1 | //===- HexagonCommonGEP.cpp -----------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/ADT/ArrayRef.h" |
10 | #include "llvm/ADT/FoldingSet.h" |
11 | #include "llvm/ADT/GraphTraits.h" |
12 | #include "llvm/ADT/STLExtras.h" |
13 | #include "llvm/ADT/SetVector.h" |
14 | #include "llvm/ADT/SmallVector.h" |
15 | #include "llvm/ADT/StringRef.h" |
16 | #include "llvm/Analysis/LoopInfo.h" |
17 | #include "llvm/Analysis/PostDominators.h" |
18 | #include "llvm/IR/BasicBlock.h" |
19 | #include "llvm/IR/Constant.h" |
20 | #include "llvm/IR/Constants.h" |
21 | #include "llvm/IR/DerivedTypes.h" |
22 | #include "llvm/IR/Dominators.h" |
23 | #include "llvm/IR/Function.h" |
24 | #include "llvm/IR/Instruction.h" |
25 | #include "llvm/IR/Instructions.h" |
26 | #include "llvm/IR/Type.h" |
27 | #include "llvm/IR/Use.h" |
28 | #include "llvm/IR/User.h" |
29 | #include "llvm/IR/Value.h" |
30 | #include "llvm/IR/Verifier.h" |
31 | #include "llvm/InitializePasses.h" |
32 | #include "llvm/Pass.h" |
33 | #include "llvm/Support/Allocator.h" |
34 | #include "llvm/Support/Casting.h" |
35 | #include "llvm/Support/CommandLine.h" |
36 | #include "llvm/Support/Compiler.h" |
37 | #include "llvm/Support/Debug.h" |
38 | #include "llvm/Support/raw_ostream.h" |
39 | #include "llvm/Transforms/Utils/Local.h" |
40 | #include <algorithm> |
41 | #include <cassert> |
42 | #include <cstddef> |
43 | #include <cstdint> |
44 | #include <iterator> |
45 | #include <map> |
46 | #include <set> |
47 | #include <utility> |
48 | #include <vector> |
49 | |
50 | #define DEBUG_TYPE "commgep" |
51 | |
52 | using namespace llvm; |
53 | |
54 | static cl::opt<bool> OptSpeculate("commgep-speculate" , cl::init(Val: true), |
55 | cl::Hidden); |
56 | |
57 | static cl::opt<bool> OptEnableInv("commgep-inv" , cl::init(Val: true), cl::Hidden); |
58 | |
59 | static cl::opt<bool> OptEnableConst("commgep-const" , cl::init(Val: true), |
60 | cl::Hidden); |
61 | |
62 | namespace llvm { |
63 | |
64 | void initializeHexagonCommonGEPPass(PassRegistry&); |
65 | |
66 | } // end namespace llvm |
67 | |
68 | namespace { |
69 | |
70 | struct GepNode; |
71 | using NodeSet = std::set<GepNode *>; |
72 | using NodeToValueMap = std::map<GepNode *, Value *>; |
73 | using NodeVect = std::vector<GepNode *>; |
74 | using NodeChildrenMap = std::map<GepNode *, NodeVect>; |
75 | using UseSet = SetVector<Use *>; |
76 | using NodeToUsesMap = std::map<GepNode *, UseSet>; |
77 | |
78 | // Numbering map for gep nodes. Used to keep track of ordering for |
79 | // gep nodes. |
80 | struct NodeOrdering { |
81 | NodeOrdering() = default; |
82 | |
83 | void insert(const GepNode *N) { Map.insert(x: std::make_pair(x&: N, y&: ++LastNum)); } |
84 | void clear() { Map.clear(); } |
85 | |
86 | bool operator()(const GepNode *N1, const GepNode *N2) const { |
87 | auto F1 = Map.find(x: N1), F2 = Map.find(x: N2); |
88 | assert(F1 != Map.end() && F2 != Map.end()); |
89 | return F1->second < F2->second; |
90 | } |
91 | |
92 | private: |
93 | std::map<const GepNode *, unsigned> Map; |
94 | unsigned LastNum = 0; |
95 | }; |
96 | |
97 | class HexagonCommonGEP : public FunctionPass { |
98 | public: |
99 | static char ID; |
100 | |
101 | HexagonCommonGEP() : FunctionPass(ID) { |
102 | initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); |
103 | } |
104 | |
105 | bool runOnFunction(Function &F) override; |
106 | StringRef getPassName() const override { return "Hexagon Common GEP" ; } |
107 | |
108 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
109 | AU.addRequired<DominatorTreeWrapperPass>(); |
110 | AU.addPreserved<DominatorTreeWrapperPass>(); |
111 | AU.addRequired<PostDominatorTreeWrapperPass>(); |
112 | AU.addPreserved<PostDominatorTreeWrapperPass>(); |
113 | AU.addRequired<LoopInfoWrapperPass>(); |
114 | AU.addPreserved<LoopInfoWrapperPass>(); |
115 | FunctionPass::getAnalysisUsage(AU); |
116 | } |
117 | |
118 | private: |
119 | using ValueToNodeMap = std::map<Value *, GepNode *>; |
120 | using ValueVect = std::vector<Value *>; |
121 | using NodeToValuesMap = std::map<GepNode *, ValueVect>; |
122 | |
123 | void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); |
124 | bool isHandledGepForm(GetElementPtrInst *GepI); |
125 | void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); |
126 | void collect(); |
127 | void common(); |
128 | |
129 | BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, |
130 | NodeToValueMap &Loc); |
131 | BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, |
132 | NodeToValueMap &Loc); |
133 | bool isInvariantIn(Value *Val, Loop *L); |
134 | bool isInvariantIn(GepNode *Node, Loop *L); |
135 | bool isInMainPath(BasicBlock *B, Loop *L); |
136 | BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, |
137 | NodeToValueMap &Loc); |
138 | void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); |
139 | void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, |
140 | NodeToValueMap &Loc); |
141 | void computeNodePlacement(NodeToValueMap &Loc); |
142 | |
143 | Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, |
144 | BasicBlock *LocB); |
145 | void getAllUsersForNode(GepNode *Node, ValueVect &Values, |
146 | NodeChildrenMap &NCM); |
147 | void materialize(NodeToValueMap &Loc); |
148 | |
149 | void removeDeadCode(); |
150 | |
151 | NodeVect Nodes; |
152 | NodeToUsesMap Uses; |
153 | NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. |
154 | SpecificBumpPtrAllocator<GepNode> *Mem; |
155 | LLVMContext *Ctx; |
156 | LoopInfo *LI; |
157 | DominatorTree *DT; |
158 | PostDominatorTree *PDT; |
159 | Function *Fn; |
160 | }; |
161 | |
162 | } // end anonymous namespace |
163 | |
164 | char HexagonCommonGEP::ID = 0; |
165 | |
166 | INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep" , "Hexagon Common GEP" , |
167 | false, false) |
168 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
