1 | //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains the Hexagon implementation of the TargetInstrInfo class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |
14 | #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |
15 | |
16 | #include "MCTargetDesc/HexagonBaseInfo.h" |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
20 | #include "llvm/CodeGen/TargetInstrInfo.h" |
21 | #include "llvm/CodeGen/ValueTypes.h" |
22 | #include "llvm/CodeGenTypes/MachineValueType.h" |
23 | #include <cstdint> |
24 | #include <vector> |
25 | |
26 | #define |
27 | #include "HexagonGenInstrInfo.inc" |
28 | |
29 | namespace llvm { |
30 | |
31 | class HexagonSubtarget; |
32 | class MachineBranchProbabilityInfo; |
33 | class MachineFunction; |
34 | class MachineInstr; |
35 | class MachineOperand; |
36 | class TargetRegisterInfo; |
37 | |
38 | class HexagonInstrInfo : public HexagonGenInstrInfo { |
39 | const HexagonSubtarget &Subtarget; |
40 | |
41 | enum BundleAttribute { |
42 | memShufDisabledMask = 0x4 |
43 | }; |
44 | |
45 | virtual void anchor(); |
46 | |
47 | public: |
48 | explicit HexagonInstrInfo(HexagonSubtarget &ST); |
49 | |
50 | /// TargetInstrInfo overrides. |
51 | |
52 | /// If the specified machine instruction is a direct |
53 | /// load from a stack slot, return the virtual or physical register number of |
54 | /// the destination along with the FrameIndex of the loaded stack slot. If |
55 | /// not, return 0. This predicate must return 0 if the instruction has |
56 | /// any side effects other than loading from the stack slot. |
57 | Register isLoadFromStackSlot(const MachineInstr &MI, |
58 | int &FrameIndex) const override; |
59 | |
60 | /// If the specified machine instruction is a direct |
61 | /// store to a stack slot, return the virtual or physical register number of |
62 | /// the source reg along with the FrameIndex of the loaded stack slot. If |
63 | /// not, return 0. This predicate must return 0 if the instruction has |
64 | /// any side effects other than storing to the stack slot. |
65 | Register isStoreToStackSlot(const MachineInstr &MI, |
66 | int &FrameIndex) const override; |
67 | |
68 | /// Check if the instruction or the bundle of instructions has |
69 | /// load from stack slots. Return the frameindex and machine memory operand |
70 | /// if true. |
71 | bool hasLoadFromStackSlot( |
72 | const MachineInstr &MI, |
73 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; |
74 | |
75 | /// Check if the instruction or the bundle of instructions has |
76 | /// store to stack slots. Return the frameindex and machine memory operand |
77 | /// if true. |
78 | bool hasStoreToStackSlot( |
79 | const MachineInstr &MI, |
80 | SmallVectorImpl<const MachineMemOperand *> &Accesses) const override; |
81 | |
82 | /// Analyze the branching code at the end of MBB, returning |
83 | /// true if it cannot be understood (e.g. it's a switch dispatch or isn't |
84 | /// implemented for a target). Upon success, this returns false and returns |
85 | /// with the following information in various cases: |
86 | /// |
87 | /// 1. If this block ends with no branches (it just falls through to its succ) |
88 | /// just return false, leaving TBB/FBB null. |
89 | /// 2. If this block ends with only an unconditional branch, it sets TBB to be |
90 | /// the destination block. |
91 | /// 3. If this block ends with a conditional branch and it falls through to a |
92 | /// successor block, it sets TBB to be the branch destination block and a |
93 | /// list of operands that evaluate the condition. These operands can be |
94 | /// passed to other TargetInstrInfo methods to create new branches. |
95 | /// 4. If this block ends with a conditional branch followed by an |
96 | /// unconditional branch, it returns the 'true' destination in TBB, the |
97 | /// 'false' destination in FBB, and a list of operands that evaluate the |
98 | /// condition. These operands can be passed to other TargetInstrInfo |
99 | /// methods to create new branches. |
100 | /// |
101 | /// Note that removeBranch and insertBranch must be implemented to support |
102 | /// cases where this method returns success. |
103 | /// |
104 | /// If AllowModify is true, then this routine is allowed to modify the basic |
105 | /// block (e.g. delete instructions after the unconditional branch). |
106 | bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, |
107 | MachineBasicBlock *&FBB, |
108 | SmallVectorImpl<MachineOperand> &Cond, |
