1//===-- SIModeRegister.cpp - Mode Register --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This pass inserts changes to the Mode register settings as required.
10/// Note that currently it only deals with the Double Precision Floating Point
11/// rounding mode setting, but is intended to be generic enough to be easily
12/// expanded.
13///
14//===----------------------------------------------------------------------===//
15//
16#include "AMDGPU.h"
17#include "GCNSubtarget.h"
18#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include <queue>
22
23#define DEBUG_TYPE "si-mode-register"
24
25STATISTIC(NumSetregInserted, "Number of setreg of mode register inserted.");
26
27using namespace llvm;
28
29struct Status {
30 // Mask is a bitmask where a '1' indicates the corresponding Mode bit has a
31 // known value
32 unsigned Mask = 0;
33 unsigned Mode = 0;
34
35 Status() = default;
36
37 Status(unsigned NewMask, unsigned NewMode) : Mask(NewMask), Mode(NewMode) {
38 Mode &= Mask;
39 };
40
41 // merge two status values such that only values that don't conflict are
42 // preserved
43 Status merge(const Status &S) const {
44 return Status((Mask | S.Mask), ((Mode & ~S.Mask) | (S.Mode & S.Mask)));
45 }
46
47 // merge an unknown value by using the unknown value's mask to remove bits
48 // from the result
49 Status mergeUnknown(unsigned newMask) {
50 return Status(Mask & ~newMask, Mode & ~newMask);
51 }
52
53 // intersect two Status values to produce a mode and mask that is a subset
54 // of both values
55 Status intersect(const Status &S) const {
56 unsigned NewMask = (Mask & S.Mask) & (Mode ^ ~S.Mode);
57 unsigned NewMode = (Mode & NewMask);
58 return Status(NewMask, NewMode);
59 }
60
61 // produce the delta required to change the Mode to the required Mode
62 Status delta(const Status &S) const {
63 return Status((S.Mask & (Mode ^ S.Mode)) | (~Mask & S.Mask), S.Mode);
64 }
65
66 bool operator==(const Status &S) const {
67 return (Mask == S.Mask) && (Mode == S.Mode);
68 }
69
70 bool operator!=(const Status &S) const { return !(*this == S); }
71
72 bool isCompatible(Status &S) {
73 return ((Mask & S.Mask) == S.Mask) && ((Mode & S.Mask) == S.Mode);
74 }
75
76 bool isCombinable(Status &S) { return !(Mask & S.Mask) || isCompatible(S); }
77};
78
79class BlockData {
80public:
81 // The Status that represents the mode register settings required by the
82 // FirstInsertionPoint (if any) in this block. Calculated in Phase 1.
83 Status Require;
84
85 // The Status that represents the net changes to the Mode register made by
86 // this block, Calculated in Phase 1.
87 Status Change;
88
89 // The Status that represents the mode register settings on exit from this
90 // block. Calculated in Phase 2.
91 Status Exit;
92
93 // The Status that represents the intersection of exit Mode register settings
94 // from all predecessor blocks. Calculated in Phase 2, and used by Phase 3.
95 Status Pred;
96
97 // In Phase 1 we record the first instruction that has a mode requirement,
98 // which is used in Phase 3 if we need to insert a mode change.
99 MachineInstr *FirstInsertionPoint = nullptr;
100
101 // A flag to indicate whether an Exit value has been set (we can't tell by
102 // examining the Exit value itself as all values may be valid results).
103 bool ExitSet = false;
104
105 BlockData() = default;
106};
107
108namespace {
109
110class SIModeRegister : public MachineFunctionPass {
111public:
112 static char ID;
113
114 std::vector<std::unique_ptr<BlockData>> BlockInfo;
115 std::queue<MachineBasicBlock *> Phase2List;
116
117 // The default mode register setting currently only caters for the floating
118 // point double precision rounding mode.
119 // We currently assume the default rounding mode is Round to Nearest
120 // NOTE: this should come from a per function rounding mode setting once such
121 // a setting exists.
