1//===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a CFG stacking pass.
11///
12/// This pass inserts BLOCK, LOOP, and TRY markers to mark the start of scopes,
13/// since scope boundaries serve as the labels for WebAssembly's control
14/// transfers.
15///
16/// This is sufficient to convert arbitrary CFGs into a form that works on
17/// WebAssembly, provided that all loops are single-entry.
18///
19/// In case we use exceptions, this pass also fixes mismatches in unwind
20/// destinations created during transforming CFG into wasm structured format.
21///
22//===----------------------------------------------------------------------===//
23
24#include "Utils/WebAssemblyTypeUtilities.h"
25#include "WebAssembly.h"
26#include "WebAssemblyExceptionInfo.h"
27#include "WebAssemblyMachineFunctionInfo.h"
28#include "WebAssemblySortRegion.h"
29#include "WebAssemblySubtarget.h"
30#include "WebAssemblyUtilities.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/WasmEHFuncInfo.h"
36#include "llvm/MC/MCAsmInfo.h"
37#include "llvm/Target/TargetMachine.h"
38using namespace llvm;
39using WebAssembly::SortRegionInfo;
40
41#define DEBUG_TYPE "wasm-cfg-stackify"
42
43STATISTIC(NumCallUnwindMismatches, "Number of call unwind mismatches found");
44STATISTIC(NumCatchUnwindMismatches, "Number of catch unwind mismatches found");
45
46namespace {
47class WebAssemblyCFGStackify final : public MachineFunctionPass {
48 StringRef getPassName() const override { return "WebAssembly CFG Stackify"; }
49
50 void getAnalysisUsage(AnalysisUsage &AU) const override {
51 AU.addRequired<MachineDominatorTreeWrapperPass>();
52 AU.addRequired<MachineLoopInfoWrapperPass>();
53 AU.addRequired<WebAssemblyExceptionInfo>();
54 MachineFunctionPass::getAnalysisUsage(AU);
55 }
56
57 bool runOnMachineFunction(MachineFunction &MF) override;
58
59 // For each block whose label represents the end of a scope, record the block
60 // which holds the beginning of the scope. This will allow us to quickly skip
61 // over scoped regions when walking blocks.
62 SmallVector<MachineBasicBlock *, 8> ScopeTops;
63 void updateScopeTops(MachineBasicBlock *Begin, MachineBasicBlock *End) {
64 int EndNo = End->getNumber();
65 if (!ScopeTops[EndNo] || ScopeTops[EndNo]->getNumber() > Begin->getNumber())
66 ScopeTops[EndNo] = Begin;
67 }
68
69 // Placing markers.
70 void placeMarkers(MachineFunction &MF);
71 void placeBlockMarker(MachineBasicBlock &MBB);
72 void placeLoopMarker(MachineBasicBlock &MBB);
73 void placeTryMarker(MachineBasicBlock &MBB);
74
75 // Exception handling related functions
76 bool fixCallUnwindMismatches(MachineFunction &MF);
77 bool fixCatchUnwindMismatches(MachineFunction &MF);
78 void addTryDelegate(MachineInstr *RangeBegin, MachineInstr *RangeEnd,
79 MachineBasicBlock *DelegateDest);
80 void recalculateScopeTops(MachineFunction &MF);
81 void removeUnnecessaryInstrs(MachineFunction &MF);
82
83 // Wrap-up
84 using EndMarkerInfo =
85 std::pair<const MachineBasicBlock *, const MachineInstr *>;
86 unsigned getBranchDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
87 const MachineBasicBlock *MBB);
88 unsigned getDelegateDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
89 const MachineBasicBlock *MBB);
90 unsigned
91 getRethrowDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
92 const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack);
93 void rewriteDepthImmediates(MachineFunction &MF);
94 void fixEndsAtEndOfFunction(MachineFunction &MF);
95 void cleanupFunctionData(MachineFunction &MF);
96
97 // For each BLOCK|LOOP|TRY, the corresponding END_(BLOCK|LOOP|TRY) or DELEGATE
98 // (in case of TRY).
99 DenseMap<const MachineInstr *, MachineInstr *> BeginToEnd;
100 // For each END_(BLOCK|LOOP|TRY) or DELEGATE, the corresponding
101 // BLOCK|LOOP|TRY.
102 DenseMap<const MachineInstr *, MachineInstr *> EndToBegin;
103 // <TRY marker, EH pad> map
104 DenseMap<const MachineInstr *, MachineBasicBlock *> TryToEHPad;
105 // <EH pad, TRY marker> map
106 DenseMap<const MachineBasicBlock *, MachineInstr *> EHPadToTry;
107
108 // We need an appendix block to place 'end_loop' or 'end_try' marker when the
109 // loop / exception bottom block is the last block in a function
110 MachineBasicBlock *AppendixBB = nullptr;
111 MachineBasicBlock *getAppendixBlock(MachineFunction &MF) {
112 if (!AppendixBB) {
113 AppendixBB = MF.CreateMachineBasicBlock();
114 // Give it a fake predecessor so that AsmPrinter prints its label.
115 AppendixBB->addSuccessor(Succ: AppendixBB);
116 MF.push_back(MBB: AppendixBB);
117 }
118 return AppendixBB;
119 }
120
121 // Before running rewriteDepthImmediates function, 'delegate' has a BB as its
122 // destination operand. getFakeCallerBlock() returns a fake BB that will be
123 // used for the operand when 'delegate' needs to rethrow to the caller. This
124 // will be rewritten as an immediate value that is the number of block depths
125 // + 1 in rewriteDepthImmediates, and this fake BB will be removed at the end
126 // of the pass.
127 MachineBasicBlock *FakeCallerBB = nullptr;
128 MachineBasicBlock *getFakeCallerBlock(MachineFunction &MF) {
129 if (!FakeCallerBB)
130 FakeCallerBB = MF.CreateMachineBasicBlock();
131 return FakeCallerBB;
132 }
133
134 // Helper functions to register / unregister scope information created by
135 // marker instructions.
136 void registerScope(MachineInstr *Begin, MachineInstr *End);
137 void registerTryScope(MachineInstr *Begin, MachineInstr *End,
138 MachineBasicBlock *EHPad);
139 void unregisterScope(MachineInstr *Begin);
140
141public:
142 static char ID; // Pass identification, replacement for typeid
143 WebAssemblyCFGStackify() : MachineFunctionPass(ID) {}
144 ~WebAssemblyCFGStackify() override { releaseMemory(); }
145 void releaseMemory() override;
146};
147} // end anonymous namespace
148
149char WebAssemblyCFGStackify::ID = 0;
150INITIALIZE_PASS(WebAssemblyCFGStackify, DEBUG_TYPE,
151 "Insert BLOCK/LOOP/TRY markers for WebAssembly scopes", false,
152 false)
153
154FunctionPass *llvm::createWebAssemblyCFGStackify() {
155 return new WebAssemblyCFGStackify();
156}
157
158/// Test whether Pred has any terminators explicitly branching to MBB, as
159/// opposed to falling through. Note that it's possible (eg. in unoptimized
160/// code) for a branch instruction to both branch to a block and fallthrough
161/// to it, so we check the actual branch operands to see if there are any
162/// explicit mentions.
163static bool explicitlyBranchesTo(MachineBasicBlock *Pred,
164 MachineBasicBlock *MBB) {
165 for (MachineInstr &MI : Pred->terminators())
166 for (MachineOperand &MO : MI.explicit_operands())
167 if (MO.isMBB() && MO.getMBB() == MBB)
168 return true;
169 return false;
170}
171
172// Returns an iterator to the earliest position possible within the MBB,
173// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
174// contains instructions that should go before the marker, and AfterSet contains
175// ones that should go after the marker. In this function, AfterSet is only
176// used for validation checking.
177template <typename Container>
178static MachineBasicBlock::iterator
179getEarliestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
180 const Container &AfterSet) {
181 auto InsertPos = MBB->end();
182 while (InsertPos != MBB->begin()) {
183 if (BeforeSet.count(&*std::prev(x: InsertPos))) {
184#ifndef NDEBUG
185 // Validation check
186 for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos)
187 assert(!AfterSet.count(&*std::prev(Pos)));
188#endif
189 break;
190 }
191 --InsertPos;
192 }
193 return InsertPos;
194}
195
196// Returns an iterator to the latest position possible within the MBB,
197// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
198// contains instructions that should go before the marker, and AfterSet contains
199// ones that should go after the marker. In this function, BeforeSet is only
200// used for validation checking.
201template <typename Container>
202static MachineBasicBlock::iterator
203getLatestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
204 const Container &AfterSet) {
205 auto InsertPos = MBB->begin();
206 while (InsertPos != MBB->end()) {
207 if (AfterSet.count(&*InsertPos)) {
208#ifndef NDEBUG
209 // Validation check
210 for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos)
211 assert(!BeforeSet.count(&*Pos));
212#endif
213 break;
214 }
215 ++InsertPos;
216 }
217 return InsertPos;
218}
219
220void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin,
221 MachineInstr *End) {
222 BeginToEnd[Begin] = End;
223 EndToBegin[End] = Begin;
224}
225
226// When 'End' is not an 'end_try' but 'delegate, EHPad is nullptr.
