1 | //===- HexagonBlockRanges.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "HexagonBlockRanges.h" |
10 | #include "HexagonInstrInfo.h" |
11 | #include "HexagonSubtarget.h" |
12 | #include "llvm/ADT/BitVector.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/CodeGen/MachineBasicBlock.h" |
15 | #include "llvm/CodeGen/MachineFunction.h" |
16 | #include "llvm/CodeGen/MachineInstr.h" |
17 | #include "llvm/CodeGen/MachineOperand.h" |
18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
19 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
20 | #include "llvm/MC/MCRegisterInfo.h" |
21 | #include "llvm/Support/Debug.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | #include <algorithm> |
24 | #include <cassert> |
25 | #include <cstdint> |
26 | #include <iterator> |
27 | #include <map> |
28 | #include <utility> |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "hbr" |
33 | |
34 | bool HexagonBlockRanges::IndexRange::overlaps(const IndexRange &A) const { |
35 | // If A contains start(), or "this" contains A.start(), then overlap. |
36 | IndexType S = start(), E = end(), AS = A.start(), AE = A.end(); |
37 | if (AS == S) |
38 | return true; |
39 | bool SbAE = (S < AE) || (S == AE && A.TiedEnd); // S-before-AE. |
40 | bool ASbE = (AS < E) || (AS == E && TiedEnd); // AS-before-E. |
41 | if ((AS < S && SbAE) || (S < AS && ASbE)) |
42 | return true; |
43 | // Otherwise no overlap. |
44 | return false; |
45 | } |
46 | |
47 | bool HexagonBlockRanges::IndexRange::contains(const IndexRange &A) const { |
48 | if (start() <= A.start()) { |
49 | // Treat "None" in the range end as equal to the range start. |
50 | IndexType E = (end() != IndexType::None) ? end() : start(); |
51 | IndexType AE = (A.end() != IndexType::None) ? A.end() : A.start(); |
52 | if (AE <= E) |
53 | return true; |
54 | } |
55 | return false; |
56 | } |
57 | |
58 | void HexagonBlockRanges::IndexRange::merge(const IndexRange &A) { |
59 | // Allow merging adjacent ranges. |
60 | assert(end() == A.start() || overlaps(A)); |
61 | IndexType AS = A.start(), AE = A.end(); |
62 | if (AS < start() || start() == IndexType::None) |
63 | setStart(AS); |
64 | if (end() < AE || end() == IndexType::None) { |
65 | setEnd(AE); |
66 | TiedEnd = A.TiedEnd; |
67 | } else { |
68 | if (end() == AE) |
69 | TiedEnd |= A.TiedEnd; |
70 | } |
71 | if (A.Fixed) |
72 | Fixed = true; |
73 | } |
74 | |
75 | void HexagonBlockRanges::RangeList::include(const RangeList &RL) { |
76 | for (const auto &R : RL) |
77 | if (!is_contained(Range&: *this, Element: R)) |
78 | push_back(x: R); |
79 | } |
80 | |
81 | // Merge all overlapping ranges in the list, so that all that remains |
82 | // is a list of disjoint ranges. |
83 | void HexagonBlockRanges::RangeList::unionize(bool MergeAdjacent) { |
84 | if (empty()) |
85 | return; |
86 | |
87 | llvm::sort(C&: *this); |
88 | iterator Iter = begin(); |
89 | |
90 | while (Iter != end()-1) { |
91 | iterator Next = std::next(x: Iter); |
92 | // If MergeAdjacent is true, merge ranges A and B, where A.end == B.start. |