169 | INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) |
170 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
171 | INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep" , "Hexagon Common GEP" , |
172 | false, false) |
173 | |
174 | namespace { |
175 | |
176 | struct GepNode { |
177 | enum { |
178 | None = 0, |
179 | Root = 0x01, |
180 | Internal = 0x02, |
181 | Used = 0x04, |
182 | InBounds = 0x08, |
183 | Pointer = 0x10, // See note below. |
184 | }; |
185 | // Note: GEP indices generally traverse nested types, and so a GepNode |
186 | // (representing a single index) can be associated with some composite |
187 | // type. The exception is the GEP input, which is a pointer, and not |
188 | // a composite type (at least not in the sense of having sub-types). |
189 | // Also, the corresponding index plays a different role as well: it is |
190 | // simply added to the input pointer. Since pointer types are becoming |
191 | // opaque (i.e. are no longer going to include the pointee type), the |
192 | // two pieces of information (1) the fact that it's a pointer, and |
193 | // (2) the pointee type, need to be stored separately. The pointee type |
194 | // will be stored in the PTy member, while the fact that the node |
195 | // operates on a pointer will be reflected by the flag "Pointer". |
196 | |
197 | uint32_t Flags = 0; |
198 | union { |
199 | GepNode *Parent; |
200 | Value *BaseVal; |
201 | }; |
202 | Value *Idx = nullptr; |
203 | Type *PTy = nullptr; // Type indexed by this node. For pointer nodes |
204 | // this is the "pointee" type, and indexing a |
205 | // pointer does not change the type. |
206 | |
207 | GepNode() : Parent(nullptr) {} |
208 | GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { |
209 | if (Flags & Root) |
210 | BaseVal = N->BaseVal; |
211 | else |
212 | Parent = N->Parent; |
213 | } |
214 | |
215 | friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); |
216 | }; |
217 | |
218 | raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { |
219 | OS << "{ {" ; |
220 | bool Comma = false; |
221 | if (GN.Flags & GepNode::Root) { |
222 | OS << "root" ; |
223 | Comma = true; |
224 | } |
225 | if (GN.Flags & GepNode::Internal) { |
226 | if (Comma) |
227 | OS << ','; |
228 | OS << "internal" ; |
229 | Comma = true; |
230 | } |
231 | if (GN.Flags & GepNode::Used) { |
232 | if (Comma) |
233 | OS << ','; |
234 | OS << "used" ; |
235 | } |
236 | if (GN.Flags & GepNode::InBounds) { |
237 | if (Comma) |
238 | OS << ','; |
239 | OS << "inbounds" ; |
240 | } |
241 | if (GN.Flags & GepNode::Pointer) { |
242 | if (Comma) |
243 | OS << ','; |
244 | OS << "pointer" ; |
245 | } |
246 | OS << "} " ; |
247 | if (GN.Flags & GepNode::Root) |
248 | OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; |
249 | else |
250 | OS << "Parent:" << GN.Parent; |
251 | |
252 | OS << " Idx:" ; |
253 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: GN.Idx)) |
254 | OS << CI->getValue().getSExtValue(); |
255 | else if (GN.Idx->hasName()) |
256 | OS << GN.Idx->getName(); |
257 | else |
258 | OS << "<anon> =" << *GN.Idx; |
259 | |
260 | OS << " PTy:" ; |
261 | if (GN.PTy->isStructTy()) { |
262 | StructType *STy = cast<StructType>(Val: GN.PTy); |
263 | if (!STy->isLiteral()) |
264 | OS << GN.PTy->getStructName(); |
265 | else |
266 | OS << "<anon-struct>:" << *STy; |
267 | } |
268 | else |
269 | OS << *GN.PTy; |
270 | OS << " }" ; |
271 | return OS; |
272 | } |
273 | |
274 | template <typename NodeContainer> |
275 | void dump_node_container(raw_ostream &OS, const NodeContainer &S) { |
276 | using const_iterator = typename NodeContainer::const_iterator; |
277 | |
278 | for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) |
279 | OS << *I << ' ' << **I << '\n'; |
280 | } |
281 | |
282 | raw_ostream &operator<< (raw_ostream &OS, |
283 | const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; |
284 | raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { |
285 | dump_node_container(OS, S); |
286 | return OS; |
287 | } |
288 | |
289 | raw_ostream &operator<< (raw_ostream &OS, |
290 | const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; |
291 | raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ |
292 | for (const auto &I : M) { |
293 | const UseSet &Us = I.second; |
294 | OS << I.first << " -> #" << Us.size() << '{'; |
295 | for (const Use *U : Us) { |
296 | User *R = U->getUser(); |
297 | if (R->hasName()) |
298 | OS << ' ' << R->getName(); |
299 | else |
300 | OS << " <?>(" << *R << ')'; |
301 | } |
302 | OS << " }\n" ; |
303 | } |
304 | return OS; |
305 | } |
306 | |
307 | struct in_set { |
308 | in_set(const NodeSet &S) : NS(S) {} |
309 | |
310 | bool operator() (GepNode *N) const { |
311 | return NS.find(x: N) != NS.end(); |
312 | } |
313 | |
314 | private: |
315 | const NodeSet &NS; |
316 | }; |
317 | |
318 | } // end anonymous namespace |
319 | |
320 | inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { |
321 | return A.Allocate(); |
322 | } |
323 | |
324 | void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, |
325 | ValueVect &Order) { |
326 | // Compute block ordering for a typical DT-based traversal of the flow |
327 | // graph: "before visiting a block, all of its dominators must have been |
328 | // visited". |
329 | |
330 | Order.push_back(x: Root); |
331 | for (auto *DTN : children<DomTreeNode*>(G: DT->getNode(BB: Root))) |
332 | getBlockTraversalOrder(Root: DTN->getBlock(), Order); |
333 | } |
334 | |
335 | bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { |
336 | // No vector GEPs. |
337 | if (!GepI->getType()->isPointerTy()) |
338 | return false; |
339 | // No GEPs without any indices. (Is this possible?) |
340 | if (GepI->idx_begin() == GepI->idx_end()) |
341 | return false; |
342 | return true; |
343 | } |
344 | |
345 | void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, |
346 | ValueToNodeMap &NM) { |
