1 | //===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "MCTargetDesc/SystemZInstPrinter.h" |
10 | #include "MCTargetDesc/SystemZMCAsmInfo.h" |
11 | #include "MCTargetDesc/SystemZMCTargetDesc.h" |
12 | #include "SystemZTargetStreamer.h" |
13 | #include "TargetInfo/SystemZTargetInfo.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/ADT/StringExtras.h" |
17 | #include "llvm/ADT/StringRef.h" |
18 | #include "llvm/MC/MCAsmInfo.h" |
19 | #include "llvm/MC/MCContext.h" |
20 | #include "llvm/MC/MCExpr.h" |
21 | #include "llvm/MC/MCInst.h" |
22 | #include "llvm/MC/MCInstBuilder.h" |
23 | #include "llvm/MC/MCInstrInfo.h" |
24 | #include "llvm/MC/MCParser/MCAsmLexer.h" |
25 | #include "llvm/MC/MCParser/MCAsmParser.h" |
26 | #include "llvm/MC/MCParser/MCAsmParserExtension.h" |
27 | #include "llvm/MC/MCParser/MCParsedAsmOperand.h" |
28 | #include "llvm/MC/MCParser/MCTargetAsmParser.h" |
29 | #include "llvm/MC/MCStreamer.h" |
30 | #include "llvm/MC/MCSubtargetInfo.h" |
31 | #include "llvm/MC/TargetRegistry.h" |
32 | #include "llvm/Support/Casting.h" |
33 | #include "llvm/Support/ErrorHandling.h" |
34 | #include "llvm/Support/SMLoc.h" |
35 | #include <algorithm> |
36 | #include <cassert> |
37 | #include <cstddef> |
38 | #include <cstdint> |
39 | #include <iterator> |
40 | #include <memory> |
41 | #include <string> |
42 | |
43 | using namespace llvm; |
44 | |
45 | // Return true if Expr is in the range [MinValue, MaxValue]. If AllowSymbol |
46 | // is true any MCExpr is accepted (address displacement). |
47 | static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue, |
48 | bool AllowSymbol = false) { |
49 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
50 | int64_t Value = CE->getValue(); |
51 | return Value >= MinValue && Value <= MaxValue; |
52 | } |
53 | return AllowSymbol; |
54 | } |
55 | |
56 | namespace { |
57 | |
58 | enum RegisterKind { |
59 | GR32Reg, |
60 | GRH32Reg, |
61 | GR64Reg, |
62 | GR128Reg, |
63 | FP32Reg, |
64 | FP64Reg, |
65 | FP128Reg, |
66 | VR32Reg, |
67 | VR64Reg, |
68 | VR128Reg, |
69 | AR32Reg, |
70 | CR64Reg, |
71 | }; |
72 | |
73 | enum MemoryKind { |
74 | BDMem, |
75 | BDXMem, |
76 | BDLMem, |
77 | BDRMem, |
78 | BDVMem |
79 | }; |
80 | |
81 | class SystemZOperand : public MCParsedAsmOperand { |
82 | private: |
83 | enum OperandKind { |
84 | KindInvalid, |
85 | KindToken, |
86 | KindReg, |
87 | KindImm, |
88 | KindImmTLS, |
89 | KindMem |
90 | }; |
91 | |
92 | OperandKind Kind; |
93 | SMLoc StartLoc, EndLoc; |
94 | |
95 | // A string of length Length, starting at Data. |
96 | struct TokenOp { |
97 | const char *Data; |
98 | unsigned Length; |
99 | }; |
100 | |
101 | // LLVM register Num, which has kind Kind. In some ways it might be |
102 | // easier for this class to have a register bank (general, floating-point |
103 | // or access) and a raw register number (0-15). This would postpone the |
104 | // interpretation of the operand to the add*() methods and avoid the need |
105 | // for context-dependent parsing. However, we do things the current way |
106 | // because of the virtual getReg() method, which needs to distinguish |
107 | // between (say) %r0 used as a single register and %r0 used as a pair. |
108 | // Context-dependent parsing can also give us slightly better error |
109 | // messages when invalid pairs like %r1 are used. |
110 | struct RegOp { |
111 | RegisterKind Kind; |
112 | unsigned Num; |
113 | }; |
114 | |
115 | // Base + Disp + Index, where Base and Index are LLVM registers or 0. |
116 | // MemKind says what type of memory this is and RegKind says what type |
117 | // the base register has (GR32Reg or GR64Reg). Length is the operand |
118 | // length for D(L,B)-style operands, otherwise it is null. |
119 | struct MemOp { |
120 | unsigned Base : 12; |
121 | unsigned Index : 12; |
122 | unsigned MemKind : 4; |
123 | unsigned RegKind : 4; |
124 | const MCExpr *Disp; |
125 | union { |
126 | const MCExpr *Imm; |
127 | unsigned Reg; |
128 | } Length; |
129 | }; |
130 | |
131 | // Imm is an immediate operand, and Sym is an optional TLS symbol |
132 | // for use with a __tls_get_offset marker relocation. |
133 | struct ImmTLSOp { |
134 | const MCExpr *Imm; |
135 | const MCExpr *Sym; |
136 | }; |
137 | |
138 | union { |
139 | TokenOp Token; |
140 | RegOp Reg; |
141 | const MCExpr *Imm; |
142 | ImmTLSOp ImmTLS; |
143 | MemOp Mem; |
144 | }; |
145 | |
146 | void addExpr(MCInst &Inst, const MCExpr *Expr) const { |
147 | // Add as immediates when possible. Null MCExpr = 0. |
148 | if (!Expr) |
149 | Inst.addOperand(Op: MCOperand::createImm(Val: 0)); |
150 | else if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) |
151 | Inst.addOperand(Op: MCOperand::createImm(Val: CE->getValue())); |
152 | else |
153 | Inst.addOperand(Op: MCOperand::createExpr(Val: Expr)); |
154 | } |
155 | |
156 | public: |
157 | SystemZOperand(OperandKind Kind, SMLoc StartLoc, SMLoc EndLoc) |
158 | : Kind(Kind), StartLoc(StartLoc), EndLoc(EndLoc) {} |
159 | |
160 | // Create particular kinds of operand. |
161 | static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc, |
162 | SMLoc EndLoc) { |
163 | return std::make_unique<SystemZOperand>(args: KindInvalid, args&: StartLoc, args&: EndLoc); |
164 | } |
165 | |
166 | static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) { |
167 | auto Op = std::make_unique<SystemZOperand>(args: KindToken, args&: Loc, args&: Loc); |
168 | Op->Token.Data = Str.data(); |
169 | Op->Token.Length = Str.size(); |
170 | return Op; |
171 | } |
172 | |
173 | static std::unique_ptr<SystemZOperand> |
174 | createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) { |
175 | auto Op = std::make_unique<SystemZOperand>(args: KindReg, args&: StartLoc, args&: EndLoc); |
176 | Op->Reg.Kind = Kind; |
177 | Op->Reg.Num = Num; |
178 | return Op; |
179 | } |
180 | |
181 | static std::unique_ptr<SystemZOperand> |
182 | createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) { |
183 | auto Op = std::make_unique<SystemZOperand>(args: KindImm, args&: StartLoc, args&: EndLoc); |
184 | Op->Imm = Expr; |
185 | return Op; |
186 | } |
187 | |
188 | static std::unique_ptr<SystemZOperand> |
189 | createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base, |
190 | const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm, |
191 | unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) { |
192 | auto Op = std::make_unique<SystemZOperand>(args: KindMem, args&: StartLoc, args&: EndLoc); |
193 | Op->Mem.MemKind = MemKind; |
194 | Op->Mem.RegKind = RegKind; |
195 | Op->Mem.Base = Base; |
196 | Op->Mem.Index = Index; |
197 | Op->Mem.Disp = Disp; |
198 | if (MemKind == BDLMem) |
199 | Op->Mem.Length.Imm = LengthImm; |
200 | if (MemKind == BDRMem) |
201 | Op->Mem.Length.Reg = LengthReg; |
202 | return Op; |
203 | } |
204 | |
205 | static std::unique_ptr<SystemZOperand> |
206 | createImmTLS(const MCExpr *Imm, const MCExpr *Sym, |
207 | SMLoc StartLoc, SMLoc EndLoc) { |
208 | auto Op = std::make_unique<SystemZOperand>(args: KindImmTLS, args&: StartLoc, args&: EndLoc); |
209 | Op->ImmTLS.Imm = Imm; |
210 | Op->ImmTLS.Sym = Sym; |
211 | return Op; |
212 | } |
213 | |
214 | // Token operands |
215 | bool isToken() const override { |
216 | return Kind == KindToken; |
217 | } |
218 | StringRef getToken() const { |
219 | assert(Kind == KindToken && "Not a token" ); |
220 | return StringRef(Token.Data, Token.Length); |
221 | } |
222 | |
223 | // Register operands. |
224 | bool isReg() const override { |
225 | return Kind == KindReg; |
226 | } |
227 | bool isReg(RegisterKind RegKind) const { |
228 | return Kind == KindReg && Reg.Kind == RegKind; |
229 | } |
230 | MCRegister getReg() const override { |
231 | assert(Kind == KindReg && "Not a register" ); |
232 | return Reg.Num; |
233 | } |
234 | |
235 | // Immediate operands. |
236 | bool isImm() const override { |
237 | return Kind == KindImm; |
238 | } |
239 | bool isImm(int64_t MinValue, int64_t MaxValue) const { |
240 | return Kind == KindImm && inRange(Expr: Imm, MinValue, MaxValue, AllowSymbol: true); |
241 | } |
242 | const MCExpr *getImm() const { |
243 | assert(Kind == KindImm && "Not an immediate" ); |
244 | return Imm; |
245 | } |
246 | |
247 | // Immediate operands with optional TLS symbol. |
248 | bool isImmTLS() const { |
249 | return Kind == KindImmTLS; |
250 | } |
251 | |
252 | const ImmTLSOp getImmTLS() const { |
253 | assert(Kind == KindImmTLS && "Not a TLS immediate" ); |
254 | return ImmTLS; |
255 | } |
256 | |
257 | // Memory operands. |
258 | bool isMem() const override { |
259 | return Kind == KindMem; |
260 | } |
261 | bool isMem(MemoryKind MemKind) const { |
262 | return (Kind == KindMem && |
263 | (Mem.MemKind == MemKind || |