93 | // This allows merging dead ranges, but is not valid for live ranges. |
94 | bool Merge = MergeAdjacent && (Iter->end() == Next->start()); |
95 | if (Merge || Iter->overlaps(A: *Next)) { |
96 | Iter->merge(A: *Next); |
97 | erase(position: Next); |
98 | continue; |
99 | } |
100 | ++Iter; |
101 | } |
102 | } |
103 | |
104 | // Compute a range A-B and add it to the list. |
105 | void HexagonBlockRanges::RangeList::addsub(const IndexRange &A, |
106 | const IndexRange &B) { |
107 | // Exclusion of non-overlapping ranges makes some checks simpler |
108 | // later in this function. |
109 | if (!A.overlaps(A: B)) { |
110 | // A - B = A. |
111 | add(Range: A); |
112 | return; |
113 | } |
114 | |
115 | IndexType AS = A.start(), AE = A.end(); |
116 | IndexType BS = B.start(), BE = B.end(); |
117 | |
118 | // If AE is None, then A is included in B, since A and B overlap. |
119 | // The result of subtraction if empty, so just return. |
120 | if (AE == IndexType::None) |
121 | return; |
122 | |
123 | if (AS < BS) { |
124 | // A starts before B. |
125 | // AE cannot be None since A and B overlap. |
126 | assert(AE != IndexType::None); |
127 | // Add the part of A that extends on the "less" side of B. |
128 | add(Start: AS, End: BS, Fixed: A.Fixed, TiedEnd: false); |
129 | } |
130 | |
131 | if (BE < AE) { |
132 | // BE cannot be Exit here. |
133 | if (BE == IndexType::None) |
134 | add(Start: BS, End: AE, Fixed: A.Fixed, TiedEnd: false); |
135 | else |
136 | add(Start: BE, End: AE, Fixed: A.Fixed, TiedEnd: false); |
137 | } |
138 | } |
139 | |
140 | // Subtract a given range from each element in the list. |
141 | void HexagonBlockRanges::RangeList::subtract(const IndexRange &Range) { |
142 | // Cannot assume that the list is unionized (i.e. contains only non- |
143 | // overlapping ranges. |
144 | RangeList T; |
145 | for (iterator Next, I = begin(); I != end(); I = Next) { |
146 | IndexRange &Rg = *I; |
147 | if (Rg.overlaps(A: Range)) { |
148 | T.addsub(A: Rg, B: Range); |
149 | Next = this->erase(position: I); |
150 | } else { |
151 | Next = std::next(x: I); |
152 | } |
153 | } |
154 | include(RL: T); |
155 | } |
156 | |
157 | HexagonBlockRanges::InstrIndexMap::InstrIndexMap(MachineBasicBlock &B) |
158 | : Block(B) { |
159 | IndexType Idx = IndexType::First; |
160 | First = Idx; |
161 | for (auto &In : B) { |
162 | if (In.isDebugInstr()) |
163 | continue; |
164 | assert(getIndex(&In) == IndexType::None && "Instruction already in map" ); |
165 | Map.insert(x: std::make_pair(x&: Idx, y: &In)); |
166 | ++Idx; |
167 | } |
168 | Last = B.empty() ? IndexType::None : unsigned(Idx)-1; |
169 | } |
170 | |
171 | MachineInstr *HexagonBlockRanges::InstrIndexMap::getInstr(IndexType Idx) const { |
172 | auto F = Map.find(x: Idx); |
173 | return (F != Map.end()) ? F->second : nullptr; |
174 | } |
175 | |
176 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getIndex( |
177 | MachineInstr *MI) const { |
178 | for (const auto &I : Map) |
179 | if (I.second == MI) |
180 | return I.first; |
181 | return IndexType::None; |
182 | } |
183 | |
184 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getPrevIndex( |