227void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin,
228 MachineInstr *End,
229 MachineBasicBlock *EHPad) {
230 registerScope(Begin, End);
231 TryToEHPad[Begin] = EHPad;
232 EHPadToTry[EHPad] = Begin;
233}
234
235void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) {
236 assert(BeginToEnd.count(Begin));
237 MachineInstr *End = BeginToEnd[Begin];
238 assert(EndToBegin.count(End));
239 BeginToEnd.erase(Val: Begin);
240 EndToBegin.erase(Val: End);
241 MachineBasicBlock *EHPad = TryToEHPad.lookup(Val: Begin);
242 if (EHPad) {
243 assert(EHPadToTry.count(EHPad));
244 TryToEHPad.erase(Val: Begin);
245 EHPadToTry.erase(Val: EHPad);
246 }
247}
248
249/// Insert a BLOCK marker for branches to MBB (if needed).
250// TODO Consider a more generalized way of handling block (and also loop and
251// try) signatures when we implement the multi-value proposal later.
252void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) {
253 assert(!MBB.isEHPad());
254 MachineFunction &MF = *MBB.getParent();
255 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
256 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
257 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
258
259 // First compute the nearest common dominator of all forward non-fallthrough
260 // predecessors so that we minimize the time that the BLOCK is on the stack,
261 // which reduces overall stack height.
262 MachineBasicBlock *Header = nullptr;
263 bool IsBranchedTo = false;
264 int MBBNumber = MBB.getNumber();
265 for (MachineBasicBlock *Pred : MBB.predecessors()) {
266 if (Pred->getNumber() < MBBNumber) {
267 Header = Header ? MDT.findNearestCommonDominator(A: Header, B: Pred) : Pred;
268 if (explicitlyBranchesTo(Pred, MBB: &MBB))
269 IsBranchedTo = true;
270 }
271 }
272 if (!Header)
273 return;
274 if (!IsBranchedTo)
275 return;
276
277 assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
278 MachineBasicBlock *LayoutPred = MBB.getPrevNode();
279
280 // If the nearest common dominator is inside a more deeply nested context,
281 // walk out to the nearest scope which isn't more deeply nested.
282 for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
283 if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
284 if (ScopeTop->getNumber() > Header->getNumber()) {
285 // Skip over an intervening scope.
286 I = std::next(x: ScopeTop->getIterator());
287 } else {
288 // We found a scope level at an appropriate depth.
289 Header = ScopeTop;
290 break;
291 }
292 }
293 }
294
295 // Decide where in Header to put the BLOCK.
296
297 // Instructions that should go before the BLOCK.
298 SmallPtrSet<const MachineInstr *, 4> BeforeSet;
299 // Instructions that should go after the BLOCK.
300 SmallPtrSet<const MachineInstr *, 4> AfterSet;
301 for (const auto &MI : *Header) {
302 // If there is a previously placed LOOP marker and the bottom block of the
303 // loop is above MBB, it should be after the BLOCK, because the loop is
304 // nested in this BLOCK. Otherwise it should be before the BLOCK.
305 if (MI.getOpcode() == WebAssembly::LOOP) {
306 auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
307 if (MBB.getNumber() > LoopBottom->getNumber())
308 AfterSet.insert(Ptr: &MI);
309#ifndef NDEBUG
310 else
311 BeforeSet.insert(&MI);
312#endif
313 }
314
315 // If there is a previously placed BLOCK/TRY marker and its corresponding
316 // END marker is before the current BLOCK's END marker, that should be
317 // placed after this BLOCK. Otherwise it should be placed before this BLOCK
318 // marker.
319 if (MI.getOpcode() == WebAssembly::BLOCK ||
320 MI.getOpcode() == WebAssembly::TRY) {
321 if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber())
322 AfterSet.insert(Ptr: &MI);
323#ifndef NDEBUG
324 else
325 BeforeSet.insert(&MI);
326#endif
327 }
328
329#ifndef NDEBUG
330 // All END_(BLOCK|LOOP|TRY) markers should be before the BLOCK.
331 if (MI.getOpcode() == WebAssembly::END_BLOCK ||
332 MI.getOpcode() == WebAssembly::END_LOOP ||
333 MI.getOpcode() == WebAssembly::END_TRY)
334 BeforeSet.insert(&MI);
335#endif
336
337 // Terminators should go after the BLOCK.
338 if (MI.isTerminator())
339 AfterSet.insert(Ptr: &MI);
340 }
341
342 // Local expression tree should go after the BLOCK.
343 for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E;
344 --I) {
345 if (std::prev(x: I)->isDebugInstr() || std::prev(x: I)->isPosition())
346 continue;
347 if (WebAssembly::isChild(MI: *std::prev(x: I), MFI))
348 AfterSet.insert(Ptr: &*std::prev(x: I));
349 else
350 break;
351 }
352
353 // Add the BLOCK.
354 WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void;
355 auto InsertPos = getLatestInsertPos(MBB: Header, BeforeSet, AfterSet);
356 MachineInstr *Begin =
357 BuildMI(BB&: *Header, I: InsertPos, MIMD: Header->findDebugLoc(MBBI: InsertPos),
358 MCID: TII.get(Opcode: WebAssembly::BLOCK))
359 .addImm(Val: int64_t(ReturnType));
360
361 // Decide where in Header to put the END_BLOCK.
362 BeforeSet.clear();
363 AfterSet.clear();
364 for (auto &MI : MBB) {
365#ifndef NDEBUG
366 // END_BLOCK should precede existing LOOP and TRY markers.
367 if (MI.getOpcode() == WebAssembly::LOOP ||
368 MI.getOpcode() == WebAssembly::TRY)
369 AfterSet.insert(&MI);
370#endif
371
372 // If there is a previously placed END_LOOP marker and the header of the
373 // loop is above this block's header, the END_LOOP should be placed after
374 // the BLOCK, because the loop contains this block. Otherwise the END_LOOP
375 // should be placed before the BLOCK. The same for END_TRY.
376 if (MI.getOpcode() == WebAssembly::END_LOOP ||
377 MI.getOpcode() == WebAssembly::END_TRY) {
378 if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber())
379 BeforeSet.insert(Ptr: &MI);
380#ifndef NDEBUG
381 else
382 AfterSet.insert(&MI);
383#endif
384 }
385 }
386
387 // Mark the end of the block.
388 InsertPos = getEarliestInsertPos(MBB: &MBB, BeforeSet, AfterSet);
389 MachineInstr *End = BuildMI(BB&: MBB, I: InsertPos, MIMD: MBB.findPrevDebugLoc(MBBI: InsertPos),
390 MCID: TII.get(Opcode: WebAssembly::END_BLOCK));
391 registerScope(Begin, End);
392
393 // Track the farthest-spanning scope that ends at this point.
394 updateScopeTops(Begin: Header, End: &MBB);
395}
396
397/// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
398void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) {
399 MachineFunction &MF = *MBB.getParent();
400 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
401 const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
402 SortRegionInfo SRI(MLI, WEI);
403 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
404
405 MachineLoop *Loop = MLI.getLoopFor(BB: &MBB);
406 if (!Loop || Loop->getHeader() != &MBB)
407 return;
408
409 // The operand of a LOOP is the first block after the loop. If the loop is the
410 // bottom of the function, insert a dummy block at the end.
411 MachineBasicBlock *Bottom = SRI.getBottom(ML: Loop);
412 auto Iter = std::next(x: Bottom->getIterator());
413 if (Iter == MF.end()) {
414 getAppendixBlock(MF);
415 Iter = std::next(x: Bottom->getIterator());
416 }
417 MachineBasicBlock *AfterLoop = &*Iter;
418
419 // Decide where in Header to put the LOOP.
420 SmallPtrSet<const MachineInstr *, 4> BeforeSet;
421 SmallPtrSet<const MachineInstr *, 4> AfterSet;
422 for (const auto &MI : MBB) {
423 // LOOP marker should be after any existing loop that ends here. Otherwise
424 // we assume the instruction belongs to the loop.
425 if (MI.getOpcode() == WebAssembly::END_LOOP)
426 BeforeSet.insert(Ptr: &MI);
427#ifndef NDEBUG
428 else
429 AfterSet.insert(&MI);
430#endif
431 }
432
433 // Mark the beginning of the loop.
434 auto InsertPos = getEarliestInsertPos(MBB: &MBB, BeforeSet, AfterSet);
435 MachineInstr *Begin = BuildMI(BB&: MBB, I: InsertPos, MIMD: MBB.findDebugLoc(MBBI: InsertPos),
436 MCID: TII.get(Opcode: WebAssembly::LOOP))
437 .addImm(Val: int64_t(WebAssembly::BlockType::Void));
438
439 // Decide where in Header to put the END_LOOP.
440 BeforeSet.clear();
441 AfterSet.clear();
442#ifndef NDEBUG
443 for (const auto &MI : MBB)
444 // Existing END_LOOP markers belong to parent loops of this loop
445 if (MI.getOpcode() == WebAssembly::END_LOOP)
446 AfterSet.insert(&MI);
447#endif
448
449 // Mark the end of the loop (using arbitrary debug location that branched to
450 // the loop end as its location).