122 unsigned DefaultMode = FP_ROUND_ROUND_TO_NEAREST;
123 Status DefaultStatus =
124 Status(FP_ROUND_MODE_DP(0x3), FP_ROUND_MODE_DP(DefaultMode));
125
126 bool Changed = false;
127
128public:
129 SIModeRegister() : MachineFunctionPass(ID) {}
130
131 bool runOnMachineFunction(MachineFunction &MF) override;
132
133 void getAnalysisUsage(AnalysisUsage &AU) const override {
134 AU.setPreservesCFG();
135 MachineFunctionPass::getAnalysisUsage(AU);
136 }
137
138 void processBlockPhase1(MachineBasicBlock &MBB, const SIInstrInfo *TII);
139
140 void processBlockPhase2(MachineBasicBlock &MBB, const SIInstrInfo *TII);
141
142 void processBlockPhase3(MachineBasicBlock &MBB, const SIInstrInfo *TII);
143
144 Status getInstructionMode(MachineInstr &MI, const SIInstrInfo *TII);
145
146 void insertSetreg(MachineBasicBlock &MBB, MachineInstr *I,
147 const SIInstrInfo *TII, Status InstrMode);
148};
149} // End anonymous namespace.
150
151INITIALIZE_PASS(SIModeRegister, DEBUG_TYPE,
152 "Insert required mode register values", false, false)
153
154char SIModeRegister::ID = 0;
155
156char &llvm::SIModeRegisterID = SIModeRegister::ID;
157
158FunctionPass *llvm::createSIModeRegisterPass() { return new SIModeRegister(); }
159
160// Determine the Mode register setting required for this instruction.
161// Instructions which don't use the Mode register return a null Status.
162// Note this currently only deals with instructions that use the floating point
163// double precision setting.
164Status SIModeRegister::getInstructionMode(MachineInstr &MI,
165 const SIInstrInfo *TII) {
166 if (TII->usesFPDPRounding(MI) ||
167 MI.getOpcode() == AMDGPU::FPTRUNC_UPWARD_PSEUDO ||
168 MI.getOpcode() == AMDGPU::FPTRUNC_DOWNWARD_PSEUDO) {
169 switch (MI.getOpcode()) {
170 case AMDGPU::V_INTERP_P1LL_F16:
171 case AMDGPU::V_INTERP_P1LV_F16:
172 case AMDGPU::V_INTERP_P2_F16:
173 // f16 interpolation instructions need double precision round to zero
174 return Status(FP_ROUND_MODE_DP(3),
175 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_ZERO));
176 case AMDGPU::FPTRUNC_UPWARD_PSEUDO: {
177 // Replacing the pseudo by a real instruction in place
178 if (TII->getSubtarget().hasTrue16BitInsts()) {
179 MachineBasicBlock &MBB = *MI.getParent();
180 MachineInstrBuilder B(*MBB.getParent(), MI);
181 MI.setDesc(TII->get(Opcode: AMDGPU::V_CVT_F16_F32_t16_e64));
182 MachineOperand Src0 = MI.getOperand(i: 1);
183 MI.removeOperand(OpNo: 1);
184 B.addImm(Val: 0); // src0_modifiers
185 B.add(MO: Src0); // re-add src0 operand
186 B.addImm(Val: 0); // clamp
187 B.addImm(Val: 0); // omod
188 } else
189 MI.setDesc(TII->get(Opcode: AMDGPU::V_CVT_F16_F32_e32));
190 return Status(FP_ROUND_MODE_DP(3),
191 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_INF));
192 }
193 case AMDGPU::FPTRUNC_DOWNWARD_PSEUDO: {
194 // Replacing the pseudo by a real instruction in place
195 if (TII->getSubtarget().hasTrue16BitInsts()) {
196 MachineBasicBlock &MBB = *MI.getParent();
197 MachineInstrBuilder B(*MBB.getParent(), MI);
198 MI.setDesc(TII->get(Opcode: AMDGPU::V_CVT_F16_F32_t16_e64));
199 MachineOperand Src0 = MI.getOperand(i: 1);
200 MI.removeOperand(OpNo: 1);
201 B.addImm(Val: 0); // src0_modifiers
202 B.add(MO: Src0); // re-add src0 operand
203 B.addImm(Val: 0); // clamp
204 B.addImm(Val: 0); // omod
205 } else
206 MI.setDesc(TII->get(Opcode: AMDGPU::V_CVT_F16_F32_e32));
207 return Status(FP_ROUND_MODE_DP(3),
208 FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEGINF));
209 }
210 default:
211 return DefaultStatus;
212 }
213 }
214 return Status();
215}
216
217// Insert a setreg instruction to update the Mode register.
