1 | //===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the SampleProfileProber transformation. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Transforms/IPO/SampleProfileProbe.h" |
14 | #include "llvm/ADT/Statistic.h" |
15 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
16 | #include "llvm/Analysis/EHUtils.h" |
17 | #include "llvm/Analysis/LoopInfo.h" |
18 | #include "llvm/IR/BasicBlock.h" |
19 | #include "llvm/IR/Constants.h" |
20 | #include "llvm/IR/DebugInfoMetadata.h" |
21 | #include "llvm/IR/DiagnosticInfo.h" |
22 | #include "llvm/IR/IRBuilder.h" |
23 | #include "llvm/IR/Instruction.h" |
24 | #include "llvm/IR/IntrinsicInst.h" |
25 | #include "llvm/IR/MDBuilder.h" |
26 | #include "llvm/IR/Module.h" |
27 | #include "llvm/IR/PseudoProbe.h" |
28 | #include "llvm/ProfileData/SampleProf.h" |
29 | #include "llvm/Support/CRC.h" |
30 | #include "llvm/Support/CommandLine.h" |
31 | #include "llvm/Target/TargetMachine.h" |
32 | #include "llvm/Transforms/Instrumentation.h" |
33 | #include "llvm/Transforms/Utils/ModuleUtils.h" |
34 | #include <unordered_set> |
35 | #include <vector> |
36 | |
37 | using namespace llvm; |
38 | #define DEBUG_TYPE "pseudo-probe" |
39 | |
40 | STATISTIC(ArtificialDbgLine, |
41 | "Number of probes that have an artificial debug line" ); |
42 | |
43 | static cl::opt<bool> |
44 | VerifyPseudoProbe("verify-pseudo-probe" , cl::init(Val: false), cl::Hidden, |
45 | cl::desc("Do pseudo probe verification" )); |
46 | |
47 | static cl::list<std::string> VerifyPseudoProbeFuncList( |
48 | "verify-pseudo-probe-funcs" , cl::Hidden, |
49 | cl::desc("The option to specify the name of the functions to verify." )); |
50 | |
51 | static cl::opt<bool> |
52 | UpdatePseudoProbe("update-pseudo-probe" , cl::init(Val: true), cl::Hidden, |
53 | cl::desc("Update pseudo probe distribution factor" )); |
54 | |
55 | static uint64_t getCallStackHash(const DILocation *DIL) { |
56 | uint64_t Hash = 0; |
57 | const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr; |
58 | while (InlinedAt) { |
59 | Hash ^= MD5Hash(Str: std::to_string(val: InlinedAt->getLine())); |
60 | Hash ^= MD5Hash(Str: std::to_string(val: InlinedAt->getColumn())); |
61 | auto Name = InlinedAt->getSubprogramLinkageName(); |
62 | Hash ^= MD5Hash(Str: Name); |
63 | InlinedAt = InlinedAt->getInlinedAt(); |
64 | } |
65 | return Hash; |
66 | } |
67 | |
68 | static uint64_t computeCallStackHash(const Instruction &Inst) { |
69 | return getCallStackHash(DIL: Inst.getDebugLoc()); |
70 | } |
71 | |
72 | bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) { |
73 | // Skip function declaration. |
74 | if (F->isDeclaration()) |
75 | return false; |
76 | // Skip function that will not be emitted into object file. The prevailing |
77 | // defintion will be verified instead. |
78 | if (F->hasAvailableExternallyLinkage()) |
79 | return false; |
80 | // Do a name matching. |
81 | static std::unordered_set<std::string> VerifyFuncNames( |
82 | VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end()); |
83 | return VerifyFuncNames.empty() || VerifyFuncNames.count(x: F->getName().str()); |
84 | } |
85 | |
86 | void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) { |
87 | if (VerifyPseudoProbe) { |
88 | PIC.registerAfterPassCallback( |
89 | C: [this](StringRef P, Any IR, const PreservedAnalyses &) { |
90 | this->runAfterPass(PassID: P, IR); |
91 | }); |
92 | } |
93 | } |
94 | |
95 | // Callback to run after each transformation for the new pass manager. |
96 | void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) { |
97 | std::string Banner = |
98 | "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n" ; |
99 | dbgs() << Banner; |
100 | if (const auto **M = llvm::any_cast<const Module *>(Value: &IR)) |