451 InsertPos = getEarliestInsertPos(MBB: AfterLoop, BeforeSet, AfterSet);
452 DebugLoc EndDL = AfterLoop->pred_empty()
453 ? DebugLoc()
454 : (*AfterLoop->pred_rbegin())->findBranchDebugLoc();
455 MachineInstr *End =
456 BuildMI(BB&: *AfterLoop, I: InsertPos, MIMD: EndDL, MCID: TII.get(Opcode: WebAssembly::END_LOOP));
457 registerScope(Begin, End);
458
459 assert((!ScopeTops[AfterLoop->getNumber()] ||
460 ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
461 "With block sorting the outermost loop for a block should be first.");
462 updateScopeTops(Begin: &MBB, End: AfterLoop);
463}
464
465void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) {
466 assert(MBB.isEHPad());
467 MachineFunction &MF = *MBB.getParent();
468 auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
469 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
470 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
471 const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
472 SortRegionInfo SRI(MLI, WEI);
473 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
474
475 // Compute the nearest common dominator of all unwind predecessors
476 MachineBasicBlock *Header = nullptr;
477 int MBBNumber = MBB.getNumber();
478 for (auto *Pred : MBB.predecessors()) {
479 if (Pred->getNumber() < MBBNumber) {
480 Header = Header ? MDT.findNearestCommonDominator(A: Header, B: Pred) : Pred;
481 assert(!explicitlyBranchesTo(Pred, &MBB) &&
482 "Explicit branch to an EH pad!");
483 }
484 }
485 if (!Header)
486 return;
487
488 // If this try is at the bottom of the function, insert a dummy block at the
489 // end.
490 WebAssemblyException *WE = WEI.getExceptionFor(MBB: &MBB);
491 assert(WE);
492 MachineBasicBlock *Bottom = SRI.getBottom(WE);
493
494 auto Iter = std::next(x: Bottom->getIterator());
495 if (Iter == MF.end()) {
496 getAppendixBlock(MF);
497 Iter = std::next(x: Bottom->getIterator());
498 }
499 MachineBasicBlock *Cont = &*Iter;
500
501 assert(Cont != &MF.front());
502 MachineBasicBlock *LayoutPred = Cont->getPrevNode();
503
504 // If the nearest common dominator is inside a more deeply nested context,
505 // walk out to the nearest scope which isn't more deeply nested.
506 for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
507 if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
508 if (ScopeTop->getNumber() > Header->getNumber()) {
509 // Skip over an intervening scope.
510 I = std::next(x: ScopeTop->getIterator());
511 } else {
512 // We found a scope level at an appropriate depth.
513 Header = ScopeTop;
514 break;
515 }
516 }
517 }
518
519 // Decide where in Header to put the TRY.
520
521 // Instructions that should go before the TRY.
522 SmallPtrSet<const MachineInstr *, 4> BeforeSet;
523 // Instructions that should go after the TRY.
524 SmallPtrSet<const MachineInstr *, 4> AfterSet;
525 for (const auto &MI : *Header) {
526 // If there is a previously placed LOOP marker and the bottom block of the
527 // loop is above MBB, it should be after the TRY, because the loop is nested
528 // in this TRY. Otherwise it should be before the TRY.
529 if (MI.getOpcode() == WebAssembly::LOOP) {
530 auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
531 if (MBB.getNumber() > LoopBottom->getNumber())
532 AfterSet.insert(Ptr: &MI);
533#ifndef NDEBUG
534 else
535 BeforeSet.insert(&MI);
536#endif
537 }
538
539 // All previously inserted BLOCK/TRY markers should be after the TRY because
540 // they are all nested trys.
541 if (MI.getOpcode() == WebAssembly::BLOCK ||
542 MI.getOpcode() == WebAssembly::TRY)
543 AfterSet.insert(Ptr: &MI);
544
545#ifndef NDEBUG
546 // All END_(BLOCK/LOOP/TRY) markers should be before the TRY.
547 if (MI.getOpcode() == WebAssembly::END_BLOCK ||
548 MI.getOpcode() == WebAssembly::END_LOOP ||
549 MI.getOpcode() == WebAssembly::END_TRY)
550 BeforeSet.insert(&MI);
551#endif
552
553 // Terminators should go after the TRY.
554 if (MI.isTerminator())
555 AfterSet.insert(Ptr: &MI);
556 }
557
558 // If Header unwinds to MBB (= Header contains 'invoke'), the try block should
559 // contain the call within it. So the call should go after the TRY. The
560 // exception is when the header's terminator is a rethrow instruction, in
561 // which case that instruction, not a call instruction before it, is gonna
562 // throw.
563 MachineInstr *ThrowingCall = nullptr;
564 if (MBB.isPredecessor(MBB: Header)) {
565 auto TermPos = Header->getFirstTerminator();
566 if (TermPos == Header->end() ||
567 TermPos->getOpcode() != WebAssembly::RETHROW) {
568 for (auto &MI : reverse(C&: *Header)) {
569 if (MI.isCall()) {
570 AfterSet.insert(Ptr: &MI);
571 ThrowingCall = &MI;
572 // Possibly throwing calls are usually wrapped by EH_LABEL
573 // instructions. We don't want to split them and the call.
574 if (MI.getIterator() != Header->begin() &&
575 std::prev(x: MI.getIterator())->isEHLabel()) {
576 AfterSet.insert(Ptr: &*std::prev(x: MI.getIterator()));
577 ThrowingCall = &*std::prev(x: MI.getIterator());
578 }
579 break;
580 }
581 }
582 }
583 }
584
585 // Local expression tree should go after the TRY.
586 // For BLOCK placement, we start the search from the previous instruction of a
587 // BB's terminator, but in TRY's case, we should start from the previous
588 // instruction of a call that can throw, or a EH_LABEL that precedes the call,
589 // because the return values of the call's previous instructions can be
590 // stackified and consumed by the throwing call.
591 auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall)
592 : Header->getFirstTerminator();
593 for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) {
594 if (std::prev(x: I)->isDebugInstr() || std::prev(x: I)->isPosition())
595 continue;
596 if (WebAssembly::isChild(MI: *std::prev(x: I), MFI))
597 AfterSet.insert(Ptr: &*std::prev(x: I));
598 else
599 break;
600 }
601
602 // Add the TRY.
603 auto InsertPos = getLatestInsertPos(MBB: Header, BeforeSet, AfterSet);
604 MachineInstr *Begin =
605 BuildMI(BB&: *Header, I: InsertPos, MIMD: Header->findDebugLoc(MBBI: InsertPos),
606 MCID: TII.get(Opcode: WebAssembly::TRY))
607 .addImm(Val: int64_t(WebAssembly::BlockType::Void));
608
609 // Decide where in Header to put the END_TRY.
610 BeforeSet.clear();
611 AfterSet.clear();
612 for (const auto &MI : *Cont) {
613#ifndef NDEBUG
614 // END_TRY should precede existing LOOP and BLOCK markers.
615 if (MI.getOpcode() == WebAssembly::LOOP ||
616 MI.getOpcode() == WebAssembly::BLOCK)
617 AfterSet.insert(&MI);
618
619 // All END_TRY markers placed earlier belong to exceptions that contains
620 // this one.
621 if (MI.getOpcode() == WebAssembly::END_TRY)
622 AfterSet.insert(&MI);
623#endif
624
625 // If there is a previously placed END_LOOP marker and its header is after
626 // where TRY marker is, this loop is contained within the 'catch' part, so
627 // the END_TRY marker should go after that. Otherwise, the whole try-catch
628 // is contained within this loop, so the END_TRY should go before that.
629 if (MI.getOpcode() == WebAssembly::END_LOOP) {
630 // For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they
631 // are in the same BB, LOOP is always before TRY.
632 if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber())
633 BeforeSet.insert(Ptr: &MI);
634#ifndef NDEBUG
635 else
636 AfterSet.insert(&MI);
637#endif
638 }
639
640 // It is not possible for an END_BLOCK to be already in this block.
641 }
642
643 // Mark the end of the TRY.
644 InsertPos = getEarliestInsertPos(MBB: Cont, BeforeSet, AfterSet);
645 MachineInstr *End =
646 BuildMI(BB&: *Cont, I: InsertPos, MIMD: Bottom->findBranchDebugLoc(),
647 MCID: TII.get(Opcode: WebAssembly::END_TRY));
648 registerTryScope(Begin, End, EHPad: &MBB);
649
650 // Track the farthest-spanning scope that ends at this point. We create two
651 // mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB
652 // with 'try'). We need to create 'catch' -> 'try' mapping here too because
653 // markers should not span across 'catch'. For example, this should not
654 // happen:
655 //
656 // try
657 // block --| (X)
658 // catch |
659 // end_block --|
660 // end_try
661 for (auto *End : {&MBB, Cont})
662 updateScopeTops(Begin: Header, End);
663}
664
665void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) {
666 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
667
668 // When there is an unconditional branch right before a catch instruction and
669 // it branches to the end of end_try marker, we don't need the branch, because
670 // if there is no exception, the control flow transfers to that point anyway.
671 // bb0:
672 // try
673 // ...
674 // br bb2 <- Not necessary
675 // bb1 (ehpad):
676 // catch
677 // ...
678 // bb2: <- Continuation BB
679 // end
680 //
681 // A more involved case: When the BB where 'end' is located is an another EH
682 // pad, the Cont (= continuation) BB is that EH pad's 'end' BB. For example,
683 // bb0:
684 // try
685 // try
686 // ...
