1//===-- MLxExpansionPass.cpp - Expand MLx instrs to avoid hazards ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Expand VFP / NEON floating point MLA / MLS instructions (each to a pair of
10// multiple and add / sub instructions) when special VMLx hazards are detected.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARM.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMSubtarget.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstr.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/TargetRegisterInfo.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "mlx-expansion"
30
31static cl::opt<bool>
32ForceExapnd("expand-all-fp-mlx", cl::init(Val: false), cl::Hidden);
33static cl::opt<unsigned>
34ExpandLimit("expand-limit", cl::init(Val: ~0U), cl::Hidden);
35
36STATISTIC(NumExpand, "Number of fp MLA / MLS instructions expanded");
37
38namespace {
39 struct MLxExpansion : public MachineFunctionPass {
40 static char ID;
41 MLxExpansion() : MachineFunctionPass(ID) {}
42
43 bool runOnMachineFunction(MachineFunction &Fn) override;
44
45 StringRef getPassName() const override {
46 return "ARM MLA / MLS expansion pass";
47 }
48
49 private:
50 const ARMBaseInstrInfo *TII;
51 const TargetRegisterInfo *TRI;
52 MachineRegisterInfo *MRI;
53
54 bool isLikeA9;
55 bool isSwift;
56 unsigned MIIdx;
57 MachineInstr* LastMIs[4];
58 SmallPtrSet<MachineInstr*, 4> IgnoreStall;
59
60 void clearStack();
61 void pushStack(MachineInstr *MI);
62 MachineInstr *getAccDefMI(MachineInstr *MI) const;
63 unsigned getDefReg(MachineInstr *MI) const;
64 bool hasLoopHazard(MachineInstr *MI) const;
65 bool hasRAWHazard(unsigned Reg, MachineInstr *MI) const;
66 bool FindMLxHazard(MachineInstr *MI);
67 void ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
68 unsigned MulOpc, unsigned AddSubOpc,
69 bool NegAcc, bool HasLane);
70 bool ExpandFPMLxInstructions(MachineBasicBlock &MBB);
71 };
72 char MLxExpansion::ID = 0;
73}
74
75void MLxExpansion::clearStack() {
76 std::fill(LastMIs, LastMIs + 4, nullptr);
77 MIIdx = 0;
78}
79
80void MLxExpansion::pushStack(MachineInstr *MI) {
81 LastMIs[MIIdx] = MI;
82 if (++MIIdx == 4)
83 MIIdx = 0;
84}
85
86MachineInstr *MLxExpansion::getAccDefMI(MachineInstr *MI) const {
87 // Look past COPY and INSERT_SUBREG instructions to find the
88 // real definition MI. This is important for _sfp instructions.
89 Register Reg = MI->getOperand(i: 1).getReg();
90 if (Reg.isPhysical())
91 return nullptr;
92
93 MachineBasicBlock *MBB = MI->getParent();
94 MachineInstr *DefMI = MRI->getVRegDef(Reg);
95 while (true) {
96 if (DefMI->getParent() != MBB)
97 break;
98 if (DefMI->isCopyLike()) {
99 Reg = DefMI->getOperand(i: 1).getReg();
100 if (Reg.isVirtual()) {
101 DefMI = MRI->getVRegDef(Reg);
102 continue;
103 }
104 } else if (DefMI->isInsertSubreg()) {
105 Reg = DefMI->getOperand(i: 2).getReg();
106 if (Reg.isVirtual()) {
107 DefMI = MRI->getVRegDef(Reg);
108 continue;
109 }
110 }
111 break;
112 }
113 return DefMI;
114}
115
116unsigned MLxExpansion::getDefReg(MachineInstr *MI) const {
117 Register Reg = MI->getOperand(i: 0).getReg();
118 if (Reg.isPhysical() || !MRI->hasOneNonDBGUse(RegNo: Reg))
119 return Reg;
120
121 MachineBasicBlock *MBB = MI->getParent();
122 MachineInstr *UseMI = &*MRI->use_instr_nodbg_begin(RegNo: Reg);
123 if (UseMI->getParent() != MBB)
124 return Reg;
125
126 while (UseMI->isCopy() || UseMI->isInsertSubreg()) {
127 Reg = UseMI->getOperand(i: 0).getReg();
128 if (Reg.isPhysical() || !MRI->hasOneNonDBGUse(RegNo: Reg))
129 return Reg;
130 UseMI = &*MRI->use_instr_nodbg_begin(RegNo: Reg);
131 if (UseMI->getParent() != MBB)
132 return Reg;
133 }
134
135 return Reg;
136}
137
138/// hasLoopHazard - Check whether an MLx instruction is chained to itself across
139/// a single-MBB loop.