101 | runAfterPass(M: *M); |
102 | else if (const auto **F = llvm::any_cast<const Function *>(Value: &IR)) |
103 | runAfterPass(F: *F); |
104 | else if (const auto **C = llvm::any_cast<const LazyCallGraph::SCC *>(Value: &IR)) |
105 | runAfterPass(C: *C); |
106 | else if (const auto **L = llvm::any_cast<const Loop *>(Value: &IR)) |
107 | runAfterPass(L: *L); |
108 | else |
109 | llvm_unreachable("Unknown IR unit" ); |
110 | } |
111 | |
112 | void PseudoProbeVerifier::runAfterPass(const Module *M) { |
113 | for (const Function &F : *M) |
114 | runAfterPass(F: &F); |
115 | } |
116 | |
117 | void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) { |
118 | for (const LazyCallGraph::Node &N : *C) |
119 | runAfterPass(F: &N.getFunction()); |
120 | } |
121 | |
122 | void PseudoProbeVerifier::runAfterPass(const Function *F) { |
123 | if (!shouldVerifyFunction(F)) |
124 | return; |
125 | ProbeFactorMap ProbeFactors; |
126 | for (const auto &BB : *F) |
127 | collectProbeFactors(BB: &BB, ProbeFactors); |
128 | verifyProbeFactors(F, ProbeFactors); |
129 | } |
130 | |
131 | void PseudoProbeVerifier::runAfterPass(const Loop *L) { |
132 | const Function *F = L->getHeader()->getParent(); |
133 | runAfterPass(F); |
134 | } |
135 | |
136 | void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block, |
137 | ProbeFactorMap &ProbeFactors) { |
138 | for (const auto &I : *Block) { |
139 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
140 | uint64_t Hash = computeCallStackHash(Inst: I); |
141 | ProbeFactors[{Probe->Id, Hash}] += Probe->Factor; |
142 | } |
143 | } |
144 | } |
145 | |
146 | void PseudoProbeVerifier::verifyProbeFactors( |
147 | const Function *F, const ProbeFactorMap &ProbeFactors) { |
148 | bool BannerPrinted = false; |
149 | auto &PrevProbeFactors = FunctionProbeFactors[F->getName()]; |
150 | for (const auto &I : ProbeFactors) { |
151 | float CurProbeFactor = I.second; |
152 | if (PrevProbeFactors.count(x: I.first)) { |
153 | float PrevProbeFactor = PrevProbeFactors[I.first]; |
154 | if (std::abs(x: CurProbeFactor - PrevProbeFactor) > |
155 | DistributionFactorVariance) { |
156 | if (!BannerPrinted) { |
157 | dbgs() << "Function " << F->getName() << ":\n" ; |
158 | BannerPrinted = true; |
159 | } |
160 | dbgs() << "Probe " << I.first.first << "\tprevious factor " |
161 | << format(Fmt: "%0.2f" , Vals: PrevProbeFactor) << "\tcurrent factor " |
162 | << format(Fmt: "%0.2f" , Vals: CurProbeFactor) << "\n" ; |
163 | } |
164 | } |
165 | |
166 | // Update |
167 | PrevProbeFactors[I.first] = I.second; |
168 | } |
169 | } |
170 | |
171 | SampleProfileProber::SampleProfileProber(Function &Func, |
172 | const std::string &CurModuleUniqueId) |
173 | : F(&Func), CurModuleUniqueId(CurModuleUniqueId) { |
174 | BlockProbeIds.clear(); |
175 | CallProbeIds.clear(); |
176 | LastProbeId = (uint32_t)PseudoProbeReservedId::Last; |
177 | |
178 | DenseSet<BasicBlock *> BlocksToIgnore; |
179 | DenseSet<BasicBlock *> BlocksAndCallsToIgnore; |
180 | computeBlocksToIgnore(BlocksToIgnore, BlocksAndCallsToIgnore); |
181 | |
182 | computeProbeId(BlocksToIgnore, BlocksAndCallsToIgnore); |
183 | computeCFGHash(BlocksToIgnore); |
184 | } |
185 | |
186 | // Two purposes to compute the blocks to ignore: |
187 | // 1. Reduce the IR size. |
188 | // 2. Make the instrumentation(checksum) stable. e.g. the frondend may |
189 | // generate unstable IR while optimizing nounwind attribute, some versions are |
190 | // optimized with the call-to-invoke conversion, while other versions do not. |
191 | // This discrepancy in probe ID could cause profile mismatching issues. |
192 | // Note that those ignored blocks are either cold blocks or new split blocks |
193 | // whose original blocks are instrumented, so it shouldn't degrade the profile |
