1 | //===- PartialInlining.cpp - Inline parts of functions --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs partial inlining, typically by inlining an if statement |
10 | // that surrounds the body of the function. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/IPO/PartialInlining.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/DenseSet.h" |
17 | #include "llvm/ADT/DepthFirstIterator.h" |
18 | #include "llvm/ADT/STLExtras.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
22 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
23 | #include "llvm/Analysis/InlineCost.h" |
24 | #include "llvm/Analysis/LoopInfo.h" |
25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
26 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/TargetTransformInfo.h" |
29 | #include "llvm/IR/Attributes.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/CFG.h" |
32 | #include "llvm/IR/DebugLoc.h" |
33 | #include "llvm/IR/DiagnosticInfo.h" |
34 | #include "llvm/IR/Dominators.h" |
35 | #include "llvm/IR/Function.h" |
36 | #include "llvm/IR/InstrTypes.h" |
37 | #include "llvm/IR/Instruction.h" |
38 | #include "llvm/IR/Instructions.h" |
39 | #include "llvm/IR/IntrinsicInst.h" |
40 | #include "llvm/IR/Intrinsics.h" |
41 | #include "llvm/IR/Module.h" |
42 | #include "llvm/IR/Operator.h" |
43 | #include "llvm/IR/ProfDataUtils.h" |
44 | #include "llvm/IR/User.h" |
45 | #include "llvm/Support/BlockFrequency.h" |
46 | #include "llvm/Support/BranchProbability.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/CommandLine.h" |
49 | #include "llvm/Support/ErrorHandling.h" |
50 | #include "llvm/Transforms/IPO.h" |
51 | #include "llvm/Transforms/Utils/Cloning.h" |
52 | #include "llvm/Transforms/Utils/CodeExtractor.h" |
53 | #include "llvm/Transforms/Utils/ValueMapper.h" |
54 | #include <algorithm> |
55 | #include <cassert> |
56 | #include <cstdint> |
57 | #include <memory> |
58 | #include <tuple> |
59 | #include <vector> |
60 | |
61 | using namespace llvm; |
62 | |
63 | #define DEBUG_TYPE "partial-inlining" |
64 | |
65 | STATISTIC(NumPartialInlined, |
66 | "Number of callsites functions partially inlined into." ); |
67 | STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " |
68 | "cold outlined regions were partially " |
69 | "inlined into its caller(s)." ); |
70 | STATISTIC(NumColdRegionsFound, |
71 | "Number of cold single entry/exit regions found." ); |
72 | STATISTIC(NumColdRegionsOutlined, |
73 | "Number of cold single entry/exit regions outlined." ); |
74 | |
75 | // Command line option to disable partial-inlining. The default is false: |
76 | static cl::opt<bool> |
77 | DisablePartialInlining("disable-partial-inlining" , cl::init(Val: false), |
78 | cl::Hidden, cl::desc("Disable partial inlining" )); |
79 | // Command line option to disable multi-region partial-inlining. The default is |
80 | // false: |
81 | static cl::opt<bool> DisableMultiRegionPartialInline( |
82 | "disable-mr-partial-inlining" , cl::init(Val: false), cl::Hidden, |
83 | cl::desc("Disable multi-region partial inlining" )); |
84 | |
85 | // Command line option to force outlining in regions with live exit variables. |
86 | // The default is false: |
87 | static cl::opt<bool> |
88 | ForceLiveExit("pi-force-live-exit-outline" , cl::init(Val: false), cl::Hidden, |
89 | cl::desc("Force outline regions with live exits" )); |
90 | |
91 | // Command line option to enable marking outline functions with Cold Calling |
92 | // Convention. The default is false: |
93 | static cl::opt<bool> |
94 | MarkOutlinedColdCC("pi-mark-coldcc" , cl::init(Val: false), cl::Hidden, |
95 | cl::desc("Mark outline function calls with ColdCC" )); |
96 | |
97 | // This is an option used by testing: |
98 | static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis" , |
99 | |
100 | cl::ReallyHidden, |
101 | cl::desc("Skip Cost Analysis" )); |
102 | // Used to determine if a cold region is worth outlining based on |
103 | // its inlining cost compared to the original function. Default is set at 10%. |
104 | // ie. if the cold region reduces the inlining cost of the original function by |
105 | // at least 10%. |
106 | static cl::opt<float> MinRegionSizeRatio( |
107 | "min-region-size-ratio" , cl::init(Val: 0.1), cl::Hidden, |
108 | cl::desc("Minimum ratio comparing relative sizes of each " |
109 | "outline candidate and original function" )); |
110 | // Used to tune the minimum number of execution counts needed in the predecessor |
111 | // block to the cold edge. ie. confidence interval. |
112 | static cl::opt<unsigned> |
113 | MinBlockCounterExecution("min-block-execution" , cl::init(Val: 100), cl::Hidden, |
114 | cl::desc("Minimum block executions to consider " |
115 | "its BranchProbabilityInfo valid" )); |
116 | // Used to determine when an edge is considered cold. Default is set to 10%. ie. |
117 | // if the branch probability is 10% or less, then it is deemed as 'cold'. |
118 | static cl::opt<float> ColdBranchRatio( |
119 | "cold-branch-ratio" , cl::init(Val: 0.1), cl::Hidden, |
120 | cl::desc("Minimum BranchProbability to consider a region cold." )); |
121 | |
122 | static cl::opt<unsigned> MaxNumInlineBlocks( |
123 | "max-num-inline-blocks" , cl::init(Val: 5), cl::Hidden, |
124 | cl::desc("Max number of blocks to be partially inlined" )); |
125 | |
126 | // Command line option to set the maximum number of partial inlining allowed |
127 | // for the module. The default value of -1 means no limit. |
128 | static cl::opt<int> MaxNumPartialInlining( |
129 | "max-partial-inlining" , cl::init(Val: -1), cl::Hidden, |
130 | cl::desc("Max number of partial inlining. The default is unlimited" )); |
131 | |
132 | // Used only when PGO or user annotated branch data is absent. It is |
133 | // the least value that is used to weigh the outline region. If BFI |
134 | // produces larger value, the BFI value will be used. |
135 | static cl::opt<int> |
136 | OutlineRegionFreqPercent("outline-region-freq-percent" , cl::init(Val: 75), |
137 | cl::Hidden, |
138 | cl::desc("Relative frequency of outline region to " |
139 | "the entry block" )); |
140 | |
141 | static cl::opt<unsigned> ( |
142 | "partial-inlining-extra-penalty" , cl::init(Val: 0), cl::Hidden, |
143 | cl::desc("A debug option to add additional penalty to the computed one." )); |
144 | |
145 | namespace { |
146 | |
147 | struct FunctionOutliningInfo { |
148 | FunctionOutliningInfo() = default; |
149 | |
150 | // Returns the number of blocks to be inlined including all blocks |
151 | // in Entries and one return block. |
152 | unsigned getNumInlinedBlocks() const { return Entries.size() + 1; } |
153 | |
154 | // A set of blocks including the function entry that guard |
155 | // the region to be outlined. |
156 | SmallVector<BasicBlock *, 4> Entries; |
157 | |
158 | // The return block that is not included in the outlined region. |
159 | BasicBlock *ReturnBlock = nullptr; |
160 | |
161 | // The dominating block of the region to be outlined. |
162 | BasicBlock *NonReturnBlock = nullptr; |
163 | |
164 | // The set of blocks in Entries that are predecessors to ReturnBlock |
165 | SmallVector<BasicBlock *, 4> ReturnBlockPreds; |
166 | }; |
167 | |
168 | struct FunctionOutliningMultiRegionInfo { |
169 | FunctionOutliningMultiRegionInfo() = default; |
170 | |
171 | // Container for outline regions |
172 | struct OutlineRegionInfo { |
173 | OutlineRegionInfo(ArrayRef<BasicBlock *> Region, |
174 | BasicBlock *EntryBlock, BasicBlock *ExitBlock, |
175 | BasicBlock *ReturnBlock) |
176 | : Region(Region.begin(), Region.end()), EntryBlock(EntryBlock), |
177 | ExitBlock(ExitBlock), ReturnBlock(ReturnBlock) {} |
178 | SmallVector<BasicBlock *, 8> Region; |
179 | BasicBlock *EntryBlock; |
180 | BasicBlock *ExitBlock; |