264 | // A BDMem can be treated as a BDXMem in which the index |
265 | // register field is 0. |
266 | (Mem.MemKind == BDMem && MemKind == BDXMem))); |
267 | } |
268 | bool isMem(MemoryKind MemKind, RegisterKind RegKind) const { |
269 | return isMem(MemKind) && Mem.RegKind == RegKind; |
270 | } |
271 | bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const { |
272 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: 0, MaxValue: 0xfff, AllowSymbol: true); |
273 | } |
274 | bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const { |
275 | return isMem(MemKind, RegKind) && inRange(Expr: Mem.Disp, MinValue: -524288, MaxValue: 524287, AllowSymbol: true); |
276 | } |
277 | bool isMemDisp12Len4(RegisterKind RegKind) const { |
278 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x10); |
279 | } |
280 | bool isMemDisp12Len8(RegisterKind RegKind) const { |
281 | return isMemDisp12(MemKind: BDLMem, RegKind) && inRange(Expr: Mem.Length.Imm, MinValue: 1, MaxValue: 0x100); |
282 | } |
283 | |
284 | const MemOp& getMem() const { |
285 | assert(Kind == KindMem && "Not a Mem operand" ); |
286 | return Mem; |
287 | } |
288 | |
289 | // Override MCParsedAsmOperand. |
290 | SMLoc getStartLoc() const override { return StartLoc; } |
291 | SMLoc getEndLoc() const override { return EndLoc; } |
292 | void print(raw_ostream &OS) const override; |
293 | |
294 | /// getLocRange - Get the range between the first and last token of this |
295 | /// operand. |
296 | SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); } |
297 | |
298 | // Used by the TableGen code to add particular types of operand |
299 | // to an instruction. |
300 | void addRegOperands(MCInst &Inst, unsigned N) const { |
301 | assert(N == 1 && "Invalid number of operands" ); |
302 | Inst.addOperand(Op: MCOperand::createReg(Reg: getReg())); |
303 | } |
304 | void addImmOperands(MCInst &Inst, unsigned N) const { |
305 | assert(N == 1 && "Invalid number of operands" ); |
306 | addExpr(Inst, Expr: getImm()); |
307 | } |
308 | void addBDAddrOperands(MCInst &Inst, unsigned N) const { |
309 | assert(N == 2 && "Invalid number of operands" ); |
310 | assert(isMem(BDMem) && "Invalid operand type" ); |
311 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
312 | addExpr(Inst, Expr: Mem.Disp); |
313 | } |
314 | void addBDXAddrOperands(MCInst &Inst, unsigned N) const { |
315 | assert(N == 3 && "Invalid number of operands" ); |
316 | assert(isMem(BDXMem) && "Invalid operand type" ); |
317 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
318 | addExpr(Inst, Expr: Mem.Disp); |
319 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
320 | } |
321 | void addBDLAddrOperands(MCInst &Inst, unsigned N) const { |
322 | assert(N == 3 && "Invalid number of operands" ); |
323 | assert(isMem(BDLMem) && "Invalid operand type" ); |
324 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
325 | addExpr(Inst, Expr: Mem.Disp); |
326 | addExpr(Inst, Expr: Mem.Length.Imm); |
327 | } |
328 | void addBDRAddrOperands(MCInst &Inst, unsigned N) const { |
329 | assert(N == 3 && "Invalid number of operands" ); |
330 | assert(isMem(BDRMem) && "Invalid operand type" ); |
331 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
332 | addExpr(Inst, Expr: Mem.Disp); |
333 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Length.Reg)); |
334 | } |
335 | void addBDVAddrOperands(MCInst &Inst, unsigned N) const { |
336 | assert(N == 3 && "Invalid number of operands" ); |
337 | assert(isMem(BDVMem) && "Invalid operand type" ); |
338 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Base)); |
339 | addExpr(Inst, Expr: Mem.Disp); |
340 | Inst.addOperand(Op: MCOperand::createReg(Reg: Mem.Index)); |
341 | } |
342 | void addImmTLSOperands(MCInst &Inst, unsigned N) const { |
343 | assert(N == 2 && "Invalid number of operands" ); |
344 | assert(Kind == KindImmTLS && "Invalid operand type" ); |
345 | addExpr(Inst, Expr: ImmTLS.Imm); |
346 | if (ImmTLS.Sym) |
347 | addExpr(Inst, Expr: ImmTLS.Sym); |
348 | } |
349 | |
350 | // Used by the TableGen code to check for particular operand types. |
351 | bool isGR32() const { return isReg(RegKind: GR32Reg); } |
352 | bool isGRH32() const { return isReg(RegKind: GRH32Reg); } |
353 | bool isGRX32() const { return false; } |
354 | bool isGR64() const { return isReg(RegKind: GR64Reg); } |
355 | bool isGR128() const { return isReg(RegKind: GR128Reg); } |
356 | bool isADDR32() const { return isReg(RegKind: GR32Reg); } |
357 | bool isADDR64() const { return isReg(RegKind: GR64Reg); } |
358 | bool isADDR128() const { return false; } |
359 | bool isFP32() const { return isReg(RegKind: FP32Reg); } |
360 | bool isFP64() const { return isReg(RegKind: FP64Reg); } |
361 | bool isFP128() const { return isReg(RegKind: FP128Reg); } |
362 | bool isVR32() const { return isReg(RegKind: VR32Reg); } |
363 | bool isVR64() const { return isReg(RegKind: VR64Reg); } |
364 | bool isVF128() const { return false; } |
365 | bool isVR128() const { return isReg(RegKind: VR128Reg); } |
366 | bool isAR32() const { return isReg(RegKind: AR32Reg); } |
367 | bool isCR64() const { return isReg(RegKind: CR64Reg); } |
368 | bool isAnyReg() const { return (isReg() || isImm(MinValue: 0, MaxValue: 15)); } |
369 | bool isBDAddr32Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR32Reg); } |
370 | bool isBDAddr32Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR32Reg); } |
371 | bool isBDAddr64Disp12() const { return isMemDisp12(MemKind: BDMem, RegKind: GR64Reg); } |
372 | bool isBDAddr64Disp20() const { return isMemDisp20(MemKind: BDMem, RegKind: GR64Reg); } |
373 | bool isBDXAddr64Disp12() const { return isMemDisp12(MemKind: BDXMem, RegKind: GR64Reg); } |
374 | bool isBDXAddr64Disp20() const { return isMemDisp20(MemKind: BDXMem, RegKind: GR64Reg); } |
375 | bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(RegKind: GR64Reg); } |
376 | bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(RegKind: GR64Reg); } |
377 | bool isBDRAddr64Disp12() const { return isMemDisp12(MemKind: BDRMem, RegKind: GR64Reg); } |
378 | bool isBDVAddr64Disp12() const { return isMemDisp12(MemKind: BDVMem, RegKind: GR64Reg); } |
379 | bool isU1Imm() const { return isImm(MinValue: 0, MaxValue: 1); } |
380 | bool isU2Imm() const { return isImm(MinValue: 0, MaxValue: 3); } |
381 | bool isU3Imm() const { return isImm(MinValue: 0, MaxValue: 7); } |
382 | bool isU4Imm() const { return isImm(MinValue: 0, MaxValue: 15); } |
383 | bool isU8Imm() const { return isImm(MinValue: 0, MaxValue: 255); } |
384 | bool isS8Imm() const { return isImm(MinValue: -128, MaxValue: 127); } |
385 | bool isU12Imm() const { return isImm(MinValue: 0, MaxValue: 4095); } |
386 | bool isU16Imm() const { return isImm(MinValue: 0, MaxValue: 65535); } |
387 | bool isS16Imm() const { return isImm(MinValue: -32768, MaxValue: 32767); } |
388 | bool isU32Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 32) - 1); } |
389 | bool isS32Imm() const { return isImm(MinValue: -(1LL << 31), MaxValue: (1LL << 31) - 1); } |
390 | bool isU48Imm() const { return isImm(MinValue: 0, MaxValue: (1LL << 48) - 1); } |
391 | }; |
392 | |
393 | class SystemZAsmParser : public MCTargetAsmParser { |
394 | #define |
395 | #include "SystemZGenAsmMatcher.inc" |
396 | |
397 | private: |
398 | MCAsmParser &Parser; |
399 | enum RegisterGroup { |
400 | RegGR, |
401 | RegFP, |
402 | RegV, |
403 | RegAR, |
404 | RegCR |
405 | }; |
406 | struct Register { |
407 | RegisterGroup Group; |
408 | unsigned Num; |
409 | SMLoc StartLoc, EndLoc; |
410 | }; |
411 | |
412 | SystemZTargetStreamer &getTargetStreamer() { |
413 | assert(getParser().getStreamer().getTargetStreamer() && |
414 | "do not have a target streamer" ); |
415 | MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); |
416 | return static_cast<SystemZTargetStreamer &>(TS); |
417 | } |
418 | |
419 | bool parseRegister(Register &Reg, bool RestoreOnFailure = false); |
420 | |
421 | bool parseIntegerRegister(Register &Reg, RegisterGroup Group); |
422 | |
423 | ParseStatus parseRegister(OperandVector &Operands, RegisterKind Kind); |
424 | |
425 | ParseStatus parseAnyRegister(OperandVector &Operands); |
426 | |
427 | bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2, |
428 | Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length, |
429 | bool HasLength = false, bool HasVectorIndex = false); |
430 | bool parseAddressRegister(Register &Reg); |
431 | |
432 | bool ParseDirectiveInsn(SMLoc L); |
433 | bool ParseDirectiveMachine(SMLoc L); |
434 | bool ParseGNUAttribute(SMLoc L); |
435 | |
436 | ParseStatus parseAddress(OperandVector &Operands, MemoryKind MemKind, |
437 | RegisterKind RegKind); |
438 | |
439 | ParseStatus parsePCRel(OperandVector &Operands, int64_t MinVal, |