347 | LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); |
348 | GepNode *N = new (*Mem) GepNode; |
349 | Value *PtrOp = GepI->getPointerOperand(); |
350 | uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; |
351 | ValueToNodeMap::iterator F = NM.find(x: PtrOp); |
352 | if (F == NM.end()) { |
353 | N->BaseVal = PtrOp; |
354 | N->Flags |= GepNode::Root | InBounds; |
355 | } else { |
356 | // If PtrOp was a GEP instruction, it must have already been processed. |
357 | // The ValueToNodeMap entry for it is the last gep node in the generated |
358 | // chain. Link to it here. |
359 | N->Parent = F->second; |
360 | } |
361 | N->PTy = GepI->getSourceElementType(); |
362 | N->Flags |= GepNode::Pointer; |
363 | N->Idx = *GepI->idx_begin(); |
364 | |
365 | // Collect the list of users of this GEP instruction. Will add it to the |
366 | // last node created for it. |
367 | UseSet Us; |
368 | for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); |
369 | UI != UE; ++UI) { |
370 | // Check if this gep is used by anything other than other geps that |
371 | // we will process. |
372 | if (isa<GetElementPtrInst>(Val: *UI)) { |
373 | GetElementPtrInst *UserG = cast<GetElementPtrInst>(Val: *UI); |
374 | if (isHandledGepForm(GepI: UserG)) |
375 | continue; |
376 | } |
377 | Us.insert(X: &UI.getUse()); |
378 | } |
379 | Nodes.push_back(x: N); |
380 | NodeOrder.insert(N); |
381 | |
382 | // Skip the first index operand, since it was already handled above. This |
383 | // dereferences the pointer operand. |
384 | GepNode *PN = N; |
385 | Type *PtrTy = GepI->getSourceElementType(); |
386 | for (Use &U : llvm::drop_begin(RangeOrContainer: GepI->indices())) { |
387 | Value *Op = U; |
388 | GepNode *Nx = new (*Mem) GepNode; |
389 | Nx->Parent = PN; // Link Nx to the previous node. |
390 | Nx->Flags |= GepNode::Internal | InBounds; |
391 | Nx->PTy = PtrTy; |
392 | Nx->Idx = Op; |
393 | Nodes.push_back(x: Nx); |
394 | NodeOrder.insert(N: Nx); |
395 | PN = Nx; |
396 | |
397 | PtrTy = GetElementPtrInst::getTypeAtIndex(Ty: PtrTy, Idx: Op); |
398 | } |
399 | |
400 | // After last node has been created, update the use information. |
401 | if (!Us.empty()) { |
402 | PN->Flags |= GepNode::Used; |
403 | Uses[PN].insert(Start: Us.begin(), End: Us.end()); |
404 | } |
405 | |
406 | // Link the last node with the originating GEP instruction. This is to |
407 | // help with linking chained GEP instructions. |
408 | NM.insert(x: std::make_pair(x&: GepI, y&: PN)); |
409 | } |
410 | |
411 | void HexagonCommonGEP::collect() { |
412 | // Establish depth-first traversal order of the dominator tree. |
413 | ValueVect BO; |
414 | getBlockTraversalOrder(Root: &Fn->front(), Order&: BO); |
415 | |
416 | // The creation of gep nodes requires DT-traversal. When processing a GEP |
417 | // instruction that uses another GEP instruction as the base pointer, the |
418 | // gep node for the base pointer should already exist. |
419 | ValueToNodeMap NM; |
420 | for (Value *I : BO) { |
421 | BasicBlock *B = cast<BasicBlock>(Val: I); |
422 | for (Instruction &J : *B) |
423 | if (auto *GepI = dyn_cast<GetElementPtrInst>(Val: &J)) |
424 | if (isHandledGepForm(GepI)) |
425 | processGepInst(GepI, NM); |
426 | } |
427 | |
428 | LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); |
429 | } |
430 | |
431 | static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, |
432 | NodeVect &Roots) { |
433 | for (GepNode *N : Nodes) { |
434 | if (N->Flags & GepNode::Root) { |
435 | Roots.push_back(x: N); |
436 | continue; |
437 | } |
438 | GepNode *PN = N->Parent; |
439 | NCM[PN].push_back(x: N); |
440 | } |
441 | } |
442 | |
443 | static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, |
444 | NodeSet &Nodes) { |
445 | NodeVect Work; |
446 | Work.push_back(x: Root); |
447 | Nodes.insert(x: Root); |
448 | |
449 | while (!Work.empty()) { |
450 | NodeVect::iterator First = Work.begin(); |
451 | GepNode *N = *First; |
452 | Work.erase(position: First); |
453 | NodeChildrenMap::iterator CF = NCM.find(x: N); |
454 | if (CF != NCM.end()) { |
455 | llvm::append_range(C&: Work, R&: CF->second); |
456 | Nodes.insert(first: CF->second.begin(), last: CF->second.end()); |
457 | } |
458 | } |
459 | } |
460 | |
461 | namespace { |
462 | |
463 | using NodeSymRel = std::set<NodeSet>; |
464 | using NodePair = std::pair<GepNode *, GepNode *>; |
465 | using NodePairSet = std::set<NodePair>; |
466 | |
467 | } // end anonymous namespace |
468 | |
469 | static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { |
470 | for (const NodeSet &S : Rel) |
471 | if (S.count(x: N)) |
472 | return &S; |
473 | return nullptr; |
474 | } |
475 | |
476 | // Create an ordered pair of GepNode pointers. The pair will be used in |
477 | // determining equality. The only purpose of the ordering is to eliminate |
478 | // duplication due to the commutativity of equality/non-equality. |
479 | static NodePair node_pair(GepNode *N1, GepNode *N2) { |
480 | uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); |
481 | uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); |
482 | if (P1 <= P2) |
483 | return std::make_pair(x&: N1, y&: N2); |
484 | return std::make_pair(x&: N2, y&: N1); |
485 | } |
486 | |
487 | static unsigned node_hash(GepNode *N) { |
488 | // Include everything except flags and parent. |
489 | FoldingSetNodeID ID; |
490 | ID.AddPointer(Ptr: N->Idx); |
491 | ID.AddPointer(Ptr: N->PTy); |
492 | return ID.ComputeHash(); |
493 | } |
494 | |
495 | static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, |
496 | NodePairSet &Ne) { |
497 | // Don't cache the result for nodes with different hashes. The hash |
498 | // comparison is fast enough. |
499 | if (node_hash(N: N1) != node_hash(N: N2)) |
500 | return false; |
501 | |
502 | NodePair NP = node_pair(N1, N2); |
503 | NodePairSet::iterator FEq = Eq.find(x: NP); |
504 | if (FEq != Eq.end()) |