181 | BasicBlock *ReturnBlock; |
182 | }; |
183 | |
184 | SmallVector<OutlineRegionInfo, 4> ORI; |
185 | }; |
186 | |
187 | struct PartialInlinerImpl { |
188 | |
189 | PartialInlinerImpl( |
190 | function_ref<AssumptionCache &(Function &)> GetAC, |
191 | function_ref<AssumptionCache *(Function &)> LookupAC, |
192 | function_ref<TargetTransformInfo &(Function &)> GTTI, |
193 | function_ref<const TargetLibraryInfo &(Function &)> GTLI, |
194 | ProfileSummaryInfo &ProfSI, |
195 | function_ref<BlockFrequencyInfo &(Function &)> GBFI = nullptr) |
196 | : GetAssumptionCache(GetAC), LookupAssumptionCache(LookupAC), |
197 | GetTTI(GTTI), GetBFI(GBFI), GetTLI(GTLI), PSI(ProfSI) {} |
198 | |
199 | bool run(Module &M); |
200 | // Main part of the transformation that calls helper functions to find |
201 | // outlining candidates, clone & outline the function, and attempt to |
202 | // partially inline the resulting function. Returns true if |
203 | // inlining was successful, false otherwise. Also returns the outline |
204 | // function (only if we partially inlined early returns) as there is a |
205 | // possibility to further "peel" early return statements that were left in the |
206 | // outline function due to code size. |
207 | std::pair<bool, Function *> unswitchFunction(Function &F); |
208 | |
209 | // This class speculatively clones the function to be partial inlined. |
210 | // At the end of partial inlining, the remaining callsites to the cloned |
211 | // function that are not partially inlined will be fixed up to reference |
212 | // the original function, and the cloned function will be erased. |
213 | struct FunctionCloner { |
214 | // Two constructors, one for single region outlining, the other for |
215 | // multi-region outlining. |
216 | FunctionCloner(Function *F, FunctionOutliningInfo *OI, |
217 | OptimizationRemarkEmitter &ORE, |
218 | function_ref<AssumptionCache *(Function &)> LookupAC, |
219 | function_ref<TargetTransformInfo &(Function &)> GetTTI); |
220 | FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, |
221 | OptimizationRemarkEmitter &ORE, |
222 | function_ref<AssumptionCache *(Function &)> LookupAC, |
223 | function_ref<TargetTransformInfo &(Function &)> GetTTI); |
224 | |
225 | ~FunctionCloner(); |
226 | |
227 | // Prepare for function outlining: making sure there is only |
228 | // one incoming edge from the extracted/outlined region to |
229 | // the return block. |
230 | void normalizeReturnBlock() const; |
231 | |
232 | // Do function outlining for cold regions. |
233 | bool doMultiRegionFunctionOutlining(); |
234 | // Do function outlining for region after early return block(s). |
235 | // NOTE: For vararg functions that do the vararg handling in the outlined |
236 | // function, we temporarily generate IR that does not properly |
237 | // forward varargs to the outlined function. Calling InlineFunction |
238 | // will update calls to the outlined functions to properly forward |
239 | // the varargs. |
240 | Function *doSingleRegionFunctionOutlining(); |
241 | |
242 | Function *OrigFunc = nullptr; |
243 | Function *ClonedFunc = nullptr; |
244 | |
245 | typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; |
246 | // Keep track of Outlined Functions and the basic block they're called from. |
247 | SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; |
248 | |
249 | // ClonedFunc is inlined in one of its callers after function |
250 | // outlining. |
251 | bool IsFunctionInlined = false; |
252 | // The cost of the region to be outlined. |
253 | InstructionCost OutlinedRegionCost = 0; |
254 | // ClonedOI is specific to outlining non-early return blocks. |
255 | std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; |
256 | // ClonedOMRI is specific to outlining cold regions. |
257 | std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; |
258 | std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; |
259 | OptimizationRemarkEmitter &ORE; |
260 | function_ref<AssumptionCache *(Function &)> LookupAC; |
261 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
262 | }; |
263 | |
264 | private: |
265 | int NumPartialInlining = 0; |
266 | function_ref<AssumptionCache &(Function &)> GetAssumptionCache; |
267 | function_ref<AssumptionCache *(Function &)> LookupAssumptionCache; |
268 | function_ref<TargetTransformInfo &(Function &)> GetTTI; |
269 | function_ref<BlockFrequencyInfo &(Function &)> GetBFI; |
270 | function_ref<const TargetLibraryInfo &(Function &)> GetTLI; |
271 | ProfileSummaryInfo &PSI; |
272 | |
273 | // Return the frequency of the OutlininingBB relative to F's entry point. |
274 | // The result is no larger than 1 and is represented using BP. |
275 | // (Note that the outlined region's 'head' block can only have incoming |
276 | // edges from the guarding entry blocks). |
277 | BranchProbability |
278 | getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) const; |
279 | |
280 | // Return true if the callee of CB should be partially inlined with |
281 | // profit. |
282 | bool shouldPartialInline(CallBase &CB, FunctionCloner &Cloner, |
283 | BlockFrequency WeightedOutliningRcost, |
284 | OptimizationRemarkEmitter &ORE) const; |
285 | |
286 | // Try to inline DuplicateFunction (cloned from F with call to |
287 | // the OutlinedFunction into its callers. Return true |
288 | // if there is any successful inlining. |
289 | bool tryPartialInline(FunctionCloner &Cloner); |
290 | |
291 | // Compute the mapping from use site of DuplicationFunction to the enclosing |
292 | // BB's profile count. |
293 | void |
294 | computeCallsiteToProfCountMap(Function *DuplicateFunction, |
295 | DenseMap<User *, uint64_t> &SiteCountMap) const; |
296 | |
297 | bool isLimitReached() const { |
298 | return (MaxNumPartialInlining != -1 && |
299 | NumPartialInlining >= MaxNumPartialInlining); |
300 | } |
301 | |
302 | static CallBase *getSupportedCallBase(User *U) { |
303 | if (isa<CallInst>(Val: U) || isa<InvokeInst>(Val: U)) |
304 | return cast<CallBase>(Val: U); |
305 | llvm_unreachable("All uses must be calls" ); |
306 | return nullptr; |
307 | } |
308 | |
309 | static CallBase *getOneCallSiteTo(Function &F) { |
310 | User *User = *F.user_begin(); |
311 | return getSupportedCallBase(U: User); |
312 | } |
313 | |
314 | std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function &F) const { |
315 | CallBase *CB = getOneCallSiteTo(F); |
316 | DebugLoc DLoc = CB->getDebugLoc(); |
317 | BasicBlock *Block = CB->getParent(); |
318 | return std::make_tuple(args&: DLoc, args&: Block); |
319 | } |
320 | |
321 | // Returns the costs associated with function outlining: |
322 | // - The first value is the non-weighted runtime cost for making the call |
323 | // to the outlined function, including the addtional setup cost in the |
324 | // outlined function itself; |
325 | // - The second value is the estimated size of the new call sequence in |
326 | // basic block Cloner.OutliningCallBB; |
327 | std::tuple<InstructionCost, InstructionCost> |
328 | computeOutliningCosts(FunctionCloner &Cloner) const; |
329 | |
330 | // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to |
331 | // approximate both the size and runtime cost (Note that in the current |
332 | // inline cost analysis, there is no clear distinction there either). |
333 | static InstructionCost computeBBInlineCost(BasicBlock *BB, |
334 | TargetTransformInfo *TTI); |
335 | |
336 | std::unique_ptr<FunctionOutliningInfo> |
337 | computeOutliningInfo(Function &F) const; |
338 | |
339 | std::unique_ptr<FunctionOutliningMultiRegionInfo> |
340 | computeOutliningColdRegionsInfo(Function &F, |
341 | OptimizationRemarkEmitter &ORE) const; |
342 | }; |
343 | |
344 | } // end anonymous namespace |
345 | |
346 | std::unique_ptr<FunctionOutliningMultiRegionInfo> |