440 | int64_t MaxVal, bool AllowTLS); |
441 | |
442 | bool parseOperand(OperandVector &Operands, StringRef Mnemonic); |
443 | |
444 | // Both the hlasm and att variants still rely on the basic gnu asm |
445 | // format with respect to inputs, clobbers, outputs etc. |
446 | // |
447 | // However, calling the overriden getAssemblerDialect() method in |
448 | // AsmParser is problematic. It either returns the AssemblerDialect field |
449 | // in the MCAsmInfo instance if the AssemblerDialect field in AsmParser is |
450 | // unset, otherwise it returns the private AssemblerDialect field in |
451 | // AsmParser. |
452 | // |
453 | // The problematic part is because, we forcibly set the inline asm dialect |
454 | // in the AsmParser instance in AsmPrinterInlineAsm.cpp. Soo any query |
455 | // to the overriden getAssemblerDialect function in AsmParser.cpp, will |
456 | // not return the assembler dialect set in the respective MCAsmInfo instance. |
457 | // |
458 | // For this purpose, we explicitly query the SystemZMCAsmInfo instance |
459 | // here, to get the "correct" assembler dialect, and use it in various |
460 | // functions. |
461 | unsigned getMAIAssemblerDialect() { |
462 | return Parser.getContext().getAsmInfo()->getAssemblerDialect(); |
463 | } |
464 | |
465 | // An alphabetic character in HLASM is a letter from 'A' through 'Z', |
466 | // or from 'a' through 'z', or '$', '_','#', or '@'. |
467 | inline bool isHLASMAlpha(char C) { |
468 | return isAlpha(C) || llvm::is_contained(Range: "_@#$" , Element: C); |
469 | } |
470 | |
471 | // A digit in HLASM is a number from 0 to 9. |
472 | inline bool isHLASMAlnum(char C) { return isHLASMAlpha(C) || isDigit(C); } |
473 | |
474 | // Are we parsing using the AD_HLASM dialect? |
475 | inline bool isParsingHLASM() { return getMAIAssemblerDialect() == AD_HLASM; } |
476 | |
477 | // Are we parsing using the AD_ATT dialect? |
478 | inline bool isParsingATT() { return getMAIAssemblerDialect() == AD_ATT; } |
479 | |
480 | public: |
481 | SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser, |
482 | const MCInstrInfo &MII, |
483 | const MCTargetOptions &Options) |
484 | : MCTargetAsmParser(Options, sti, MII), Parser(parser) { |
485 | MCAsmParserExtension::Initialize(Parser); |
486 | |
487 | // Alias the .word directive to .short. |
488 | parser.addAliasForDirective(Directive: ".word" , Alias: ".short" ); |
489 | |
490 | // Initialize the set of available features. |
491 | setAvailableFeatures(ComputeAvailableFeatures(FB: getSTI().getFeatureBits())); |
492 | } |
493 | |
494 | // Override MCTargetAsmParser. |
495 | ParseStatus parseDirective(AsmToken DirectiveID) override; |
496 | bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override; |
497 | bool ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, SMLoc &EndLoc, |
498 | bool RestoreOnFailure); |
499 | ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
500 | SMLoc &EndLoc) override; |
501 | bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, |
502 | SMLoc NameLoc, OperandVector &Operands) override; |
503 | bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
504 | OperandVector &Operands, MCStreamer &Out, |
505 | uint64_t &ErrorInfo, |
506 | bool MatchingInlineAsm) override; |
507 | bool isLabel(AsmToken &Token) override; |
508 | |
509 | // Used by the TableGen code to parse particular operand types. |
510 | ParseStatus parseGR32(OperandVector &Operands) { |
511 | return parseRegister(Operands, Kind: GR32Reg); |
512 | } |
513 | ParseStatus parseGRH32(OperandVector &Operands) { |
514 | return parseRegister(Operands, Kind: GRH32Reg); |
515 | } |
516 | ParseStatus parseGRX32(OperandVector &Operands) { |
517 | llvm_unreachable("GRX32 should only be used for pseudo instructions" ); |
518 | } |
519 | ParseStatus parseGR64(OperandVector &Operands) { |
520 | return parseRegister(Operands, Kind: GR64Reg); |
521 | } |
522 | ParseStatus parseGR128(OperandVector &Operands) { |
523 | return parseRegister(Operands, Kind: GR128Reg); |
524 | } |
525 | ParseStatus parseADDR32(OperandVector &Operands) { |
526 | // For the AsmParser, we will accept %r0 for ADDR32 as well. |
527 | return parseRegister(Operands, Kind: GR32Reg); |
528 | } |
529 | ParseStatus parseADDR64(OperandVector &Operands) { |
530 | // For the AsmParser, we will accept %r0 for ADDR64 as well. |
531 | return parseRegister(Operands, Kind: GR64Reg); |
532 | } |
533 | ParseStatus parseADDR128(OperandVector &Operands) { |
534 | llvm_unreachable("Shouldn't be used as an operand" ); |
535 | } |
536 | ParseStatus parseFP32(OperandVector &Operands) { |
537 | return parseRegister(Operands, Kind: FP32Reg); |
538 | } |
539 | ParseStatus parseFP64(OperandVector &Operands) { |
540 | return parseRegister(Operands, Kind: FP64Reg); |
541 | } |
542 | ParseStatus parseFP128(OperandVector &Operands) { |
543 | return parseRegister(Operands, Kind: FP128Reg); |
544 | } |
545 | ParseStatus parseVR32(OperandVector &Operands) { |
546 | return parseRegister(Operands, Kind: VR32Reg); |
547 | } |
548 | ParseStatus parseVR64(OperandVector &Operands) { |
549 | return parseRegister(Operands, Kind: VR64Reg); |
550 | } |
551 | ParseStatus parseVF128(OperandVector &Operands) { |
552 | llvm_unreachable("Shouldn't be used as an operand" ); |
553 | } |
554 | ParseStatus parseVR128(OperandVector &Operands) { |
555 | return parseRegister(Operands, Kind: VR128Reg); |
556 | } |
557 | ParseStatus parseAR32(OperandVector &Operands) { |
558 | return parseRegister(Operands, Kind: AR32Reg); |
559 | } |
560 | ParseStatus parseCR64(OperandVector &Operands) { |
561 | return parseRegister(Operands, Kind: CR64Reg); |
562 | } |
563 | ParseStatus parseAnyReg(OperandVector &Operands) { |
564 | return parseAnyRegister(Operands); |
565 | } |
566 | ParseStatus parseBDAddr32(OperandVector &Operands) { |
567 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR32Reg); |
568 | } |
569 | ParseStatus parseBDAddr64(OperandVector &Operands) { |
570 | return parseAddress(Operands, MemKind: BDMem, RegKind: GR64Reg); |
571 | } |
572 | ParseStatus parseBDXAddr64(OperandVector &Operands) { |
573 | return parseAddress(Operands, MemKind: BDXMem, RegKind: GR64Reg); |
574 | } |
575 | ParseStatus parseBDLAddr64(OperandVector &Operands) { |
576 | return parseAddress(Operands, MemKind: BDLMem, RegKind: GR64Reg); |
577 | } |
578 | ParseStatus parseBDRAddr64(OperandVector &Operands) { |
579 | return parseAddress(Operands, MemKind: BDRMem, RegKind: GR64Reg); |
580 | } |
581 | ParseStatus parseBDVAddr64(OperandVector &Operands) { |
582 | return parseAddress(Operands, MemKind: BDVMem, RegKind: GR64Reg); |
583 | } |
584 | ParseStatus parsePCRel12(OperandVector &Operands) { |
585 | return parsePCRel(Operands, MinVal: -(1LL << 12), MaxVal: (1LL << 12) - 1, AllowTLS: false); |
586 | } |
587 | ParseStatus parsePCRel16(OperandVector &Operands) { |
588 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: false); |
589 | } |
590 | ParseStatus parsePCRel24(OperandVector &Operands) { |
591 | return parsePCRel(Operands, MinVal: -(1LL << 24), MaxVal: (1LL << 24) - 1, AllowTLS: false); |
592 | } |
593 | ParseStatus parsePCRel32(OperandVector &Operands) { |
594 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: false); |
595 | } |
596 | ParseStatus parsePCRelTLS16(OperandVector &Operands) { |
597 | return parsePCRel(Operands, MinVal: -(1LL << 16), MaxVal: (1LL << 16) - 1, AllowTLS: true); |
598 | } |
599 | ParseStatus parsePCRelTLS32(OperandVector &Operands) { |
600 | return parsePCRel(Operands, MinVal: -(1LL << 32), MaxVal: (1LL << 32) - 1, AllowTLS: true); |
601 | } |
602 | }; |
603 | |
604 | } // end anonymous namespace |
605 | |
606 | #define GET_REGISTER_MATCHER |
607 | #define GET_SUBTARGET_FEATURE_NAME |
608 | #define GET_MATCHER_IMPLEMENTATION |
609 | #define GET_MNEMONIC_SPELL_CHECKER |
610 | #include "SystemZGenAsmMatcher.inc" |
611 | |
612 | // Used for the .insn directives; contains information needed to parse the |
613 | // operands in the directive. |
614 | struct InsnMatchEntry { |
615 | StringRef Format; |
616 | uint64_t Opcode; |
617 | int32_t NumOperands; |
618 | MatchClassKind OperandKinds[7]; |
619 | }; |
620 | |
621 | // For equal_range comparison. |
622 | struct CompareInsn { |
623 | bool operator() (const InsnMatchEntry &LHS, StringRef RHS) { |
624 | return LHS.Format < RHS; |
625 | } |
626 | bool operator() (StringRef LHS, const InsnMatchEntry &RHS) { |
627 | return LHS < RHS.Format; |
628 | } |
629 | bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) { |
630 | return LHS.Format < RHS.Format; |
631 | } |
632 | }; |
633 | |
634 | // Table initializing information for parsing the .insn directive. |
635 | static struct InsnMatchEntry InsnMatchTable[] = { |