185 | IndexType Idx) const { |
186 | assert (Idx != IndexType::None); |
187 | if (Idx == IndexType::Entry) |
188 | return IndexType::None; |
189 | if (Idx == IndexType::Exit) |
190 | return Last; |
191 | if (Idx == First) |
192 | return IndexType::Entry; |
193 | return unsigned(Idx)-1; |
194 | } |
195 | |
196 | HexagonBlockRanges::IndexType HexagonBlockRanges::InstrIndexMap::getNextIndex( |
197 | IndexType Idx) const { |
198 | assert (Idx != IndexType::None); |
199 | if (Idx == IndexType::Entry) |
200 | return IndexType::First; |
201 | if (Idx == IndexType::Exit || Idx == Last) |
202 | return IndexType::None; |
203 | return unsigned(Idx)+1; |
204 | } |
205 | |
206 | void HexagonBlockRanges::InstrIndexMap::replaceInstr(MachineInstr *OldMI, |
207 | MachineInstr *NewMI) { |
208 | for (auto &I : Map) { |
209 | if (I.second != OldMI) |
210 | continue; |
211 | if (NewMI != nullptr) |
212 | I.second = NewMI; |
213 | else |
214 | Map.erase(x: I.first); |
215 | break; |
216 | } |
217 | } |
218 | |
219 | HexagonBlockRanges::HexagonBlockRanges(MachineFunction &mf) |
220 | : MF(mf), HST(mf.getSubtarget<HexagonSubtarget>()), |
221 | TII(*HST.getInstrInfo()), TRI(*HST.getRegisterInfo()), |
222 | Reserved(TRI.getReservedRegs(MF: mf)) { |
223 | // Consider all non-allocatable registers as reserved. |
224 | for (const TargetRegisterClass *RC : TRI.regclasses()) { |
225 | if (RC->isAllocatable()) |
226 | continue; |
227 | for (unsigned R : *RC) |
228 | Reserved[R] = true; |
229 | } |
230 | } |
231 | |
232 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::getLiveIns( |
233 | const MachineBasicBlock &B, const MachineRegisterInfo &MRI, |
234 | const TargetRegisterInfo &TRI) { |
235 | RegisterSet LiveIns; |
236 | RegisterSet Tmp; |
237 | |
238 | for (auto I : B.liveins()) { |
239 | MCSubRegIndexIterator S(I.PhysReg, &TRI); |
240 | if (I.LaneMask.all() || (I.LaneMask.any() && !S.isValid())) { |
241 | Tmp.insert(x: {.Reg: I.PhysReg, .Sub: 0}); |
242 | continue; |
243 | } |
244 | for (; S.isValid(); ++S) { |
245 | unsigned SI = S.getSubRegIndex(); |
246 | if ((I.LaneMask & TRI.getSubRegIndexLaneMask(SubIdx: SI)).any()) |
247 | Tmp.insert(x: {.Reg: S.getSubReg(), .Sub: 0}); |
248 | } |
249 | } |
250 | |
251 | for (auto R : Tmp) { |
252 | if (!Reserved[R.Reg]) |
253 | LiveIns.insert(x: R); |
254 | for (auto S : expandToSubRegs(R, MRI, TRI)) |
255 | if (!Reserved[S.Reg]) |
256 | LiveIns.insert(x: S); |
257 | } |
258 | return LiveIns; |
259 | } |
260 | |
261 | HexagonBlockRanges::RegisterSet HexagonBlockRanges::expandToSubRegs( |
262 | RegisterRef R, const MachineRegisterInfo &MRI, |
263 | const TargetRegisterInfo &TRI) { |
264 | RegisterSet SRs; |
265 | |
266 | if (R.Sub != 0) { |
267 | SRs.insert(x: R); |
268 | return SRs; |
269 | } |
270 | |
271 | if (R.Reg.isPhysical()) { |
272 | if (TRI.subregs(Reg: R.Reg).empty()) |
273 | SRs.insert(x: {.Reg: R.Reg, .Sub: 0}); |
274 | for (MCPhysReg I : TRI.subregs(Reg: R.Reg)) |
275 | SRs.insert(x: {.Reg: I, .Sub: 0}); |
276 | } else { |
277 | assert(R.Reg.isVirtual()); |