347 | PartialInlinerImpl::( |
348 | Function &F, OptimizationRemarkEmitter &ORE) const { |
349 | BasicBlock *EntryBlock = &F.front(); |
350 | |
351 | DominatorTree DT(F); |
352 | LoopInfo LI(DT); |
353 | BranchProbabilityInfo BPI(F, LI); |
354 | std::unique_ptr<BlockFrequencyInfo> ScopedBFI; |
355 | BlockFrequencyInfo *BFI; |
356 | if (!GetBFI) { |
357 | ScopedBFI.reset(p: new BlockFrequencyInfo(F, BPI, LI)); |
358 | BFI = ScopedBFI.get(); |
359 | } else |
360 | BFI = &(GetBFI(F)); |
361 | |
362 | // Return if we don't have profiling information. |
363 | if (!PSI.hasInstrumentationProfile()) |
364 | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); |
365 | |
366 | std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = |
367 | std::make_unique<FunctionOutliningMultiRegionInfo>(); |
368 | |
369 | auto IsSingleExit = |
370 | [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { |
371 | BasicBlock *ExitBlock = nullptr; |
372 | for (auto *Block : BlockList) { |
373 | for (BasicBlock *Succ : successors(BB: Block)) { |
374 | if (!is_contained(Range&: BlockList, Element: Succ)) { |
375 | if (ExitBlock) { |
376 | ORE.emit(RemarkBuilder: [&]() { |
377 | return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion" , |
378 | &Succ->front()) |
379 | << "Region dominated by " |
380 | << ore::NV("Block" , BlockList.front()->getName()) |
381 | << " has more than one region exit edge." ; |
382 | }); |
383 | return nullptr; |
384 | } |
385 | |
386 | ExitBlock = Block; |
387 | } |
388 | } |
389 | } |
390 | return ExitBlock; |
391 | }; |
392 | |
393 | auto BBProfileCount = [BFI](BasicBlock *BB) { |
394 | return BFI->getBlockProfileCount(BB).value_or(u: 0); |
395 | }; |
396 | |
397 | // Use the same computeBBInlineCost function to compute the cost savings of |
398 | // the outlining the candidate region. |
399 | TargetTransformInfo *FTTI = &GetTTI(F); |
400 | InstructionCost OverallFunctionCost = 0; |
401 | for (auto &BB : F) |
402 | OverallFunctionCost += computeBBInlineCost(BB: &BB, TTI: FTTI); |
403 | |
404 | LLVM_DEBUG(dbgs() << "OverallFunctionCost = " << OverallFunctionCost |
405 | << "\n" ;); |
406 | |
407 | InstructionCost MinOutlineRegionCost = OverallFunctionCost.map( |
408 | F: [&](auto Cost) { return Cost * MinRegionSizeRatio; }); |
409 | |
410 | BranchProbability MinBranchProbability( |
411 | static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), |
412 | MinBlockCounterExecution); |
413 | bool ColdCandidateFound = false; |
414 | BasicBlock *CurrEntry = EntryBlock; |
415 | std::vector<BasicBlock *> DFS; |
416 | DenseMap<BasicBlock *, bool> VisitedMap; |
417 | DFS.push_back(x: CurrEntry); |
418 | VisitedMap[CurrEntry] = true; |
419 | |
420 | // Use Depth First Search on the basic blocks to find CFG edges that are |
421 | // considered cold. |
422 | // Cold regions considered must also have its inline cost compared to the |
423 | // overall inline cost of the original function. The region is outlined only |
424 | // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or |
425 | // more. |
426 | while (!DFS.empty()) { |
427 | auto *ThisBB = DFS.back(); |
428 | DFS.pop_back(); |
429 | // Only consider regions with predecessor blocks that are considered |
430 | // not-cold (default: part of the top 99.99% of all block counters) |
431 | // AND greater than our minimum block execution count (default: 100). |
432 | if (PSI.isColdBlock(BB: ThisBB, BFI) || |
433 | BBProfileCount(ThisBB) < MinBlockCounterExecution) |
434 | continue; |
435 | for (auto SI = succ_begin(BB: ThisBB); SI != succ_end(BB: ThisBB); ++SI) { |
436 | if (VisitedMap[*SI]) |
437 | continue; |
438 | VisitedMap[*SI] = true; |
439 | DFS.push_back(x: *SI); |
440 | // If branch isn't cold, we skip to the next one. |
441 | BranchProbability SuccProb = BPI.getEdgeProbability(Src: ThisBB, Dst: *SI); |
442 | if (SuccProb > MinBranchProbability) |
443 | continue; |
444 | |
445 | LLVM_DEBUG(dbgs() << "Found cold edge: " << ThisBB->getName() << "->" |
446 | << SI->getName() |
447 | << "\nBranch Probability = " << SuccProb << "\n" ;); |
448 | |
449 | SmallVector<BasicBlock *, 8> DominateVector; |
450 | DT.getDescendants(R: *SI, Result&: DominateVector); |
451 | assert(!DominateVector.empty() && |
452 | "SI should be reachable and have at least itself as descendant" ); |
453 | |
454 | // We can only outline single entry regions (for now). |
455 | if (!DominateVector.front()->hasNPredecessors(N: 1)) { |
456 | LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() |
457 | << " doesn't have a single predecessor in the " |
458 | "dominator tree\n" ;); |
459 | continue; |
460 | } |
461 | |
462 | BasicBlock *ExitBlock = nullptr; |
463 | // We can only outline single exit regions (for now). |
464 | if (!(ExitBlock = IsSingleExit(DominateVector))) { |
465 | LLVM_DEBUG(dbgs() << "ABORT: Block " << SI->getName() |
466 | << " doesn't have a unique successor\n" ;); |
467 | continue; |
468 | } |
469 | |
470 | InstructionCost OutlineRegionCost = 0; |
471 | for (auto *BB : DominateVector) |
472 | OutlineRegionCost += computeBBInlineCost(BB, TTI: &GetTTI(*BB->getParent())); |
473 | |
474 | LLVM_DEBUG(dbgs() << "OutlineRegionCost = " << OutlineRegionCost |
475 | << "\n" ;); |
476 | |
477 | if (!SkipCostAnalysis && OutlineRegionCost < MinOutlineRegionCost) { |
478 | ORE.emit(RemarkBuilder: [&]() { |
479 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly" , |
480 | &SI->front()) |
481 | << ore::NV("Callee" , &F) |
482 | << " inline cost-savings smaller than " |
483 | << ore::NV("Cost" , MinOutlineRegionCost); |
484 | }); |
485 | |
486 | LLVM_DEBUG(dbgs() << "ABORT: Outline region cost is smaller than " |
487 | << MinOutlineRegionCost << "\n" ;); |
488 | continue; |
489 | } |
490 | |
491 | // For now, ignore blocks that belong to a SISE region that is a |
492 | // candidate for outlining. In the future, we may want to look |
493 | // at inner regions because the outer region may have live-exit |
494 | // variables. |
495 | for (auto *BB : DominateVector) |
496 | VisitedMap[BB] = true; |
497 | |
498 | // ReturnBlock here means the block after the outline call |
499 | BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); |
500 | FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( |
501 | DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); |
502 | OutliningInfo->ORI.push_back(Elt: RegInfo); |
503 | LLVM_DEBUG(dbgs() << "Found Cold Candidate starting at block: " |
504 | << DominateVector.front()->getName() << "\n" ;); |
505 | ColdCandidateFound = true; |
506 | NumColdRegionsFound++; |
507 | } |
508 | } |
509 | |
510 | if (ColdCandidateFound) |
511 | return OutliningInfo; |
512 | |
513 | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); |
514 | } |
515 | |
516 | std::unique_ptr<FunctionOutliningInfo> |
517 | PartialInlinerImpl::computeOutliningInfo(Function &F) const { |
518 | BasicBlock *EntryBlock = &F.front(); |
519 | BranchInst *BR = dyn_cast<BranchInst>(Val: EntryBlock->getTerminator()); |
520 | if (!BR || BR->isUnconditional()) |
521 | return std::unique_ptr<FunctionOutliningInfo>(); |
522 | |
523 | // Returns true if Succ is BB's successor |
524 | auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { |
525 | return is_contained(Range: successors(BB), Element: Succ); |
526 | }; |
527 | |
528 | auto IsReturnBlock = [](BasicBlock *BB) { |
529 | Instruction *TI = BB->getTerminator(); |
530 | return isa<ReturnInst>(Val: TI); |
531 | }; |
532 | |
533 | auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
534 | if (IsReturnBlock(Succ1)) |
535 | return std::make_tuple(args&: Succ1, args&: Succ2); |
536 | if (IsReturnBlock(Succ2)) |
537 | return std::make_tuple(args&: Succ2, args&: Succ1); |
538 | |