636 | /* Format, Opcode, NumOperands, OperandKinds */ |
637 | { .Format: "e" , .Opcode: SystemZ::InsnE, .NumOperands: 1, |
638 | .OperandKinds: { MCK_U16Imm } }, |
639 | { .Format: "ri" , .Opcode: SystemZ::InsnRI, .NumOperands: 3, |
640 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } }, |
641 | { .Format: "rie" , .Opcode: SystemZ::InsnRIE, .NumOperands: 4, |
642 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
643 | { .Format: "ril" , .Opcode: SystemZ::InsnRIL, .NumOperands: 3, |
644 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } }, |
645 | { .Format: "rilu" , .Opcode: SystemZ::InsnRILU, .NumOperands: 3, |
646 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } }, |
647 | { .Format: "ris" , .Opcode: SystemZ::InsnRIS, .NumOperands: 5, |
648 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
649 | { .Format: "rr" , .Opcode: SystemZ::InsnRR, .NumOperands: 3, |
650 | .OperandKinds: { MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } }, |
651 | { .Format: "rre" , .Opcode: SystemZ::InsnRRE, .NumOperands: 3, |
652 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } }, |
653 | { .Format: "rrf" , .Opcode: SystemZ::InsnRRF, .NumOperands: 5, |
654 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } }, |
655 | { .Format: "rrs" , .Opcode: SystemZ::InsnRRS, .NumOperands: 5, |
656 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } }, |
657 | { .Format: "rs" , .Opcode: SystemZ::InsnRS, .NumOperands: 4, |
658 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
659 | { .Format: "rse" , .Opcode: SystemZ::InsnRSE, .NumOperands: 4, |
660 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } }, |
661 | { .Format: "rsi" , .Opcode: SystemZ::InsnRSI, .NumOperands: 4, |
662 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } }, |
663 | { .Format: "rsy" , .Opcode: SystemZ::InsnRSY, .NumOperands: 4, |
664 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } }, |
665 | { .Format: "rx" , .Opcode: SystemZ::InsnRX, .NumOperands: 3, |
666 | .OperandKinds: { MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
667 | { .Format: "rxe" , .Opcode: SystemZ::InsnRXE, .NumOperands: 3, |
668 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
669 | { .Format: "rxf" , .Opcode: SystemZ::InsnRXF, .NumOperands: 4, |
670 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } }, |
671 | { .Format: "rxy" , .Opcode: SystemZ::InsnRXY, .NumOperands: 3, |
672 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } }, |
673 | { .Format: "s" , .Opcode: SystemZ::InsnS, .NumOperands: 2, |
674 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12 } }, |
675 | { .Format: "si" , .Opcode: SystemZ::InsnSI, .NumOperands: 3, |
676 | .OperandKinds: { MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } }, |
677 | { .Format: "sil" , .Opcode: SystemZ::InsnSIL, .NumOperands: 3, |
678 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } }, |
679 | { .Format: "siy" , .Opcode: SystemZ::InsnSIY, .NumOperands: 3, |
680 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } }, |
681 | { .Format: "ss" , .Opcode: SystemZ::InsnSS, .NumOperands: 4, |
682 | .OperandKinds: { MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
683 | { .Format: "sse" , .Opcode: SystemZ::InsnSSE, .NumOperands: 3, |
684 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } }, |
685 | { .Format: "ssf" , .Opcode: SystemZ::InsnSSF, .NumOperands: 4, |
686 | .OperandKinds: { MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }, |
687 | { .Format: "vri" , .Opcode: SystemZ::InsnVRI, .NumOperands: 6, |
688 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } }, |
689 | { .Format: "vrr" , .Opcode: SystemZ::InsnVRR, .NumOperands: 7, |
690 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm, |
691 | MCK_U4Imm } }, |
692 | { .Format: "vrs" , .Opcode: SystemZ::InsnVRS, .NumOperands: 5, |
693 | .OperandKinds: { MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } }, |
694 | { .Format: "vrv" , .Opcode: SystemZ::InsnVRV, .NumOperands: 4, |
695 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } }, |
696 | { .Format: "vrx" , .Opcode: SystemZ::InsnVRX, .NumOperands: 4, |
697 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } }, |
698 | { .Format: "vsi" , .Opcode: SystemZ::InsnVSI, .NumOperands: 4, |
699 | .OperandKinds: { MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } } |
700 | }; |
701 | |
702 | static void printMCExpr(const MCExpr *E, raw_ostream &OS) { |
703 | if (!E) |
704 | return; |
705 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: E)) |
706 | OS << *CE; |
707 | else if (auto *UE = dyn_cast<MCUnaryExpr>(Val: E)) |
708 | OS << *UE; |
709 | else if (auto *BE = dyn_cast<MCBinaryExpr>(Val: E)) |
710 | OS << *BE; |
711 | else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(Val: E)) |
712 | OS << *SRE; |
713 | else |
714 | OS << *E; |
715 | } |
716 | |
717 | void SystemZOperand::print(raw_ostream &OS) const { |
718 | switch (Kind) { |
719 | case KindToken: |
720 | OS << "Token:" << getToken(); |
721 | break; |
722 | case KindReg: |
723 | OS << "Reg:" << SystemZInstPrinter::getRegisterName(Reg: getReg()); |
724 | break; |
725 | case KindImm: |
726 | OS << "Imm:" ; |
727 | printMCExpr(E: getImm(), OS); |
728 | break; |
729 | case KindImmTLS: |
730 | OS << "ImmTLS:" ; |
731 | printMCExpr(E: getImmTLS().Imm, OS); |
732 | if (getImmTLS().Sym) { |
733 | OS << ", " ; |
734 | printMCExpr(E: getImmTLS().Sym, OS); |
735 | } |
736 | break; |
737 | case KindMem: { |
738 | const MemOp &Op = getMem(); |
739 | OS << "Mem:" << *cast<MCConstantExpr>(Val: Op.Disp); |
740 | if (Op.Base) { |
741 | OS << "(" ; |
742 | if (Op.MemKind == BDLMem) |
743 | OS << *cast<MCConstantExpr>(Val: Op.Length.Imm) << "," ; |
744 | else if (Op.MemKind == BDRMem) |
745 | OS << SystemZInstPrinter::getRegisterName(Reg: Op.Length.Reg) << "," ; |
746 | if (Op.Index) |
747 | OS << SystemZInstPrinter::getRegisterName(Reg: Op.Index) << "," ; |
748 | OS << SystemZInstPrinter::getRegisterName(Reg: Op.Base); |
749 | OS << ")" ; |
750 | } |
751 | break; |
752 | } |
753 | case KindInvalid: |
754 | break; |
755 | } |
756 | } |
757 | |
758 | // Parse one register of the form %<prefix><number>. |
759 | bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) { |
760 | Reg.StartLoc = Parser.getTok().getLoc(); |
761 | |
762 | // Eat the % prefix. |
763 | if (Parser.getTok().isNot(K: AsmToken::Percent)) |
764 | return Error(L: Parser.getTok().getLoc(), Msg: "register expected" ); |
765 | const AsmToken &PercentTok = Parser.getTok(); |
766 | Parser.Lex(); |
767 | |
768 | // Expect a register name. |
769 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) { |
770 | if (RestoreOnFailure) |
771 | getLexer().UnLex(Token: PercentTok); |
772 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
773 | } |
774 | |
775 | // Check that there's a prefix. |
776 | StringRef Name = Parser.getTok().getString(); |
777 | if (Name.size() < 2) { |
778 | if (RestoreOnFailure) |
779 | getLexer().UnLex(Token: PercentTok); |
780 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
781 | } |
782 | char Prefix = Name[0]; |
783 | |
784 | // Treat the rest of the register name as a register number. |
785 | if (Name.substr(Start: 1).getAsInteger(Radix: 10, Result&: Reg.Num)) { |
786 | if (RestoreOnFailure) |
787 | getLexer().UnLex(Token: PercentTok); |
788 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
789 | } |
790 | |
791 | // Look for valid combinations of prefix and number. |
792 | if (Prefix == 'r' && Reg.Num < 16) |
793 | Reg.Group = RegGR; |
794 | else if (Prefix == 'f' && Reg.Num < 16) |
795 | Reg.Group = RegFP; |
796 | else if (Prefix == 'v' && Reg.Num < 32) |
797 | Reg.Group = RegV; |
798 | else if (Prefix == 'a' && Reg.Num < 16) |
799 | Reg.Group = RegAR; |
800 | else if (Prefix == 'c' && Reg.Num < 16) |
801 | Reg.Group = RegCR; |
802 | else { |
803 | if (RestoreOnFailure) |
804 | getLexer().UnLex(Token: PercentTok); |
805 | return Error(L: Reg.StartLoc, Msg: "invalid register" ); |
806 | } |
807 | |
808 | Reg.EndLoc = Parser.getTok().getLoc(); |
809 | Parser.Lex(); |
810 | return false; |
811 | } |
812 | |
813 | // Parse a register of kind Kind and add it to Operands. |
814 | ParseStatus SystemZAsmParser::parseRegister(OperandVector &Operands, |
815 | RegisterKind Kind) { |
816 | Register Reg; |
817 | RegisterGroup Group; |
818 | switch (Kind) { |
819 | case GR32Reg: |
820 | case GRH32Reg: |
821 | case GR64Reg: |
822 | case GR128Reg: |
823 | Group = RegGR; |
824 | break; |
825 | case FP32Reg: |
826 | case FP64Reg: |
827 | case FP128Reg: |
828 | Group = RegFP; |
829 | break; |
830 | case VR32Reg: |
831 | case VR64Reg: |
832 | case VR128Reg: |
833 | Group = RegV; |
834 | break; |
835 | case AR32Reg: |