109 | bool AllowModify) const override; |
110 | |
111 | /// Remove the branching code at the end of the specific MBB. |
112 | /// This is only invoked in cases where analyzeBranch returns success. It |
113 | /// returns the number of instructions that were removed. |
114 | unsigned removeBranch(MachineBasicBlock &MBB, |
115 | int *BytesRemoved = nullptr) const override; |
116 | |
117 | /// Insert branch code into the end of the specified MachineBasicBlock. |
118 | /// The operands to this method are the same as those |
119 | /// returned by analyzeBranch. This is only invoked in cases where |
120 | /// analyzeBranch returns success. It returns the number of instructions |
121 | /// inserted. |
122 | /// |
123 | /// It is also invoked by tail merging to add unconditional branches in |
124 | /// cases where analyzeBranch doesn't apply because there was no original |
125 | /// branch to analyze. At least this much must be implemented, else tail |
126 | /// merging needs to be disabled. |
127 | unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
128 | MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond, |
129 | const DebugLoc &DL, |
130 | int *BytesAdded = nullptr) const override; |
131 | |
132 | /// Analyze loop L, which must be a single-basic-block loop, and if the |
133 | /// conditions can be understood enough produce a PipelinerLoopInfo object. |
134 | std::unique_ptr<PipelinerLoopInfo> |
135 | analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override; |
136 | |
137 | /// Return true if it's profitable to predicate |
138 | /// instructions with accumulated instruction latency of "NumCycles" |
139 | /// of the specified basic block, where the probability of the instructions |
140 | /// being executed is given by Probability, and Confidence is a measure |
141 | /// of our confidence that it will be properly predicted. |
142 | bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, |
143 | unsigned , |
144 | BranchProbability Probability) const override; |
145 | |
146 | /// Second variant of isProfitableToIfCvt. This one |
147 | /// checks for the case where two basic blocks from true and false path |
148 | /// of a if-then-else (diamond) are predicated on mutally exclusive |
149 | /// predicates, where the probability of the true path being taken is given |
150 | /// by Probability, and Confidence is a measure of our confidence that it |
151 | /// will be properly predicted. |
152 | bool isProfitableToIfCvt(MachineBasicBlock &TMBB, |
153 | unsigned NumTCycles, unsigned , |
154 | MachineBasicBlock &FMBB, |
155 | unsigned NumFCycles, unsigned , |
156 | BranchProbability Probability) const override; |
157 | |
158 | /// Return true if it's profitable for if-converter to duplicate instructions |
159 | /// of specified accumulated instruction latencies in the specified MBB to |
160 | /// enable if-conversion. |
161 | /// The probability of the instructions being executed is given by |
162 | /// Probability, and Confidence is a measure of our confidence that it |
163 | /// will be properly predicted. |
164 | bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, |
165 | BranchProbability Probability) const override; |
166 | |
167 | /// Emit instructions to copy a pair of physical registers. |
168 | /// |
169 | /// This function should support copies within any legal register class as |
170 | /// well as any cross-class copies created during instruction selection. |
171 | /// |
172 | /// The source and destination registers may overlap, which may require a |
173 | /// careful implementation when multiple copy instructions are required for |
174 | /// large registers. See for example the ARM target. |
175 | void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
176 | const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, |
177 | bool KillSrc) const override; |
178 | |
179 | /// Store the specified register of the given register class to the specified |
180 | /// stack frame index. The store instruction is to be added to the given |
181 | /// machine basic block before the specified machine instruction. If isKill |
182 | /// is true, the register operand is the last use and must be marked kill. |
183 | void storeRegToStackSlot(MachineBasicBlock &MBB, |
184 | MachineBasicBlock::iterator MBBI, Register SrcReg, |
185 | bool isKill, int FrameIndex, |
186 | const TargetRegisterClass *RC, |
187 | const TargetRegisterInfo *TRI, |
188 | Register VReg) const override; |
189 | |
