1 | //===----- RISCVCodeGenPrepare.cpp ----------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This is a RISC-V specific version of CodeGenPrepare. |
10 | // It munges the code in the input function to better prepare it for |
11 | // SelectionDAG-based code generation. This works around limitations in it's |
12 | // basic-block-at-a-time approach. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "RISCV.h" |
17 | #include "RISCVTargetMachine.h" |
18 | #include "llvm/ADT/Statistic.h" |
19 | #include "llvm/Analysis/ValueTracking.h" |
20 | #include "llvm/CodeGen/TargetPassConfig.h" |
21 | #include "llvm/IR/Dominators.h" |
22 | #include "llvm/IR/IRBuilder.h" |
23 | #include "llvm/IR/InstVisitor.h" |
24 | #include "llvm/IR/Intrinsics.h" |
25 | #include "llvm/IR/IntrinsicsRISCV.h" |
26 | #include "llvm/IR/PatternMatch.h" |
27 | #include "llvm/InitializePasses.h" |
28 | #include "llvm/Pass.h" |
29 | |
30 | using namespace llvm; |
31 | |
32 | #define DEBUG_TYPE "riscv-codegenprepare" |
33 | #define PASS_NAME "RISC-V CodeGenPrepare" |
34 | |
35 | namespace { |
36 | |
37 | class RISCVCodeGenPrepare : public FunctionPass, |
38 | public InstVisitor<RISCVCodeGenPrepare, bool> { |
39 | const DataLayout *DL; |
40 | const DominatorTree *DT; |
41 | const RISCVSubtarget *ST; |
42 | |
43 | public: |
44 | static char ID; |
45 | |
46 | RISCVCodeGenPrepare() : FunctionPass(ID) {} |
47 | |
48 | bool runOnFunction(Function &F) override; |
49 | |
50 | StringRef getPassName() const override { return PASS_NAME; } |
51 | |
52 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
53 | AU.setPreservesCFG(); |
54 | AU.addRequired<DominatorTreeWrapperPass>(); |
55 | AU.addRequired<TargetPassConfig>(); |
56 | } |
57 | |
58 | bool visitInstruction(Instruction &I) { return false; } |
59 | bool visitAnd(BinaryOperator &BO); |
60 | bool visitIntrinsicInst(IntrinsicInst &I); |
61 | bool expandVPStrideLoad(IntrinsicInst &I); |
62 | }; |
63 | |
64 | } // end anonymous namespace |
65 | |
66 | // Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set, |
67 | // but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill |
68 | // the upper 32 bits with ones. |
69 | bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) { |
70 | if (!ST->is64Bit()) |
71 | return false; |
72 | |
73 | if (!BO.getType()->isIntegerTy(Bitwidth: 64)) |
74 | return false; |
75 | |
76 | using namespace PatternMatch; |
77 | |
78 | // Left hand side should be a zext nneg. |
79 | Value *LHSSrc; |
80 | if (!match(V: BO.getOperand(i_nocapture: 0), P: m_NNegZExt(Op: m_Value(V&: LHSSrc)))) |
81 | return false; |
82 | |
83 | if (!LHSSrc->getType()->isIntegerTy(Bitwidth: 32)) |
84 | return false; |
85 | |
86 | // Right hand side should be a constant. |
87 | Value *RHS = BO.getOperand(i_nocapture: 1); |
88 | |
89 | auto *CI = dyn_cast<ConstantInt>(Val: RHS); |
90 | if (!CI) |
91 | return false; |
92 | uint64_t C = CI->getZExtValue(); |
93 | |
94 | // Look for constants that fit in 32 bits but not simm12, and can be made |
95 | // into simm12 by sign extending bit 31. This will allow use of ANDI. |
96 | // TODO: Is worth making simm32? |
97 | if (!isUInt<32>(x: C) || isInt<12>(x: C) || !isInt<12>(x: SignExtend64<32>(x: C))) |
98 | return false; |
99 | |
100 | // Sign extend the constant and replace the And operand. |
101 | C = SignExtend64<32>(x: C); |
102 | BO.setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty: RHS->getType(), V: C)); |
103 | |
104 | return true; |
105 | } |
106 | |
107 | // LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector |
108 | // reduction instructions write the result in the first element of a vector |
109 | // register. So when a reduction in a loop uses a scalar phi, we end up with |
110 | // unnecessary scalar moves: |
111 | // |
112 | // loop: |
113 | // vfmv.s.f v10, fa0 |
114 | // vfredosum.vs v8, v8, v10 |
115 | // vfmv.f.s fa0, v8 |
116 | // |
117 | // This mainly affects ordered fadd reductions, since other types of reduction |
118 | // typically use element-wise vectorisation in the loop body. This tries to |
119 | // vectorize any scalar phis that feed into a fadd reduction: |
120 | // |
