1 | //===-- GlobalDCE.cpp - DCE unreachable internal functions ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This transform is designed to eliminate unreachable internal globals from the |
10 | // program. It uses an aggressive algorithm, searching out globals that are |
11 | // known to be alive. After it finds all of the globals which are needed, it |
12 | // deletes whatever is left over. This allows it to delete recursive chunks of |
13 | // the program which are unreachable. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "llvm/Transforms/IPO/GlobalDCE.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/TypeMetadataUtils.h" |
21 | #include "llvm/IR/Instructions.h" |
22 | #include "llvm/IR/IntrinsicInst.h" |
23 | #include "llvm/IR/Module.h" |
24 | #include "llvm/Support/CommandLine.h" |
25 | #include "llvm/Transforms/IPO.h" |
26 | #include "llvm/Transforms/Utils/CtorUtils.h" |
27 | #include "llvm/Transforms/Utils/GlobalStatus.h" |
28 | |
29 | using namespace llvm; |
30 | |
31 | #define DEBUG_TYPE "globaldce" |
32 | |
33 | static cl::opt<bool> |
34 | ClEnableVFE("enable-vfe" , cl::Hidden, cl::init(Val: true), |
35 | cl::desc("Enable virtual function elimination" )); |
36 | |
37 | STATISTIC(NumAliases , "Number of global aliases removed" ); |
38 | STATISTIC(NumFunctions, "Number of functions removed" ); |
39 | STATISTIC(NumIFuncs, "Number of indirect functions removed" ); |
40 | STATISTIC(NumVariables, "Number of global variables removed" ); |
41 | STATISTIC(NumVFuncs, "Number of virtual functions removed" ); |
42 | |
43 | /// Returns true if F is effectively empty. |
44 | static bool isEmptyFunction(Function *F) { |
45 | // Skip external functions. |
46 | if (F->isDeclaration()) |
47 | return false; |
48 | BasicBlock &Entry = F->getEntryBlock(); |
49 | for (auto &I : Entry) { |
50 | if (I.isDebugOrPseudoInst()) |
51 | continue; |
52 | if (auto *RI = dyn_cast<ReturnInst>(Val: &I)) |
53 | return !RI->getReturnValue(); |
54 | break; |
55 | } |
56 | return false; |
57 | } |
58 | |
59 | /// Compute the set of GlobalValue that depends from V. |
60 | /// The recursion stops as soon as a GlobalValue is met. |
61 | void GlobalDCEPass::ComputeDependencies(Value *V, |
62 | SmallPtrSetImpl<GlobalValue *> &Deps) { |
63 | if (auto *I = dyn_cast<Instruction>(Val: V)) { |
64 | Function *Parent = I->getParent()->getParent(); |
65 | Deps.insert(Ptr: Parent); |
66 | } else if (auto *GV = dyn_cast<GlobalValue>(Val: V)) { |
67 | Deps.insert(Ptr: GV); |
68 | } else if (auto *CE = dyn_cast<Constant>(Val: V)) { |
69 | // Avoid walking the whole tree of a big ConstantExprs multiple times. |
70 | auto Where = ConstantDependenciesCache.find(x: CE); |
71 | if (Where != ConstantDependenciesCache.end()) { |
72 | auto const &K = Where->second; |
73 | Deps.insert(I: K.begin(), E: K.end()); |
74 | } else { |
75 | SmallPtrSetImpl<GlobalValue *> &LocalDeps = ConstantDependenciesCache[CE]; |
76 | for (User *CEUser : CE->users()) |
77 | ComputeDependencies(V: CEUser, Deps&: LocalDeps); |
78 | Deps.insert(I: LocalDeps.begin(), E: LocalDeps.end()); |
79 | } |
80 | } |
81 | } |
82 | |
83 | void GlobalDCEPass::UpdateGVDependencies(GlobalValue &GV) { |
84 | SmallPtrSet<GlobalValue *, 8> Deps; |
85 | for (User *User : GV.users()) |
86 | ComputeDependencies(V: User, Deps); |