194 | // quality. |
195 | void SampleProfileProber::computeBlocksToIgnore( |
196 | DenseSet<BasicBlock *> &BlocksToIgnore, |
197 | DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
198 | // Ignore the cold EH and unreachable blocks and calls. |
199 | computeEHOnlyBlocks(F&: *F, EHBlocks&: BlocksAndCallsToIgnore); |
200 | findUnreachableBlocks(BlocksToIgnore&: BlocksAndCallsToIgnore); |
201 | |
202 | BlocksToIgnore.insert(I: BlocksAndCallsToIgnore.begin(), |
203 | E: BlocksAndCallsToIgnore.end()); |
204 | |
205 | // Handle the call-to-invoke conversion case: make sure that the probe id and |
206 | // callsite id are consistent before and after the block split. For block |
207 | // probe, we only keep the head block probe id and ignore the block ids of the |
208 | // normal dests. For callsite probe, it's different to block probe, there is |
209 | // no additional callsite in the normal dests, so we don't ignore the |
210 | // callsites. |
211 | findInvokeNormalDests(InvokeNormalDests&: BlocksToIgnore); |
212 | } |
213 | |
214 | // Unreachable blocks and calls are always cold, ignore them. |
215 | void SampleProfileProber::findUnreachableBlocks( |
216 | DenseSet<BasicBlock *> &BlocksToIgnore) { |
217 | for (auto &BB : *F) { |
218 | if (&BB != &F->getEntryBlock() && pred_size(BB: &BB) == 0) |
219 | BlocksToIgnore.insert(V: &BB); |
220 | } |
221 | } |
222 | |
223 | // In call-to-invoke conversion, basic block can be split into multiple blocks, |
224 | // only instrument probe in the head block, ignore the normal dests. |
225 | void SampleProfileProber::findInvokeNormalDests( |
226 | DenseSet<BasicBlock *> &InvokeNormalDests) { |
227 | for (auto &BB : *F) { |
228 | auto *TI = BB.getTerminator(); |
229 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) { |
230 | auto *ND = II->getNormalDest(); |
231 | InvokeNormalDests.insert(V: ND); |
232 | |
233 | // The normal dest and the try/catch block are connected by an |
234 | // unconditional branch. |
235 | while (pred_size(BB: ND) == 1) { |
236 | auto *Pred = *pred_begin(BB: ND); |
237 | if (succ_size(BB: Pred) == 1) { |
238 | InvokeNormalDests.insert(V: Pred); |
239 | ND = Pred; |
240 | } else |
241 | break; |
242 | } |
243 | } |
244 | } |
245 | } |
246 | |
247 | // The call-to-invoke conversion splits the original block into a list of block, |
248 | // we need to compute the hash using the original block's successors to keep the |
249 | // CFG Hash consistent. For a given head block, we keep searching the |
250 | // succesor(normal dest or unconditional branch dest) to find the tail block, |
251 | // the tail block's successors are the original block's successors. |
252 | const Instruction *SampleProfileProber::getOriginalTerminator( |
253 | const BasicBlock *Head, const DenseSet<BasicBlock *> &BlocksToIgnore) { |
254 | auto *TI = Head->getTerminator(); |
255 | if (auto *II = dyn_cast<InvokeInst>(Val: TI)) { |
256 | return getOriginalTerminator(Head: II->getNormalDest(), BlocksToIgnore); |
257 | } else if (succ_size(BB: Head) == 1 && |
258 | BlocksToIgnore.contains(V: *succ_begin(BB: Head))) { |
259 | // Go to the unconditional branch dest. |
260 | return getOriginalTerminator(Head: *succ_begin(BB: Head), BlocksToIgnore); |
261 | } |
262 | return TI; |
263 | } |
264 | |
265 | // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index |
266 | // value of each BB in the CFG. The higher 32 bits record the number of edges |
267 | // preceded by the number of indirect calls. |
268 | // This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash(). |
269 | void SampleProfileProber::computeCFGHash( |
270 | const DenseSet<BasicBlock *> &BlocksToIgnore) { |
271 | std::vector<uint8_t> Indexes; |