190 | /// Load the specified register of the given register class from the specified |
191 | /// stack frame index. The load instruction is to be added to the given |
192 | /// machine basic block before the specified machine instruction. |
193 | void loadRegFromStackSlot(MachineBasicBlock &MBB, |
194 | MachineBasicBlock::iterator MBBI, Register DestReg, |
195 | int FrameIndex, const TargetRegisterClass *RC, |
196 | const TargetRegisterInfo *TRI, |
197 | Register VReg) const override; |
198 | |
199 | /// This function is called for all pseudo instructions |
200 | /// that remain after register allocation. Many pseudo instructions are |
201 | /// created to help register allocation. This is the place to convert them |
202 | /// into real instructions. The target can edit MI in place, or it can insert |
203 | /// new instructions and erase MI. The function should return true if |
204 | /// anything was changed. |
205 | bool expandPostRAPseudo(MachineInstr &MI) const override; |
206 | |
207 | /// Get the base register and byte offset of a load/store instr. |
208 | bool getMemOperandsWithOffsetWidth( |
209 | const MachineInstr &LdSt, |
210 | SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset, |
211 | bool &OffsetIsScalable, LocationSize &Width, |
212 | const TargetRegisterInfo *TRI) const override; |
213 | |
214 | /// Reverses the branch condition of the specified condition list, |
215 | /// returning false on success and true if it cannot be reversed. |
216 | bool reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) |
217 | const override; |
218 | |
219 | /// Insert a noop into the instruction stream at the specified point. |
220 | void insertNoop(MachineBasicBlock &MBB, |
221 | MachineBasicBlock::iterator MI) const override; |
222 | |
223 | /// Returns true if the instruction is already predicated. |
224 | bool isPredicated(const MachineInstr &MI) const override; |
225 | |
226 | /// Return true for post-incremented instructions. |
227 | bool isPostIncrement(const MachineInstr &MI) const override; |
228 | |
229 | /// Convert the instruction into a predicated instruction. |
230 | /// It returns true if the operation was successful. |
231 | bool PredicateInstruction(MachineInstr &MI, |
232 | ArrayRef<MachineOperand> Cond) const override; |
233 | |
234 | /// Returns true if the first specified predicate |
235 | /// subsumes the second, e.g. GE subsumes GT. |
236 | bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1, |
237 | ArrayRef<MachineOperand> Pred2) const override; |
238 | |
239 | /// If the specified instruction defines any predicate |
240 | /// or condition code register(s) used for predication, returns true as well |
241 | /// as the definition predicate(s) by reference. |
242 | bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred, |
243 | bool SkipDead) const override; |
244 | |
245 | /// Return true if the specified instruction can be predicated. |
246 | /// By default, this returns true for every instruction with a |
247 | /// PredicateOperand. |
248 | bool isPredicable(const MachineInstr &MI) const override; |
249 | |
250 | /// Test if the given instruction should be considered a scheduling boundary. |
251 | /// This primarily includes labels and terminators. |
252 | bool isSchedulingBoundary(const MachineInstr &MI, |
253 | const MachineBasicBlock *MBB, |
254 | const MachineFunction &MF) const override; |
255 | |
256 | /// Measure the specified inline asm to determine an approximation of its |
257 | /// length. |
258 | unsigned getInlineAsmLength( |
259 | const char *Str, |
260 | const MCAsmInfo &MAI, |
261 | const TargetSubtargetInfo *STI = nullptr) const override; |
262 | |
263 | /// Allocate and return a hazard recognizer to use for this target when |
264 | /// scheduling the machine instructions after register allocation. |
265 | ScheduleHazardRecognizer* |
266 | CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, |
267 | const ScheduleDAG *DAG) const override; |
268 | |
269 | /// For a comparison instruction, return the source registers |
270 | /// in SrcReg and SrcReg2 if having two register operands, and the value it |
271 | /// compares against in CmpValue. Return true if the comparison instruction |
272 | /// can be analyzed. |
273 | bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, |
274 | Register &SrcReg2, int64_t &Mask, |
275 | int64_t &Value) const override; |
276 | |
277 | /// Compute the instruction latency of a given instruction. |