87 | Deps.erase(Ptr: &GV); // Remove self-reference. |
88 | for (GlobalValue *GVU : Deps) { |
89 | // If this is a dep from a vtable to a virtual function, and we have |
90 | // complete information about all virtual call sites which could call |
91 | // though this vtable, then skip it, because the call site information will |
92 | // be more precise. |
93 | if (VFESafeVTables.count(Ptr: GVU) && isa<Function>(Val: &GV)) { |
94 | LLVM_DEBUG(dbgs() << "Ignoring dep " << GVU->getName() << " -> " |
95 | << GV.getName() << "\n" ); |
96 | continue; |
97 | } |
98 | GVDependencies[GVU].insert(Ptr: &GV); |
99 | } |
100 | } |
101 | |
102 | /// Mark Global value as Live |
103 | void GlobalDCEPass::MarkLive(GlobalValue &GV, |
104 | SmallVectorImpl<GlobalValue *> *Updates) { |
105 | auto const Ret = AliveGlobals.insert(Ptr: &GV); |
106 | if (!Ret.second) |
107 | return; |
108 | |
109 | if (Updates) |
110 | Updates->push_back(Elt: &GV); |
111 | if (Comdat *C = GV.getComdat()) { |
112 | for (auto &&CM : make_range(p: ComdatMembers.equal_range(x: C))) { |
113 | MarkLive(GV&: *CM.second, Updates); // Recursion depth is only two because only |
114 | // globals in the same comdat are visited. |
115 | } |
116 | } |
117 | } |
118 | |
119 | void GlobalDCEPass::ScanVTables(Module &M) { |
120 | SmallVector<MDNode *, 2> Types; |
121 | LLVM_DEBUG(dbgs() << "Building type info -> vtable map\n" ); |
122 | |
123 | for (GlobalVariable &GV : M.globals()) { |
124 | Types.clear(); |
125 | GV.getMetadata(KindID: LLVMContext::MD_type, MDs&: Types); |
126 | if (GV.isDeclaration() || Types.empty()) |
127 | continue; |
128 | |
129 | // Use the typeid metadata on the vtable to build a mapping from typeids to |
130 | // the list of (GV, offset) pairs which are the possible vtables for that |
131 | // typeid. |
132 | for (MDNode *Type : Types) { |
133 | Metadata *TypeID = Type->getOperand(I: 1).get(); |
134 | |
135 | uint64_t Offset = |
136 | cast<ConstantInt>( |
137 | Val: cast<ConstantAsMetadata>(Val: Type->getOperand(I: 0))->getValue()) |
138 | ->getZExtValue(); |
139 | |
140 | TypeIdMap[TypeID].insert(V: std::make_pair(x: &GV, y&: Offset)); |
141 | } |
142 | |
143 | // If the type corresponding to the vtable is private to this translation |
144 | // unit, we know that we can see all virtual functions which might use it, |
145 | // so VFE is safe. |
146 | if (auto GO = dyn_cast<GlobalObject>(Val: &GV)) { |
147 | GlobalObject::VCallVisibility TypeVis = GO->getVCallVisibility(); |
148 | if (TypeVis == GlobalObject::VCallVisibilityTranslationUnit || |
149 | (InLTOPostLink && |
150 | TypeVis == GlobalObject::VCallVisibilityLinkageUnit)) { |
151 | LLVM_DEBUG(dbgs() << GV.getName() << " is safe for VFE\n" ); |
152 | VFESafeVTables.insert(Ptr: &GV); |
153 | } |
154 | } |
155 | } |
156 | } |
157 | |
158 | void GlobalDCEPass::ScanVTableLoad(Function *Caller, Metadata *TypeId, |
159 | uint64_t CallOffset) { |
160 | for (const auto &VTableInfo : TypeIdMap[TypeId]) { |
161 | GlobalVariable *VTable = VTableInfo.first; |
162 | uint64_t VTableOffset = VTableInfo.second; |
163 | |
164 | Constant *Ptr = |
165 | getPointerAtOffset(I: VTable->getInitializer(), Offset: VTableOffset + CallOffset, |
166 | M&: *Caller->getParent(), TopLevelGlobal: VTable); |
167 | if (!Ptr) { |
168 | LLVM_DEBUG(dbgs() << "can't find pointer in vtable!\n" ); |