505 | return true; |
506 | NodePairSet::iterator FNe = Ne.find(x: NP); |
507 | if (FNe != Ne.end()) |
508 | return false; |
509 | // Not previously compared. |
510 | bool Root1 = N1->Flags & GepNode::Root; |
511 | uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; |
512 | bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); |
513 | NodePair P = node_pair(N1, N2); |
514 | // If the root/pointer flags have different values, the nodes are |
515 | // different. |
516 | // If both nodes are root nodes, but their base pointers differ, |
517 | // they are different. |
518 | if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { |
519 | Ne.insert(x: P); |
520 | return false; |
521 | } |
522 | // Here the root/pointer flags are identical, and for root nodes the |
523 | // base pointers are equal, so the root nodes are equal. |
524 | // For non-root nodes, compare their parent nodes. |
525 | if (Root1 || node_eq(N1: N1->Parent, N2: N2->Parent, Eq, Ne)) { |
526 | Eq.insert(x: P); |
527 | return true; |
528 | } |
529 | return false; |
530 | } |
531 | |
532 | void HexagonCommonGEP::common() { |
533 | // The essence of this commoning is finding gep nodes that are equal. |
534 | // To do this we need to compare all pairs of nodes. To save time, |
535 | // first, partition the set of all nodes into sets of potentially equal |
536 | // nodes, and then compare pairs from within each partition. |
537 | using NodeSetMap = std::map<unsigned, NodeSet>; |
538 | NodeSetMap MaybeEq; |
539 | |
540 | for (GepNode *N : Nodes) { |
541 | unsigned H = node_hash(N); |
542 | MaybeEq[H].insert(x: N); |
543 | } |
544 | |
545 | // Compute the equivalence relation for the gep nodes. Use two caches, |
546 | // one for equality and the other for non-equality. |
547 | NodeSymRel EqRel; // Equality relation (as set of equivalence classes). |
548 | NodePairSet Eq, Ne; // Caches. |
549 | for (auto &I : MaybeEq) { |
550 | NodeSet &S = I.second; |
551 | for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { |
552 | GepNode *N = *NI; |
553 | // If node already has a class, then the class must have been created |
554 | // in a prior iteration of this loop. Since equality is transitive, |
555 | // nothing more will be added to that class, so skip it. |
556 | if (node_class(N, Rel&: EqRel)) |
557 | continue; |
558 | |
559 | // Create a new class candidate now. |
560 | NodeSet C; |
561 | for (NodeSet::iterator NJ = std::next(x: NI); NJ != NE; ++NJ) |
562 | if (node_eq(N1: N, N2: *NJ, Eq, Ne)) |
563 | C.insert(x: *NJ); |
564 | // If Tmp is empty, N would be the only element in it. Don't bother |
565 | // creating a class for it then. |
566 | if (!C.empty()) { |
567 | C.insert(x: N); // Finalize the set before adding it to the relation. |
568 | std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(x: C); |
569 | (void)Ins; |
570 | assert(Ins.second && "Cannot add a class" ); |
571 | } |
572 | } |
573 | } |
574 | |
575 | LLVM_DEBUG({ |
576 | dbgs() << "Gep node equality:\n" ; |
577 | for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) |
578 | dbgs() << "{ " << I->first << ", " << I->second << " }\n" ; |
579 | |
580 | dbgs() << "Gep equivalence classes:\n" ; |
581 | for (const NodeSet &S : EqRel) { |
582 | dbgs() << '{'; |
583 | for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { |
584 | if (J != S.begin()) |
585 | dbgs() << ','; |
586 | dbgs() << ' ' << *J; |
587 | } |
588 | dbgs() << " }\n" ; |
589 | } |
590 | }); |
591 | |
592 | // Create a projection from a NodeSet to the minimal element in it. |
593 | using ProjMap = std::map<const NodeSet *, GepNode *>; |
594 | ProjMap PM; |
595 | for (const NodeSet &S : EqRel) { |
596 | GepNode *Min = *llvm::min_element(Range: S, C: NodeOrder); |
597 | std::pair<ProjMap::iterator,bool> Ins = PM.insert(x: std::make_pair(x: &S, y&: Min)); |
598 | (void)Ins; |
599 | assert(Ins.second && "Cannot add minimal element" ); |
600 | |
601 | // Update the min element's flags, and user list. |
602 | uint32_t Flags = 0; |
603 | UseSet &MinUs = Uses[Min]; |
604 | for (GepNode *N : S) { |
605 | uint32_t NF = N->Flags; |
606 | // If N is used, append all original values of N to the list of |
607 | // original values of Min. |
608 | if (NF & GepNode::Used) |
609 | MinUs.insert(Start: Uses[N].begin(), End: Uses[N].end()); |
610 | Flags |= NF; |
611 | } |
612 | if (MinUs.empty()) |
613 | Uses.erase(x: Min); |
614 | |
615 | // The collected flags should include all the flags from the min element. |
616 | assert((Min->Flags & Flags) == Min->Flags); |
617 | Min->Flags = Flags; |
618 | } |
619 | |
620 | // Commoning: for each non-root gep node, replace "Parent" with the |
621 | // selected (minimum) node from the corresponding equivalence class. |
622 | // If a given parent does not have an equivalence class, leave it |
623 | // unchanged (it means that it's the only element in its class). |
624 | for (GepNode *N : Nodes) { |
625 | if (N->Flags & GepNode::Root) |
626 | continue; |
627 | const NodeSet *PC = node_class(N: N->Parent, Rel&: EqRel); |
628 | if (!PC) |
629 | continue; |
630 | ProjMap::iterator F = PM.find(x: PC); |
631 | if (F == PM.end()) |
632 | continue; |
633 | // Found a replacement, use it. |
634 | GepNode *Rep = F->second; |
635 | N->Parent = Rep; |
636 | } |
637 | |
638 | LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); |
639 | |
640 | // Finally, erase the nodes that are no longer used. |
641 | NodeSet Erase; |
642 | for (GepNode *N : Nodes) { |
643 | const NodeSet *PC = node_class(N, Rel&: EqRel); |
644 | if (!PC) |
645 | continue; |
646 | ProjMap::iterator F = PM.find(x: PC); |
647 | if (F == PM.end()) |
648 | continue; |
649 | if (N == F->second) |
650 | continue; |
651 | // Node for removal. |
652 | Erase.insert(x: N); |
653 | } |
654 | erase_if(C&: Nodes, P: in_set(Erase)); |
655 | |
656 | LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); |