278 | /// If the instruction has higher cost when predicated, it's returned via |
279 | /// PredCost. |
280 | unsigned getInstrLatency(const InstrItineraryData *ItinData, |
281 | const MachineInstr &MI, |
282 | unsigned *PredCost = nullptr) const override; |
283 | |
284 | /// Create machine specific model for scheduling. |
285 | DFAPacketizer * |
286 | CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override; |
287 | |
288 | // Sometimes, it is possible for the target |
289 | // to tell, even without aliasing information, that two MIs access different |
290 | // memory addresses. This function returns true if two MIs access different |
291 | // memory addresses and false otherwise. |
292 | bool |
293 | areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, |
294 | const MachineInstr &MIb) const override; |
295 | |
296 | /// For instructions with a base and offset, return the position of the |
297 | /// base register and offset operands. |
298 | bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, |
299 | unsigned &OffsetPos) const override; |
300 | |
301 | /// If the instruction is an increment of a constant value, return the amount. |
302 | bool getIncrementValue(const MachineInstr &MI, int &Value) const override; |
303 | |
304 | /// getOperandLatency - Compute and return the use operand latency of a given |
305 | /// pair of def and use. |
306 | /// In most cases, the static scheduling itinerary was enough to determine the |
307 | /// operand latency. But it may not be possible for instructions with variable |
308 | /// number of defs / uses. |
309 | /// |
310 | /// This is a raw interface to the itinerary that may be directly overriden by |
311 | /// a target. Use computeOperandLatency to get the best estimate of latency. |
312 | std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData, |
313 | const MachineInstr &DefMI, |
314 | unsigned DefIdx, |
315 | const MachineInstr &UseMI, |
316 | unsigned UseIdx) const override; |
317 | |
318 | /// Decompose the machine operand's target flags into two values - the direct |
319 | /// target flag value and any of bit flags that are applied. |
320 | std::pair<unsigned, unsigned> |
321 | decomposeMachineOperandsTargetFlags(unsigned TF) const override; |
322 | |
323 | /// Return an array that contains the direct target flag values and their |
324 | /// names. |
325 | /// |
326 | /// MIR Serialization is able to serialize only the target flags that are |
327 | /// defined by this method. |
328 | ArrayRef<std::pair<unsigned, const char *>> |
329 | getSerializableDirectMachineOperandTargetFlags() const override; |
330 | |
331 | /// Return an array that contains the bitmask target flag values and their |
332 | /// names. |
333 | /// |
334 | /// MIR Serialization is able to serialize only the target flags that are |
335 | /// defined by this method. |
336 | ArrayRef<std::pair<unsigned, const char *>> |
337 | getSerializableBitmaskMachineOperandTargetFlags() const override; |
338 | |
339 | bool isTailCall(const MachineInstr &MI) const override; |
340 | bool isAsCheapAsAMove(const MachineInstr &MI) const override; |
341 | |
342 | // Return true if the instruction should be sunk by MachineSink. |
343 | // MachineSink determines on its own whether the instruction is safe to sink; |
344 | // this gives the target a hook to override the default behavior with regards |
345 | // to which instructions should be sunk. |
346 | bool shouldSink(const MachineInstr &MI) const override; |
347 | |
348 | /// HexagonInstrInfo specifics. |
349 | |
350 | Register createVR(MachineFunction *MF, MVT VT) const; |
351 | MachineInstr *findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, |
352 | MachineBasicBlock *TargetBB, |
353 | SmallPtrSet<MachineBasicBlock *, 8> &Visited) const; |
354 | |
355 | bool isAbsoluteSet(const MachineInstr &MI) const; |
356 | bool isAccumulator(const MachineInstr &MI) const; |
357 | bool isAddrModeWithOffset(const MachineInstr &MI) const; |
358 | bool isBaseImmOffset(const MachineInstr &MI) const; |
359 | bool isComplex(const MachineInstr &MI) const; |
360 | bool isCompoundBranchInstr(const MachineInstr &MI) const; |
361 | bool isConstExtended(const MachineInstr &MI) const; |
362 | bool isDeallocRet(const MachineInstr &MI) const; |
363 | bool isDependent(const MachineInstr &ProdMI, |
364 | const MachineInstr &ConsMI) const; |
365 | bool isDotCurInst(const MachineInstr &MI) const; |
366 | bool isDotNewInst(const MachineInstr &MI) const; |