218// It is possible (though unlikely) for an instruction to require a change to
219// the value of disjoint parts of the Mode register when we don't know the
220// value of the intervening bits. In that case we need to use more than one
221// setreg instruction.
222void SIModeRegister::insertSetreg(MachineBasicBlock &MBB, MachineInstr *MI,
223 const SIInstrInfo *TII, Status InstrMode) {
224 while (InstrMode.Mask) {
225 unsigned Offset = llvm::countr_zero<unsigned>(Val: InstrMode.Mask);
226 unsigned Width = llvm::countr_one<unsigned>(Value: InstrMode.Mask >> Offset);
227 unsigned Value = (InstrMode.Mode >> Offset) & ((1 << Width) - 1);
228 using namespace AMDGPU::Hwreg;
229 BuildMI(BB&: MBB, I: MI, MIMD: nullptr, MCID: TII->get(Opcode: AMDGPU::S_SETREG_IMM32_B32))
230 .addImm(Val: Value)
231 .addImm(Val: HwregEncoding::encode(Values: ID_MODE, Values: Offset, Values: Width));
232 ++NumSetregInserted;
233 Changed = true;
234 InstrMode.Mask &= ~(((1 << Width) - 1) << Offset);
235 }
236}
237
238// In Phase 1 we iterate through the instructions of the block and for each
239// instruction we get its mode usage. If the instruction uses the Mode register
240// we:
241// - update the Change status, which tracks the changes to the Mode register
242// made by this block
243// - if this instruction's requirements are compatible with the current setting
244// of the Mode register we merge the modes
245// - if it isn't compatible and an InsertionPoint isn't set, then we set the
246// InsertionPoint to the current instruction, and we remember the current
247// mode
248// - if it isn't compatible and InsertionPoint is set we insert a seteg before
249// that instruction (unless this instruction forms part of the block's
250// entry requirements in which case the insertion is deferred until Phase 3
251// when predecessor exit values are known), and move the insertion point to
252// this instruction
253// - if this is a setreg instruction we treat it as an incompatible instruction.
254// This is sub-optimal but avoids some nasty corner cases, and is expected to
255// occur very rarely.
256// - on exit we have set the Require, Change, and initial Exit modes.
257void SIModeRegister::processBlockPhase1(MachineBasicBlock &MBB,
258 const SIInstrInfo *TII) {
259 auto NewInfo = std::make_unique<BlockData>();
260 MachineInstr *InsertionPoint = nullptr;
261 // RequirePending is used to indicate whether we are collecting the initial
262 // requirements for the block, and need to defer the first InsertionPoint to
263 // Phase 3. It is set to false once we have set FirstInsertionPoint, or when
264 // we discover an explicit setreg that means this block doesn't have any
265 // initial requirements.
266 bool RequirePending = true;
267 Status IPChange;
268 for (MachineInstr &MI : MBB) {
269 Status InstrMode = getInstructionMode(MI, TII);
270 if (MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
271 MI.getOpcode() == AMDGPU::S_SETREG_B32_mode ||
272 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
273 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
274 // We preserve any explicit mode register setreg instruction we encounter,
275 // as we assume it has been inserted by a higher authority (this is
276 // likely to be a very rare occurrence).
277 unsigned Dst = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::simm16)->getImm();
278 using namespace AMDGPU::Hwreg;
279 auto [Id, Offset, Width] = HwregEncoding::decode(Encoded: Dst);
280 if (Id != ID_MODE)
281 continue;
282
283 unsigned Mask = maskTrailingOnes<unsigned>(N: Width) << Offset;
284
285 // If an InsertionPoint is set we will insert a setreg there.
286 if (InsertionPoint) {
287 insertSetreg(MBB, MI: InsertionPoint, TII, InstrMode: IPChange.delta(S: NewInfo->Change));
288 InsertionPoint = nullptr;
289 }
290 // If this is an immediate then we know the value being set, but if it is
291 // not an immediate then we treat the modified bits of the mode register
292 // as unknown.