169 | VFESafeVTables.erase(Ptr: VTable); |
170 | continue; |
171 | } |
172 | |
173 | auto Callee = dyn_cast<Function>(Val: Ptr->stripPointerCasts()); |
174 | if (!Callee) { |
175 | LLVM_DEBUG(dbgs() << "vtable entry is not function pointer!\n" ); |
176 | VFESafeVTables.erase(Ptr: VTable); |
177 | continue; |
178 | } |
179 | |
180 | LLVM_DEBUG(dbgs() << "vfunc dep " << Caller->getName() << " -> " |
181 | << Callee->getName() << "\n" ); |
182 | GVDependencies[Caller].insert(Ptr: Callee); |
183 | } |
184 | } |
185 | |
186 | void GlobalDCEPass::ScanTypeCheckedLoadIntrinsics(Module &M) { |
187 | LLVM_DEBUG(dbgs() << "Scanning type.checked.load intrinsics\n" ); |
188 | Function *TypeCheckedLoadFunc = |
189 | M.getFunction(Name: Intrinsic::getName(id: Intrinsic::type_checked_load)); |
190 | Function *TypeCheckedLoadRelativeFunc = |
191 | M.getFunction(Name: Intrinsic::getName(id: Intrinsic::type_checked_load_relative)); |
192 | |
193 | auto scan = [&](Function *CheckedLoadFunc) { |
194 | if (!CheckedLoadFunc) |
195 | return; |
196 | |
197 | for (auto *U : CheckedLoadFunc->users()) { |
198 | auto CI = dyn_cast<CallInst>(Val: U); |
199 | if (!CI) |
200 | continue; |
201 | |
202 | auto *Offset = dyn_cast<ConstantInt>(Val: CI->getArgOperand(i: 1)); |
203 | Value *TypeIdValue = CI->getArgOperand(i: 2); |
204 | auto *TypeId = cast<MetadataAsValue>(Val: TypeIdValue)->getMetadata(); |
205 | |
206 | if (Offset) { |
207 | ScanVTableLoad(Caller: CI->getFunction(), TypeId, CallOffset: Offset->getZExtValue()); |
208 | } else { |
209 | // type.checked.load with a non-constant offset, so assume every entry |
210 | // in every matching vtable is used. |
211 | for (const auto &VTableInfo : TypeIdMap[TypeId]) { |
212 | VFESafeVTables.erase(Ptr: VTableInfo.first); |
213 | } |
214 | } |
215 | } |
216 | }; |
217 | |
218 | scan(TypeCheckedLoadFunc); |
219 | scan(TypeCheckedLoadRelativeFunc); |
220 | } |
221 | |
222 | void GlobalDCEPass::AddVirtualFunctionDependencies(Module &M) { |
223 | if (!ClEnableVFE) |
224 | return; |
225 | |
226 | // If the Virtual Function Elim module flag is present and set to zero, then |
227 | // the vcall_visibility metadata was inserted for another optimization (WPD) |
228 | // and we may not have type checked loads on all accesses to the vtable. |
229 | // Don't attempt VFE in that case. |
230 | auto *Val = mdconst::dyn_extract_or_null<ConstantInt>( |
231 | MD: M.getModuleFlag(Key: "Virtual Function Elim" )); |
232 | if (!Val || Val->isZero()) |
233 | return; |
234 | |
235 | ScanVTables(M); |
236 | |
237 | if (VFESafeVTables.empty()) |
238 | return; |
239 | |
240 | ScanTypeCheckedLoadIntrinsics(M); |
241 | |
242 | LLVM_DEBUG( |
243 | dbgs() << "VFE safe vtables:\n" ; |
244 | for (auto *VTable : VFESafeVTables) |
245 | dbgs() << " " << VTable->getName() << "\n" ; |
246 | ); |
247 | } |
248 | |
249 | PreservedAnalyses GlobalDCEPass::run(Module &M, ModuleAnalysisManager &MAM) { |
250 | bool Changed = false; |
251 | |
252 | // The algorithm first computes the set L of global variables that are |
253 | // trivially live. Then it walks the initialization of these variables to |
254 | // compute the globals used to initialize them, which effectively builds a |
255 | // directed graph where nodes are global variables, and an edge from A to B |