687 // br bb3 <- Not necessary
688 // bb1 (ehpad):
689 // catch
690 // bb2 (ehpad):
691 // end
692 // catch
693 // ...
694 // bb3: <- Continuation BB
695 // end
696 //
697 // When the EH pad at hand is bb1, its matching end_try is in bb2. But it is
698 // another EH pad, so bb0's continuation BB becomes bb3. So 'br bb3' in the
699 // code can be deleted. This is why we run 'while' until 'Cont' is not an EH
700 // pad.
701 for (auto &MBB : MF) {
702 if (!MBB.isEHPad())
703 continue;
704
705 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
706 SmallVector<MachineOperand, 4> Cond;
707 MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode();
708
709 MachineBasicBlock *Cont = &MBB;
710 while (Cont->isEHPad()) {
711 MachineInstr *Try = EHPadToTry[Cont];
712 MachineInstr *EndTry = BeginToEnd[Try];
713 // We started from an EH pad, so the end marker cannot be a delegate
714 assert(EndTry->getOpcode() != WebAssembly::DELEGATE);
715 Cont = EndTry->getParent();
716 }
717
718 bool Analyzable = !TII.analyzeBranch(MBB&: *EHPadLayoutPred, TBB, FBB, Cond);
719 // This condition means either
720 // 1. This BB ends with a single unconditional branch whose destinaion is
721 // Cont.
722 // 2. This BB ends with a conditional branch followed by an unconditional
723 // branch, and the unconditional branch's destination is Cont.
724 // In both cases, we want to remove the last (= unconditional) branch.
725 if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) ||
726 (!Cond.empty() && FBB && FBB == Cont))) {
727 bool ErasedUncondBr = false;
728 (void)ErasedUncondBr;
729 for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin();
730 I != E; --I) {
731 auto PrevI = std::prev(x: I);
732 if (PrevI->isTerminator()) {
733 assert(PrevI->getOpcode() == WebAssembly::BR);
734 PrevI->eraseFromParent();
735 ErasedUncondBr = true;
736 break;
737 }
738 }
739 assert(ErasedUncondBr && "Unconditional branch not erased!");
740 }
741 }
742
743 // When there are block / end_block markers that overlap with try / end_try
744 // markers, and the block and try markers' return types are the same, the
745 // block /end_block markers are not necessary, because try / end_try markers
746 // also can serve as boundaries for branches.
747 // block <- Not necessary
748 // try
749 // ...
750 // catch
751 // ...
752 // end
753 // end <- Not necessary
754 SmallVector<MachineInstr *, 32> ToDelete;
755 for (auto &MBB : MF) {
756 for (auto &MI : MBB) {
757 if (MI.getOpcode() != WebAssembly::TRY)
758 continue;
759 MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try];
760 if (EndTry->getOpcode() == WebAssembly::DELEGATE)
761 continue;
762
763 MachineBasicBlock *TryBB = Try->getParent();
764 MachineBasicBlock *Cont = EndTry->getParent();
765 int64_t RetType = Try->getOperand(i: 0).getImm();
766 for (auto B = Try->getIterator(), E = std::next(x: EndTry->getIterator());
767 B != TryBB->begin() && E != Cont->end() &&
768 std::prev(x: B)->getOpcode() == WebAssembly::BLOCK &&
769 E->getOpcode() == WebAssembly::END_BLOCK &&
770 std::prev(x: B)->getOperand(i: 0).getImm() == RetType;
771 --B, ++E) {
772 ToDelete.push_back(Elt: &*std::prev(x: B));
773 ToDelete.push_back(Elt: &*E);
774 }
775 }
776 }
777 for (auto *MI : ToDelete) {
778 if (MI->getOpcode() == WebAssembly::BLOCK)
779 unregisterScope(Begin: MI);
780 MI->eraseFromParent();
781 }
782}
783
784// When MBB is split into MBB and Split, we should unstackify defs in MBB that
785// have their uses in Split.
786static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB,
787 MachineBasicBlock &Split) {
788 MachineFunction &MF = *MBB.getParent();
789 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
790 auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
791 auto &MRI = MF.getRegInfo();
792
793 for (auto &MI : Split) {
794 for (auto &MO : MI.explicit_uses()) {
795 if (!MO.isReg() || MO.getReg().isPhysical())
796 continue;
797 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg: MO.getReg()))
798 if (Def->getParent() == &MBB)
799 MFI.unstackifyVReg(VReg: MO.getReg());
800 }
801 }
802
803 // In RegStackify, when a register definition is used multiple times,
804 // Reg = INST ...
805 // INST ..., Reg, ...
806 // INST ..., Reg, ...
807 // INST ..., Reg, ...
808 //
809 // we introduce a TEE, which has the following form:
810 // DefReg = INST ...
811 // TeeReg, Reg = TEE_... DefReg
812 // INST ..., TeeReg, ...
813 // INST ..., Reg, ...
814 // INST ..., Reg, ...
815 // with DefReg and TeeReg stackified but Reg not stackified.
816 //
817 // But the invariant that TeeReg should be stackified can be violated while we
818 // unstackify registers in the split BB above. In this case, we convert TEEs
819 // into two COPYs. This COPY will be eventually eliminated in ExplicitLocals.
820 // DefReg = INST ...
821 // TeeReg = COPY DefReg
822 // Reg = COPY DefReg
823 // INST ..., TeeReg, ...
824 // INST ..., Reg, ...
825 // INST ..., Reg, ...
826 for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) {
827 if (!WebAssembly::isTee(Opc: MI.getOpcode()))
828 continue;
829 Register TeeReg = MI.getOperand(i: 0).getReg();
830 Register Reg = MI.getOperand(i: 1).getReg();
831 Register DefReg = MI.getOperand(i: 2).getReg();
832 if (!MFI.isVRegStackified(VReg: TeeReg)) {
833 // Now we are not using TEE anymore, so unstackify DefReg too
834 MFI.unstackifyVReg(VReg: DefReg);
835 unsigned CopyOpc =
836 WebAssembly::getCopyOpcodeForRegClass(RC: MRI.getRegClass(Reg: DefReg));
837 BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode: CopyOpc), DestReg: TeeReg)
838 .addReg(RegNo: DefReg);
839 BuildMI(BB&: MBB, I: &MI, MIMD: MI.getDebugLoc(), MCID: TII.get(Opcode: CopyOpc), DestReg: Reg).addReg(RegNo: DefReg);
840 MI.eraseFromParent();
841 }
842 }
843}
844
845// Wrap the given range of instruction with try-delegate. RangeBegin and
846// RangeEnd are inclusive.
847void WebAssemblyCFGStackify::addTryDelegate(MachineInstr *RangeBegin,
848 MachineInstr *RangeEnd,
849 MachineBasicBlock *DelegateDest) {
850 auto *BeginBB = RangeBegin->getParent();
851 auto *EndBB = RangeEnd->getParent();
852 MachineFunction &MF = *BeginBB->getParent();
853 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
854 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
855
856 // Local expression tree before the first call of this range should go
857 // after the nested TRY.
858 SmallPtrSet<const MachineInstr *, 4> AfterSet;
859 AfterSet.insert(Ptr: RangeBegin);
860 for (auto I = MachineBasicBlock::iterator(RangeBegin), E = BeginBB->begin();
861 I != E; --I) {
862 if (std::prev(x: I)->isDebugInstr() || std::prev(x: I)->isPosition())
863 continue;
864 if (WebAssembly::isChild(MI: *std::prev(x: I), MFI))
865 AfterSet.insert(Ptr: &*std::prev(x: I));
866 else
867 break;
868 }
869
870 // Create the nested try instruction.
871 auto TryPos = getLatestInsertPos(
872 MBB: BeginBB, BeforeSet: SmallPtrSet<const MachineInstr *, 4>(), AfterSet);
873 MachineInstr *Try = BuildMI(BB&: *BeginBB, I: TryPos, MIMD: RangeBegin->getDebugLoc(),
874 MCID: TII.get(Opcode: WebAssembly::TRY))
875 .addImm(Val: int64_t(WebAssembly::BlockType::Void));
876
877 // Create a BB to insert the 'delegate' instruction.
878 MachineBasicBlock *DelegateBB = MF.CreateMachineBasicBlock();
879 // If the destination of 'delegate' is not the caller, adds the destination to
880 // the BB's successors.
881 if (DelegateDest != FakeCallerBB)
882 DelegateBB->addSuccessor(Succ: DelegateDest);
883
884 auto SplitPos = std::next(x: RangeEnd->getIterator());
885 if (SplitPos == EndBB->end()) {
886 // If the range's end instruction is at the end of the BB, insert the new
887 // delegate BB after the current BB.
888 MF.insert(MBBI: std::next(x: EndBB->getIterator()), MBB: DelegateBB);
889 EndBB->addSuccessor(Succ: DelegateBB);
890
891 } else {
892 // When the split pos is in the middle of a BB, we split the BB into two and
893 // put the 'delegate' BB in between. We normally create a split BB and make
894 // it a successor of the original BB (PostSplit == true), but in case the BB
895 // is an EH pad and the split pos is before 'catch', we should preserve the
896 // BB's property, including that it is an EH pad, in the later part of the
897 // BB, where 'catch' is. In this case we set PostSplit to false.