657 | } |
658 | |
659 | template <typename T> |
660 | static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { |
661 | LLVM_DEBUG({ |
662 | dbgs() << "NCD of {" ; |
663 | for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; |
664 | ++I) { |
665 | if (!*I) |
666 | continue; |
667 | BasicBlock *B = cast<BasicBlock>(*I); |
668 | dbgs() << ' ' << B->getName(); |
669 | } |
670 | dbgs() << " }\n" ; |
671 | }); |
672 | |
673 | // Allow null basic blocks in Blocks. In such cases, return nullptr. |
674 | typename T::iterator I = Blocks.begin(), E = Blocks.end(); |
675 | if (I == E || !*I) |
676 | return nullptr; |
677 | BasicBlock *Dom = cast<BasicBlock>(*I); |
678 | while (++I != E) { |
679 | BasicBlock *B = cast_or_null<BasicBlock>(*I); |
680 | Dom = B ? DT->findNearestCommonDominator(A: Dom, B) : nullptr; |
681 | if (!Dom) |
682 | return nullptr; |
683 | } |
684 | LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); |
685 | return Dom; |
686 | } |
687 | |
688 | template <typename T> |
689 | static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { |
690 | // If two blocks, A and B, dominate a block C, then A dominates B, |
691 | // or B dominates A. |
692 | typename T::iterator I = Blocks.begin(), E = Blocks.end(); |
693 | // Find the first non-null block. |
694 | while (I != E && !*I) |
695 | ++I; |
696 | if (I == E) |
697 | return DT->getRoot(); |
698 | BasicBlock *DomB = cast<BasicBlock>(*I); |
699 | while (++I != E) { |
700 | if (!*I) |
701 | continue; |
702 | BasicBlock *B = cast<BasicBlock>(*I); |
703 | if (DT->dominates(A: B, B: DomB)) |
704 | continue; |
705 | if (!DT->dominates(A: DomB, B)) |
706 | return nullptr; |
707 | DomB = B; |
708 | } |
709 | return DomB; |
710 | } |
711 | |
712 | // Find the first use in B of any value from Values. If no such use, |
713 | // return B->end(). |
714 | template <typename T> |
715 | static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { |
716 | BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); |
717 | |
718 | using iterator = typename T::iterator; |
719 | |
720 | for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { |
721 | Value *V = *I; |
722 | // If V is used in a PHI node, the use belongs to the incoming block, |
723 | // not the block with the PHI node. In the incoming block, the use |
724 | // would be considered as being at the end of it, so it cannot |
725 | // influence the position of the first use (which is assumed to be |
726 | // at the end to start with). |
727 | if (isa<PHINode>(Val: V)) |
728 | continue; |
729 | if (!isa<Instruction>(Val: V)) |
730 | continue; |
731 | Instruction *In = cast<Instruction>(Val: V); |
732 | if (In->getParent() != B) |
733 | continue; |
734 | BasicBlock::iterator It = In->getIterator(); |
735 | if (std::distance(first: FirstUse, last: BEnd) < std::distance(first: It, last: BEnd)) |
736 | FirstUse = It; |
737 | } |
738 | return FirstUse; |
739 | } |
740 | |
741 | static bool is_empty(const BasicBlock *B) { |
742 | return B->empty() || (&*B->begin() == B->getTerminator()); |
743 | } |
744 | |
745 | BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, |
746 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
747 | LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); |
748 | // Recalculate the placement for Node, assuming that the locations of |
749 | // its children in Loc are valid. |
750 | // Return nullptr if there is no valid placement for Node (for example, it |
751 | // uses an index value that is not available at the location required |
752 | // to dominate all children, etc.). |
753 | |
754 | // Find the nearest common dominator for: |
755 | // - all users, if the node is used, and |
756 | // - all children. |
757 | ValueVect Bs; |
758 | if (Node->Flags & GepNode::Used) { |
759 | // Append all blocks with uses of the original values to the |
760 | // block vector Bs. |
761 | NodeToUsesMap::iterator UF = Uses.find(x: Node); |
762 | assert(UF != Uses.end() && "Used node with no use information" ); |
763 | UseSet &Us = UF->second; |
764 | for (Use *U : Us) { |
765 | User *R = U->getUser(); |
766 | if (!isa<Instruction>(Val: R)) |
767 | continue; |
768 | BasicBlock *PB = isa<PHINode>(Val: R) |
769 | ? cast<PHINode>(Val: R)->getIncomingBlock(U: *U) |
770 | : cast<Instruction>(Val: R)->getParent(); |
771 | Bs.push_back(x: PB); |
772 | } |
773 | } |
774 | // Append the location of each child. |
775 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
776 | if (CF != NCM.end()) { |
777 | NodeVect &Cs = CF->second; |
778 | for (GepNode *CN : Cs) { |
779 | NodeToValueMap::iterator LF = Loc.find(x: CN); |
780 | // If the child is only used in GEP instructions (i.e. is not used in |
781 | // non-GEP instructions), the nearest dominator computed for it may |
782 | // have been null. In such case it won't have a location available. |
783 | if (LF == Loc.end()) |
784 | continue; |
785 | Bs.push_back(x: LF->second); |
786 | } |
787 | } |
788 | |
789 | BasicBlock *DomB = nearest_common_dominator(DT, Blocks&: Bs); |
790 | if (!DomB) |
791 | return nullptr; |
792 | // Check if the index used by Node dominates the computed dominator. |
793 | Instruction *IdxI = dyn_cast<Instruction>(Val: Node->Idx); |
794 | if (IdxI && !DT->dominates(A: IdxI->getParent(), B: DomB)) |
795 | return nullptr; |
796 | |
797 | // Avoid putting nodes into empty blocks. |
798 | while (is_empty(B: DomB)) { |
799 | DomTreeNode *N = (*DT)[DomB]->getIDom(); |
800 | if (!N) |
801 | break; |
802 | DomB = N->getBlock(); |
803 | } |
804 | |
805 | // Otherwise, DomB is fine. Update the location map. |
806 | Loc[Node] = DomB; |
807 | return DomB; |
808 | } |
809 | |
810 | BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, |
811 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
812 | LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); |
