |
287 | CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front(); |
288 | const DenseMap<unsigned, unsigned> &PV = |
289 | getPreviousVector(I: FirstInBundle); |
290 | std::vector<R600InstrInfo::BankSwizzle> BS; |
291 | bool isTransSlot; |
292 | |
293 | if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) { |
294 | for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) { |
295 | MachineInstr *MI = CurrentPacketMIs[i]; |
296 | unsigned Op = TII->getOperandIdx(Opcode: MI->getOpcode(), |
297 | Op: R600::OpName::bank_swizzle); |
298 | MI->getOperand(i: Op).setImm(BS[i]); |
299 | } |
300 | unsigned Op = |
301 | TII->getOperandIdx(Opcode: MI.getOpcode(), Op: R600::OpName::bank_swizzle); |
302 | MI.getOperand(i: Op).setImm(BS.back()); |
303 | if (!CurrentPacketMIs.empty()) |
304 | setIsLastBit(MI: CurrentPacketMIs.back(), Bit: 0); |
305 | substitutePV(MI, PVs: PV); |
306 | MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI); |
307 | if (isTransSlot) { |
308 | endPacket(MBB: std::next(x: It)->getParent(), MI: std::next(x: It)); |
309 | } |
310 | return It; |
311 | } |
312 | endPacket(MBB: MI.getParent(), MI); |
313 | if (TII->isTransOnly(MI)) |
314 | return MI; |
315 | return VLIWPacketizerList::addToPacket(MI); |
316 | } |
317 | }; |
318 | |
319 | bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) { |
320 | const R600Subtarget &ST = Fn.getSubtarget<R600Subtarget>(); |
321 | const R600InstrInfo *TII = ST.getInstrInfo(); |
322 | |
323 | MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
324 | |
325 | // Instantiate the packetizer. |
326 | R600PacketizerList Packetizer(Fn, ST, MLI); |
327 | |
328 | // DFA state table should not be empty. |
329 | assert(Packetizer.getResourceTracker() && "Empty DFA table!" ); |
330 | assert(Packetizer.getResourceTracker()->getInstrItins()); |
331 | |
332 | if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty()) |
333 | return false; |
334 | |
335 | // |
336 | // Loop over all basic blocks and remove KILL pseudo-instructions |
337 | // These instructions confuse the dependence analysis. Consider: |
338 | // D0 = ... (Insn 0) |
339 | // R0 = KILL R0, D0 (Insn 1) |
340 | // R0 = ... (Insn 2) |
341 | // Here, Insn 1 will result in the dependence graph not emitting an output |
342 | // dependence between Insn 0 and Insn 2. This can lead to incorrect |
343 | // packetization |
344 | // |
345 | for (MachineBasicBlock &MBB : Fn) { |
346 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) { |
347 | if (MI.isKill() || MI.getOpcode() == R600::IMPLICIT_DEF || |
348 | (MI.getOpcode() == R600::CF_ALU && !MI.getOperand(i: 8).getImm())) |
349 | MBB.erase(I: MI); |
350 | } |
351 | } |
352 | |
353 | // Loop over all of the basic blocks. |
354 | for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); |
355 | MBB != MBBe; ++MBB) { |
356 | // Find scheduling regions and schedule / packetize each region. |
357 | unsigned RemainingCount = MBB->size(); |
358 | for(MachineBasicBlock::iterator RegionEnd = MBB->end(); |
359 | RegionEnd != MBB->begin();) { |
360 | // The next region starts above the previous region. Look backward in the |
361 | // instruction stream until we find the nearest boundary. |
362 | MachineBasicBlock::iterator I = RegionEnd; |
363 | for(;I != MBB->begin(); --I, --RemainingCount) { |
364 | if (TII->isSchedulingBoundary(MI: *std::prev(x: I), MBB: &*MBB, MF: Fn)) |
365 | break; |
366 | } |
367 | I = MBB->begin(); |
368 | |
369 | // Skip empty scheduling regions. |
370 | if (I == RegionEnd) { |
371 | RegionEnd = std::prev(x: RegionEnd); |
372 | --RemainingCount; |
373 | continue; |
374 | } |
375 | // Skip regions with one instruction. |
376 | if (I == std::prev(x: RegionEnd)) { |
377 | RegionEnd = std::prev(x: RegionEnd); |
378 | continue; |
379 | } |
380 | |
381 | Packetizer.PacketizeMIs(MBB: &*MBB, BeginItr: &*I, EndItr: RegionEnd); |
382 | RegionEnd = I; |
383 | } |
384 | } |
385 | |
386 | return true; |
387 | |
388 | } |
389 | |
390 | } // end anonymous namespace |
391 | |
392 | INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE, |
393 | "R600 Packetizer" , false, false) |
394 | INITIALIZE_PASS_END(R600Packetizer, DEBUG_TYPE, |
395 | "R600 Packetizer" , false, false) |
396 | |
397 | char R600Packetizer::ID = 0; |
398 | |
399 | char &llvm::R600PacketizerID = R600Packetizer::ID; |
400 | |
401 | llvm::FunctionPass *llvm::createR600Packetizer() { |
402 | return new R600Packetizer(); |
403 | } |
404 | |