539 | return std::make_tuple<BasicBlock *, BasicBlock *>(args: nullptr, args: nullptr); |
540 | }; |
541 | |
542 | // Detect a triangular shape: |
543 | auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { |
544 | if (IsSuccessor(Succ1, Succ2)) |
545 | return std::make_tuple(args&: Succ1, args&: Succ2); |
546 | if (IsSuccessor(Succ2, Succ1)) |
547 | return std::make_tuple(args&: Succ2, args&: Succ1); |
548 | |
549 | return std::make_tuple<BasicBlock *, BasicBlock *>(args: nullptr, args: nullptr); |
550 | }; |
551 | |
552 | std::unique_ptr<FunctionOutliningInfo> OutliningInfo = |
553 | std::make_unique<FunctionOutliningInfo>(); |
554 | |
555 | BasicBlock *CurrEntry = EntryBlock; |
556 | bool CandidateFound = false; |
557 | do { |
558 | // The number of blocks to be inlined has already reached |
559 | // the limit. When MaxNumInlineBlocks is set to 0 or 1, this |
560 | // disables partial inlining for the function. |
561 | if (OutliningInfo->getNumInlinedBlocks() >= MaxNumInlineBlocks) |
562 | break; |
563 | |
564 | if (succ_size(BB: CurrEntry) != 2) |
565 | break; |
566 | |
567 | BasicBlock *Succ1 = *succ_begin(BB: CurrEntry); |
568 | BasicBlock *Succ2 = *(succ_begin(BB: CurrEntry) + 1); |
569 | |
570 | BasicBlock *ReturnBlock, *NonReturnBlock; |
571 | std::tie(args&: ReturnBlock, args&: NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
572 | |
573 | if (ReturnBlock) { |
574 | OutliningInfo->Entries.push_back(Elt: CurrEntry); |
575 | OutliningInfo->ReturnBlock = ReturnBlock; |
576 | OutliningInfo->NonReturnBlock = NonReturnBlock; |
577 | CandidateFound = true; |
578 | break; |
579 | } |
580 | |
581 | BasicBlock *CommSucc, *OtherSucc; |
582 | std::tie(args&: CommSucc, args&: OtherSucc) = GetCommonSucc(Succ1, Succ2); |
583 | |
584 | if (!CommSucc) |
585 | break; |
586 | |
587 | OutliningInfo->Entries.push_back(Elt: CurrEntry); |
588 | CurrEntry = OtherSucc; |
589 | } while (true); |
590 | |
591 | if (!CandidateFound) |
592 | return std::unique_ptr<FunctionOutliningInfo>(); |
593 | |
594 | // There should not be any successors (not in the entry set) other than |
595 | // {ReturnBlock, NonReturnBlock} |
596 | assert(OutliningInfo->Entries[0] == &F.front() && |
597 | "Function Entry must be the first in Entries vector" ); |
598 | DenseSet<BasicBlock *> Entries; |
599 | for (BasicBlock *E : OutliningInfo->Entries) |
600 | Entries.insert(V: E); |
601 | |
602 | // Returns true of BB has Predecessor which is not |
603 | // in Entries set. |
604 | auto HasNonEntryPred = [Entries](BasicBlock *BB) { |
605 | for (auto *Pred : predecessors(BB)) { |
606 | if (!Entries.count(V: Pred)) |
607 | return true; |
608 | } |
609 | return false; |
610 | }; |
611 | auto CheckAndNormalizeCandidate = |
612 | [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { |
613 | for (BasicBlock *E : OutliningInfo->Entries) { |
614 | for (auto *Succ : successors(BB: E)) { |
615 | if (Entries.count(V: Succ)) |
616 | continue; |
617 | if (Succ == OutliningInfo->ReturnBlock) |
618 | OutliningInfo->ReturnBlockPreds.push_back(Elt: E); |
619 | else if (Succ != OutliningInfo->NonReturnBlock) |
620 | return false; |
621 | } |
622 | // There should not be any outside incoming edges either: |
623 | if (HasNonEntryPred(E)) |
624 | return false; |
625 | } |
626 | return true; |
627 | }; |
628 | |
629 | if (!CheckAndNormalizeCandidate(OutliningInfo.get())) |
630 | return std::unique_ptr<FunctionOutliningInfo>(); |
631 | |
632 | // Now further growing the candidate's inlining region by |
633 | // peeling off dominating blocks from the outlining region: |
634 | while (OutliningInfo->getNumInlinedBlocks() < MaxNumInlineBlocks) { |
635 | BasicBlock *Cand = OutliningInfo->NonReturnBlock; |
636 | if (succ_size(BB: Cand) != 2) |
637 | break; |
638 | |
639 | if (HasNonEntryPred(Cand)) |
640 | break; |
641 | |
642 | BasicBlock *Succ1 = *succ_begin(BB: Cand); |
643 | BasicBlock *Succ2 = *(succ_begin(BB: Cand) + 1); |
644 | |
645 | BasicBlock *ReturnBlock, *NonReturnBlock; |
646 | std::tie(args&: ReturnBlock, args&: NonReturnBlock) = GetReturnBlock(Succ1, Succ2); |
647 | if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) |
648 | break; |
649 | |
650 | if (NonReturnBlock->getSinglePredecessor() != Cand) |
651 | break; |
652 | |
653 | // Now grow and update OutlininigInfo: |
654 | OutliningInfo->Entries.push_back(Elt: Cand); |
655 | OutliningInfo->NonReturnBlock = NonReturnBlock; |
656 | OutliningInfo->ReturnBlockPreds.push_back(Elt: Cand); |
657 | Entries.insert(V: Cand); |
658 | } |
659 | |
660 | return OutliningInfo; |
661 | } |
662 | |
663 | // Check if there is PGO data or user annotated branch data: |
664 | static bool hasProfileData(const Function &F, const FunctionOutliningInfo &OI) { |
665 | if (F.hasProfileData()) |
666 | return true; |
667 | // Now check if any of the entry block has MD_prof data: |
668 | for (auto *E : OI.Entries) { |
669 | BranchInst *BR = dyn_cast<BranchInst>(Val: E->getTerminator()); |
670 | if (!BR || BR->isUnconditional()) |
671 | continue; |
672 | if (hasBranchWeightMD(I: *BR)) |
673 | return true; |
674 | } |
675 | return false; |
676 | } |
677 | |
678 | BranchProbability PartialInlinerImpl::getOutliningCallBBRelativeFreq( |
679 | FunctionCloner &Cloner) const { |
680 | BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; |
681 | auto EntryFreq = |
682 | Cloner.ClonedFuncBFI->getBlockFreq(BB: &Cloner.ClonedFunc->getEntryBlock()); |
683 | auto OutliningCallFreq = |
684 | Cloner.ClonedFuncBFI->getBlockFreq(BB: OutliningCallBB); |
685 | // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE |
686 | // we outlined any regions, so we may encounter situations where the |
687 | // OutliningCallFreq is *slightly* bigger than the EntryFreq. |
688 | if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) |
689 | OutliningCallFreq = EntryFreq; |
690 | |
691 | auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( |
692 | Numerator: OutliningCallFreq.getFrequency(), Denominator: EntryFreq.getFrequency()); |
693 | |
694 | if (hasProfileData(F: *Cloner.OrigFunc, OI: *Cloner.ClonedOI)) |
695 | return OutlineRegionRelFreq; |
696 | |
697 | // When profile data is not available, we need to be conservative in |
698 | // estimating the overall savings. Static branch prediction can usually |
699 | // guess the branch direction right (taken/non-taken), but the guessed |
700 | // branch probability is usually not biased enough. In case when the |
701 | // outlined region is predicted to be likely, its probability needs |
702 | // to be made higher (more biased) to not under-estimate the cost of |
703 | // function outlining. On the other hand, if the outlined region |
704 | // is predicted to be less likely, the predicted probablity is usually |
705 | // higher than the actual. For instance, the actual probability of the |
706 | // less likely target is only 5%, but the guessed probablity can be |
707 | // 40%. In the latter case, there is no need for further adjustment. |
708 | // FIXME: add an option for this. |
709 | if (OutlineRegionRelFreq < BranchProbability(45, 100)) |
710 | return OutlineRegionRelFreq; |
711 | |
712 | OutlineRegionRelFreq = std::max( |
713 | a: OutlineRegionRelFreq, b: BranchProbability(OutlineRegionFreqPercent, 100)); |
714 | |
715 | return OutlineRegionRelFreq; |
716 | } |
717 | |
718 | bool PartialInlinerImpl::( |
719 | CallBase &CB, FunctionCloner &Cloner, BlockFrequency WeightedOutliningRcost, |
720 | OptimizationRemarkEmitter &ORE) const { |
721 | using namespace ore; |
722 | |
723 | Function *Callee = CB.getCalledFunction(); |
724 | assert(Callee == Cloner.ClonedFunc); |
725 | |
726 | if (SkipCostAnalysis) |
727 | return isInlineViable(Callee&: *Callee).isSuccess(); |
728 | |
729 | Function *Caller = CB.getCaller(); |