813 | // Recalculate the placement of Node, after recursively recalculating the |
814 | // placements of all its children. |
815 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
816 | if (CF != NCM.end()) { |
817 | NodeVect &Cs = CF->second; |
818 | for (GepNode *C : Cs) |
819 | recalculatePlacementRec(Node: C, NCM, Loc); |
820 | } |
821 | BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); |
822 | LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); |
823 | return LB; |
824 | } |
825 | |
826 | bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { |
827 | if (isa<Constant>(Val) || isa<Argument>(Val)) |
828 | return true; |
829 | Instruction *In = dyn_cast<Instruction>(Val); |
830 | if (!In) |
831 | return false; |
832 | BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); |
833 | return DT->properlyDominates(A: DefB, B: HdrB); |
834 | } |
835 | |
836 | bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { |
837 | if (Node->Flags & GepNode::Root) |
838 | if (!isInvariantIn(Val: Node->BaseVal, L)) |
839 | return false; |
840 | return isInvariantIn(Val: Node->Idx, L); |
841 | } |
842 | |
843 | bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { |
844 | BasicBlock *HB = L->getHeader(); |
845 | BasicBlock *LB = L->getLoopLatch(); |
846 | // B must post-dominate the loop header or dominate the loop latch. |
847 | if (PDT->dominates(A: B, B: HB)) |
848 | return true; |
849 | if (LB && DT->dominates(A: B, B: LB)) |
850 | return true; |
851 | return false; |
852 | } |
853 | |
854 | static BasicBlock *(DominatorTree *DT, Loop *L) { |
855 | if (BasicBlock *PH = L->getLoopPreheader()) |
856 | return PH; |
857 | if (!OptSpeculate) |
858 | return nullptr; |
859 | DomTreeNode *DN = DT->getNode(BB: L->getHeader()); |
860 | if (!DN) |
861 | return nullptr; |
862 | return DN->getIDom()->getBlock(); |
863 | } |
864 | |
865 | BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, |
866 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
867 | // Find the "topmost" location for Node: it must be dominated by both, |
868 | // its parent (or the BaseVal, if it's a root node), and by the index |
869 | // value. |
870 | ValueVect Bs; |
871 | if (Node->Flags & GepNode::Root) { |
872 | if (Instruction *PIn = dyn_cast<Instruction>(Val: Node->BaseVal)) |
873 | Bs.push_back(x: PIn->getParent()); |
874 | } else { |
875 | Bs.push_back(x: Loc[Node->Parent]); |
876 | } |
877 | if (Instruction *IIn = dyn_cast<Instruction>(Val: Node->Idx)) |
878 | Bs.push_back(x: IIn->getParent()); |
879 | BasicBlock *TopB = nearest_common_dominatee(DT, Blocks&: Bs); |
880 | |
881 | // Traverse the loop nest upwards until we find a loop in which Node |
882 | // is no longer invariant, or until we get to the upper limit of Node's |
883 | // placement. The traversal will also stop when a suitable "preheader" |
884 | // cannot be found for a given loop. The "preheader" may actually be |
885 | // a regular block outside of the loop (i.e. not guarded), in which case |
886 | // the Node will be speculated. |
887 | // For nodes that are not in the main path of the containing loop (i.e. |
888 | // are not executed in each iteration), do not move them out of the loop. |
889 | BasicBlock *LocB = cast_or_null<BasicBlock>(Val: Loc[Node]); |
890 | if (LocB) { |
891 | Loop *Lp = LI->getLoopFor(BB: LocB); |
892 | while (Lp) { |
893 | if (!isInvariantIn(Node, L: Lp) || !isInMainPath(B: LocB, L: Lp)) |
894 | break; |
895 | BasicBlock *NewLoc = preheader(DT, L: Lp); |
896 | if (!NewLoc || !DT->dominates(A: TopB, B: NewLoc)) |
897 | break; |
898 | Lp = Lp->getParentLoop(); |
899 | LocB = NewLoc; |
900 | } |
901 | } |
902 | Loc[Node] = LocB; |
903 | |
904 | // Recursively compute the locations of all children nodes. |
905 | NodeChildrenMap::iterator CF = NCM.find(x: Node); |
906 | if (CF != NCM.end()) { |
907 | NodeVect &Cs = CF->second; |
908 | for (GepNode *C : Cs) |
909 | adjustForInvariance(Node: C, NCM, Loc); |
910 | } |
911 | return LocB; |
912 | } |
913 | |
914 | namespace { |
915 | |
916 | struct LocationAsBlock { |
917 | LocationAsBlock(const NodeToValueMap &L) : Map(L) {} |
918 | |
919 | const NodeToValueMap ⤅ |
920 | }; |
921 | |
922 | raw_ostream &operator<< (raw_ostream &OS, |
923 | const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; |
924 | raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { |
925 | for (const auto &I : Loc.Map) { |
926 | OS << I.first << " -> " ; |
927 | if (BasicBlock *B = cast_or_null<BasicBlock>(Val: I.second)) |
928 | OS << B->getName() << '(' << B << ')'; |
929 | else |
930 | OS << "<null-block>" ; |
931 | OS << '\n'; |
932 | } |
933 | return OS; |
934 | } |
935 | |
936 | inline bool is_constant(GepNode *N) { |
937 | return isa<ConstantInt>(Val: N->Idx); |
938 | } |
939 | |
940 | } // end anonymous namespace |
941 | |
942 | void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, |
943 | NodeToValueMap &Loc) { |
944 | User *R = U->getUser(); |
945 | LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R |
946 | << '\n'); |
947 | BasicBlock *PB = cast<Instruction>(Val: R)->getParent(); |
948 | |
949 | GepNode *N = Node; |
950 | GepNode *C = nullptr, *NewNode = nullptr; |
951 | while (is_constant(N) && !(N->Flags & GepNode::Root)) { |
952 | // XXX if (single-use) dont-replicate; |
953 | GepNode *NewN = new (*Mem) GepNode(N); |
954 | Nodes.push_back(x: NewN); |
955 | Loc[NewN] = PB; |
956 | |
957 | if (N == Node) |
958 | NewNode = NewN; |
959 | NewN->Flags &= ~GepNode::Used; |
960 | if (C) |
961 | C->Parent = NewN; |
962 | C = NewN; |
963 | N = N->Parent; |
964 | } |
965 | if (!NewNode) |
966 | return; |
967 | |
968 | // Move over all uses that share the same user as U from Node to NewNode. |
969 | NodeToUsesMap::iterator UF = Uses.find(x: Node); |
970 | assert(UF != Uses.end()); |
971 | UseSet &Us = UF->second; |
972 | UseSet NewUs; |
973 | for (Use *U : Us) { |