140bool MLxExpansion::hasLoopHazard(MachineInstr *MI) const {
141 Register Reg = MI->getOperand(i: 1).getReg();
142 if (Reg.isPhysical())
143 return false;
144
145 MachineBasicBlock *MBB = MI->getParent();
146 MachineInstr *DefMI = MRI->getVRegDef(Reg);
147 while (true) {
148outer_continue:
149 if (DefMI->getParent() != MBB)
150 break;
151
152 if (DefMI->isPHI()) {
153 for (unsigned i = 1, e = DefMI->getNumOperands(); i < e; i += 2) {
154 if (DefMI->getOperand(i: i + 1).getMBB() == MBB) {
155 Register SrcReg = DefMI->getOperand(i).getReg();
156 if (SrcReg.isVirtual()) {
157 DefMI = MRI->getVRegDef(Reg: SrcReg);
158 goto outer_continue;
159 }
160 }
161 }
162 } else if (DefMI->isCopyLike()) {
163 Reg = DefMI->getOperand(i: 1).getReg();
164 if (Reg.isVirtual()) {
165 DefMI = MRI->getVRegDef(Reg);
166 continue;
167 }
168 } else if (DefMI->isInsertSubreg()) {
169 Reg = DefMI->getOperand(i: 2).getReg();
170 if (Reg.isVirtual()) {
171 DefMI = MRI->getVRegDef(Reg);
172 continue;
173 }
174 }
175
176 break;
177 }
178
179 return DefMI == MI;
180}
181
182bool MLxExpansion::hasRAWHazard(unsigned Reg, MachineInstr *MI) const {
183 // FIXME: Detect integer instructions properly.
184 const MCInstrDesc &MCID = MI->getDesc();
185 unsigned Domain = MCID.TSFlags & ARMII::DomainMask;
186 if (MI->mayStore())
187 return false;
188 unsigned Opcode = MCID.getOpcode();
189 if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
190 return false;
191 if ((Domain & ARMII::DomainVFP) || (Domain & ARMII::DomainNEON))
192 return MI->readsRegister(Reg, TRI);
193 return false;
194}
195
196static bool isFpMulInstruction(unsigned Opcode) {
197 switch (Opcode) {
198 case ARM::VMULS:
199 case ARM::VMULfd:
200 case ARM::VMULfq:
201 case ARM::VMULD:
202 case ARM::VMULslfd:
203 case ARM::VMULslfq:
204 return true;
205 default:
206 return false;
207 }
208}
209
210bool MLxExpansion::FindMLxHazard(MachineInstr *MI) {
211 if (NumExpand >= ExpandLimit)
212 return false;
213
214 if (ForceExapnd)
215 return true;
216
217 MachineInstr *DefMI = getAccDefMI(MI);
218 if (TII->isFpMLxInstruction(Opcode: DefMI->getOpcode())) {
219 // r0 = vmla
220 // r3 = vmla r0, r1, r2
221 // takes 16 - 17 cycles
222 //
223 // r0 = vmla
224 // r4 = vmul r1, r2
225 // r3 = vadd r0, r4
226 // takes about 14 - 15 cycles even with vmul stalling for 4 cycles.
227 IgnoreStall.insert(Ptr: DefMI);
228 return true;
229 }
230
231 // On Swift, we mostly care about hazards from multiplication instructions
232 // writing the accumulator and the pipelining of loop iterations by out-of-
233 // order execution.
234 if (isSwift)
235 return isFpMulInstruction(Opcode: DefMI->getOpcode()) || hasLoopHazard(MI);
236
237 if (IgnoreStall.count(Ptr: MI))
238 return false;
239
240 // If a VMLA.F is followed by an VADD.F or VMUL.F with no RAW hazard, the
241 // VADD.F or VMUL.F will stall 4 cycles before issue. The 4 cycle stall
242 // preserves the in-order retirement of the instructions.
243 // Look at the next few instructions, if *most* of them can cause hazards,
244 // then the scheduler can't *fix* this, we'd better break up the VMLA.
245 unsigned Limit1 = isLikeA9 ? 1 : 4;
246 unsigned Limit2 = isLikeA9 ? 1 : 4;
247 for (unsigned i = 1; i <= 4; ++i) {
248 int Idx = ((int)MIIdx - i + 4) % 4;
249 MachineInstr *NextMI = LastMIs[Idx];
250 if (!NextMI)
251 continue;
252
253 if (TII->canCauseFpMLxStall(Opcode: NextMI->getOpcode())) {
254 if (i <= Limit1)
255 return true;
256 }
257
258 // Look for VMLx RAW hazard.
259 if (i <= Limit2 && hasRAWHazard(Reg: getDefReg(MI), MI: NextMI))
260 return true;
261 }
262
263 return false;
264}
265
266/// ExpandFPMLxInstructions - Expand a MLA / MLS instruction into a pair
267/// of MUL + ADD / SUB instructions.