256 | // means B is used to initialize A. Finally, it propagates the liveness |
257 | // information through the graph starting from the nodes in L. Nodes note |
258 | // marked as alive are discarded. |
259 | |
260 | // Remove empty functions from the global ctors list. |
261 | Changed |= optimizeGlobalCtorsList( |
262 | M, ShouldRemove: [](uint32_t, Function *F) { return isEmptyFunction(F); }); |
263 | |
264 | // Collect the set of members for each comdat. |
265 | for (Function &F : M) |
266 | if (Comdat *C = F.getComdat()) |
267 | ComdatMembers.insert(x: std::make_pair(x&: C, y: &F)); |
268 | for (GlobalVariable &GV : M.globals()) |
269 | if (Comdat *C = GV.getComdat()) |
270 | ComdatMembers.insert(x: std::make_pair(x&: C, y: &GV)); |
271 | for (GlobalAlias &GA : M.aliases()) |
272 | if (Comdat *C = GA.getComdat()) |
273 | ComdatMembers.insert(x: std::make_pair(x&: C, y: &GA)); |
274 | |
275 | // Add dependencies between virtual call sites and the virtual functions they |
276 | // might call, if we have that information. |
277 | AddVirtualFunctionDependencies(M); |
278 | |
279 | // Loop over the module, adding globals which are obviously necessary. |
280 | for (GlobalObject &GO : M.global_objects()) { |
281 | GO.removeDeadConstantUsers(); |
282 | // Functions with external linkage are needed if they have a body. |
283 | // Externally visible & appending globals are needed, if they have an |
284 | // initializer. |
285 | if (!GO.isDeclaration()) |
286 | if (!GO.isDiscardableIfUnused()) |
287 | MarkLive(GV&: GO); |
288 | |
289 | UpdateGVDependencies(GV&: GO); |
290 | } |
291 | |
292 | // Compute direct dependencies of aliases. |
293 | for (GlobalAlias &GA : M.aliases()) { |
294 | GA.removeDeadConstantUsers(); |
295 | // Externally visible aliases are needed. |
296 | if (!GA.isDiscardableIfUnused()) |
297 | MarkLive(GV&: GA); |
298 | |
299 | UpdateGVDependencies(GV&: GA); |
300 | } |
301 | |
302 | // Compute direct dependencies of ifuncs. |
303 | for (GlobalIFunc &GIF : M.ifuncs()) { |
304 | GIF.removeDeadConstantUsers(); |
305 | // Externally visible ifuncs are needed. |
306 | if (!GIF.isDiscardableIfUnused()) |
307 | MarkLive(GV&: GIF); |
308 | |
309 | UpdateGVDependencies(GV&: GIF); |
310 | } |
311 | |
312 | // Propagate liveness from collected Global Values through the computed |
313 | // dependencies. |
314 | SmallVector<GlobalValue *, 8> NewLiveGVs{AliveGlobals.begin(), |
315 | AliveGlobals.end()}; |
316 | while (!NewLiveGVs.empty()) { |
317 | GlobalValue *LGV = NewLiveGVs.pop_back_val(); |
318 | for (auto *GVD : GVDependencies[LGV]) |
319 | MarkLive(GV&: *GVD, Updates: &NewLiveGVs); |
320 | } |
321 | |
322 | // Now that all globals which are needed are in the AliveGlobals set, we loop |
323 | // through the program, deleting those which are not alive. |
324 | // |
325 | |
326 | // The first pass is to drop initializers of global variables which are dead. |
327 | std::vector<GlobalVariable *> DeadGlobalVars; // Keep track of dead globals |
328 | for (GlobalVariable &GV : M.globals()) |
329 | if (!AliveGlobals.count(Ptr: &GV)) { |
330 | DeadGlobalVars.push_back(x: &GV); // Keep track of dead globals |
331 | if (GV.hasInitializer()) { |
332 | Constant *Init = GV.getInitializer(); |
333 | GV.setInitializer(nullptr); |
334 | if (isSafeToDestroyConstant(C: Init)) |
335 | Init->destroyConstant(); |