974 | if (U->getUser() == R) |
975 | NewUs.insert(X: U); |
976 | } |
977 | for (Use *U : NewUs) |
978 | Us.remove(X: U); // erase takes an iterator. |
979 | |
980 | if (Us.empty()) { |
981 | Node->Flags &= ~GepNode::Used; |
982 | Uses.erase(position: UF); |
983 | } |
984 | |
985 | // Should at least have U in NewUs. |
986 | NewNode->Flags |= GepNode::Used; |
987 | LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); |
988 | assert(!NewUs.empty()); |
989 | Uses[NewNode] = NewUs; |
990 | } |
991 | |
992 | void HexagonCommonGEP::separateConstantChains(GepNode *Node, |
993 | NodeChildrenMap &NCM, NodeToValueMap &Loc) { |
994 | // First approximation: extract all chains. |
995 | NodeSet Ns; |
996 | nodes_for_root(Root: Node, NCM, Nodes&: Ns); |
997 | |
998 | LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); |
999 | // Collect all used nodes together with the uses from loads and stores, |
1000 | // where the GEP node could be folded into the load/store instruction. |
1001 | NodeToUsesMap FNs; // Foldable nodes. |
1002 | for (GepNode *N : Ns) { |
1003 | if (!(N->Flags & GepNode::Used)) |
1004 | continue; |
1005 | NodeToUsesMap::iterator UF = Uses.find(x: N); |
1006 | assert(UF != Uses.end()); |
1007 | UseSet &Us = UF->second; |
1008 | // Loads/stores that use the node N. |
1009 | UseSet LSs; |
1010 | for (Use *U : Us) { |
1011 | User *R = U->getUser(); |
1012 | // We're interested in uses that provide the address. It can happen |
1013 | // that the value may also be provided via GEP, but we won't handle |
1014 | // those cases here for now. |
1015 | if (LoadInst *Ld = dyn_cast<LoadInst>(Val: R)) { |
1016 | unsigned PtrX = LoadInst::getPointerOperandIndex(); |
1017 | if (&Ld->getOperandUse(i: PtrX) == U) |
1018 | LSs.insert(X: U); |
1019 | } else if (StoreInst *St = dyn_cast<StoreInst>(Val: R)) { |
1020 | unsigned PtrX = StoreInst::getPointerOperandIndex(); |
1021 | if (&St->getOperandUse(i: PtrX) == U) |
1022 | LSs.insert(X: U); |
1023 | } |
1024 | } |
1025 | // Even if the total use count is 1, separating the chain may still be |
1026 | // beneficial, since the constant chain may be longer than the GEP alone |
1027 | // would be (e.g. if the parent node has a constant index and also has |
1028 | // other children). |
1029 | if (!LSs.empty()) |
1030 | FNs.insert(x: std::make_pair(x&: N, y&: LSs)); |
1031 | } |
1032 | |
1033 | LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); |
1034 | |
1035 | for (auto &FN : FNs) { |
1036 | GepNode *N = FN.first; |
1037 | UseSet &Us = FN.second; |
1038 | for (Use *U : Us) |
1039 | separateChainForNode(Node: N, U, Loc); |
1040 | } |
1041 | } |
1042 | |
1043 | void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { |
1044 | // Compute the inverse of the Node.Parent links. Also, collect the set |
1045 | // of root nodes. |
1046 | NodeChildrenMap NCM; |
1047 | NodeVect Roots; |
1048 | invert_find_roots(Nodes, NCM, Roots); |
1049 | |
1050 | // Compute the initial placement determined by the users' locations, and |
1051 | // the locations of the child nodes. |
1052 | for (GepNode *Root : Roots) |
1053 | recalculatePlacementRec(Node: Root, NCM, Loc); |
1054 | |
1055 | LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); |
1056 | |
1057 | if (OptEnableInv) { |
1058 | for (GepNode *Root : Roots) |
1059 | adjustForInvariance(Node: Root, NCM, Loc); |
1060 | |
1061 | LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" |
1062 | << LocationAsBlock(Loc)); |
1063 | } |
1064 | if (OptEnableConst) { |
1065 | for (GepNode *Root : Roots) |
1066 | separateConstantChains(Node: Root, NCM, Loc); |
1067 | } |
1068 | LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); |
1069 | |
1070 | // At the moment, there is no further refinement of the initial placement. |
1071 | // Such a refinement could include splitting the nodes if they are placed |
1072 | // too far from some of its users. |
1073 | |
1074 | LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); |
1075 | } |
1076 | |
1077 | Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, |
1078 | BasicBlock *LocB) { |
1079 | LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() |
1080 | << " for nodes:\n" |
1081 | << NA); |
1082 | unsigned Num = NA.size(); |
1083 | GepNode *RN = NA[0]; |
1084 | assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root" ); |
1085 | |
1086 | GetElementPtrInst *NewInst = nullptr; |
1087 | Value *Input = RN->BaseVal; |
1088 | Type *InpTy = RN->PTy; |
1089 | |
1090 | unsigned Idx = 0; |
1091 | do { |
1092 | SmallVector<Value*, 4> IdxList; |
1093 | // If the type of the input of the first node is not a pointer, |
1094 | // we need to add an artificial i32 0 to the indices (because the |
1095 | // actual input in the IR will be a pointer). |
1096 | if (!(NA[Idx]->Flags & GepNode::Pointer)) { |
1097 | Type *Int32Ty = Type::getInt32Ty(C&: *Ctx); |
1098 | IdxList.push_back(Elt: ConstantInt::get(Ty: Int32Ty, V: 0)); |
1099 | } |
1100 | |
1101 | // Keep adding indices from NA until we have to stop and generate |
1102 | // an "intermediate" GEP. |
1103 | while (++Idx <= Num) { |
1104 | GepNode *N = NA[Idx-1]; |
1105 | IdxList.push_back(Elt: N->Idx); |
1106 | if (Idx < Num) { |
1107 | // We have to stop if we reach a pointer. |
1108 | if (NA[Idx]->Flags & GepNode::Pointer) |
1109 | break; |
1110 | } |
1111 | } |
1112 | NewInst = GetElementPtrInst::Create(PointeeType: InpTy, Ptr: Input, IdxList, NameStr: "cgep" , InsertBefore: At); |
1113 | NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); |
1114 | LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); |
1115 | if (Idx < Num) { |
1116 | Input = NewInst; |
1117 | InpTy = NA[Idx]->PTy; |
1118 | } |
1119 | } while (Idx <= Num); |
1120 | |
1121 | return NewInst; |
1122 | } |
1123 | |
1124 | void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, |
1125 | NodeChildrenMap &NCM) { |