268void
269MLxExpansion::ExpandFPMLxInstruction(MachineBasicBlock &MBB, MachineInstr *MI,
270 unsigned MulOpc, unsigned AddSubOpc,
271 bool NegAcc, bool HasLane) {
272 Register DstReg = MI->getOperand(i: 0).getReg();
273 bool DstDead = MI->getOperand(i: 0).isDead();
274 Register AccReg = MI->getOperand(i: 1).getReg();
275 Register Src1Reg = MI->getOperand(i: 2).getReg();
276 Register Src2Reg = MI->getOperand(i: 3).getReg();
277 bool Src1Kill = MI->getOperand(i: 2).isKill();
278 bool Src2Kill = MI->getOperand(i: 3).isKill();
279 unsigned LaneImm = HasLane ? MI->getOperand(i: 4).getImm() : 0;
280 unsigned NextOp = HasLane ? 5 : 4;
281 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(i: NextOp).getImm();
282 Register PredReg = MI->getOperand(i: ++NextOp).getReg();
283
284 const MCInstrDesc &MCID1 = TII->get(Opcode: MulOpc);
285 const MCInstrDesc &MCID2 = TII->get(Opcode: AddSubOpc);
286 const MachineFunction &MF = *MI->getParent()->getParent();
287 Register TmpReg =
288 MRI->createVirtualRegister(RegClass: TII->getRegClass(MCID: MCID1, OpNum: 0, TRI, MF));
289
290 MachineInstrBuilder MIB = BuildMI(BB&: MBB, I: MI, MIMD: MI->getDebugLoc(), MCID: MCID1, DestReg: TmpReg)
291 .addReg(RegNo: Src1Reg, flags: getKillRegState(B: Src1Kill))
292 .addReg(RegNo: Src2Reg, flags: getKillRegState(B: Src2Kill));
293 if (HasLane)
294 MIB.addImm(Val: LaneImm);
295 MIB.addImm(Val: Pred).addReg(RegNo: PredReg);
296
297 MIB = BuildMI(BB&: MBB, I: MI, MIMD: MI->getDebugLoc(), MCID: MCID2)
298 .addReg(RegNo: DstReg, flags: getDefRegState(B: true) | getDeadRegState(B: DstDead));
299
300 if (NegAcc) {
301 bool AccKill = MRI->hasOneNonDBGUse(RegNo: AccReg);
302 MIB.addReg(RegNo: TmpReg, flags: getKillRegState(B: true))
303 .addReg(RegNo: AccReg, flags: getKillRegState(B: AccKill));
304 } else {
305 MIB.addReg(RegNo: AccReg).addReg(RegNo: TmpReg, flags: getKillRegState(B: true));
306 }
307 MIB.addImm(Val: Pred).addReg(RegNo: PredReg);
308
309 LLVM_DEBUG({
310 dbgs() << "Expanding: " << *MI;
311 dbgs() << " to:\n";
312 MachineBasicBlock::iterator MII = MI;
313 MII = std::prev(MII);
314 MachineInstr &MI2 = *MII;
315 MII = std::prev(MII);
316 MachineInstr &MI1 = *MII;
317 dbgs() << " " << MI1;
318 dbgs() << " " << MI2;
319 });
320
321 MI->eraseFromParent();
322 ++NumExpand;
323}
324
325bool MLxExpansion::ExpandFPMLxInstructions(MachineBasicBlock &MBB) {
326 bool Changed = false;
327
328 clearStack();
329 IgnoreStall.clear();
330
331 unsigned Skip = 0;
332 MachineBasicBlock::reverse_iterator MII = MBB.rbegin(), E = MBB.rend();
333 while (MII != E) {
334 MachineInstr *MI = &*MII++;
335
336 if (MI->isPosition() || MI->isImplicitDef() || MI->isCopy())
337 continue;
338
339 const MCInstrDesc &MCID = MI->getDesc();
340 if (MI->isBarrier()) {
341 clearStack();
342 Skip = 0;
343 continue;
344 }
345
346 unsigned Domain = MCID.TSFlags & ARMII::DomainMask;
347 if (Domain == ARMII::DomainGeneral) {
348 if (++Skip == 2)
349 // Assume dual issues of non-VFP / NEON instructions.
350 pushStack(MI: nullptr);
351 } else {
352 Skip = 0;
353
354 unsigned MulOpc, AddSubOpc;
355 bool NegAcc, HasLane;
356 if (!TII->isFpMLxInstruction(Opcode: MCID.getOpcode(),
357 MulOpc, AddSubOpc, NegAcc, HasLane) ||
358 !FindMLxHazard(MI))
359 pushStack(MI);
360 else {
361 ExpandFPMLxInstruction(MBB, MI, MulOpc, AddSubOpc, NegAcc, HasLane);
362 Changed = true;
363 }
364 }
365 }
366
367 return Changed;
368}
369
370bool MLxExpansion::runOnMachineFunction(MachineFunction &Fn) {
371 if (skipFunction(F: Fn.getFunction()))
372 return false;
373
374 TII = static_cast<const ARMBaseInstrInfo *>(Fn.getSubtarget().getInstrInfo());
375 TRI = Fn.getSubtarget().getRegisterInfo();
376 MRI = &Fn.getRegInfo();
377 const ARMSubtarget *STI = &Fn.getSubtarget<ARMSubtarget>();
378 if (!STI->expandMLx())
379 return false;
380 isLikeA9 = STI->isLikeA9() || STI->isSwift();
381 isSwift = STI->isSwift();
382
383 bool Modified = false;
384 for (MachineBasicBlock &MBB : Fn)
385 Modified |= ExpandFPMLxInstructions(MBB);
386
387 return Modified;
388}
389
390FunctionPass *llvm::createMLxExpansionPass() {
391 return new MLxExpansion();
392}
393