336 | } |
337 | } |
338 | |
339 | // The second pass drops the bodies of functions which are dead... |
340 | std::vector<Function *> DeadFunctions; |
341 | for (Function &F : M) |
342 | if (!AliveGlobals.count(Ptr: &F)) { |
343 | DeadFunctions.push_back(x: &F); // Keep track of dead globals |
344 | if (!F.isDeclaration()) |
345 | F.deleteBody(); |
346 | } |
347 | |
348 | // The third pass drops targets of aliases which are dead... |
349 | std::vector<GlobalAlias*> DeadAliases; |
350 | for (GlobalAlias &GA : M.aliases()) |
351 | if (!AliveGlobals.count(Ptr: &GA)) { |
352 | DeadAliases.push_back(x: &GA); |
353 | GA.setAliasee(nullptr); |
354 | } |
355 | |
356 | // The fourth pass drops targets of ifuncs which are dead... |
357 | std::vector<GlobalIFunc*> DeadIFuncs; |
358 | for (GlobalIFunc &GIF : M.ifuncs()) |
359 | if (!AliveGlobals.count(Ptr: &GIF)) { |
360 | DeadIFuncs.push_back(x: &GIF); |
361 | GIF.setResolver(nullptr); |
362 | } |
363 | |
364 | // Now that all interferences have been dropped, delete the actual objects |
365 | // themselves. |
366 | auto EraseUnusedGlobalValue = [&](GlobalValue *GV) { |
367 | GV->removeDeadConstantUsers(); |
368 | GV->eraseFromParent(); |
369 | Changed = true; |
370 | }; |
371 | |
372 | NumFunctions += DeadFunctions.size(); |
373 | for (Function *F : DeadFunctions) { |
374 | if (!F->use_empty()) { |
375 | // Virtual functions might still be referenced by one or more vtables, |
376 | // but if we've proven them to be unused then it's safe to replace the |
377 | // virtual function pointers with null, allowing us to remove the |
378 | // function itself. |
379 | ++NumVFuncs; |
380 | |
381 | // Detect vfuncs that are referenced as "relative pointers" which are used |
382 | // in Swift vtables, i.e. entries in the form of: |
383 | // |
384 | // i32 trunc (i64 sub (i64 ptrtoint @f, i64 ptrtoint ...)) to i32) |
385 | // |
386 | // In this case, replace the whole "sub" expression with constant 0 to |
387 | // avoid leaving a weird sub(0, symbol) expression behind. |
388 | replaceRelativePointerUsersWithZero(C: F); |
389 | |
390 | F->replaceNonMetadataUsesWith(V: ConstantPointerNull::get(T: F->getType())); |
391 | } |
392 | EraseUnusedGlobalValue(F); |
393 | } |
394 | |
395 | NumVariables += DeadGlobalVars.size(); |
396 | for (GlobalVariable *GV : DeadGlobalVars) |
397 | EraseUnusedGlobalValue(GV); |
398 | |
399 | NumAliases += DeadAliases.size(); |
400 | for (GlobalAlias *GA : DeadAliases) |
401 | EraseUnusedGlobalValue(GA); |
402 | |
403 | NumIFuncs += DeadIFuncs.size(); |
404 | for (GlobalIFunc *GIF : DeadIFuncs) |
405 | EraseUnusedGlobalValue(GIF); |
406 | |
407 | // Make sure that all memory is released |
408 | AliveGlobals.clear(); |
409 | ConstantDependenciesCache.clear(); |
410 | GVDependencies.clear(); |
411 | ComdatMembers.clear(); |
412 | TypeIdMap.clear(); |
413 | VFESafeVTables.clear(); |
414 | |
415 | if (Changed) |
416 | return PreservedAnalyses::none(); |
417 | return PreservedAnalyses::all(); |
418 | } |
419 | |
420 | void GlobalDCEPass::printPipeline( |
421 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
422 | static_cast<PassInfoMixin<GlobalDCEPass> *>(this)->printPipeline( |
423 | OS, MapClassName2PassName); |
424 | if (InLTOPostLink) |
425 | OS << "<vfe-linkage-unit-visibility>" ; |
426 | } |
427 | |