898 bool PostSplit = true;
899 if (EndBB->isEHPad()) {
900 for (auto I = MachineBasicBlock::iterator(SplitPos), E = EndBB->end();
901 I != E; ++I) {
902 if (WebAssembly::isCatch(Opc: I->getOpcode())) {
903 PostSplit = false;
904 break;
905 }
906 }
907 }
908
909 MachineBasicBlock *PreBB = nullptr, *PostBB = nullptr;
910 if (PostSplit) {
911 // If the range's end instruction is in the middle of the BB, we split the
912 // BB into two and insert the delegate BB in between.
913 // - Before:
914 // bb:
915 // range_end
916 // other_insts
917 //
918 // - After:
919 // pre_bb: (previous 'bb')
920 // range_end
921 // delegate_bb: (new)
922 // delegate
923 // post_bb: (new)
924 // other_insts
925 PreBB = EndBB;
926 PostBB = MF.CreateMachineBasicBlock();
927 MF.insert(MBBI: std::next(x: PreBB->getIterator()), MBB: PostBB);
928 MF.insert(MBBI: std::next(x: PreBB->getIterator()), MBB: DelegateBB);
929 PostBB->splice(Where: PostBB->end(), Other: PreBB, From: SplitPos, To: PreBB->end());
930 PostBB->transferSuccessors(FromMBB: PreBB);
931 } else {
932 // - Before:
933 // ehpad:
934 // range_end
935 // catch
936 // ...
937 //
938 // - After:
939 // pre_bb: (new)
940 // range_end
941 // delegate_bb: (new)
942 // delegate
943 // post_bb: (previous 'ehpad')
944 // catch
945 // ...
946 assert(EndBB->isEHPad());
947 PreBB = MF.CreateMachineBasicBlock();
948 PostBB = EndBB;
949 MF.insert(MBBI: PostBB->getIterator(), MBB: PreBB);
950 MF.insert(MBBI: PostBB->getIterator(), MBB: DelegateBB);
951 PreBB->splice(Where: PreBB->end(), Other: PostBB, From: PostBB->begin(), To: SplitPos);
952 // We don't need to transfer predecessors of the EH pad to 'PreBB',
953 // because an EH pad's predecessors are all through unwind edges and they
954 // should still unwind to the EH pad, not PreBB.
955 }
956 unstackifyVRegsUsedInSplitBB(MBB&: *PreBB, Split&: *PostBB);
957 PreBB->addSuccessor(Succ: DelegateBB);
958 PreBB->addSuccessor(Succ: PostBB);
959 }
960
961 // Add 'delegate' instruction in the delegate BB created above.
962 MachineInstr *Delegate = BuildMI(BB: DelegateBB, MIMD: RangeEnd->getDebugLoc(),
963 MCID: TII.get(Opcode: WebAssembly::DELEGATE))
964 .addMBB(MBB: DelegateDest);
965 registerTryScope(Begin: Try, End: Delegate, EHPad: nullptr);
966}
967
968bool WebAssemblyCFGStackify::fixCallUnwindMismatches(MachineFunction &MF) {
969 // Linearizing the control flow by placing TRY / END_TRY markers can create
970 // mismatches in unwind destinations for throwing instructions, such as calls.
971 //
972 // We use the 'delegate' instruction to fix the unwind mismatches. 'delegate'
973 // instruction delegates an exception to an outer 'catch'. It can target not
974 // only 'catch' but all block-like structures including another 'delegate',
975 // but with slightly different semantics than branches. When it targets a
976 // 'catch', it will delegate the exception to that catch. It is being
977 // discussed how to define the semantics when 'delegate''s target is a non-try
978 // block: it will either be a validation failure or it will target the next
979 // outer try-catch. But anyway our LLVM backend currently does not generate
980 // such code. The example below illustrates where the 'delegate' instruction
981 // in the middle will delegate the exception to, depending on the value of N.
982 // try
983 // try
984 // block
985 // try
986 // try
987 // call @foo
988 // delegate N ;; Where will this delegate to?
989 // catch ;; N == 0
990 // end
991 // end ;; N == 1 (invalid; will not be generated)
992 // delegate ;; N == 2
993 // catch ;; N == 3
994 // end
995 // ;; N == 4 (to caller)
996
997 // 1. When an instruction may throw, but the EH pad it will unwind to can be
998 // different from the original CFG.
999 //
1000 // Example: we have the following CFG:
1001 // bb0:
1002 // call @foo ; if it throws, unwind to bb2
1003 // bb1:
1004 // call @bar ; if it throws, unwind to bb3
1005 // bb2 (ehpad):
1006 // catch
1007 // ...
1008 // bb3 (ehpad)
1009 // catch
1010 // ...
1011 //
1012 // And the CFG is sorted in this order. Then after placing TRY markers, it
1013 // will look like: (BB markers are omitted)
1014 // try
1015 // try
1016 // call @foo
1017 // call @bar ;; if it throws, unwind to bb3
1018 // catch ;; ehpad (bb2)
1019 // ...
1020 // end_try
1021 // catch ;; ehpad (bb3)
1022 // ...
1023 // end_try
1024 //
1025 // Now if bar() throws, it is going to end up ip in bb2, not bb3, where it
1026 // is supposed to end up. We solve this problem by wrapping the mismatching
1027 // call with an inner try-delegate that rethrows the exception to the right
1028 // 'catch'.
1029 //
1030 // try
1031 // try
1032 // call @foo
1033 // try ;; (new)
1034 // call @bar
1035 // delegate 1 (bb3) ;; (new)
1036 // catch ;; ehpad (bb2)
1037 // ...
1038 // end_try
1039 // catch ;; ehpad (bb3)
1040 // ...
1041 // end_try
1042 //
1043 // ---
1044 // 2. The same as 1, but in this case an instruction unwinds to a caller
1045 // function and not another EH pad.
1046 //
1047 // Example: we have the following CFG:
1048 // bb0:
1049 // call @foo ; if it throws, unwind to bb2
1050 // bb1:
1051 // call @bar ; if it throws, unwind to caller
1052 // bb2 (ehpad):
1053 // catch
1054 // ...
1055 //
1056 // And the CFG is sorted in this order. Then after placing TRY markers, it
1057 // will look like:
1058 // try
1059 // call @foo
1060 // call @bar ;; if it throws, unwind to caller
1061 // catch ;; ehpad (bb2)
1062 // ...
1063 // end_try
1064 //
1065 // Now if bar() throws, it is going to end up ip in bb2, when it is supposed
1066 // throw up to the caller. We solve this problem in the same way, but in this
1067 // case 'delegate's immediate argument is the number of block depths + 1,
1068 // which means it rethrows to the caller.
1069 // try
1070 // call @foo
1071 // try ;; (new)
1072 // call @bar
1073 // delegate 1 (caller) ;; (new)
1074 // catch ;; ehpad (bb2)
1075 // ...
1076 // end_try
1077 //
1078 // Before rewriteDepthImmediates, delegate's argument is a BB. In case of the
1079 // caller, it will take a fake BB generated by getFakeCallerBlock(), which
1080 // will be converted to a correct immediate argument later.
1081 //
1082 // In case there are multiple calls in a BB that may throw to the caller, they
1083 // can be wrapped together in one nested try-delegate scope. (In 1, this
1084 // couldn't happen, because may-throwing instruction there had an unwind
1085 // destination, i.e., it was an invoke before, and there could be only one
1086 // invoke within a BB.)
1087
1088 SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1089 // Range of intructions to be wrapped in a new nested try/catch. A range
1090 // exists in a single BB and does not span multiple BBs.
1091 using TryRange = std::pair<MachineInstr *, MachineInstr *>;
1092 // In original CFG, <unwind destination BB, a vector of try ranges>
1093 DenseMap<MachineBasicBlock *, SmallVector<TryRange, 4>> UnwindDestToTryRanges;
1094
1095 // Gather possibly throwing calls (i.e., previously invokes) whose current
1096 // unwind destination is not the same as the original CFG. (Case 1)
1097
1098 for (auto &MBB : reverse(C&: MF)) {
1099 bool SeenThrowableInstInBB = false;
1100 for (auto &MI : reverse(C&: MBB)) {
1101 if (MI.getOpcode() == WebAssembly::TRY)
1102 EHPadStack.pop_back();
1103 else if (WebAssembly::isCatch(Opc: MI.getOpcode()))
1104 EHPadStack.push_back(Elt: MI.getParent());
1105
1106 // In this loop we only gather calls that have an EH pad to unwind. So
1107 // there will be at most 1 such call (= invoke) in a BB, so after we've
1108 // seen one, we can skip the rest of BB. Also if MBB has no EH pad
1109 // successor or MI does not throw, this is not an invoke.
1110 if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() ||
1111 !WebAssembly::mayThrow(MI))
1112 continue;
1113 SeenThrowableInstInBB = true;
1114
1115 // If the EH pad on the stack top is where this instruction should unwind
1116 // next, we're good.
1117 MachineBasicBlock *UnwindDest = getFakeCallerBlock(MF);
1118 for (auto *Succ : MBB.successors()) {
1119 // Even though semantically a BB can have multiple successors in case an
1120 // exception is not caught by a catchpad, in our backend implementation
1121 // it is guaranteed that a BB can have at most one EH pad successor. For
1122 // details, refer to comments in findWasmUnwindDestinations function in
1123 // SelectionDAGBuilder.cpp.