836 | Group = RegAR; |
837 | break; |
838 | case CR64Reg: |
839 | Group = RegCR; |
840 | break; |
841 | } |
842 | |
843 | // Handle register names of the form %<prefix><number> |
844 | if (isParsingATT() && Parser.getTok().is(K: AsmToken::Percent)) { |
845 | if (parseRegister(Reg)) |
846 | return ParseStatus::Failure; |
847 | |
848 | // Check the parsed register group "Reg.Group" with the expected "Group" |
849 | // Have to error out if user specified wrong prefix. |
850 | switch (Group) { |
851 | case RegGR: |
852 | case RegFP: |
853 | case RegAR: |
854 | case RegCR: |
855 | if (Group != Reg.Group) |
856 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
857 | break; |
858 | case RegV: |
859 | if (Reg.Group != RegV && Reg.Group != RegFP) |
860 | return Error(L: Reg.StartLoc, Msg: "invalid operand for instruction" ); |
861 | break; |
862 | } |
863 | } else if (Parser.getTok().is(K: AsmToken::Integer)) { |
864 | if (parseIntegerRegister(Reg, Group)) |
865 | return ParseStatus::Failure; |
866 | } |
867 | // Otherwise we didn't match a register operand. |
868 | else |
869 | return ParseStatus::NoMatch; |
870 | |
871 | // Determine the LLVM register number according to Kind. |
872 | const unsigned *Regs; |
873 | switch (Kind) { |
874 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
875 | case GRH32Reg: Regs = SystemZMC::GRH32Regs; break; |
876 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
877 | case GR128Reg: Regs = SystemZMC::GR128Regs; break; |
878 | case FP32Reg: Regs = SystemZMC::FP32Regs; break; |
879 | case FP64Reg: Regs = SystemZMC::FP64Regs; break; |
880 | case FP128Reg: Regs = SystemZMC::FP128Regs; break; |
881 | case VR32Reg: Regs = SystemZMC::VR32Regs; break; |
882 | case VR64Reg: Regs = SystemZMC::VR64Regs; break; |
883 | case VR128Reg: Regs = SystemZMC::VR128Regs; break; |
884 | case AR32Reg: Regs = SystemZMC::AR32Regs; break; |
885 | case CR64Reg: Regs = SystemZMC::CR64Regs; break; |
886 | } |
887 | if (Regs[Reg.Num] == 0) |
888 | return Error(L: Reg.StartLoc, Msg: "invalid register pair" ); |
889 | |
890 | Operands.push_back( |
891 | Elt: SystemZOperand::createReg(Kind, Num: Regs[Reg.Num], StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
892 | return ParseStatus::Success; |
893 | } |
894 | |
895 | // Parse any type of register (including integers) and add it to Operands. |
896 | ParseStatus SystemZAsmParser::parseAnyRegister(OperandVector &Operands) { |
897 | SMLoc StartLoc = Parser.getTok().getLoc(); |
898 | |
899 | // Handle integer values. |
900 | if (Parser.getTok().is(K: AsmToken::Integer)) { |
901 | const MCExpr *Register; |
902 | if (Parser.parseExpression(Res&: Register)) |
903 | return ParseStatus::Failure; |
904 | |
905 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Register)) { |
906 | int64_t Value = CE->getValue(); |
907 | if (Value < 0 || Value > 15) |
908 | return Error(L: StartLoc, Msg: "invalid register" ); |
909 | } |
910 | |
911 | SMLoc EndLoc = |
912 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
913 | |
914 | Operands.push_back(Elt: SystemZOperand::createImm(Expr: Register, StartLoc, EndLoc)); |
915 | } |
916 | else { |
917 | if (isParsingHLASM()) |
918 | return ParseStatus::NoMatch; |
919 | |
920 | Register Reg; |
921 | if (parseRegister(Reg)) |
922 | return ParseStatus::Failure; |
923 | |
924 | if (Reg.Num > 15) |
925 | return Error(L: StartLoc, Msg: "invalid register" ); |
926 | |
927 | // Map to the correct register kind. |
928 | RegisterKind Kind; |
929 | unsigned RegNo; |
930 | if (Reg.Group == RegGR) { |
931 | Kind = GR64Reg; |
932 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
933 | } |
934 | else if (Reg.Group == RegFP) { |
935 | Kind = FP64Reg; |
936 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
937 | } |
938 | else if (Reg.Group == RegV) { |
939 | Kind = VR128Reg; |
940 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
941 | } |
942 | else if (Reg.Group == RegAR) { |
943 | Kind = AR32Reg; |
944 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
945 | } |
946 | else if (Reg.Group == RegCR) { |
947 | Kind = CR64Reg; |
948 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
949 | } |
950 | else { |
951 | return ParseStatus::Failure; |
952 | } |
953 | |
954 | Operands.push_back(Elt: SystemZOperand::createReg(Kind, Num: RegNo, |
955 | StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
956 | } |
957 | return ParseStatus::Success; |
958 | } |
959 | |
960 | bool SystemZAsmParser::parseIntegerRegister(Register &Reg, |
961 | RegisterGroup Group) { |
962 | Reg.StartLoc = Parser.getTok().getLoc(); |
963 | // We have an integer token |
964 | const MCExpr *Register; |
965 | if (Parser.parseExpression(Res&: Register)) |
966 | return true; |
967 | |
968 | const auto *CE = dyn_cast<MCConstantExpr>(Val: Register); |
969 | if (!CE) |
970 | return true; |
971 | |
972 | int64_t MaxRegNum = (Group == RegV) ? 31 : 15; |
973 | int64_t Value = CE->getValue(); |
974 | if (Value < 0 || Value > MaxRegNum) { |
975 | Error(L: Parser.getTok().getLoc(), Msg: "invalid register" ); |
976 | return true; |
977 | } |
978 | |
979 | // Assign the Register Number |
980 | Reg.Num = (unsigned)Value; |
981 | Reg.Group = Group; |
982 | Reg.EndLoc = SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
983 | |
984 | // At this point, successfully parsed an integer register. |
985 | return false; |
986 | } |
987 | |
988 | // Parse a memory operand into Reg1, Reg2, Disp, and Length. |
989 | bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1, |
990 | bool &HaveReg2, Register &Reg2, |
991 | const MCExpr *&Disp, const MCExpr *&Length, |
992 | bool HasLength, bool HasVectorIndex) { |
993 | // Parse the displacement, which must always be present. |
994 | if (getParser().parseExpression(Res&: Disp)) |
995 | return true; |
996 | |
997 | // Parse the optional base and index. |
998 | HaveReg1 = false; |
999 | HaveReg2 = false; |
1000 | Length = nullptr; |
1001 | |
1002 | // If we have a scenario as below: |
1003 | // vgef %v0, 0(0), 0 |
1004 | // This is an example of a "BDVMem" instruction type. |
1005 | // |
1006 | // So when we parse this as an integer register, the register group |
1007 | // needs to be tied to "RegV". Usually when the prefix is passed in |
1008 | // as %<prefix><reg-number> its easy to check which group it should belong to |
1009 | // However, if we're passing in just the integer there's no real way to |
1010 | // "check" what register group it should belong to. |
1011 | // |
1012 | // When the user passes in the register as an integer, the user assumes that |
1013 | // the compiler is responsible for substituting it as the right kind of |
1014 | // register. Whereas, when the user specifies a "prefix", the onus is on |
1015 | // the user to make sure they pass in the right kind of register. |
1016 | // |
1017 | // The restriction only applies to the first Register (i.e. Reg1). Reg2 is |
1018 | // always a general register. Reg1 should be of group RegV if "HasVectorIndex" |
1019 | // (i.e. insn is of type BDVMem) is true. |
1020 | RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR; |
1021 | |
1022 | if (getLexer().is(K: AsmToken::LParen)) { |
1023 | Parser.Lex(); |
1024 | |
1025 | if (isParsingATT() && getLexer().is(K: AsmToken::Percent)) { |
1026 | // Parse the first register. |
1027 | HaveReg1 = true; |
1028 | if (parseRegister(Reg&: Reg1)) |
1029 | return true; |
1030 | } |
1031 | // So if we have an integer as the first token in ([tok1], ..), it could: |
1032 | // 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of |
1033 | // instructions) |
1034 | // 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions) |
1035 | else if (getLexer().is(K: AsmToken::Integer)) { |
1036 | if (HasLength) { |
1037 | // Instruction has a "Length" field, safe to parse the first token as |
1038 | // the "Length" field |
1039 | if (getParser().parseExpression(Res&: Length)) |
1040 | return true; |
1041 | } else { |
1042 | // Otherwise, if the instruction has no "Length" field, parse the |
1043 | // token as a "Register". We don't have to worry about whether the |
1044 | // instruction is invalid here, because the caller will take care of |
1045 | // error reporting. |
1046 | HaveReg1 = true; |
1047 | if (parseIntegerRegister(Reg&: Reg1, Group: RegGroup)) |
1048 | return true; |
1049 | } |
1050 | } else { |
1051 | // If its not an integer or a percent token, then if the instruction |
1052 | // is reported to have a "Length" then, parse it as "Length". |
1053 | if (HasLength) { |
1054 | if (getParser().parseExpression(Res&: Length)) |
1055 | return true; |
1056 | } |
1057 | } |
1058 | |
1059 | // Check whether there's a second register. |
1060 | if (getLexer().is(K: AsmToken::Comma)) { |