730 | auto &CalleeTTI = GetTTI(*Callee); |
731 | bool = |
732 | Callee->getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( |
733 | DEBUG_TYPE); |
734 | InlineCost IC = |
735 | getInlineCost(Call&: CB, Params: getInlineParams(), CalleeTTI, GetAssumptionCache, |
736 | GetTLI, GetBFI, PSI: &PSI, ORE: RemarksEnabled ? &ORE : nullptr); |
737 | |
738 | if (IC.isAlways()) { |
739 | ORE.emit(RemarkBuilder: [&]() { |
740 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline" , &CB) |
741 | << NV("Callee" , Cloner.OrigFunc) |
742 | << " should always be fully inlined, not partially" ; |
743 | }); |
744 | return false; |
745 | } |
746 | |
747 | if (IC.isNever()) { |
748 | ORE.emit(RemarkBuilder: [&]() { |
749 | return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline" , &CB) |
750 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
751 | << NV("Caller" , Caller) |
752 | << " because it should never be inlined (cost=never)" ; |
753 | }); |
754 | return false; |
755 | } |
756 | |
757 | if (!IC) { |
758 | ORE.emit(RemarkBuilder: [&]() { |
759 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly" , &CB) |
760 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
761 | << NV("Caller" , Caller) << " because too costly to inline (cost=" |
762 | << NV("Cost" , IC.getCost()) << ", threshold=" |
763 | << NV("Threshold" , IC.getCostDelta() + IC.getCost()) << ")" ; |
764 | }); |
765 | return false; |
766 | } |
767 | const DataLayout &DL = Caller->getDataLayout(); |
768 | |
769 | // The savings of eliminating the call: |
770 | int NonWeightedSavings = getCallsiteCost(TTI: CalleeTTI, Call: CB, DL); |
771 | BlockFrequency NormWeightedSavings(NonWeightedSavings); |
772 | |
773 | // Weighted saving is smaller than weighted cost, return false |
774 | if (NormWeightedSavings < WeightedOutliningRcost) { |
775 | ORE.emit(RemarkBuilder: [&]() { |
776 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh" , |
777 | &CB) |
778 | << NV("Callee" , Cloner.OrigFunc) << " not partially inlined into " |
779 | << NV("Caller" , Caller) << " runtime overhead (overhead=" |
780 | << NV("Overhead" , (unsigned)WeightedOutliningRcost.getFrequency()) |
781 | << ", savings=" |
782 | << NV("Savings" , (unsigned)NormWeightedSavings.getFrequency()) |
783 | << ")" |
784 | << " of making the outlined call is too high" ; |
785 | }); |
786 | |
787 | return false; |
788 | } |
789 | |
790 | ORE.emit(RemarkBuilder: [&]() { |
791 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined" , &CB) |
792 | << NV("Callee" , Cloner.OrigFunc) << " can be partially inlined into " |
793 | << NV("Caller" , Caller) << " with cost=" << NV("Cost" , IC.getCost()) |
794 | << " (threshold=" |
795 | << NV("Threshold" , IC.getCostDelta() + IC.getCost()) << ")" ; |
796 | }); |
797 | return true; |
798 | } |
799 | |
800 | // TODO: Ideally we should share Inliner's InlineCost Analysis code. |
801 | // For now use a simplified version. The returned 'InlineCost' will be used |
802 | // to esimate the size cost as well as runtime cost of the BB. |
803 | InstructionCost |
804 | PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB, |
805 | TargetTransformInfo *TTI) { |
806 | InstructionCost InlineCost = 0; |
807 | const DataLayout &DL = BB->getDataLayout(); |
808 | int InstrCost = InlineConstants::getInstrCost(); |
809 | for (Instruction &I : BB->instructionsWithoutDebug()) { |
810 | // Skip free instructions. |
811 | switch (I.getOpcode()) { |
812 | case Instruction::BitCast: |
813 | case Instruction::PtrToInt: |
814 | case Instruction::IntToPtr: |
815 | case Instruction::Alloca: |
816 | case Instruction::PHI: |
817 | continue; |
818 | case Instruction::GetElementPtr: |
819 | if (cast<GetElementPtrInst>(Val: &I)->hasAllZeroIndices()) |
820 | continue; |
821 | break; |
822 | default: |
823 | break; |
824 | } |
825 | |
826 | if (I.isLifetimeStartOrEnd()) |
827 | continue; |
828 | |
829 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
830 | Intrinsic::ID IID = II->getIntrinsicID(); |
831 | SmallVector<Type *, 4> Tys; |
832 | FastMathFlags FMF; |
833 | for (Value *Val : II->args()) |
834 | Tys.push_back(Elt: Val->getType()); |
835 | |
836 | if (auto *FPMO = dyn_cast<FPMathOperator>(Val: II)) |
837 | FMF = FPMO->getFastMathFlags(); |
838 | |
839 | IntrinsicCostAttributes ICA(IID, II->getType(), Tys, FMF); |
840 | InlineCost += TTI->getIntrinsicInstrCost(ICA, CostKind: TTI::TCK_SizeAndLatency); |
841 | continue; |
842 | } |
843 | |
844 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
845 | InlineCost += getCallsiteCost(TTI: *TTI, Call: *CI, DL); |
846 | continue; |
847 | } |
848 | |
849 | if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &I)) { |
850 | InlineCost += getCallsiteCost(TTI: *TTI, Call: *II, DL); |
851 | continue; |
852 | } |
853 | |
854 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: &I)) { |
855 | InlineCost += (SI->getNumCases() + 1) * InstrCost; |
856 | continue; |
857 | } |
858 | InlineCost += InstrCost; |
859 | } |
860 | |
861 | return InlineCost; |
862 | } |
863 | |
864 | std::tuple<InstructionCost, InstructionCost> |
865 | PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) const { |
866 | InstructionCost OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; |
867 | for (auto FuncBBPair : Cloner.OutlinedFunctions) { |
868 | Function *OutlinedFunc = FuncBBPair.first; |
869 | BasicBlock* OutliningCallBB = FuncBBPair.second; |
870 | // Now compute the cost of the call sequence to the outlined function |
871 | // 'OutlinedFunction' in BB 'OutliningCallBB': |
872 | auto *OutlinedFuncTTI = &GetTTI(*OutlinedFunc); |
873 | OutliningFuncCallCost += |
874 | computeBBInlineCost(BB: OutliningCallBB, TTI: OutlinedFuncTTI); |
875 | |
876 | // Now compute the cost of the extracted/outlined function itself: |
877 | for (BasicBlock &BB : *OutlinedFunc) |
878 | OutlinedFunctionCost += computeBBInlineCost(BB: &BB, TTI: OutlinedFuncTTI); |
879 | } |
880 | assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && |
881 | "Outlined function cost should be no less than the outlined region" ); |
882 | |
883 | // The code extractor introduces a new root and exit stub blocks with |
884 | // additional unconditional branches. Those branches will be eliminated |
885 | // later with bb layout. The cost should be adjusted accordingly: |
886 | OutlinedFunctionCost -= |
887 | 2 * InlineConstants::getInstrCost() * Cloner.OutlinedFunctions.size(); |
888 | |
889 | InstructionCost OutliningRuntimeOverhead = |
890 | OutliningFuncCallCost + |
891 | (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + |
892 | ExtraOutliningPenalty.getValue(); |
893 | |
894 | return std::make_tuple(args&: OutliningFuncCallCost, args&: OutliningRuntimeOverhead); |
895 | } |
896 | |
897 | // Create the callsite to profile count map which is |
898 | // used to update the original function's entry count, |
899 | // after the function is partially inlined into the callsite. |
900 | void PartialInlinerImpl::computeCallsiteToProfCountMap( |
901 | Function *DuplicateFunction, |
902 | DenseMap<User *, uint64_t> &CallSiteToProfCountMap) const { |
903 | std::vector<User *> Users(DuplicateFunction->user_begin(), |
904 | DuplicateFunction->user_end()); |
905 | Function *CurrentCaller = nullptr; |
906 | std::unique_ptr<BlockFrequencyInfo> TempBFI; |
907 | BlockFrequencyInfo *CurrentCallerBFI = nullptr; |
908 | |
909 | auto ComputeCurrBFI = [&,this](Function *Caller) { |
910 | // For the old pass manager: |
911 | if (!GetBFI) { |
912 | DominatorTree DT(*Caller); |
913 | LoopInfo LI(DT); |
914 | BranchProbabilityInfo BPI(*Caller, LI); |
915 | TempBFI.reset(p: new BlockFrequencyInfo(*Caller, BPI, LI)); |
916 | CurrentCallerBFI = TempBFI.get(); |
917 | } else { |
918 | // New pass manager: |