367 | bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const; |
368 | bool isEndLoopN(unsigned Opcode) const; |
369 | bool isExpr(unsigned OpType) const; |
370 | bool isExtendable(const MachineInstr &MI) const; |
371 | bool isExtended(const MachineInstr &MI) const; |
372 | bool isFloat(const MachineInstr &MI) const; |
373 | bool isHVXMemWithAIndirect(const MachineInstr &I, |
374 | const MachineInstr &J) const; |
375 | bool isIndirectCall(const MachineInstr &MI) const; |
376 | bool isIndirectL4Return(const MachineInstr &MI) const; |
377 | bool isJumpR(const MachineInstr &MI) const; |
378 | bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const; |
379 | bool isLateSourceInstr(const MachineInstr &MI) const; |
380 | bool isLoopN(const MachineInstr &MI) const; |
381 | bool isMemOp(const MachineInstr &MI) const; |
382 | bool isNewValue(const MachineInstr &MI) const; |
383 | bool isNewValue(unsigned Opcode) const; |
384 | bool isNewValueInst(const MachineInstr &MI) const; |
385 | bool isNewValueJump(const MachineInstr &MI) const; |
386 | bool isNewValueJump(unsigned Opcode) const; |
387 | bool isNewValueStore(const MachineInstr &MI) const; |
388 | bool isNewValueStore(unsigned Opcode) const; |
389 | bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const; |
390 | bool isPredicatedNew(const MachineInstr &MI) const; |
391 | bool isPredicatedNew(unsigned Opcode) const; |
392 | bool isPredicatedTrue(const MachineInstr &MI) const; |
393 | bool isPredicatedTrue(unsigned Opcode) const; |
394 | bool isPredicated(unsigned Opcode) const; |
395 | bool isPredicateLate(unsigned Opcode) const; |
396 | bool isPredictedTaken(unsigned Opcode) const; |
397 | bool isPureSlot0(const MachineInstr &MI) const; |
398 | bool isRestrictNoSlot1Store(const MachineInstr &MI) const; |
399 | bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const; |
400 | bool isSignExtendingLoad(const MachineInstr &MI) const; |
401 | bool isSolo(const MachineInstr &MI) const; |
402 | bool isSpillPredRegOp(const MachineInstr &MI) const; |
403 | bool isTC1(const MachineInstr &MI) const; |
404 | bool isTC2(const MachineInstr &MI) const; |
405 | bool isTC2Early(const MachineInstr &MI) const; |
406 | bool isTC4x(const MachineInstr &MI) const; |
407 | bool isToBeScheduledASAP(const MachineInstr &MI1, |
408 | const MachineInstr &MI2) const; |
409 | bool isHVXVec(const MachineInstr &MI) const; |
410 | bool isValidAutoIncImm(const EVT VT, const int Offset) const; |
411 | bool isValidOffset(unsigned Opcode, int Offset, |
412 | const TargetRegisterInfo *TRI, bool Extend = true) const; |
413 | bool isVecAcc(const MachineInstr &MI) const; |
414 | bool isVecALU(const MachineInstr &MI) const; |
415 | bool isVecUsableNextPacket(const MachineInstr &ProdMI, |
416 | const MachineInstr &ConsMI) const; |
417 | bool isZeroExtendingLoad(const MachineInstr &MI) const; |
418 | |
419 | bool addLatencyToSchedule(const MachineInstr &MI1, |
420 | const MachineInstr &MI2) const; |
421 | bool canExecuteInBundle(const MachineInstr &First, |
422 | const MachineInstr &Second) const; |
423 | bool doesNotReturn(const MachineInstr &CallMI) const; |
424 | bool hasEHLabel(const MachineBasicBlock *B) const; |
425 | bool hasNonExtEquivalent(const MachineInstr &MI) const; |
426 | bool hasPseudoInstrPair(const MachineInstr &MI) const; |
427 | bool hasUncondBranch(const MachineBasicBlock *B) const; |
428 | bool mayBeCurLoad(const MachineInstr &MI) const; |
429 | bool mayBeNewStore(const MachineInstr &MI) const; |
430 | bool producesStall(const MachineInstr &ProdMI, |
431 | const MachineInstr &ConsMI) const; |
432 | bool producesStall(const MachineInstr &MI, |
433 | MachineBasicBlock::const_instr_iterator MII) const; |
434 | bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const; |
435 | bool PredOpcodeHasJMP_c(unsigned Opcode) const; |
436 | bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const; |
437 | |
438 | unsigned getAddrMode(const MachineInstr &MI) const; |
439 | MachineOperand *getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, |
440 | LocationSize &AccessSize) const; |
441 | SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const; |
442 | unsigned getCExtOpNum(const MachineInstr &MI) const; |
443 | HexagonII::CompoundGroup |
444 | getCompoundCandidateGroup(const MachineInstr &MI) const; |
445 | unsigned getCompoundOpcode(const MachineInstr &GA, |
446 | const MachineInstr &GB) const; |
447 | int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore = true) const; |