1061 | Parser.Lex(); |
1062 | HaveReg2 = true; |
1063 | |
1064 | if (getLexer().is(K: AsmToken::Integer)) { |
1065 | if (parseIntegerRegister(Reg&: Reg2, Group: RegGR)) |
1066 | return true; |
1067 | } else { |
1068 | if (isParsingATT() && parseRegister(Reg&: Reg2)) |
1069 | return true; |
1070 | } |
1071 | } |
1072 | |
1073 | // Consume the closing bracket. |
1074 | if (getLexer().isNot(K: AsmToken::RParen)) |
1075 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token in address" ); |
1076 | Parser.Lex(); |
1077 | } |
1078 | return false; |
1079 | } |
1080 | |
1081 | // Verify that Reg is a valid address register (base or index). |
1082 | bool |
1083 | SystemZAsmParser::parseAddressRegister(Register &Reg) { |
1084 | if (Reg.Group == RegV) { |
1085 | Error(L: Reg.StartLoc, Msg: "invalid use of vector addressing" ); |
1086 | return true; |
1087 | } |
1088 | if (Reg.Group != RegGR) { |
1089 | Error(L: Reg.StartLoc, Msg: "invalid address register" ); |
1090 | return true; |
1091 | } |
1092 | return false; |
1093 | } |
1094 | |
1095 | // Parse a memory operand and add it to Operands. The other arguments |
1096 | // are as above. |
1097 | ParseStatus SystemZAsmParser::parseAddress(OperandVector &Operands, |
1098 | MemoryKind MemKind, |
1099 | RegisterKind RegKind) { |
1100 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1101 | unsigned Base = 0, Index = 0, LengthReg = 0; |
1102 | Register Reg1, Reg2; |
1103 | bool HaveReg1, HaveReg2; |
1104 | const MCExpr *Disp; |
1105 | const MCExpr *Length; |
1106 | |
1107 | bool HasLength = (MemKind == BDLMem) ? true : false; |
1108 | bool HasVectorIndex = (MemKind == BDVMem) ? true : false; |
1109 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength, |
1110 | HasVectorIndex)) |
1111 | return ParseStatus::Failure; |
1112 | |
1113 | const unsigned *Regs; |
1114 | switch (RegKind) { |
1115 | case GR32Reg: Regs = SystemZMC::GR32Regs; break; |
1116 | case GR64Reg: Regs = SystemZMC::GR64Regs; break; |
1117 | default: llvm_unreachable("invalid RegKind" ); |
1118 | } |
1119 | |
1120 | switch (MemKind) { |
1121 | case BDMem: |
1122 | // If we have Reg1, it must be an address register. |
1123 | if (HaveReg1) { |
1124 | if (parseAddressRegister(Reg&: Reg1)) |
1125 | return ParseStatus::Failure; |
1126 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
1127 | } |
1128 | // There must be no Reg2. |
1129 | if (HaveReg2) |
1130 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
1131 | break; |
1132 | case BDXMem: |
1133 | // If we have Reg1, it must be an address register. |
1134 | if (HaveReg1) { |
1135 | if (parseAddressRegister(Reg&: Reg1)) |
1136 | return ParseStatus::Failure; |
1137 | // If the are two registers, the first one is the index and the |
1138 | // second is the base. |
1139 | if (HaveReg2) |
1140 | Index = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
1141 | else |
1142 | Base = Reg1.Num == 0 ? 0 : Regs[Reg1.Num]; |
1143 | } |
1144 | // If we have Reg2, it must be an address register. |
1145 | if (HaveReg2) { |
1146 | if (parseAddressRegister(Reg&: Reg2)) |
1147 | return ParseStatus::Failure; |
1148 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1149 | } |
1150 | break; |
1151 | case BDLMem: |
1152 | // If we have Reg2, it must be an address register. |
1153 | if (HaveReg2) { |
1154 | if (parseAddressRegister(Reg&: Reg2)) |
1155 | return ParseStatus::Failure; |
1156 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1157 | } |
1158 | // We cannot support base+index addressing. |
1159 | if (HaveReg1 && HaveReg2) |
1160 | return Error(L: StartLoc, Msg: "invalid use of indexed addressing" ); |
1161 | // We must have a length. |
1162 | if (!Length) |
1163 | return Error(L: StartLoc, Msg: "missing length in address" ); |
1164 | break; |
1165 | case BDRMem: |
1166 | // We must have Reg1, and it must be a GPR. |
1167 | if (!HaveReg1 || Reg1.Group != RegGR) |
1168 | return Error(L: StartLoc, Msg: "invalid operand for instruction" ); |
1169 | LengthReg = SystemZMC::GR64Regs[Reg1.Num]; |
1170 | // If we have Reg2, it must be an address register. |
1171 | if (HaveReg2) { |
1172 | if (parseAddressRegister(Reg&: Reg2)) |
1173 | return ParseStatus::Failure; |
1174 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1175 | } |
1176 | break; |
1177 | case BDVMem: |
1178 | // We must have Reg1, and it must be a vector register. |
1179 | if (!HaveReg1 || Reg1.Group != RegV) |
1180 | return Error(L: StartLoc, Msg: "vector index required in address" ); |
1181 | Index = SystemZMC::VR128Regs[Reg1.Num]; |
1182 | // If we have Reg2, it must be an address register. |
1183 | if (HaveReg2) { |
1184 | if (parseAddressRegister(Reg&: Reg2)) |
1185 | return ParseStatus::Failure; |
1186 | Base = Reg2.Num == 0 ? 0 : Regs[Reg2.Num]; |
1187 | } |
1188 | break; |
1189 | } |
1190 | |
1191 | SMLoc EndLoc = |
1192 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1193 | Operands.push_back(Elt: SystemZOperand::createMem(MemKind, RegKind, Base, Disp, |
1194 | Index, LengthImm: Length, LengthReg, |
1195 | StartLoc, EndLoc)); |
1196 | return ParseStatus::Success; |
1197 | } |
1198 | |
1199 | ParseStatus SystemZAsmParser::parseDirective(AsmToken DirectiveID) { |
1200 | StringRef IDVal = DirectiveID.getIdentifier(); |
1201 | |
1202 | if (IDVal == ".insn" ) |
1203 | return ParseDirectiveInsn(L: DirectiveID.getLoc()); |
1204 | if (IDVal == ".machine" ) |
1205 | return ParseDirectiveMachine(L: DirectiveID.getLoc()); |
1206 | if (IDVal.starts_with(Prefix: ".gnu_attribute" )) |
1207 | return ParseGNUAttribute(L: DirectiveID.getLoc()); |
1208 | |
1209 | return ParseStatus::NoMatch; |
1210 | } |
1211 | |
1212 | /// ParseDirectiveInsn |
1213 | /// ::= .insn [ format, encoding, (operands (, operands)*) ] |
1214 | bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) { |
1215 | MCAsmParser &Parser = getParser(); |
1216 | |
1217 | // Expect instruction format as identifier. |
1218 | StringRef Format; |
1219 | SMLoc ErrorLoc = Parser.getTok().getLoc(); |
1220 | if (Parser.parseIdentifier(Res&: Format)) |
1221 | return Error(L: ErrorLoc, Msg: "expected instruction format" ); |
1222 | |
1223 | SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands; |
1224 | |
1225 | // Find entry for this format in InsnMatchTable. |
1226 | auto EntryRange = |
1227 | std::equal_range(first: std::begin(arr&: InsnMatchTable), last: std::end(arr&: InsnMatchTable), |
1228 | val: Format, comp: CompareInsn()); |
1229 | |
1230 | // If first == second, couldn't find a match in the table. |
1231 | if (EntryRange.first == EntryRange.second) |
1232 | return Error(L: ErrorLoc, Msg: "unrecognized format" ); |
1233 | |
1234 | struct InsnMatchEntry *Entry = EntryRange.first; |
1235 | |
1236 | // Format should match from equal_range. |
1237 | assert(Entry->Format == Format); |
1238 | |
1239 | // Parse the following operands using the table's information. |
1240 | for (int I = 0; I < Entry->NumOperands; I++) { |
1241 | MatchClassKind Kind = Entry->OperandKinds[I]; |
1242 | |
1243 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1244 | |
1245 | // Always expect commas as separators for operands. |
1246 | if (getLexer().isNot(K: AsmToken::Comma)) |
1247 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
1248 | Lex(); |
1249 | |
1250 | // Parse operands. |
1251 | ParseStatus ResTy; |
1252 | if (Kind == MCK_AnyReg) |
1253 | ResTy = parseAnyReg(Operands); |
1254 | else if (Kind == MCK_VR128) |
1255 | ResTy = parseVR128(Operands); |
1256 | else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20) |
1257 | ResTy = parseBDXAddr64(Operands); |
1258 | else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20) |
1259 | ResTy = parseBDAddr64(Operands); |
1260 | else if (Kind == MCK_BDVAddr64Disp12) |
1261 | ResTy = parseBDVAddr64(Operands); |
1262 | else if (Kind == MCK_PCRel32) |
1263 | ResTy = parsePCRel32(Operands); |
1264 | else if (Kind == MCK_PCRel16) |
1265 | ResTy = parsePCRel16(Operands); |
1266 | else { |
1267 | // Only remaining operand kind is an immediate. |
1268 | const MCExpr *Expr; |
1269 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1270 | |
1271 | // Expect immediate expression. |
1272 | if (Parser.parseExpression(Res&: Expr)) |
1273 | return Error(L: StartLoc, Msg: "unexpected token in directive" ); |
1274 | |
1275 | SMLoc EndLoc = |
1276 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1277 | |
1278 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1279 | ResTy = ParseStatus::Success; |
1280 | } |
1281 | |
1282 | if (!ResTy.isSuccess()) |
1283 | return true; |
1284 | } |
1285 | |
1286 | // Build the instruction with the parsed operands. |
1287 | MCInst Inst = MCInstBuilder(Entry->Opcode); |
1288 | |