1126 | NodeVect Work; |
1127 | Work.push_back(x: Node); |
1128 | |
1129 | while (!Work.empty()) { |
1130 | NodeVect::iterator First = Work.begin(); |
1131 | GepNode *N = *First; |
1132 | Work.erase(position: First); |
1133 | if (N->Flags & GepNode::Used) { |
1134 | NodeToUsesMap::iterator UF = Uses.find(x: N); |
1135 | assert(UF != Uses.end() && "No use information for used node" ); |
1136 | UseSet &Us = UF->second; |
1137 | for (const auto &U : Us) |
1138 | Values.push_back(x: U->getUser()); |
1139 | } |
1140 | NodeChildrenMap::iterator CF = NCM.find(x: N); |
1141 | if (CF != NCM.end()) { |
1142 | NodeVect &Cs = CF->second; |
1143 | llvm::append_range(C&: Work, R&: Cs); |
1144 | } |
1145 | } |
1146 | } |
1147 | |
1148 | void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { |
1149 | LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); |
1150 | NodeChildrenMap NCM; |
1151 | NodeVect Roots; |
1152 | // Compute the inversion again, since computing placement could alter |
1153 | // "parent" relation between nodes. |
1154 | invert_find_roots(Nodes, NCM, Roots); |
1155 | |
1156 | while (!Roots.empty()) { |
1157 | NodeVect::iterator First = Roots.begin(); |
1158 | GepNode *Root = *First, *Last = *First; |
1159 | Roots.erase(position: First); |
1160 | |
1161 | NodeVect NA; // Nodes to assemble. |
1162 | // Append to NA all child nodes up to (and including) the first child |
1163 | // that: |
1164 | // (1) has more than 1 child, or |
1165 | // (2) is used, or |
1166 | // (3) has a child located in a different block. |
1167 | bool LastUsed = false; |
1168 | unsigned LastCN = 0; |
1169 | // The location may be null if the computation failed (it can legitimately |
1170 | // happen for nodes created from dead GEPs). |
1171 | Value *LocV = Loc[Last]; |
1172 | if (!LocV) |
1173 | continue; |
1174 | BasicBlock *LastB = cast<BasicBlock>(Val: LocV); |
1175 | do { |
1176 | NA.push_back(x: Last); |
1177 | LastUsed = (Last->Flags & GepNode::Used); |
1178 | if (LastUsed) |
1179 | break; |
1180 | NodeChildrenMap::iterator CF = NCM.find(x: Last); |
1181 | LastCN = (CF != NCM.end()) ? CF->second.size() : 0; |
1182 | if (LastCN != 1) |
1183 | break; |
1184 | GepNode *Child = CF->second.front(); |
1185 | BasicBlock *ChildB = cast_or_null<BasicBlock>(Val: Loc[Child]); |
1186 | if (ChildB != nullptr && LastB != ChildB) |
1187 | break; |
1188 | Last = Child; |
1189 | } while (true); |
1190 | |
1191 | BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); |
1192 | if (LastUsed || LastCN > 0) { |
1193 | ValueVect Urs; |
1194 | getAllUsersForNode(Node: Root, Values&: Urs, NCM); |
1195 | BasicBlock::iterator FirstUse = first_use_of_in_block(Values&: Urs, B: LastB); |
1196 | if (FirstUse != LastB->end()) |
1197 | InsertAt = FirstUse; |
1198 | } |
1199 | |
1200 | // Generate a new instruction for NA. |
1201 | Value *NewInst = fabricateGEP(NA, At: InsertAt, LocB: LastB); |
1202 | |
1203 | // Convert all the children of Last node into roots, and append them |
1204 | // to the Roots list. |
1205 | if (LastCN > 0) { |
1206 | NodeVect &Cs = NCM[Last]; |
1207 | for (GepNode *CN : Cs) { |
1208 | CN->Flags &= ~GepNode::Internal; |
1209 | CN->Flags |= GepNode::Root; |
1210 | CN->BaseVal = NewInst; |
1211 | Roots.push_back(x: CN); |
1212 | } |
1213 | } |
1214 | |
1215 | // Lastly, if the Last node was used, replace all uses with the new GEP. |
1216 | // The uses reference the original GEP values. |
1217 | if (LastUsed) { |
1218 | NodeToUsesMap::iterator UF = Uses.find(x: Last); |
1219 | assert(UF != Uses.end() && "No use information found" ); |
1220 | UseSet &Us = UF->second; |
1221 | for (Use *U : Us) |
1222 | U->set(NewInst); |
1223 | } |
1224 | } |
1225 | } |
1226 | |
1227 | void HexagonCommonGEP::removeDeadCode() { |
1228 | ValueVect BO; |
1229 | BO.push_back(x: &Fn->front()); |
1230 | |
1231 | for (unsigned i = 0; i < BO.size(); ++i) { |
1232 | BasicBlock *B = cast<BasicBlock>(Val: BO[i]); |
1233 | for (auto *DTN : children<DomTreeNode *>(G: DT->getNode(BB: B))) |
1234 | BO.push_back(x: DTN->getBlock()); |
1235 | } |
1236 | |
1237 | for (Value *V : llvm::reverse(C&: BO)) { |
1238 | BasicBlock *B = cast<BasicBlock>(Val: V); |
1239 | ValueVect Ins; |
1240 | for (Instruction &I : llvm::reverse(C&: *B)) |
1241 | Ins.push_back(x: &I); |
1242 | for (Value *I : Ins) { |
1243 | Instruction *In = cast<Instruction>(Val: I); |
1244 | if (isInstructionTriviallyDead(I: In)) |
1245 | In->eraseFromParent(); |
1246 | } |
1247 | } |
1248 | } |
1249 | |
1250 | bool HexagonCommonGEP::runOnFunction(Function &F) { |
1251 | if (skipFunction(F)) |
1252 | return false; |
1253 | |
1254 | // For now bail out on C++ exception handling. |
1255 | for (const BasicBlock &BB : F) |
1256 | for (const Instruction &I : BB) |
1257 | if (isa<InvokeInst>(Val: I) || isa<LandingPadInst>(Val: I)) |
1258 | return false; |
1259 | |
1260 | Fn = &F; |
1261 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1262 | PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); |
1263 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
1264 | Ctx = &F.getContext(); |
1265 | |
1266 | Nodes.clear(); |
1267 | Uses.clear(); |
1268 | NodeOrder.clear(); |
1269 | |
1270 | SpecificBumpPtrAllocator<GepNode> Allocator; |
1271 | Mem = &Allocator; |
1272 | |
1273 | collect(); |
1274 | common(); |
1275 | |
1276 | NodeToValueMap Loc; |
1277 | computeNodePlacement(Loc); |
1278 | materialize(Loc); |
1279 | removeDeadCode(); |
1280 | |
1281 | #ifdef EXPENSIVE_CHECKS |
1282 | // Run this only when expensive checks are enabled. |
1283 | if (verifyFunction(F, &dbgs())) |
1284 | report_fatal_error("Broken function" ); |
1285 | #endif |
1286 | return true; |
1287 | } |
1288 | |
1289 | namespace llvm { |
1290 | |
1291 | FunctionPass *createHexagonCommonGEP() { |
1292 | return new HexagonCommonGEP(); |
1293 | } |
1294 | |
1295 | } // end namespace llvm |
1296 | |