121 | // loop: |
122 | // %phi = phi <float> [ ..., %entry ], [ %acc, %loop ] |
123 | // %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi, |
124 | // <vscale x 2 x float> %vec) |
125 | // |
126 | // -> |
127 | // |
128 | // loop: |
129 | // %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ] |
130 | // %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0 |
131 | // %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x, |
132 | // <vscale x 2 x float> %vec) |
133 | // %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0 |
134 | // |
135 | // Which eliminates the scalar -> vector -> scalar crossing during instruction |
136 | // selection. |
137 | bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) { |
138 | if (expandVPStrideLoad(I)) |
139 | return true; |
140 | |
141 | if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd) |
142 | return false; |
143 | |
144 | auto *PHI = dyn_cast<PHINode>(Val: I.getOperand(i_nocapture: 0)); |
145 | if (!PHI || !PHI->hasOneUse() || |
146 | !llvm::is_contained(Range: PHI->incoming_values(), Element: &I)) |
147 | return false; |
148 | |
149 | Type *VecTy = I.getOperand(i_nocapture: 1)->getType(); |
150 | IRBuilder<> Builder(PHI); |
151 | auto *VecPHI = Builder.CreatePHI(Ty: VecTy, NumReservedValues: PHI->getNumIncomingValues()); |
152 | |
153 | for (auto *BB : PHI->blocks()) { |
154 | Builder.SetInsertPoint(BB->getTerminator()); |
155 | Value *InsertElt = Builder.CreateInsertElement( |
156 | VecTy, NewElt: PHI->getIncomingValueForBlock(BB), Idx: (uint64_t)0); |
157 | VecPHI->addIncoming(V: InsertElt, BB); |
158 | } |
159 | |
160 | Builder.SetInsertPoint(&I); |
161 | I.setOperand(i_nocapture: 0, Val_nocapture: Builder.CreateExtractElement(Vec: VecPHI, Idx: (uint64_t)0)); |
162 | |
163 | PHI->eraseFromParent(); |
164 | |
165 | return true; |
166 | } |
167 | |
168 | // Always expand zero strided loads so we match more .vx splat patterns, even if |
169 | // we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert |
170 | // it back to a strided load if it's optimized. |
171 | bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) { |
172 | Value *BasePtr, *VL; |
173 | |
174 | using namespace PatternMatch; |
175 | if (!match(V: &II, P: m_Intrinsic<Intrinsic::experimental_vp_strided_load>( |
176 | Op0: m_Value(V&: BasePtr), Op1: m_Zero(), Op2: m_AllOnes(), Op3: m_Value(V&: VL)))) |
177 | return false; |
178 | |
179 | // If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so |
180 | // avoid expanding here. |
181 | if (II.getType()->getScalarSizeInBits() > ST->getXLen()) |
182 | return false; |
183 | |
184 | if (!isKnownNonZero(V: VL, Q: {*DL, DT, nullptr, &II})) |
185 | return false; |
186 | |
187 | auto *VTy = cast<VectorType>(Val: II.getType()); |
188 | |
189 | IRBuilder<> Builder(&II); |
190 | Type *STy = VTy->getElementType(); |
191 | Value *Val = Builder.CreateLoad(Ty: STy, Ptr: BasePtr); |
192 | Value *Res = Builder.CreateIntrinsic(ID: Intrinsic::experimental_vp_splat, Types: {VTy}, |
193 | Args: {Val, II.getOperand(i_nocapture: 2), VL}); |
194 | |
195 | II.replaceAllUsesWith(V: Res); |
196 | II.eraseFromParent(); |
197 | return true; |
198 | } |
199 | |
200 | bool RISCVCodeGenPrepare::runOnFunction(Function &F) { |
201 | if (skipFunction(F)) |
202 | return false; |
203 | |
204 | auto &TPC = getAnalysis<TargetPassConfig>(); |
205 | auto &TM = TPC.getTM<RISCVTargetMachine>(); |
206 | ST = &TM.getSubtarget<RISCVSubtarget>(F); |
207 | |
208 | DL = &F.getDataLayout(); |
209 | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
210 | |
211 | bool MadeChange = false; |
212 | for (auto &BB : F) |
213 | for (Instruction &I : llvm::make_early_inc_range(Range&: BB)) |
214 | MadeChange |= visit(I); |
215 | |
216 | return MadeChange; |
217 | } |
218 | |
219 | INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false) |
220 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
221 | INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false) |
222 | |
223 | char RISCVCodeGenPrepare::ID = 0; |
224 | |
225 | FunctionPass *llvm::createRISCVCodeGenPreparePass() { |
226 | return new RISCVCodeGenPrepare(); |
227 | } |
228 | |