1289 | for (size_t I = 0; I < Operands.size(); I++) { |
1290 | MCParsedAsmOperand &Operand = *Operands[I]; |
1291 | MatchClassKind Kind = Entry->OperandKinds[I]; |
1292 | |
1293 | // Verify operand. |
1294 | unsigned Res = validateOperandClass(GOp&: Operand, Kind); |
1295 | if (Res != Match_Success) |
1296 | return Error(L: Operand.getStartLoc(), Msg: "unexpected operand type" ); |
1297 | |
1298 | // Add operands to instruction. |
1299 | SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand); |
1300 | if (ZOperand.isReg()) |
1301 | ZOperand.addRegOperands(Inst, N: 1); |
1302 | else if (ZOperand.isMem(MemKind: BDMem)) |
1303 | ZOperand.addBDAddrOperands(Inst, N: 2); |
1304 | else if (ZOperand.isMem(MemKind: BDXMem)) |
1305 | ZOperand.addBDXAddrOperands(Inst, N: 3); |
1306 | else if (ZOperand.isMem(MemKind: BDVMem)) |
1307 | ZOperand.addBDVAddrOperands(Inst, N: 3); |
1308 | else if (ZOperand.isImm()) |
1309 | ZOperand.addImmOperands(Inst, N: 1); |
1310 | else |
1311 | llvm_unreachable("unexpected operand type" ); |
1312 | } |
1313 | |
1314 | // Emit as a regular instruction. |
1315 | Parser.getStreamer().emitInstruction(Inst, STI: getSTI()); |
1316 | |
1317 | return false; |
1318 | } |
1319 | |
1320 | /// ParseDirectiveMachine |
1321 | /// ::= .machine [ mcpu ] |
1322 | bool SystemZAsmParser::ParseDirectiveMachine(SMLoc L) { |
1323 | MCAsmParser &Parser = getParser(); |
1324 | if (Parser.getTok().isNot(K: AsmToken::Identifier) && |
1325 | Parser.getTok().isNot(K: AsmToken::String)) |
1326 | return TokError(Msg: "unexpected token in '.machine' directive" ); |
1327 | |
1328 | StringRef CPU = Parser.getTok().getIdentifier(); |
1329 | Parser.Lex(); |
1330 | if (parseEOL()) |
1331 | return true; |
1332 | |
1333 | MCSubtargetInfo &STI = copySTI(); |
1334 | STI.setDefaultFeatures(CPU, /*TuneCPU*/ CPU, FS: "" ); |
1335 | setAvailableFeatures(ComputeAvailableFeatures(FB: STI.getFeatureBits())); |
1336 | |
1337 | getTargetStreamer().emitMachine(CPU); |
1338 | |
1339 | return false; |
1340 | } |
1341 | |
1342 | bool SystemZAsmParser::ParseGNUAttribute(SMLoc L) { |
1343 | int64_t Tag; |
1344 | int64_t IntegerValue; |
1345 | if (!Parser.parseGNUAttribute(L, Tag, IntegerValue)) |
1346 | return Error(L, Msg: "malformed .gnu_attribute directive" ); |
1347 | |
1348 | // Tag_GNU_S390_ABI_Vector tag is '8' and can be 0, 1, or 2. |
1349 | if (Tag != 8 || (IntegerValue < 0 || IntegerValue > 2)) |
1350 | return Error(L, Msg: "unrecognized .gnu_attribute tag/value pair." ); |
1351 | |
1352 | Parser.getStreamer().emitGNUAttribute(Tag, Value: IntegerValue); |
1353 | |
1354 | return parseEOL(); |
1355 | } |
1356 | |
1357 | bool SystemZAsmParser::ParseRegister(MCRegister &RegNo, SMLoc &StartLoc, |
1358 | SMLoc &EndLoc, bool RestoreOnFailure) { |
1359 | Register Reg; |
1360 | if (parseRegister(Reg, RestoreOnFailure)) |
1361 | return true; |
1362 | if (Reg.Group == RegGR) |
1363 | RegNo = SystemZMC::GR64Regs[Reg.Num]; |
1364 | else if (Reg.Group == RegFP) |
1365 | RegNo = SystemZMC::FP64Regs[Reg.Num]; |
1366 | else if (Reg.Group == RegV) |
1367 | RegNo = SystemZMC::VR128Regs[Reg.Num]; |
1368 | else if (Reg.Group == RegAR) |
1369 | RegNo = SystemZMC::AR32Regs[Reg.Num]; |
1370 | else if (Reg.Group == RegCR) |
1371 | RegNo = SystemZMC::CR64Regs[Reg.Num]; |
1372 | StartLoc = Reg.StartLoc; |
1373 | EndLoc = Reg.EndLoc; |
1374 | return false; |
1375 | } |
1376 | |
1377 | bool SystemZAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc, |
1378 | SMLoc &EndLoc) { |
1379 | return ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/false); |
1380 | } |
1381 | |
1382 | ParseStatus SystemZAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, |
1383 | SMLoc &EndLoc) { |
1384 | bool Result = ParseRegister(RegNo&: Reg, StartLoc, EndLoc, /*RestoreOnFailure=*/true); |
1385 | bool PendingErrors = getParser().hasPendingError(); |
1386 | getParser().clearPendingErrors(); |
1387 | if (PendingErrors) |
1388 | return ParseStatus::Failure; |
1389 | if (Result) |
1390 | return ParseStatus::NoMatch; |
1391 | return ParseStatus::Success; |
1392 | } |
1393 | |
1394 | bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info, |
1395 | StringRef Name, SMLoc NameLoc, |
1396 | OperandVector &Operands) { |
1397 | |
1398 | // Apply mnemonic aliases first, before doing anything else, in |
1399 | // case the target uses it. |
1400 | applyMnemonicAliases(Mnemonic&: Name, Features: getAvailableFeatures(), VariantID: getMAIAssemblerDialect()); |
1401 | |
1402 | Operands.push_back(Elt: SystemZOperand::createToken(Str: Name, Loc: NameLoc)); |
1403 | |
1404 | // Read the remaining operands. |
1405 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
1406 | // Read the first operand. |
1407 | if (parseOperand(Operands, Mnemonic: Name)) { |
1408 | return true; |
1409 | } |
1410 | |
1411 | // Read any subsequent operands. |
1412 | while (getLexer().is(K: AsmToken::Comma)) { |
1413 | Parser.Lex(); |
1414 | |
1415 | if (isParsingHLASM() && getLexer().is(K: AsmToken::Space)) |
1416 | return Error( |
1417 | L: Parser.getTok().getLoc(), |
1418 | Msg: "No space allowed between comma that separates operand entries" ); |
1419 | |
1420 | if (parseOperand(Operands, Mnemonic: Name)) { |
1421 | return true; |
1422 | } |
1423 | } |
1424 | |
1425 | // Under the HLASM variant, we could have the remark field |
1426 | // The remark field occurs after the operation entries |
1427 | // There is a space that separates the operation entries and the |
1428 | // remark field. |
1429 | if (isParsingHLASM() && getTok().is(K: AsmToken::Space)) { |
1430 | // We've confirmed that there is a Remark field. |
1431 | StringRef (getLexer().LexUntilEndOfStatement()); |
1432 | Parser.Lex(); |
1433 | |
1434 | // If there is nothing after the space, then there is nothing to emit |
1435 | // We could have a situation as this: |
1436 | // " \n" |
1437 | // After lexing above, we will have |
1438 | // "\n" |
1439 | // This isn't an explicit remark field, so we don't have to output |
1440 | // this as a comment. |
1441 | if (Remark.size()) |
1442 | // Output the entire Remarks Field as a comment |
1443 | getStreamer().AddComment(T: Remark); |
1444 | } |
1445 | |
1446 | if (getLexer().isNot(K: AsmToken::EndOfStatement)) { |
1447 | SMLoc Loc = getLexer().getLoc(); |
1448 | return Error(L: Loc, Msg: "unexpected token in argument list" ); |
1449 | } |
1450 | } |
1451 | |
1452 | // Consume the EndOfStatement. |
1453 | Parser.Lex(); |
1454 | return false; |
1455 | } |
1456 | |
1457 | bool SystemZAsmParser::parseOperand(OperandVector &Operands, |
1458 | StringRef Mnemonic) { |
1459 | // Check if the current operand has a custom associated parser, if so, try to |
1460 | // custom parse the operand, or fallback to the general approach. Force all |
1461 | // features to be available during the operand check, or else we will fail to |
1462 | // find the custom parser, and then we will later get an InvalidOperand error |
1463 | // instead of a MissingFeature errror. |
1464 | FeatureBitset AvailableFeatures = getAvailableFeatures(); |
1465 | FeatureBitset All; |
1466 | All.set(); |
1467 | setAvailableFeatures(All); |
1468 | ParseStatus Res = MatchOperandParserImpl(Operands, Mnemonic); |
1469 | setAvailableFeatures(AvailableFeatures); |
1470 | if (Res.isSuccess()) |
1471 | return false; |
1472 | |
1473 | // If there wasn't a custom match, try the generic matcher below. Otherwise, |
1474 | // there was a match, but an error occurred, in which case, just return that |
1475 | // the operand parsing failed. |
1476 | if (Res.isFailure()) |
1477 | return true; |
1478 | |
1479 | // Check for a register. All real register operands should have used |
1480 | // a context-dependent parse routine, which gives the required register |
1481 | // class. The code is here to mop up other cases, like those where |
1482 | // the instruction isn't recognized. |
1483 | if (isParsingATT() && Parser.getTok().is(K: AsmToken::Percent)) { |
1484 | Register Reg; |
1485 | if (parseRegister(Reg)) |
1486 | return true; |
1487 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc: Reg.StartLoc, EndLoc: Reg.EndLoc)); |
1488 | return false; |
1489 | } |
1490 | |
1491 | // The only other type of operand is an immediate or address. As above, |
1492 | // real address operands should have used a context-dependent parse routine, |
1493 | // so we treat any plain expression as an immediate. |
1494 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1495 | Register Reg1, Reg2; |
1496 | bool HaveReg1, HaveReg2; |
1497 | const MCExpr *Expr; |
1498 | const MCExpr *Length; |
1499 | if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp&: Expr, Length, |
1500 | /*HasLength*/ true, /*HasVectorIndex*/ true)) |