919 | CurrentCallerBFI = &(GetBFI(*Caller)); |
920 | } |
921 | }; |
922 | |
923 | for (User *User : Users) { |
924 | // Don't bother with BlockAddress used by CallBr for asm goto. |
925 | if (isa<BlockAddress>(Val: User)) |
926 | continue; |
927 | CallBase *CB = getSupportedCallBase(U: User); |
928 | Function *Caller = CB->getCaller(); |
929 | if (CurrentCaller != Caller) { |
930 | CurrentCaller = Caller; |
931 | ComputeCurrBFI(Caller); |
932 | } else { |
933 | assert(CurrentCallerBFI && "CallerBFI is not set" ); |
934 | } |
935 | BasicBlock *CallBB = CB->getParent(); |
936 | auto Count = CurrentCallerBFI->getBlockProfileCount(BB: CallBB); |
937 | if (Count) |
938 | CallSiteToProfCountMap[User] = *Count; |
939 | else |
940 | CallSiteToProfCountMap[User] = 0; |
941 | } |
942 | } |
943 | |
944 | PartialInlinerImpl::FunctionCloner::( |
945 | Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE, |
946 | function_ref<AssumptionCache *(Function &)> LookupAC, |
947 | function_ref<TargetTransformInfo &(Function &)> GetTTI) |
948 | : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { |
949 | ClonedOI = std::make_unique<FunctionOutliningInfo>(); |
950 | |
951 | // Clone the function, so that we can hack away on it. |
952 | ValueToValueMapTy VMap; |
953 | ClonedFunc = CloneFunction(F, VMap); |
954 | |
955 | ClonedOI->ReturnBlock = cast<BasicBlock>(Val&: VMap[OI->ReturnBlock]); |
956 | ClonedOI->NonReturnBlock = cast<BasicBlock>(Val&: VMap[OI->NonReturnBlock]); |
957 | for (BasicBlock *BB : OI->Entries) |
958 | ClonedOI->Entries.push_back(Elt: cast<BasicBlock>(Val&: VMap[BB])); |
959 | |
960 | for (BasicBlock *E : OI->ReturnBlockPreds) { |
961 | BasicBlock *NewE = cast<BasicBlock>(Val&: VMap[E]); |
962 | ClonedOI->ReturnBlockPreds.push_back(Elt: NewE); |
963 | } |
964 | // Go ahead and update all uses to the duplicate, so that we can just |
965 | // use the inliner functionality when we're done hacking. |
966 | F->replaceAllUsesWith(V: ClonedFunc); |
967 | } |
968 | |
969 | PartialInlinerImpl::FunctionCloner::( |
970 | Function *F, FunctionOutliningMultiRegionInfo *OI, |
971 | OptimizationRemarkEmitter &ORE, |
972 | function_ref<AssumptionCache *(Function &)> LookupAC, |
973 | function_ref<TargetTransformInfo &(Function &)> GetTTI) |
974 | : OrigFunc(F), ORE(ORE), LookupAC(LookupAC), GetTTI(GetTTI) { |
975 | ClonedOMRI = std::make_unique<FunctionOutliningMultiRegionInfo>(); |
976 | |
977 | // Clone the function, so that we can hack away on it. |
978 | ValueToValueMapTy VMap; |
979 | ClonedFunc = CloneFunction(F, VMap); |
980 | |
981 | // Go through all Outline Candidate Regions and update all BasicBlock |
982 | // information. |
983 | for (const FunctionOutliningMultiRegionInfo::OutlineRegionInfo &RegionInfo : |
984 | OI->ORI) { |
985 | SmallVector<BasicBlock *, 8> Region; |
986 | for (BasicBlock *BB : RegionInfo.Region) |
987 | Region.push_back(Elt: cast<BasicBlock>(Val&: VMap[BB])); |
988 | |
989 | BasicBlock *NewEntryBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.EntryBlock]); |
990 | BasicBlock *NewExitBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.ExitBlock]); |
991 | BasicBlock *NewReturnBlock = nullptr; |
992 | if (RegionInfo.ReturnBlock) |
993 | NewReturnBlock = cast<BasicBlock>(Val&: VMap[RegionInfo.ReturnBlock]); |
994 | FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( |
995 | Region, NewEntryBlock, NewExitBlock, NewReturnBlock); |
996 | ClonedOMRI->ORI.push_back(Elt: MappedRegionInfo); |
997 | } |
998 | // Go ahead and update all uses to the duplicate, so that we can just |
999 | // use the inliner functionality when we're done hacking. |
1000 | F->replaceAllUsesWith(V: ClonedFunc); |
1001 | } |
1002 | |
1003 | void PartialInlinerImpl::FunctionCloner::normalizeReturnBlock() const { |
1004 | auto GetFirstPHI = [](BasicBlock *BB) { |
1005 | BasicBlock::iterator I = BB->begin(); |
1006 | PHINode *FirstPhi = nullptr; |
1007 | while (I != BB->end()) { |
1008 | PHINode *Phi = dyn_cast<PHINode>(Val&: I); |
1009 | if (!Phi) |
1010 | break; |
1011 | if (!FirstPhi) { |
1012 | FirstPhi = Phi; |
1013 | break; |
1014 | } |
1015 | } |
1016 | return FirstPhi; |
1017 | }; |
1018 | |
1019 | // Shouldn't need to normalize PHIs if we're not outlining non-early return |
1020 | // blocks. |
1021 | if (!ClonedOI) |
1022 | return; |
1023 | |
1024 | // Special hackery is needed with PHI nodes that have inputs from more than |
1025 | // one extracted block. For simplicity, just split the PHIs into a two-level |
1026 | // sequence of PHIs, some of which will go in the extracted region, and some |
1027 | // of which will go outside. |
1028 | BasicBlock *PreReturn = ClonedOI->ReturnBlock; |
1029 | // only split block when necessary: |
1030 | PHINode *FirstPhi = GetFirstPHI(PreReturn); |
1031 | unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); |
1032 | |
1033 | if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) |
1034 | return; |
1035 | |
1036 | auto IsTrivialPhi = [](PHINode *PN) -> Value * { |
1037 | if (llvm::all_equal(Range: PN->incoming_values())) |
1038 | return PN->getIncomingValue(i: 0); |
1039 | return nullptr; |
1040 | }; |
1041 | |
1042 | ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( |
1043 | I: ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator()); |
1044 | BasicBlock::iterator I = PreReturn->begin(); |
1045 | BasicBlock::iterator Ins = ClonedOI->ReturnBlock->begin(); |
1046 | SmallVector<Instruction *, 4> DeadPhis; |
1047 | while (I != PreReturn->end()) { |
1048 | PHINode *OldPhi = dyn_cast<PHINode>(Val&: I); |
1049 | if (!OldPhi) |
1050 | break; |
1051 | |
1052 | PHINode *RetPhi = |
1053 | PHINode::Create(Ty: OldPhi->getType(), NumReservedValues: NumPredsFromEntries + 1, NameStr: "" ); |
1054 | RetPhi->insertBefore(InsertPos: Ins); |
1055 | OldPhi->replaceAllUsesWith(V: RetPhi); |
1056 | Ins = ClonedOI->ReturnBlock->getFirstNonPHIIt(); |
1057 | |
1058 | RetPhi->addIncoming(V: &*I, BB: PreReturn); |
1059 | for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { |
1060 | RetPhi->addIncoming(V: OldPhi->getIncomingValueForBlock(BB: E), BB: E); |
1061 | OldPhi->removeIncomingValue(BB: E); |
1062 | } |
1063 | |
1064 | // After incoming values splitting, the old phi may become trivial. |
1065 | // Keeping the trivial phi can introduce definition inside the outline |
1066 | // region which is live-out, causing necessary overhead (load, store |
1067 | // arg passing etc). |
1068 | if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { |
1069 | OldPhi->replaceAllUsesWith(V: OldPhiVal); |
1070 | DeadPhis.push_back(Elt: OldPhi); |
1071 | } |
1072 | ++I; |
1073 | } |
1074 | for (auto *DP : DeadPhis) |
1075 | DP->eraseFromParent(); |
1076 | |
1077 | for (auto *E : ClonedOI->ReturnBlockPreds) |
1078 | E->getTerminator()->replaceUsesOfWith(From: PreReturn, To: ClonedOI->ReturnBlock); |
1079 | } |
1080 | |
1081 | bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { |
1082 | |
1083 | auto ComputeRegionCost = |
1084 | [&](SmallVectorImpl<BasicBlock *> &Region) -> InstructionCost { |
1085 | InstructionCost Cost = 0; |
1086 | for (BasicBlock* BB : Region) |
1087 | Cost += computeBBInlineCost(BB, TTI: &GetTTI(*BB->getParent())); |
1088 | return Cost; |
1089 | }; |
1090 | |
1091 | assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline" ); |
1092 | |
1093 | if (ClonedOMRI->ORI.empty()) |
1094 | return false; |
1095 | |
1096 | // The CodeExtractor needs a dominator tree. |
1097 | DominatorTree DT; |
1098 | DT.recalculate(Func&: *ClonedFunc); |
1099 | |
1100 | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. |
1101 | LoopInfo LI(DT); |
1102 | BranchProbabilityInfo BPI(*ClonedFunc, LI); |
1103 | ClonedFuncBFI.reset(p: new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); |