293 if (MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
294 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32_mode) {
295 unsigned Val = TII->getNamedOperand(MI, OperandName: AMDGPU::OpName::imm)->getImm();
296 unsigned Mode = (Val << Offset) & Mask;
297 Status Setreg = Status(Mask, Mode);
298 // If we haven't already set the initial requirements for the block we
299 // don't need to as the requirements start from this explicit setreg.
300 RequirePending = false;
301 NewInfo->Change = NewInfo->Change.merge(S: Setreg);
302 } else {
303 NewInfo->Change = NewInfo->Change.mergeUnknown(newMask: Mask);
304 }
305 } else if (!NewInfo->Change.isCompatible(S&: InstrMode)) {
306 // This instruction uses the Mode register and its requirements aren't
307 // compatible with the current mode.
308 if (InsertionPoint) {
309 // If the required mode change cannot be included in the current
310 // InsertionPoint changes, we need a setreg and start a new
311 // InsertionPoint.
312 if (!IPChange.delta(S: NewInfo->Change).isCombinable(S&: InstrMode)) {
313 if (RequirePending) {
314 // This is the first insertionPoint in the block so we will defer
315 // the insertion of the setreg to Phase 3 where we know whether or
316 // not it is actually needed.
317 NewInfo->FirstInsertionPoint = InsertionPoint;
318 NewInfo->Require = NewInfo->Change;
319 RequirePending = false;
320 } else {
321 insertSetreg(MBB, MI: InsertionPoint, TII,
322 InstrMode: IPChange.delta(S: NewInfo->Change));
323 IPChange = NewInfo->Change;
324 }
325 // Set the new InsertionPoint
326 InsertionPoint = &MI;
327 }
328 NewInfo->Change = NewInfo->Change.merge(S: InstrMode);
329 } else {
330 // No InsertionPoint is currently set - this is either the first in
331 // the block or we have previously seen an explicit setreg.
332 InsertionPoint = &MI;
333 IPChange = NewInfo->Change;
334 NewInfo->Change = NewInfo->Change.merge(S: InstrMode);
335 }
336 }
337 }
338 if (RequirePending) {
339 // If we haven't yet set the initial requirements for the block we set them
340 // now.
341 NewInfo->FirstInsertionPoint = InsertionPoint;
342 NewInfo->Require = NewInfo->Change;
343 } else if (InsertionPoint) {
344 // We need to insert a setreg at the InsertionPoint
345 insertSetreg(MBB, MI: InsertionPoint, TII, InstrMode: IPChange.delta(S: NewInfo->Change));
346 }
347 NewInfo->Exit = NewInfo->Change;
348 BlockInfo[MBB.getNumber()] = std::move(NewInfo);
349}
350
351// In Phase 2 we revisit each block and calculate the common Mode register
352// value provided by all predecessor blocks. If the Exit value for the block
353// is changed, then we add the successor blocks to the worklist so that the
354// exit value is propagated.
355void SIModeRegister::processBlockPhase2(MachineBasicBlock &MBB,
356 const SIInstrInfo *TII) {
357 bool RevisitRequired = false;
358 bool ExitSet = false;
359 unsigned ThisBlock = MBB.getNumber();
360 if (MBB.pred_empty()) {
361 // There are no predecessors, so use the default starting status.
362 BlockInfo[ThisBlock]->Pred = DefaultStatus;
363 ExitSet = true;
364 } else {
365 // Build a status that is common to all the predecessors by intersecting
366 // all the predecessor exit status values.
367 // Mask bits (which represent the Mode bits with a known value) can only be
368 // added by explicit SETREG instructions or the initial default value -
369 // the intersection process may remove Mask bits.
370 // If we find a predecessor that has not yet had an exit value determined
371 // (this can happen for example if a block is its own predecessor) we defer
372 // use of that value as the Mask will be all zero, and we will revisit this
373 // block again later (unless the only predecessor without an exit value is
374 // this block).