1124 if (Succ->isEHPad()) {
1125 UnwindDest = Succ;
1126 break;
1127 }
1128 }
1129 if (EHPadStack.back() == UnwindDest)
1130 continue;
1131
1132 // Include EH_LABELs in the range before and afer the invoke
1133 MachineInstr *RangeBegin = &MI, *RangeEnd = &MI;
1134 if (RangeBegin->getIterator() != MBB.begin() &&
1135 std::prev(x: RangeBegin->getIterator())->isEHLabel())
1136 RangeBegin = &*std::prev(x: RangeBegin->getIterator());
1137 if (std::next(x: RangeEnd->getIterator()) != MBB.end() &&
1138 std::next(x: RangeEnd->getIterator())->isEHLabel())
1139 RangeEnd = &*std::next(x: RangeEnd->getIterator());
1140
1141 // If not, record the range.
1142 UnwindDestToTryRanges[UnwindDest].push_back(
1143 Elt: TryRange(RangeBegin, RangeEnd));
1144 LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " << MBB.getName()
1145 << "\nCall = " << MI
1146 << "\nOriginal dest = " << UnwindDest->getName()
1147 << " Current dest = " << EHPadStack.back()->getName()
1148 << "\n\n");
1149 }
1150 }
1151
1152 assert(EHPadStack.empty());
1153
1154 // Gather possibly throwing calls that are supposed to unwind up to the caller
1155 // if they throw, but currently unwind to an incorrect destination. Unlike the
1156 // loop above, there can be multiple calls within a BB that unwind to the
1157 // caller, which we should group together in a range. (Case 2)
1158
1159 MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive
1160
1161 // Record the range.
1162 auto RecordCallerMismatchRange = [&](const MachineBasicBlock *CurrentDest) {
1163 UnwindDestToTryRanges[getFakeCallerBlock(MF)].push_back(
1164 Elt: TryRange(RangeBegin, RangeEnd));
1165 LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = "
1166 << RangeBegin->getParent()->getName()
1167 << "\nRange begin = " << *RangeBegin
1168 << "Range end = " << *RangeEnd
1169 << "\nOriginal dest = caller Current dest = "
1170 << CurrentDest->getName() << "\n\n");
1171 RangeBegin = RangeEnd = nullptr; // Reset range pointers
1172 };
1173
1174 for (auto &MBB : reverse(C&: MF)) {
1175 bool SeenThrowableInstInBB = false;
1176 for (auto &MI : reverse(C&: MBB)) {
1177 bool MayThrow = WebAssembly::mayThrow(MI);
1178
1179 // If MBB has an EH pad successor and this is the last instruction that
1180 // may throw, this instruction unwinds to the EH pad and not to the
1181 // caller.
1182 if (MBB.hasEHPadSuccessor() && MayThrow && !SeenThrowableInstInBB)
1183 SeenThrowableInstInBB = true;
1184
1185 // We wrap up the current range when we see a marker even if we haven't
1186 // finished a BB.
1187 else if (RangeEnd && WebAssembly::isMarker(Opc: MI.getOpcode()))
1188 RecordCallerMismatchRange(EHPadStack.back());
1189
1190 // If EHPadStack is empty, that means it correctly unwinds to the caller
1191 // if it throws, so we're good. If MI does not throw, we're good too.
1192 else if (EHPadStack.empty() || !MayThrow) {
1193 }
1194
1195 // We found an instruction that unwinds to the caller but currently has an
1196 // incorrect unwind destination. Create a new range or increment the
1197 // currently existing range.
1198 else {
1199 if (!RangeEnd)
1200 RangeBegin = RangeEnd = &MI;
1201 else
1202 RangeBegin = &MI;
1203 }
1204
1205 // Update EHPadStack.
1206 if (MI.getOpcode() == WebAssembly::TRY)
1207 EHPadStack.pop_back();
1208 else if (WebAssembly::isCatch(Opc: MI.getOpcode()))
1209 EHPadStack.push_back(Elt: MI.getParent());
1210 }
1211
1212 if (RangeEnd)
1213 RecordCallerMismatchRange(EHPadStack.back());
1214 }
1215
1216 assert(EHPadStack.empty());
1217
1218 // We don't have any unwind destination mismatches to resolve.
1219 if (UnwindDestToTryRanges.empty())
1220 return false;
1221
1222 // Now we fix the mismatches by wrapping calls with inner try-delegates.
1223 for (auto &P : UnwindDestToTryRanges) {
1224 NumCallUnwindMismatches += P.second.size();
1225 MachineBasicBlock *UnwindDest = P.first;
1226 auto &TryRanges = P.second;
1227
1228 for (auto Range : TryRanges) {
1229 MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr;
1230 std::tie(args&: RangeBegin, args&: RangeEnd) = Range;
1231 auto *MBB = RangeBegin->getParent();
1232
1233 // If this BB has an EH pad successor, i.e., ends with an 'invoke', now we
1234 // are going to wrap the invoke with try-delegate, making the 'delegate'
1235 // BB the new successor instead, so remove the EH pad succesor here. The
1236 // BB may not have an EH pad successor if calls in this BB throw to the
1237 // caller.
1238 MachineBasicBlock *EHPad = nullptr;
1239 for (auto *Succ : MBB->successors()) {
1240 if (Succ->isEHPad()) {
1241 EHPad = Succ;
1242 break;
1243 }
1244 }
1245 if (EHPad)
1246 MBB->removeSuccessor(Succ: EHPad);
1247
1248 addTryDelegate(RangeBegin, RangeEnd, DelegateDest: UnwindDest);
1249 }
1250 }
1251
1252 return true;
1253}
1254
1255bool WebAssemblyCFGStackify::fixCatchUnwindMismatches(MachineFunction &MF) {
1256 // There is another kind of unwind destination mismatches besides call unwind
1257 // mismatches, which we will call "catch unwind mismatches". See this example
1258 // after the marker placement:
1259 // try
1260 // try
1261 // call @foo
1262 // catch __cpp_exception ;; ehpad A (next unwind dest: caller)
1263 // ...
1264 // end_try
1265 // catch_all ;; ehpad B
1266 // ...
1267 // end_try
1268 //
1269 // 'call @foo's unwind destination is the ehpad A. But suppose 'call @foo'
1270 // throws a foreign exception that is not caught by ehpad A, and its next
1271 // destination should be the caller. But after control flow linearization,
1272 // another EH pad can be placed in between (e.g. ehpad B here), making the
1273 // next unwind destination incorrect. In this case, the foreign exception
1274 // will instead go to ehpad B and will be caught there instead. In this
1275 // example the correct next unwind destination is the caller, but it can be
1276 // another outer catch in other cases.
1277 //
1278 // There is no specific 'call' or 'throw' instruction to wrap with a
1279 // try-delegate, so we wrap the whole try-catch-end with a try-delegate and
1280 // make it rethrow to the right destination, as in the example below:
1281 // try
1282 // try ;; (new)
1283 // try
1284 // call @foo
1285 // catch __cpp_exception ;; ehpad A (next unwind dest: caller)
1286 // ...
1287 // end_try
1288 // delegate 1 (caller) ;; (new)
1289 // catch_all ;; ehpad B
1290 // ...
1291 // end_try
1292
1293 const auto *EHInfo = MF.getWasmEHFuncInfo();
1294 assert(EHInfo);
1295 SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1296 // For EH pads that have catch unwind mismatches, a map of <EH pad, its
1297 // correct unwind destination>.
1298 DenseMap<MachineBasicBlock *, MachineBasicBlock *> EHPadToUnwindDest;
1299
1300 for (auto &MBB : reverse(C&: MF)) {
1301 for (auto &MI : reverse(C&: MBB)) {
1302 if (MI.getOpcode() == WebAssembly::TRY)
1303 EHPadStack.pop_back();
1304 else if (MI.getOpcode() == WebAssembly::DELEGATE)
1305 EHPadStack.push_back(Elt: &MBB);
1306 else if (WebAssembly::isCatch(Opc: MI.getOpcode())) {
1307 auto *EHPad = &MBB;
1308
1309 // catch_all always catches an exception, so we don't need to do
1310 // anything
1311 if (MI.getOpcode() == WebAssembly::CATCH_ALL) {
1312 }
1313
1314 // This can happen when the unwind dest was removed during the
1315 // optimization, e.g. because it was unreachable.
1316 else if (EHPadStack.empty() && EHInfo->hasUnwindDest(MBB: EHPad)) {
1317 LLVM_DEBUG(dbgs() << "EHPad (" << EHPad->getName()
1318 << "'s unwind destination does not exist anymore"
1319 << "\n\n");
1320 }
1321
1322 // The EHPad's next unwind destination is the caller, but we incorrectly
1323 // unwind to another EH pad.
1324 else if (!EHPadStack.empty() && !EHInfo->hasUnwindDest(MBB: EHPad)) {
1325 EHPadToUnwindDest[EHPad] = getFakeCallerBlock(MF);
1326 LLVM_DEBUG(dbgs()
1327 << "- Catch unwind mismatch:\nEHPad = " << EHPad->getName()
1328 << " Original dest = caller Current dest = "
1329 << EHPadStack.back()->getName() << "\n\n");
1330 }
1331
1332 // The EHPad's next unwind destination is an EH pad, whereas we
1333 // incorrectly unwind to another EH pad.