1104 | |
1105 | // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. |
1106 | CodeExtractorAnalysisCache CEAC(*ClonedFunc); |
1107 | |
1108 | SetVector<Value *> Inputs, Outputs, Sinks; |
1109 | for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : |
1110 | ClonedOMRI->ORI) { |
1111 | InstructionCost CurrentOutlinedRegionCost = |
1112 | ComputeRegionCost(RegionInfo.Region); |
1113 | |
1114 | CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, |
1115 | ClonedFuncBFI.get(), &BPI, |
1116 | LookupAC(*RegionInfo.EntryBlock->getParent()), |
1117 | /* AllowVarargs */ false); |
1118 | |
1119 | CE.findInputsOutputs(Inputs, Outputs, Allocas: Sinks); |
1120 | |
1121 | LLVM_DEBUG({ |
1122 | dbgs() << "inputs: " << Inputs.size() << "\n" ; |
1123 | dbgs() << "outputs: " << Outputs.size() << "\n" ; |
1124 | for (Value *value : Inputs) |
1125 | dbgs() << "value used in func: " << *value << "\n" ; |
1126 | for (Value *output : Outputs) |
1127 | dbgs() << "instr used in func: " << *output << "\n" ; |
1128 | }); |
1129 | |
1130 | // Do not extract regions that have live exit variables. |
1131 | if (Outputs.size() > 0 && !ForceLiveExit) |
1132 | continue; |
1133 | |
1134 | if (Function *OutlinedFunc = CE.extractCodeRegion(CEAC)) { |
1135 | CallBase *OCS = PartialInlinerImpl::getOneCallSiteTo(F&: *OutlinedFunc); |
1136 | BasicBlock *OutliningCallBB = OCS->getParent(); |
1137 | assert(OutliningCallBB->getParent() == ClonedFunc); |
1138 | OutlinedFunctions.push_back(Elt: std::make_pair(x&: OutlinedFunc,y&: OutliningCallBB)); |
1139 | NumColdRegionsOutlined++; |
1140 | OutlinedRegionCost += CurrentOutlinedRegionCost; |
1141 | |
1142 | if (MarkOutlinedColdCC) { |
1143 | OutlinedFunc->setCallingConv(CallingConv::Cold); |
1144 | OCS->setCallingConv(CallingConv::Cold); |
1145 | } |
1146 | } else |
1147 | ORE.emit(RemarkBuilder: [&]() { |
1148 | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed" , |
1149 | &RegionInfo.Region.front()->front()) |
1150 | << "Failed to extract region at block " |
1151 | << ore::NV("Block" , RegionInfo.Region.front()); |
1152 | }); |
1153 | } |
1154 | |
1155 | return !OutlinedFunctions.empty(); |
1156 | } |
1157 | |
1158 | Function * |
1159 | PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { |
1160 | // Returns true if the block is to be partial inlined into the caller |
1161 | // (i.e. not to be extracted to the out of line function) |
1162 | auto ToBeInlined = [&, this](BasicBlock *BB) { |
1163 | return BB == ClonedOI->ReturnBlock || |
1164 | llvm::is_contained(Range&: ClonedOI->Entries, Element: BB); |
1165 | }; |
1166 | |
1167 | assert(ClonedOI && "Expecting OutlineInfo for single region outline" ); |
1168 | // The CodeExtractor needs a dominator tree. |
1169 | DominatorTree DT; |
1170 | DT.recalculate(Func&: *ClonedFunc); |
1171 | |
1172 | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. |
1173 | LoopInfo LI(DT); |
1174 | BranchProbabilityInfo BPI(*ClonedFunc, LI); |
1175 | ClonedFuncBFI.reset(p: new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); |
1176 | |
1177 | // Gather up the blocks that we're going to extract. |
1178 | std::vector<BasicBlock *> ; |
1179 | auto *ClonedFuncTTI = &GetTTI(*ClonedFunc); |
1180 | ToExtract.push_back(x: ClonedOI->NonReturnBlock); |
1181 | OutlinedRegionCost += PartialInlinerImpl::computeBBInlineCost( |
1182 | BB: ClonedOI->NonReturnBlock, TTI: ClonedFuncTTI); |
1183 | for (BasicBlock *BB : depth_first(G: &ClonedFunc->getEntryBlock())) |
1184 | if (!ToBeInlined(BB) && BB != ClonedOI->NonReturnBlock) { |
1185 | ToExtract.push_back(x: BB); |
1186 | // FIXME: the code extractor may hoist/sink more code |
1187 | // into the outlined function which may make the outlining |
1188 | // overhead (the difference of the outlined function cost |
1189 | // and OutliningRegionCost) look larger. |
1190 | OutlinedRegionCost += computeBBInlineCost(BB, TTI: ClonedFuncTTI); |
1191 | } |
1192 | |
1193 | // Extract the body of the if. |
1194 | CodeExtractorAnalysisCache CEAC(*ClonedFunc); |
1195 | Function *OutlinedFunc = |
1196 | CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, |
1197 | ClonedFuncBFI.get(), &BPI, LookupAC(*ClonedFunc), |
1198 | /* AllowVarargs */ true) |
1199 | .extractCodeRegion(CEAC); |
1200 | |
1201 | if (OutlinedFunc) { |
1202 | BasicBlock *OutliningCallBB = |
1203 | PartialInlinerImpl::getOneCallSiteTo(F&: *OutlinedFunc)->getParent(); |
1204 | assert(OutliningCallBB->getParent() == ClonedFunc); |
1205 | OutlinedFunctions.push_back(Elt: std::make_pair(x&: OutlinedFunc, y&: OutliningCallBB)); |
1206 | } else |
1207 | ORE.emit(RemarkBuilder: [&]() { |
1208 | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed" , |
1209 | &ToExtract.front()->front()) |
1210 | << "Failed to extract region at block " |
1211 | << ore::NV("Block" , ToExtract.front()); |
1212 | }); |
1213 | |
1214 | return OutlinedFunc; |
1215 | } |
1216 | |
1217 | PartialInlinerImpl::FunctionCloner::~FunctionCloner() { |
1218 | // Ditch the duplicate, since we're done with it, and rewrite all remaining |
1219 | // users (function pointers, etc.) back to the original function. |
1220 | ClonedFunc->replaceAllUsesWith(V: OrigFunc); |
1221 | ClonedFunc->eraseFromParent(); |
1222 | if (!IsFunctionInlined) { |
1223 | // Remove each function that was speculatively created if there is no |
1224 | // reference. |
1225 | for (auto FuncBBPair : OutlinedFunctions) { |
1226 | Function *Func = FuncBBPair.first; |
1227 | Func->eraseFromParent(); |
1228 | } |
1229 | } |
1230 | } |
1231 | |
1232 | std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function &F) { |
1233 | if (F.hasAddressTaken()) |
1234 | return {false, nullptr}; |
1235 | |
1236 | // Let inliner handle it |
1237 | if (F.hasFnAttribute(Kind: Attribute::AlwaysInline)) |
1238 | return {false, nullptr}; |
1239 | |
1240 | if (F.hasFnAttribute(Kind: Attribute::NoInline)) |
1241 | return {false, nullptr}; |
1242 | |
1243 | if (PSI.isFunctionEntryCold(F: &F)) |
1244 | return {false, nullptr}; |
1245 | |
1246 | if (F.users().empty()) |
1247 | return {false, nullptr}; |
1248 | |
1249 | OptimizationRemarkEmitter ORE(&F); |
1250 | |
1251 | // Only try to outline cold regions if we have a profile summary, which |
1252 | // implies we have profiling information. |
1253 | if (PSI.hasProfileSummary() && F.hasProfileData() && |
1254 | !DisableMultiRegionPartialInline) { |
1255 | std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = |
1256 | computeOutliningColdRegionsInfo(F, ORE); |
1257 | if (OMRI) { |
1258 | FunctionCloner Cloner(&F, OMRI.get(), ORE, LookupAssumptionCache, GetTTI); |
1259 | |
1260 | LLVM_DEBUG({ |
1261 | dbgs() << "HotCountThreshold = " << PSI.getHotCountThreshold() << "\n" ; |
1262 | dbgs() << "ColdCountThreshold = " << PSI.getColdCountThreshold() |
1263 | << "\n" ; |
1264 | }); |
1265 | |
1266 | bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); |
1267 | |
1268 | if (DidOutline) { |
1269 | LLVM_DEBUG({ |
1270 | dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n" ; |
1271 | Cloner.ClonedFunc->print(dbgs()); |
1272 | dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n" ; |
1273 | }); |
1274 | |
1275 | if (tryPartialInline(Cloner)) |
1276 | return {true, nullptr}; |
1277 | } |
1278 | } |
1279 | } |
1280 | |
1281 | // Fall-thru to regular partial inlining if we: |
1282 | // i) can't find any cold regions to outline, or |
1283 | // ii) can't inline the outlined function anywhere. |
1284 | std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); |
1285 | if (!OI) |
1286 | return {false, nullptr}; |
1287 | |
1288 | FunctionCloner Cloner(&F, OI.get(), ORE, LookupAssumptionCache, GetTTI); |
1289 | Cloner.normalizeReturnBlock(); |
1290 | |
1291 | Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); |