448 | int getCondOpcode(int Opc, bool sense) const; |
449 | int getDotCurOp(const MachineInstr &MI) const; |
450 | int getNonDotCurOp(const MachineInstr &MI) const; |
451 | int getDotNewOp(const MachineInstr &MI) const; |
452 | int getDotNewPredJumpOp(const MachineInstr &MI, |
453 | const MachineBranchProbabilityInfo *MBPI) const; |
454 | int getDotNewPredOp(const MachineInstr &MI, |
455 | const MachineBranchProbabilityInfo *MBPI) const; |
456 | int getDotOldOp(const MachineInstr &MI) const; |
457 | HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) |
458 | const; |
459 | short getEquivalentHWInstr(const MachineInstr &MI) const; |
460 | unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, |
461 | const MachineInstr &MI) const; |
462 | bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const; |
463 | unsigned getInvertedPredicatedOpcode(const int Opc) const; |
464 | int getMaxValue(const MachineInstr &MI) const; |
465 | unsigned getMemAccessSize(const MachineInstr &MI) const; |
466 | int getMinValue(const MachineInstr &MI) const; |
467 | short getNonExtOpcode(const MachineInstr &MI) const; |
468 | bool getPredReg(ArrayRef<MachineOperand> Cond, Register &PredReg, |
469 | unsigned &PredRegPos, unsigned &PredRegFlags) const; |
470 | short getPseudoInstrPair(const MachineInstr &MI) const; |
471 | short getRegForm(const MachineInstr &MI) const; |
472 | unsigned getSize(const MachineInstr &MI) const; |
473 | uint64_t getType(const MachineInstr &MI) const; |
474 | InstrStage::FuncUnits getUnits(const MachineInstr &MI) const; |
475 | |
476 | MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const; |
477 | |
478 | /// getInstrTimingClassLatency - Compute the instruction latency of a given |
479 | /// instruction using Timing Class information, if available. |
480 | unsigned nonDbgBBSize(const MachineBasicBlock *BB) const; |
481 | unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const; |
482 | |
483 | void immediateExtend(MachineInstr &MI) const; |
484 | bool invertAndChangeJumpTarget(MachineInstr &MI, |
485 | MachineBasicBlock *NewTarget) const; |
486 | void genAllInsnTimingClasses(MachineFunction &MF) const; |
487 | bool reversePredSense(MachineInstr &MI) const; |
488 | unsigned reversePrediction(unsigned Opcode) const; |
489 | bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const; |
490 | |
491 | void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const; |
492 | bool getBundleNoShuf(const MachineInstr &MIB) const; |
493 | |
494 | // When TinyCore with Duplexes is enabled, this function is used to translate |
495 | // tiny-instructions to big-instructions and vice versa to get the slot |
496 | // consumption. |
497 | void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, |
498 | bool ToBigInstrs) const; |
499 | void translateInstrsForDup(MachineFunction &MF, |
500 | bool ToBigInstrs = true) const; |
501 | void translateInstrsForDup(MachineBasicBlock::instr_iterator MII, |
502 | bool ToBigInstrs) const; |
503 | |
504 | // Addressing mode relations. |
505 | short changeAddrMode_abs_io(short Opc) const; |
506 | short changeAddrMode_io_abs(short Opc) const; |
507 | short changeAddrMode_io_pi(short Opc) const; |
508 | short changeAddrMode_io_rr(short Opc) const; |
509 | short changeAddrMode_pi_io(short Opc) const; |
510 | short changeAddrMode_rr_io(short Opc) const; |
511 | short changeAddrMode_rr_ur(short Opc) const; |
512 | short changeAddrMode_ur_rr(short Opc) const; |
513 | |
514 | short changeAddrMode_abs_io(const MachineInstr &MI) const { |
515 | return changeAddrMode_abs_io(Opc: MI.getOpcode()); |
516 | } |
517 | short changeAddrMode_io_abs(const MachineInstr &MI) const { |
518 | return changeAddrMode_io_abs(Opc: MI.getOpcode()); |
519 | } |
520 | short changeAddrMode_io_rr(const MachineInstr &MI) const { |
521 | return changeAddrMode_io_rr(Opc: MI.getOpcode()); |
522 | } |
523 | short changeAddrMode_rr_io(const MachineInstr &MI) const { |
524 | return changeAddrMode_rr_io(Opc: MI.getOpcode()); |
525 | } |
526 | short changeAddrMode_rr_ur(const MachineInstr &MI) const { |
527 | return changeAddrMode_rr_ur(Opc: MI.getOpcode()); |
528 | } |
529 | short changeAddrMode_ur_rr(const MachineInstr &MI) const { |
530 | return changeAddrMode_ur_rr(Opc: MI.getOpcode()); |
531 | } |
532 | |
533 | MCInst getNop() const override; |
534 | }; |
535 | |
536 | } // end namespace llvm |
537 | |
538 | #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H |
539 | |