1334 else if (!EHPadStack.empty() && EHInfo->hasUnwindDest(MBB: EHPad)) {
1335 auto *UnwindDest = EHInfo->getUnwindDest(MBB: EHPad);
1336 if (EHPadStack.back() != UnwindDest) {
1337 EHPadToUnwindDest[EHPad] = UnwindDest;
1338 LLVM_DEBUG(dbgs() << "- Catch unwind mismatch:\nEHPad = "
1339 << EHPad->getName() << " Original dest = "
1340 << UnwindDest->getName() << " Current dest = "
1341 << EHPadStack.back()->getName() << "\n\n");
1342 }
1343 }
1344
1345 EHPadStack.push_back(Elt: EHPad);
1346 }
1347 }
1348 }
1349
1350 assert(EHPadStack.empty());
1351 if (EHPadToUnwindDest.empty())
1352 return false;
1353 NumCatchUnwindMismatches += EHPadToUnwindDest.size();
1354 SmallPtrSet<MachineBasicBlock *, 4> NewEndTryBBs;
1355
1356 for (auto &P : EHPadToUnwindDest) {
1357 MachineBasicBlock *EHPad = P.first;
1358 MachineBasicBlock *UnwindDest = P.second;
1359 MachineInstr *Try = EHPadToTry[EHPad];
1360 MachineInstr *EndTry = BeginToEnd[Try];
1361 addTryDelegate(RangeBegin: Try, RangeEnd: EndTry, DelegateDest: UnwindDest);
1362 NewEndTryBBs.insert(Ptr: EndTry->getParent());
1363 }
1364
1365 // Adding a try-delegate wrapping an existing try-catch-end can make existing
1366 // branch destination BBs invalid. For example,
1367 //
1368 // - Before:
1369 // bb0:
1370 // block
1371 // br bb3
1372 // bb1:
1373 // try
1374 // ...
1375 // bb2: (ehpad)
1376 // catch
1377 // bb3:
1378 // end_try
1379 // end_block ;; 'br bb3' targets here
1380 //
1381 // Suppose this try-catch-end has a catch unwind mismatch, so we need to wrap
1382 // this with a try-delegate. Then this becomes:
1383 //
1384 // - After:
1385 // bb0:
1386 // block
1387 // br bb3 ;; invalid destination!
1388 // bb1:
1389 // try ;; (new instruction)
1390 // try
1391 // ...
1392 // bb2: (ehpad)
1393 // catch
1394 // bb3:
1395 // end_try ;; 'br bb3' still incorrectly targets here!
1396 // delegate_bb: ;; (new BB)
1397 // delegate ;; (new instruction)
1398 // split_bb: ;; (new BB)
1399 // end_block
1400 //
1401 // Now 'br bb3' incorrectly branches to an inner scope.
1402 //
1403 // As we can see in this case, when branches target a BB that has both
1404 // 'end_try' and 'end_block' and the BB is split to insert a 'delegate', we
1405 // have to remap existing branch destinations so that they target not the
1406 // 'end_try' BB but the new 'end_block' BB. There can be multiple 'delegate's
1407 // in between, so we try to find the next BB with 'end_block' instruction. In
1408 // this example, the 'br bb3' instruction should be remapped to 'br split_bb'.
1409 for (auto &MBB : MF) {
1410 for (auto &MI : MBB) {
1411 if (MI.isTerminator()) {
1412 for (auto &MO : MI.operands()) {
1413 if (MO.isMBB() && NewEndTryBBs.count(Ptr: MO.getMBB())) {
1414 auto *BrDest = MO.getMBB();
1415 bool FoundEndBlock = false;
1416 for (; std::next(x: BrDest->getIterator()) != MF.end();
1417 BrDest = BrDest->getNextNode()) {
1418 for (const auto &MI : *BrDest) {
1419 if (MI.getOpcode() == WebAssembly::END_BLOCK) {
1420 FoundEndBlock = true;
1421 break;
1422 }
1423 }
1424 if (FoundEndBlock)
1425 break;
1426 }
1427 assert(FoundEndBlock);
1428 MO.setMBB(BrDest);
1429 }
1430 }
1431 }
1432 }
1433 }
1434
1435 return true;
1436}
1437
1438void WebAssemblyCFGStackify::recalculateScopeTops(MachineFunction &MF) {
1439 // Renumber BBs and recalculate ScopeTop info because new BBs might have been
1440 // created and inserted during fixing unwind mismatches.
1441 MF.RenumberBlocks();
1442 ScopeTops.clear();
1443 ScopeTops.resize(N: MF.getNumBlockIDs());
1444 for (auto &MBB : reverse(C&: MF)) {
1445 for (auto &MI : reverse(C&: MBB)) {
1446 if (ScopeTops[MBB.getNumber()])
1447 break;
1448 switch (MI.getOpcode()) {
1449 case WebAssembly::END_BLOCK:
1450 case WebAssembly::END_LOOP:
1451 case WebAssembly::END_TRY:
1452 case WebAssembly::DELEGATE:
1453 updateScopeTops(Begin: EndToBegin[&MI]->getParent(), End: &MBB);
1454 break;
1455 case WebAssembly::CATCH:
1456 case WebAssembly::CATCH_ALL:
1457 updateScopeTops(Begin: EHPadToTry[&MBB]->getParent(), End: &MBB);
1458 break;
1459 }
1460 }
1461 }
1462}
1463
1464/// In normal assembly languages, when the end of a function is unreachable,
1465/// because the function ends in an infinite loop or a noreturn call or similar,
1466/// it isn't necessary to worry about the function return type at the end of
1467/// the function, because it's never reached. However, in WebAssembly, blocks
1468/// that end at the function end need to have a return type signature that
1469/// matches the function signature, even though it's unreachable. This function
1470/// checks for such cases and fixes up the signatures.
1471void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) {
1472 const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
1473
1474 if (MFI.getResults().empty())
1475 return;
1476
1477 // MCInstLower will add the proper types to multivalue signatures based on the
1478 // function return type
1479 WebAssembly::BlockType RetType =
1480 MFI.getResults().size() > 1
1481 ? WebAssembly::BlockType::Multivalue
1482 : WebAssembly::BlockType(
1483 WebAssembly::toValType(Type: MFI.getResults().front()));
1484
1485 SmallVector<MachineBasicBlock::reverse_iterator, 4> Worklist;
1486 Worklist.push_back(Elt: MF.rbegin()->rbegin());
1487
1488 auto Process = [&](MachineBasicBlock::reverse_iterator It) {
1489 auto *MBB = It->getParent();
1490 while (It != MBB->rend()) {
1491 MachineInstr &MI = *It++;
1492 if (MI.isPosition() || MI.isDebugInstr())
1493 continue;
1494 switch (MI.getOpcode()) {
1495 case WebAssembly::END_TRY: {
1496 // If a 'try''s return type is fixed, both its try body and catch body
1497 // should satisfy the return type, so we need to search 'end'
1498 // instructions before its corresponding 'catch' too.
1499 auto *EHPad = TryToEHPad.lookup(Val: EndToBegin[&MI]);
1500 assert(EHPad);
1501 auto NextIt =
1502 std::next(x: WebAssembly::findCatch(EHPad)->getReverseIterator());
1503 if (NextIt != EHPad->rend())
1504 Worklist.push_back(Elt: NextIt);
1505 [[fallthrough]];
1506 }
1507 case WebAssembly::END_BLOCK:
1508 case WebAssembly::END_LOOP:
1509 case WebAssembly::DELEGATE:
1510 EndToBegin[&MI]->getOperand(i: 0).setImm(int32_t(RetType));
1511 continue;
1512 default:
1513 // Something other than an `end`. We're done for this BB.
1514 return;
1515 }
1516 }
1517 // We've reached the beginning of a BB. Continue the search in the previous
1518 // BB.
1519 Worklist.push_back(Elt: MBB->getPrevNode()->rbegin());
1520 };
1521
1522 while (!Worklist.empty())
1523 Process(Worklist.pop_back_val());
1524}
1525
1526// WebAssembly functions end with an end instruction, as if the function body
1527// were a block.
1528static void appendEndToFunction(MachineFunction &MF,
1529 const WebAssemblyInstrInfo &TII) {
1530 BuildMI(BB&: MF.back(), I: MF.back().end(),
1531 MIMD: MF.back().findPrevDebugLoc(MBBI: MF.back().end()),
1532 MCID: TII.get(Opcode: WebAssembly::END_FUNCTION));
1533}
1534
1535/// Insert LOOP/TRY/BLOCK markers at appropriate places.
1536void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) {
1537 // We allocate one more than the number of blocks in the function to
1538 // accommodate for the possible fake block we may insert at the end.
1539 ScopeTops.resize(N: MF.getNumBlockIDs() + 1);
1540 // Place the LOOP for MBB if MBB is the header of a loop.
1541 for (auto &MBB : MF)
1542 placeLoopMarker(MBB);
1543
1544 const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
1545 for (auto &MBB : MF) {
1546 if (MBB.isEHPad()) {
1547 // Place the TRY for MBB if MBB is the EH pad of an exception.