278 | auto &RC = *MRI.getRegClass(Reg: R.Reg); |
279 | unsigned PReg = *RC.begin(); |
280 | MCSubRegIndexIterator I(PReg, &TRI); |
281 | if (!I.isValid()) |
282 | SRs.insert(x: {.Reg: R.Reg, .Sub: 0}); |
283 | for (; I.isValid(); ++I) |
284 | SRs.insert(x: {.Reg: R.Reg, .Sub: I.getSubRegIndex()}); |
285 | } |
286 | return SRs; |
287 | } |
288 | |
289 | void HexagonBlockRanges::computeInitialLiveRanges(InstrIndexMap &IndexMap, |
290 | RegToRangeMap &LiveMap) { |
291 | std::map<RegisterRef,IndexType> LastDef, LastUse; |
292 | RegisterSet LiveOnEntry; |
293 | MachineBasicBlock &B = IndexMap.getBlock(); |
294 | MachineRegisterInfo &MRI = B.getParent()->getRegInfo(); |
295 | |
296 | for (auto R : getLiveIns(B, MRI, TRI)) |
297 | LiveOnEntry.insert(x: R); |
298 | |
299 | for (auto R : LiveOnEntry) |
300 | LastDef[R] = IndexType::Entry; |
301 | |
302 | auto closeRange = [&LastUse,&LastDef,&LiveMap] (RegisterRef R) -> void { |
303 | auto LD = LastDef[R], LU = LastUse[R]; |
304 | if (LD == IndexType::None) |
305 | LD = IndexType::Entry; |
306 | if (LU == IndexType::None) |
307 | LU = IndexType::Exit; |
308 | LiveMap[R].add(Start: LD, End: LU, Fixed: false, TiedEnd: false); |
309 | LastUse[R] = LastDef[R] = IndexType::None; |
310 | }; |
311 | |
312 | RegisterSet Defs, Clobbers; |
313 | |
314 | for (auto &In : B) { |
315 | if (In.isDebugInstr()) |
316 | continue; |
317 | IndexType Index = IndexMap.getIndex(MI: &In); |
318 | // Process uses first. |
319 | for (auto &Op : In.operands()) { |
320 | if (!Op.isReg() || !Op.isUse() || Op.isUndef()) |
321 | continue; |
322 | RegisterRef R = { .Reg: Op.getReg(), .Sub: Op.getSubReg() }; |
323 | if (R.Reg.isPhysical() && Reserved[R.Reg]) |
324 | continue; |
325 | bool IsKill = Op.isKill(); |
326 | for (auto S : expandToSubRegs(R, MRI, TRI)) { |
327 | LastUse[S] = Index; |
328 | if (IsKill) |
329 | closeRange(S); |
330 | } |
331 | } |
332 | // Process defs and clobbers. |
333 | Defs.clear(); |
334 | Clobbers.clear(); |
335 | for (auto &Op : In.operands()) { |
336 | if (!Op.isReg() || !Op.isDef() || Op.isUndef()) |
337 | continue; |
338 | RegisterRef R = { .Reg: Op.getReg(), .Sub: Op.getSubReg() }; |
339 | for (auto S : expandToSubRegs(R, MRI, TRI)) { |
340 | if (S.Reg.isPhysical() && Reserved[S.Reg]) |
341 | continue; |
342 | if (Op.isDead()) |
343 | Clobbers.insert(x: S); |
344 | else |
345 | Defs.insert(x: S); |
346 | } |
347 | } |
348 | |
349 | for (auto &Op : In.operands()) { |
350 | if (!Op.isRegMask()) |
351 | continue; |
352 | const uint32_t *BM = Op.getRegMask(); |
353 | for (unsigned PR = 1, N = TRI.getNumRegs(); PR != N; ++PR) { |
354 | // Skip registers that have subregisters. A register is preserved |
355 | // iff its bit is set in the regmask, so if R1:0 was preserved, both |
356 | // R1 and R0 would also be present. |
357 | if (!TRI.subregs(Reg: PR).empty()) |
358 | continue; |
359 | if (Reserved[PR]) |
360 | continue; |
361 | if (BM[PR/32] & (1u << (PR%32))) |
362 | continue; |
363 | RegisterRef R = { .Reg: PR, .Sub: 0 }; |
364 | if (!Defs.count(x: R)) |
365 | Clobbers.insert(x: R); |
366 | } |
367 | } |