375 MachineBasicBlock::pred_iterator P = MBB.pred_begin(), E = MBB.pred_end();
376 MachineBasicBlock &PB = *(*P);
377 unsigned PredBlock = PB.getNumber();
378 if ((ThisBlock == PredBlock) && (std::next(x: P) == E)) {
379 BlockInfo[ThisBlock]->Pred = DefaultStatus;
380 ExitSet = true;
381 } else if (BlockInfo[PredBlock]->ExitSet) {
382 BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
383 ExitSet = true;
384 } else if (PredBlock != ThisBlock)
385 RevisitRequired = true;
386
387 for (P = std::next(x: P); P != E; P = std::next(x: P)) {
388 MachineBasicBlock *Pred = *P;
389 unsigned PredBlock = Pred->getNumber();
390 if (BlockInfo[PredBlock]->ExitSet) {
391 if (BlockInfo[ThisBlock]->ExitSet) {
392 BlockInfo[ThisBlock]->Pred =
393 BlockInfo[ThisBlock]->Pred.intersect(S: BlockInfo[PredBlock]->Exit);
394 } else {
395 BlockInfo[ThisBlock]->Pred = BlockInfo[PredBlock]->Exit;
396 }
397 ExitSet = true;
398 } else if (PredBlock != ThisBlock)
399 RevisitRequired = true;
400 }
401 }
402 Status TmpStatus =
403 BlockInfo[ThisBlock]->Pred.merge(S: BlockInfo[ThisBlock]->Change);
404 if (BlockInfo[ThisBlock]->Exit != TmpStatus) {
405 BlockInfo[ThisBlock]->Exit = TmpStatus;
406 // Add the successors to the work list so we can propagate the changed exit
407 // status.
408 for (MachineBasicBlock *Succ : MBB.successors())
409 Phase2List.push(x: Succ);
410 }
411 BlockInfo[ThisBlock]->ExitSet = ExitSet;
412 if (RevisitRequired)
413 Phase2List.push(x: &MBB);
414}
415
416// In Phase 3 we revisit each block and if it has an insertion point defined we
417// check whether the predecessor mode meets the block's entry requirements. If
418// not we insert an appropriate setreg instruction to modify the Mode register.
419void SIModeRegister::processBlockPhase3(MachineBasicBlock &MBB,
420 const SIInstrInfo *TII) {
421 unsigned ThisBlock = MBB.getNumber();
422 if (!BlockInfo[ThisBlock]->Pred.isCompatible(S&: BlockInfo[ThisBlock]->Require)) {
423 Status Delta =
424 BlockInfo[ThisBlock]->Pred.delta(S: BlockInfo[ThisBlock]->Require);
425 if (BlockInfo[ThisBlock]->FirstInsertionPoint)
426 insertSetreg(MBB, MI: BlockInfo[ThisBlock]->FirstInsertionPoint, TII, InstrMode: Delta);
427 else
428 insertSetreg(MBB, MI: &MBB.instr_front(), TII, InstrMode: Delta);
429 }
430}
431
432bool SIModeRegister::runOnMachineFunction(MachineFunction &MF) {
433 // Constrained FP intrinsics are used to support non-default rounding modes.
434 // strictfp attribute is required to mark functions with strict FP semantics
435 // having constrained FP intrinsics. This pass fixes up operations that uses
436 // a non-default rounding mode for non-strictfp functions. But it should not
437 // assume or modify any default rounding modes in case of strictfp functions.
438 const Function &F = MF.getFunction();
439 if (F.hasFnAttribute(Kind: llvm::Attribute::StrictFP))
440 return Changed;
441 BlockInfo.resize(new_size: MF.getNumBlockIDs());
442 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
443 const SIInstrInfo *TII = ST.getInstrInfo();
444
445 // Processing is performed in a number of phases
446
447 // Phase 1 - determine the initial mode required by each block, and add setreg
448 // instructions for intra block requirements.
449 for (MachineBasicBlock &BB : MF)
450 processBlockPhase1(MBB&: BB, TII);
451
452 // Phase 2 - determine the exit mode from each block. We add all blocks to the
453 // list here, but will also add any that need to be revisited during Phase 2
454 // processing.
455 for (MachineBasicBlock &BB : MF)
456 Phase2List.push(x: &BB);
457 while (!Phase2List.empty()) {
458 processBlockPhase2(MBB&: *Phase2List.front(), TII);
459 Phase2List.pop();
460 }
461
462 // Phase 3 - add an initial setreg to each block where the required entry mode
463 // is not satisfied by the exit mode of all its predecessors.
464 for (MachineBasicBlock &BB : MF)
465 processBlockPhase3(MBB&: BB, TII);
466
467 BlockInfo.clear();
468
469 return Changed;
470}
471