1548 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
1549 MF.getFunction().hasPersonalityFn())
1550 placeTryMarker(MBB);
1551 } else {
1552 // Place the BLOCK for MBB if MBB is branched to from above.
1553 placeBlockMarker(MBB);
1554 }
1555 }
1556 // Fix mismatches in unwind destinations induced by linearizing the code.
1557 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
1558 MF.getFunction().hasPersonalityFn()) {
1559 bool Changed = fixCallUnwindMismatches(MF);
1560 Changed |= fixCatchUnwindMismatches(MF);
1561 if (Changed)
1562 recalculateScopeTops(MF);
1563 }
1564}
1565
1566unsigned WebAssemblyCFGStackify::getBranchDepth(
1567 const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
1568 unsigned Depth = 0;
1569 for (auto X : reverse(C: Stack)) {
1570 if (X.first == MBB)
1571 break;
1572 ++Depth;
1573 }
1574 assert(Depth < Stack.size() && "Branch destination should be in scope");
1575 return Depth;
1576}
1577
1578unsigned WebAssemblyCFGStackify::getDelegateDepth(
1579 const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
1580 if (MBB == FakeCallerBB)
1581 return Stack.size();
1582 // Delegate's destination is either a catch or a another delegate BB. When the
1583 // destination is another delegate, we can compute the argument in the same
1584 // way as branches, because the target delegate BB only contains the single
1585 // delegate instruction.
1586 if (!MBB->isEHPad()) // Target is a delegate BB
1587 return getBranchDepth(Stack, MBB);
1588
1589 // When the delegate's destination is a catch BB, we need to use its
1590 // corresponding try's end_try BB because Stack contains each marker's end BB.
1591 // Also we need to check if the end marker instruction matches, because a
1592 // single BB can contain multiple end markers, like this:
1593 // bb:
1594 // END_BLOCK
1595 // END_TRY
1596 // END_BLOCK
1597 // END_TRY
1598 // ...
1599 //
1600 // In case of branches getting the immediate that targets any of these is
1601 // fine, but delegate has to exactly target the correct try.
1602 unsigned Depth = 0;
1603 const MachineInstr *EndTry = BeginToEnd[EHPadToTry[MBB]];
1604 for (auto X : reverse(C: Stack)) {
1605 if (X.first == EndTry->getParent() && X.second == EndTry)
1606 break;
1607 ++Depth;
1608 }
1609 assert(Depth < Stack.size() && "Delegate destination should be in scope");
1610 return Depth;
1611}
1612
1613unsigned WebAssemblyCFGStackify::getRethrowDepth(
1614 const SmallVectorImpl<EndMarkerInfo> &Stack,
1615 const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack) {
1616 unsigned Depth = 0;
1617 // In our current implementation, rethrows always rethrow the exception caught
1618 // by the innermost enclosing catch. This means while traversing Stack in the
1619 // reverse direction, when we encounter END_TRY, we should check if the
1620 // END_TRY corresponds to the current innermost EH pad. For example:
1621 // try
1622 // ...
1623 // catch ;; (a)
1624 // try
1625 // rethrow 1 ;; (b)
1626 // catch ;; (c)
1627 // rethrow 0 ;; (d)
1628 // end ;; (e)
1629 // end ;; (f)
1630 //
1631 // When we are at 'rethrow' (d), while reversely traversing Stack the first
1632 // 'end' we encounter is the 'end' (e), which corresponds to the 'catch' (c).
1633 // And 'rethrow' (d) rethrows the exception caught by 'catch' (c), so we stop
1634 // there and the depth should be 0. But when we are at 'rethrow' (b), it
1635 // rethrows the exception caught by 'catch' (a), so when traversing Stack
1636 // reversely, we should skip the 'end' (e) and choose 'end' (f), which
1637 // corresponds to 'catch' (a).
1638 for (auto X : reverse(C: Stack)) {
1639 const MachineInstr *End = X.second;
1640 if (End->getOpcode() == WebAssembly::END_TRY) {
1641 auto *EHPad = TryToEHPad[EndToBegin[End]];
1642 if (EHPadStack.back() == EHPad)
1643 break;
1644 }
1645 ++Depth;
1646 }
1647 assert(Depth < Stack.size() && "Rethrow destination should be in scope");
1648 return Depth;
1649}
1650
1651void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) {
1652 // Now rewrite references to basic blocks to be depth immediates.
1653 SmallVector<EndMarkerInfo, 8> Stack;
1654 SmallVector<const MachineBasicBlock *, 8> EHPadStack;
1655 for (auto &MBB : reverse(C&: MF)) {
1656 for (MachineInstr &MI : llvm::reverse(C&: MBB)) {
1657 switch (MI.getOpcode()) {
1658 case WebAssembly::BLOCK:
1659 case WebAssembly::TRY:
1660 assert(ScopeTops[Stack.back().first->getNumber()]->getNumber() <=
1661 MBB.getNumber() &&
1662 "Block/try marker should be balanced");
1663 Stack.pop_back();
1664 break;
1665
1666 case WebAssembly::LOOP:
1667 assert(Stack.back().first == &MBB && "Loop top should be balanced");
1668 Stack.pop_back();
1669 break;
1670
1671 case WebAssembly::END_BLOCK:
1672 Stack.push_back(Elt: std::make_pair(x: &MBB, y: &MI));
1673 break;
1674
1675 case WebAssembly::END_TRY: {
1676 // We handle DELEGATE in the default level, because DELEGATE has
1677 // immediate operands to rewrite.
1678 Stack.push_back(Elt: std::make_pair(x: &MBB, y: &MI));
1679 auto *EHPad = TryToEHPad[EndToBegin[&MI]];
1680 EHPadStack.push_back(Elt: EHPad);
1681 break;
1682 }
1683
1684 case WebAssembly::END_LOOP:
1685 Stack.push_back(Elt: std::make_pair(x: EndToBegin[&MI]->getParent(), y: &MI));
1686 break;
1687
1688 case WebAssembly::CATCH:
1689 case WebAssembly::CATCH_ALL:
1690 EHPadStack.pop_back();
1691 break;
1692
1693 case WebAssembly::RETHROW:
1694 MI.getOperand(i: 0).setImm(getRethrowDepth(Stack, EHPadStack));
1695 break;
1696
1697 default:
1698 if (MI.isTerminator()) {
1699 // Rewrite MBB operands to be depth immediates.
1700 SmallVector<MachineOperand, 4> Ops(MI.operands());
1701 while (MI.getNumOperands() > 0)
1702 MI.removeOperand(OpNo: MI.getNumOperands() - 1);
1703 for (auto MO : Ops) {
1704 if (MO.isMBB()) {
1705 if (MI.getOpcode() == WebAssembly::DELEGATE)
1706 MO = MachineOperand::CreateImm(
1707 Val: getDelegateDepth(Stack, MBB: MO.getMBB()));
1708 else
1709 MO = MachineOperand::CreateImm(
1710 Val: getBranchDepth(Stack, MBB: MO.getMBB()));
1711 }
1712 MI.addOperand(MF, Op: MO);
1713 }
1714 }
1715
1716 if (MI.getOpcode() == WebAssembly::DELEGATE)
1717 Stack.push_back(Elt: std::make_pair(x: &MBB, y: &MI));
1718 break;
1719 }
1720 }
1721 }
1722 assert(Stack.empty() && "Control flow should be balanced");
1723}
1724
1725void WebAssemblyCFGStackify::cleanupFunctionData(MachineFunction &MF) {
1726 if (FakeCallerBB)
1727 MF.deleteMachineBasicBlock(MBB: FakeCallerBB);
1728 AppendixBB = FakeCallerBB = nullptr;
1729}
1730
1731void WebAssemblyCFGStackify::releaseMemory() {
1732 ScopeTops.clear();
1733 BeginToEnd.clear();
1734 EndToBegin.clear();
1735 TryToEHPad.clear();
1736 EHPadToTry.clear();
1737}
1738
1739bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) {
1740 LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n"
1741 "********** Function: "
1742 << MF.getName() << '\n');
1743 const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
1744
1745 releaseMemory();
1746
1747 // Liveness is not tracked for VALUE_STACK physreg.
1748 MF.getRegInfo().invalidateLiveness();
1749
1750 // Place the BLOCK/LOOP/TRY markers to indicate the beginnings of scopes.
1751 placeMarkers(MF);
1752
1753 // Remove unnecessary instructions possibly introduced by try/end_trys.
1754 if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
1755 MF.getFunction().hasPersonalityFn())
1756 removeUnnecessaryInstrs(MF);
1757
1758 // Convert MBB operands in terminators to relative depth immediates.
1759 rewriteDepthImmediates(MF);
1760
1761 // Fix up block/loop/try signatures at the end of the function to conform to
1762 // WebAssembly's rules.
1763 fixEndsAtEndOfFunction(MF);
1764
1765 // Add an end instruction at the end of the function body.
1766 const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
1767 if (!MF.getSubtarget<WebAssemblySubtarget>()
1768 .getTargetTriple()
1769 .isOSBinFormatELF())
1770 appendEndToFunction(MF, TII);
1771
1772 cleanupFunctionData(MF);
1773
1774 MF.getInfo<WebAssemblyFunctionInfo>()->setCFGStackified();
1775 return true;
1776}
1777