1292 | |
1293 | if (!OutlinedFunction) |
1294 | return {false, nullptr}; |
1295 | |
1296 | if (tryPartialInline(Cloner)) |
1297 | return {true, OutlinedFunction}; |
1298 | |
1299 | return {false, nullptr}; |
1300 | } |
1301 | |
1302 | bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { |
1303 | if (Cloner.OutlinedFunctions.empty()) |
1304 | return false; |
1305 | |
1306 | auto OutliningCosts = computeOutliningCosts(Cloner); |
1307 | |
1308 | InstructionCost SizeCost = std::get<0>(t&: OutliningCosts); |
1309 | InstructionCost NonWeightedRcost = std::get<1>(t&: OutliningCosts); |
1310 | |
1311 | assert(SizeCost.isValid() && NonWeightedRcost.isValid() && |
1312 | "Expected valid costs" ); |
1313 | |
1314 | // Only calculate RelativeToEntryFreq when we are doing single region |
1315 | // outlining. |
1316 | BranchProbability RelativeToEntryFreq; |
1317 | if (Cloner.ClonedOI) |
1318 | RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); |
1319 | else |
1320 | // RelativeToEntryFreq doesn't make sense when we have more than one |
1321 | // outlined call because each call will have a different relative frequency |
1322 | // to the entry block. We can consider using the average, but the |
1323 | // usefulness of that information is questionable. For now, assume we never |
1324 | // execute the calls to outlined functions. |
1325 | RelativeToEntryFreq = BranchProbability(0, 1); |
1326 | |
1327 | BlockFrequency WeightedRcost = |
1328 | BlockFrequency(*NonWeightedRcost.getValue()) * RelativeToEntryFreq; |
1329 | |
1330 | // The call sequence(s) to the outlined function(s) are larger than the sum of |
1331 | // the original outlined region size(s), it does not increase the chances of |
1332 | // inlining the function with outlining (The inliner uses the size increase to |
1333 | // model the cost of inlining a callee). |
1334 | if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { |
1335 | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); |
1336 | DebugLoc DLoc; |
1337 | BasicBlock *Block; |
1338 | std::tie(args&: DLoc, args&: Block) = getOneDebugLoc(F&: *Cloner.ClonedFunc); |
1339 | OrigFuncORE.emit(RemarkBuilder: [&]() { |
1340 | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall" , |
1341 | DLoc, Block) |
1342 | << ore::NV("Function" , Cloner.OrigFunc) |
1343 | << " not partially inlined into callers (Original Size = " |
1344 | << ore::NV("OutlinedRegionOriginalSize" , Cloner.OutlinedRegionCost) |
1345 | << ", Size of call sequence to outlined function = " |
1346 | << ore::NV("NewSize" , SizeCost) << ")" ; |
1347 | }); |
1348 | return false; |
1349 | } |
1350 | |
1351 | assert(Cloner.OrigFunc->users().empty() && |
1352 | "F's users should all be replaced!" ); |
1353 | |
1354 | std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), |
1355 | Cloner.ClonedFunc->user_end()); |
1356 | |
1357 | DenseMap<User *, uint64_t> CallSiteToProfCountMap; |
1358 | auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); |
1359 | if (CalleeEntryCount) |
1360 | computeCallsiteToProfCountMap(DuplicateFunction: Cloner.ClonedFunc, CallSiteToProfCountMap); |
1361 | |
1362 | uint64_t CalleeEntryCountV = |
1363 | (CalleeEntryCount ? CalleeEntryCount->getCount() : 0); |
1364 | |
1365 | bool AnyInline = false; |
1366 | for (User *User : Users) { |
1367 | // Don't bother with BlockAddress used by CallBr for asm goto. |
1368 | if (isa<BlockAddress>(Val: User)) |
1369 | continue; |
1370 | |
1371 | CallBase *CB = getSupportedCallBase(U: User); |
1372 | |
1373 | if (isLimitReached()) |
1374 | continue; |
1375 | |
1376 | OptimizationRemarkEmitter CallerORE(CB->getCaller()); |
1377 | if (!shouldPartialInline(CB&: *CB, Cloner, WeightedOutliningRcost: WeightedRcost, ORE&: CallerORE)) |
1378 | continue; |
1379 | |
1380 | // Construct remark before doing the inlining, as after successful inlining |
1381 | // the callsite is removed. |
1382 | OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined" , CB); |
1383 | OR << ore::NV("Callee" , Cloner.OrigFunc) << " partially inlined into " |
1384 | << ore::NV("Caller" , CB->getCaller()); |
1385 | |
1386 | InlineFunctionInfo IFI(GetAssumptionCache, &PSI); |
1387 | // We can only forward varargs when we outlined a single region, else we |
1388 | // bail on vararg functions. |
1389 | if (!InlineFunction(CB&: *CB, IFI, /*MergeAttributes=*/false, CalleeAAR: nullptr, InsertLifetime: true, |
1390 | ForwardVarArgsTo: (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first |
1391 | : nullptr)) |
1392 | .isSuccess()) |
1393 | continue; |
1394 | |
1395 | CallerORE.emit(OptDiag&: OR); |
1396 | |
1397 | // Now update the entry count: |
1398 | if (CalleeEntryCountV && CallSiteToProfCountMap.count(Val: User)) { |
1399 | uint64_t CallSiteCount = CallSiteToProfCountMap[User]; |
1400 | CalleeEntryCountV -= std::min(a: CalleeEntryCountV, b: CallSiteCount); |
1401 | } |
1402 | |
1403 | AnyInline = true; |
1404 | NumPartialInlining++; |
1405 | // Update the stats |
1406 | if (Cloner.ClonedOI) |
1407 | NumPartialInlined++; |
1408 | else |
1409 | NumColdOutlinePartialInlined++; |
1410 | } |
1411 | |
1412 | if (AnyInline) { |
1413 | Cloner.IsFunctionInlined = true; |
1414 | if (CalleeEntryCount) |
1415 | Cloner.OrigFunc->setEntryCount(Count: Function::ProfileCount( |
1416 | CalleeEntryCountV, CalleeEntryCount->getType())); |
1417 | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); |
1418 | OrigFuncORE.emit(RemarkBuilder: [&]() { |
1419 | return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined" , Cloner.OrigFunc) |
1420 | << "Partially inlined into at least one caller" ; |
1421 | }); |
1422 | } |
1423 | |
1424 | return AnyInline; |
1425 | } |
1426 | |
1427 | bool PartialInlinerImpl::run(Module &M) { |
1428 | if (DisablePartialInlining) |
1429 | return false; |
1430 | |
1431 | std::vector<Function *> Worklist; |
1432 | Worklist.reserve(n: M.size()); |
1433 | for (Function &F : M) |
1434 | if (!F.use_empty() && !F.isDeclaration()) |
1435 | Worklist.push_back(x: &F); |
1436 | |
1437 | bool Changed = false; |
1438 | while (!Worklist.empty()) { |
1439 | Function *CurrFunc = Worklist.back(); |
1440 | Worklist.pop_back(); |
1441 | |
1442 | if (CurrFunc->use_empty()) |
1443 | continue; |
1444 | |
1445 | std::pair<bool, Function *> Result = unswitchFunction(F&: *CurrFunc); |
1446 | if (Result.second) |
1447 | Worklist.push_back(x: Result.second); |
1448 | Changed |= Result.first; |
1449 | } |
1450 | |
1451 | return Changed; |
1452 | } |
1453 | |
1454 | PreservedAnalyses PartialInlinerPass::run(Module &M, |
1455 | ModuleAnalysisManager &AM) { |
1456 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
1457 | |
1458 | auto GetAssumptionCache = [&FAM](Function &F) -> AssumptionCache & { |
1459 | return FAM.getResult<AssumptionAnalysis>(IR&: F); |
1460 | }; |
1461 | |
1462 | auto LookupAssumptionCache = [&FAM](Function &F) -> AssumptionCache * { |
1463 | return FAM.getCachedResult<AssumptionAnalysis>(IR&: F); |
1464 | }; |
1465 | |
1466 | auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { |
1467 | return FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
1468 | }; |
1469 | |
1470 | auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { |
1471 | return FAM.getResult<TargetIRAnalysis>(IR&: F); |
1472 | }; |
1473 | |
1474 | auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { |
1475 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
1476 | }; |
1477 | |
1478 | ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(IR&: M); |
1479 | |
1480 | if (PartialInlinerImpl(GetAssumptionCache, LookupAssumptionCache, GetTTI, |
1481 | GetTLI, PSI, GetBFI) |
1482 | .run(M)) |
1483 | return PreservedAnalyses::none(); |
1484 | return PreservedAnalyses::all(); |
1485 | } |
1486 | |