1501 | return true; |
1502 | // If the register combination is not valid for any instruction, reject it. |
1503 | // Otherwise, fall back to reporting an unrecognized instruction. |
1504 | if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV |
1505 | && parseAddressRegister(Reg&: Reg1)) |
1506 | return true; |
1507 | if (HaveReg2 && parseAddressRegister(Reg&: Reg2)) |
1508 | return true; |
1509 | |
1510 | SMLoc EndLoc = |
1511 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1512 | if (HaveReg1 || HaveReg2 || Length) |
1513 | Operands.push_back(Elt: SystemZOperand::createInvalid(StartLoc, EndLoc)); |
1514 | else |
1515 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1516 | return false; |
1517 | } |
1518 | |
1519 | bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, |
1520 | OperandVector &Operands, |
1521 | MCStreamer &Out, |
1522 | uint64_t &ErrorInfo, |
1523 | bool MatchingInlineAsm) { |
1524 | MCInst Inst; |
1525 | unsigned MatchResult; |
1526 | |
1527 | unsigned Dialect = getMAIAssemblerDialect(); |
1528 | |
1529 | FeatureBitset MissingFeatures; |
1530 | MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo, MissingFeatures, |
1531 | matchingInlineAsm: MatchingInlineAsm, VariantID: Dialect); |
1532 | switch (MatchResult) { |
1533 | case Match_Success: |
1534 | Inst.setLoc(IDLoc); |
1535 | Out.emitInstruction(Inst, STI: getSTI()); |
1536 | return false; |
1537 | |
1538 | case Match_MissingFeature: { |
1539 | assert(MissingFeatures.any() && "Unknown missing feature!" ); |
1540 | // Special case the error message for the very common case where only |
1541 | // a single subtarget feature is missing |
1542 | std::string Msg = "instruction requires:" ; |
1543 | for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) { |
1544 | if (MissingFeatures[I]) { |
1545 | Msg += " " ; |
1546 | Msg += getSubtargetFeatureName(Val: I); |
1547 | } |
1548 | } |
1549 | return Error(L: IDLoc, Msg); |
1550 | } |
1551 | |
1552 | case Match_InvalidOperand: { |
1553 | SMLoc ErrorLoc = IDLoc; |
1554 | if (ErrorInfo != ~0ULL) { |
1555 | if (ErrorInfo >= Operands.size()) |
1556 | return Error(L: IDLoc, Msg: "too few operands for instruction" ); |
1557 | |
1558 | ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc(); |
1559 | if (ErrorLoc == SMLoc()) |
1560 | ErrorLoc = IDLoc; |
1561 | } |
1562 | return Error(L: ErrorLoc, Msg: "invalid operand for instruction" ); |
1563 | } |
1564 | |
1565 | case Match_MnemonicFail: { |
1566 | FeatureBitset FBS = ComputeAvailableFeatures(FB: getSTI().getFeatureBits()); |
1567 | std::string Suggestion = SystemZMnemonicSpellCheck( |
1568 | S: ((SystemZOperand &)*Operands[0]).getToken(), FBS, VariantID: Dialect); |
1569 | return Error(L: IDLoc, Msg: "invalid instruction" + Suggestion, |
1570 | Range: ((SystemZOperand &)*Operands[0]).getLocRange()); |
1571 | } |
1572 | } |
1573 | |
1574 | llvm_unreachable("Unexpected match type" ); |
1575 | } |
1576 | |
1577 | ParseStatus SystemZAsmParser::parsePCRel(OperandVector &Operands, |
1578 | int64_t MinVal, int64_t MaxVal, |
1579 | bool AllowTLS) { |
1580 | MCContext &Ctx = getContext(); |
1581 | MCStreamer &Out = getStreamer(); |
1582 | const MCExpr *Expr; |
1583 | SMLoc StartLoc = Parser.getTok().getLoc(); |
1584 | if (getParser().parseExpression(Res&: Expr)) |
1585 | return ParseStatus::NoMatch; |
1586 | |
1587 | auto IsOutOfRangeConstant = [&](const MCExpr *E, bool Negate) -> bool { |
1588 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: E)) { |
1589 | int64_t Value = CE->getValue(); |
1590 | if (Negate) |
1591 | Value = -Value; |
1592 | if ((Value & 1) || Value < MinVal || Value > MaxVal) |
1593 | return true; |
1594 | } |
1595 | return false; |
1596 | }; |
1597 | |
1598 | // For consistency with the GNU assembler, treat immediates as offsets |
1599 | // from ".". |
1600 | if (auto *CE = dyn_cast<MCConstantExpr>(Val: Expr)) { |
1601 | if (isParsingHLASM()) |
1602 | return Error(L: StartLoc, Msg: "Expected PC-relative expression" ); |
1603 | if (IsOutOfRangeConstant(CE, false)) |
1604 | return Error(L: StartLoc, Msg: "offset out of range" ); |
1605 | int64_t Value = CE->getValue(); |
1606 | MCSymbol *Sym = Ctx.createTempSymbol(); |
1607 | Out.emitLabel(Symbol: Sym); |
1608 | const MCExpr *Base = MCSymbolRefExpr::create(Symbol: Sym, Kind: MCSymbolRefExpr::VK_None, |
1609 | Ctx); |
1610 | Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(LHS: Base, RHS: Expr, Ctx); |
1611 | } |
1612 | |
1613 | // For consistency with the GNU assembler, conservatively assume that a |
1614 | // constant offset must by itself be within the given size range. |
1615 | if (const auto *BE = dyn_cast<MCBinaryExpr>(Val: Expr)) |
1616 | if (IsOutOfRangeConstant(BE->getLHS(), false) || |
1617 | IsOutOfRangeConstant(BE->getRHS(), |
1618 | BE->getOpcode() == MCBinaryExpr::Sub)) |
1619 | return Error(L: StartLoc, Msg: "offset out of range" ); |
1620 | |
1621 | // Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol. |
1622 | const MCExpr *Sym = nullptr; |
1623 | if (AllowTLS && getLexer().is(K: AsmToken::Colon)) { |
1624 | Parser.Lex(); |
1625 | |
1626 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
1627 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1628 | |
1629 | MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None; |
1630 | StringRef Name = Parser.getTok().getString(); |
1631 | if (Name == "tls_gdcall" ) |
1632 | Kind = MCSymbolRefExpr::VK_TLSGD; |
1633 | else if (Name == "tls_ldcall" ) |
1634 | Kind = MCSymbolRefExpr::VK_TLSLDM; |
1635 | else |
1636 | return Error(L: Parser.getTok().getLoc(), Msg: "unknown TLS tag" ); |
1637 | Parser.Lex(); |
1638 | |
1639 | if (Parser.getTok().isNot(K: AsmToken::Colon)) |
1640 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1641 | Parser.Lex(); |
1642 | |
1643 | if (Parser.getTok().isNot(K: AsmToken::Identifier)) |
1644 | return Error(L: Parser.getTok().getLoc(), Msg: "unexpected token" ); |
1645 | |
1646 | StringRef Identifier = Parser.getTok().getString(); |
1647 | Sym = MCSymbolRefExpr::create(Symbol: Ctx.getOrCreateSymbol(Name: Identifier), |
1648 | Kind, Ctx); |
1649 | Parser.Lex(); |
1650 | } |
1651 | |
1652 | SMLoc EndLoc = |
1653 | SMLoc::getFromPointer(Ptr: Parser.getTok().getLoc().getPointer() - 1); |
1654 | |
1655 | if (AllowTLS) |
1656 | Operands.push_back(Elt: SystemZOperand::createImmTLS(Imm: Expr, Sym, |
1657 | StartLoc, EndLoc)); |
1658 | else |
1659 | Operands.push_back(Elt: SystemZOperand::createImm(Expr, StartLoc, EndLoc)); |
1660 | |
1661 | return ParseStatus::Success; |
1662 | } |
1663 | |
1664 | bool SystemZAsmParser::isLabel(AsmToken &Token) { |
1665 | if (isParsingATT()) |
1666 | return true; |
1667 | |
1668 | // HLASM labels are ordinary symbols. |
1669 | // An HLASM label always starts at column 1. |
1670 | // An ordinary symbol syntax is laid out as follows: |
1671 | // Rules: |
1672 | // 1. Has to start with an "alphabetic character". Can be followed by up to |
1673 | // 62 alphanumeric characters. An "alphabetic character", in this scenario, |
1674 | // is a letter from 'A' through 'Z', or from 'a' through 'z', |
1675 | // or '$', '_', '#', or '@' |
1676 | // 2. Labels are case-insensitive. E.g. "lab123", "LAB123", "lAb123", etc. |
1677 | // are all treated as the same symbol. However, the processing for the case |
1678 | // folding will not be done in this function. |
1679 | StringRef RawLabel = Token.getString(); |
1680 | SMLoc Loc = Token.getLoc(); |
1681 | |
1682 | // An HLASM label cannot be empty. |
1683 | if (!RawLabel.size()) |
1684 | return !Error(L: Loc, Msg: "HLASM Label cannot be empty" ); |
1685 | |
1686 | // An HLASM label cannot exceed greater than 63 characters. |
1687 | if (RawLabel.size() > 63) |
1688 | return !Error(L: Loc, Msg: "Maximum length for HLASM Label is 63 characters" ); |
1689 | |
1690 | // A label must start with an "alphabetic character". |
1691 | if (!isHLASMAlpha(C: RawLabel[0])) |
1692 | return !Error(L: Loc, Msg: "HLASM Label has to start with an alphabetic " |
1693 | "character or the underscore character" ); |
1694 | |
1695 | // Now, we've established that the length is valid |
1696 | // and the first character is alphabetic. |
1697 | // Check whether remaining string is alphanumeric. |
1698 | for (unsigned I = 1; I < RawLabel.size(); ++I) |
1699 | if (!isHLASMAlnum(C: RawLabel[I])) |
1700 | return !Error(L: Loc, Msg: "HLASM Label has to be alphanumeric" ); |
1701 | |
1702 | return true; |
1703 | } |
1704 | |
1705 | // Force static initialization. |
1706 | // NOLINTNEXTLINE(readability-identifier-naming) |
1707 | extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() { |
1708 | RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget()); |
1709 | } |
1710 | |