368 | // Defs and clobbers can overlap, e.g. |
369 | // dead %d0 = COPY %5, implicit-def %r0, implicit-def %r1 |
370 | for (RegisterRef R : Defs) |
371 | Clobbers.erase(x: R); |
372 | |
373 | // Update maps for defs. |
374 | for (RegisterRef S : Defs) { |
375 | // Defs should already be expanded into subregs. |
376 | assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty()); |
377 | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
378 | closeRange(S); |
379 | LastDef[S] = Index; |
380 | } |
381 | // Update maps for clobbers. |
382 | for (RegisterRef S : Clobbers) { |
383 | // Clobbers should already be expanded into subregs. |
384 | assert(!S.Reg.isPhysical() || TRI.subregs(S.Reg).empty()); |
385 | if (LastDef[S] != IndexType::None || LastUse[S] != IndexType::None) |
386 | closeRange(S); |
387 | // Create a single-instruction range. |
388 | LastDef[S] = LastUse[S] = Index; |
389 | closeRange(S); |
390 | } |
391 | } |
392 | |
393 | // Collect live-on-exit. |
394 | RegisterSet LiveOnExit; |
395 | for (auto *SB : B.successors()) |
396 | for (auto R : getLiveIns(B: *SB, MRI, TRI)) |
397 | LiveOnExit.insert(x: R); |
398 | |
399 | for (auto R : LiveOnExit) |
400 | LastUse[R] = IndexType::Exit; |
401 | |
402 | // Process remaining registers. |
403 | RegisterSet Left; |
404 | for (auto &I : LastUse) |
405 | if (I.second != IndexType::None) |
406 | Left.insert(x: I.first); |
407 | for (auto &I : LastDef) |
408 | if (I.second != IndexType::None) |
409 | Left.insert(x: I.first); |
410 | for (auto R : Left) |
411 | closeRange(R); |
412 | |
413 | // Finalize the live ranges. |
414 | for (auto &P : LiveMap) |
415 | P.second.unionize(); |
416 | } |
417 | |
418 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeLiveMap( |
419 | InstrIndexMap &IndexMap) { |
420 | RegToRangeMap LiveMap; |
421 | LLVM_DEBUG(dbgs() << __func__ << ": index map\n" << IndexMap << '\n'); |
422 | computeInitialLiveRanges(IndexMap, LiveMap); |
423 | LLVM_DEBUG(dbgs() << __func__ << ": live map\n" |
424 | << PrintRangeMap(LiveMap, TRI) << '\n'); |
425 | return LiveMap; |
426 | } |
427 | |
428 | HexagonBlockRanges::RegToRangeMap HexagonBlockRanges::computeDeadMap( |
429 | InstrIndexMap &IndexMap, RegToRangeMap &LiveMap) { |
430 | RegToRangeMap DeadMap; |
431 | |
432 | auto addDeadRanges = [&IndexMap,&LiveMap,&DeadMap] (RegisterRef R) -> void { |
433 | auto F = LiveMap.find(x: R); |
434 | if (F == LiveMap.end() || F->second.empty()) { |
435 | DeadMap[R].add(Start: IndexType::Entry, End: IndexType::Exit, Fixed: false, TiedEnd: false); |
436 | return; |
437 | } |
438 | |
439 | RangeList &RL = F->second; |
440 | RangeList::iterator A = RL.begin(), Z = RL.end()-1; |
441 | |
442 | // Try to create the initial range. |
443 | if (A->start() != IndexType::Entry) { |
444 | IndexType DE = IndexMap.getPrevIndex(Idx: A->start()); |
445 | if (DE != IndexType::Entry) |
446 | DeadMap[R].add(Start: IndexType::Entry, End: DE, Fixed: false, TiedEnd: false); |
447 | } |
448 | |
449 | while (A != Z) { |
450 | // Creating a dead range that follows A. Pay attention to empty |
451 | // ranges (i.e. those ending with "None"). |
452 | IndexType AE = (A->end() == IndexType::None) ? A->start() : A->end(); |
453 | IndexType DS = IndexMap.getNextIndex(Idx: AE); |
454 | ++A; |
455 | IndexType DE = IndexMap.getPrevIndex(Idx: A->start()); |
456 | if (DS < DE) |
457 | DeadMap[R].add(Start: DS, End: DE, Fixed: false, TiedEnd: false); |
458 | } |
459 | |
460 | // Try to create the final range. |
461 | if (Z->end() != IndexType::Exit) { |
462 | IndexType ZE = (Z->end() == IndexType::None) ? Z->start() : Z->end(); |
463 | IndexType DS = IndexMap.getNextIndex(Idx: ZE); |
464 | if (DS < IndexType::Exit) |
465 | DeadMap[R].add(Start: DS, End: IndexType::Exit, Fixed: false, TiedEnd: false); |
466 | } |
467 | }; |
468 | |
469 | MachineFunction &MF = *IndexMap.getBlock().getParent(); |
470 | auto &MRI = MF.getRegInfo(); |
471 | unsigned NumRegs = TRI.getNumRegs(); |
472 | BitVector Visited(NumRegs); |
473 | for (unsigned R = 1; R < NumRegs; ++R) { |
474 | for (auto S : expandToSubRegs(R: {.Reg: R,.Sub: 0}, MRI, TRI)) { |
475 | if (Reserved[S.Reg] || Visited[S.Reg]) |
476 | continue; |
477 | addDeadRanges(S); |
478 | Visited[S.Reg] = true; |
479 | } |
480 | } |
481 | for (auto &P : LiveMap) |
482 | if (P.first.Reg.isVirtual()) |
483 | addDeadRanges(P.first); |
484 | |
485 | LLVM_DEBUG(dbgs() << __func__ << ": dead map\n" |
486 | << PrintRangeMap(DeadMap, TRI) << '\n'); |
487 | return DeadMap; |
488 | } |
489 | |
490 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
491 | HexagonBlockRanges::IndexType Idx) { |
492 | if (Idx == HexagonBlockRanges::IndexType::None) |
493 | return OS << '-'; |
494 | if (Idx == HexagonBlockRanges::IndexType::Entry) |
495 | return OS << 'n'; |
496 | if (Idx == HexagonBlockRanges::IndexType::Exit) |
497 | return OS << 'x'; |
498 | return OS << unsigned(Idx)-HexagonBlockRanges::IndexType::First+1; |
499 | } |
500 | |
501 | // A mapping to translate between instructions and their indices. |
502 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
503 | const HexagonBlockRanges::IndexRange &IR) { |
504 | OS << '[' << IR.start() << ':' << IR.end() << (IR.TiedEnd ? '}' : ']'); |
505 | if (IR.Fixed) |
506 | OS << '!'; |
507 | return OS; |
508 | } |
509 | |
510 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
511 | const HexagonBlockRanges::RangeList &RL) { |
512 | for (const auto &R : RL) |
513 | OS << R << " " ; |
514 | return OS; |
515 | } |
516 | |
517 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
518 | const HexagonBlockRanges::InstrIndexMap &M) { |
519 | for (auto &In : M.Block) { |
520 | HexagonBlockRanges::IndexType Idx = M.getIndex(MI: &In); |
521 | OS << Idx << (Idx == M.Last ? ". " : " " ) << In; |
522 | } |
523 | return OS; |
524 | } |
525 | |
526 | raw_ostream &llvm::operator<<(raw_ostream &OS, |
527 | const HexagonBlockRanges::PrintRangeMap &P) { |
528 | for (const auto &I : P.Map) { |
529 | const HexagonBlockRanges::RangeList &RL = I.second; |
530 | OS << printReg(Reg: I.first.Reg, TRI: &P.TRI, SubIdx: I.first.Sub) << " -> " << RL << "\n" ; |
531 | } |
532 | return OS; |
533 | } |
534 | |