272 | JamCRC JC; |
273 | for (auto &BB : *F) { |
274 | if (BlocksToIgnore.contains(V: &BB)) |
275 | continue; |
276 | |
277 | auto *TI = getOriginalTerminator(Head: &BB, BlocksToIgnore); |
278 | for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { |
279 | auto *Succ = TI->getSuccessor(Idx: I); |
280 | auto Index = getBlockId(BB: Succ); |
281 | // Ingore ignored-block(zero ID) to avoid unstable checksum. |
282 | if (Index == 0) |
283 | continue; |
284 | for (int J = 0; J < 4; J++) |
285 | Indexes.push_back(x: (uint8_t)(Index >> (J * 8))); |
286 | } |
287 | } |
288 | |
289 | JC.update(Data: Indexes); |
290 | |
291 | FunctionHash = (uint64_t)CallProbeIds.size() << 48 | |
292 | (uint64_t)Indexes.size() << 32 | JC.getCRC(); |
293 | // Reserve bit 60-63 for other information purpose. |
294 | FunctionHash &= 0x0FFFFFFFFFFFFFFF; |
295 | assert(FunctionHash && "Function checksum should not be zero" ); |
296 | LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName() |
297 | << ":\n" |
298 | << " CRC = " << JC.getCRC() << ", Edges = " |
299 | << Indexes.size() << ", ICSites = " << CallProbeIds.size() |
300 | << ", Hash = " << FunctionHash << "\n" ); |
301 | } |
302 | |
303 | void SampleProfileProber::computeProbeId( |
304 | const DenseSet<BasicBlock *> &BlocksToIgnore, |
305 | const DenseSet<BasicBlock *> &BlocksAndCallsToIgnore) { |
306 | LLVMContext &Ctx = F->getContext(); |
307 | Module *M = F->getParent(); |
308 | |
309 | for (auto &BB : *F) { |
310 | if (!BlocksToIgnore.contains(V: &BB)) |
311 | BlockProbeIds[&BB] = ++LastProbeId; |
312 | |
313 | if (BlocksAndCallsToIgnore.contains(V: &BB)) |
314 | continue; |
315 | for (auto &I : BB) { |
316 | if (!isa<CallBase>(Val: I) || isa<IntrinsicInst>(Val: &I)) |
317 | continue; |
318 | |
319 | // The current implementation uses the lower 16 bits of the discriminator |
320 | // so anything larger than 0xFFFF will be ignored. |
321 | if (LastProbeId >= 0xFFFF) { |
322 | std::string Msg = "Pseudo instrumentation incomplete for " + |
323 | std::string(F->getName()) + " because it's too large" ; |
324 | Ctx.diagnose( |
325 | DI: DiagnosticInfoSampleProfile(M->getName().data(), Msg, DS_Warning)); |
326 | return; |
327 | } |
328 | |
329 | CallProbeIds[&I] = ++LastProbeId; |
330 | } |
331 | } |
332 | } |
333 | |
334 | uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const { |
335 | auto I = BlockProbeIds.find(x: const_cast<BasicBlock *>(BB)); |
336 | return I == BlockProbeIds.end() ? 0 : I->second; |
337 | } |
338 | |
339 | uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const { |
340 | auto Iter = CallProbeIds.find(x: const_cast<Instruction *>(Call)); |
341 | return Iter == CallProbeIds.end() ? 0 : Iter->second; |
342 | } |
343 | |
344 | void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) { |
345 | Module *M = F.getParent(); |
346 | MDBuilder MDB(F.getContext()); |
347 | // Since the GUID from probe desc and inline stack are computed separately, we |
348 | // need to make sure their names are consistent, so here also use the name |
349 | // from debug info. |
350 | StringRef FName = F.getName(); |
351 | if (auto *SP = F.getSubprogram()) { |
352 | FName = SP->getLinkageName(); |
353 | if (FName.empty()) |
354 | FName = SP->getName(); |
355 | } |
356 | uint64_t Guid = Function::getGUID(GlobalName: FName); |
357 | |
358 | // Assign an artificial debug line to a probe that doesn't come with a real |
359 | // line. A probe not having a debug line will get an incomplete inline |
360 | // context. This will cause samples collected on the probe to be counted |
361 | // into the base profile instead of a context profile. The line number |
362 | // itself is not important though. |
363 | auto AssignDebugLoc = [&](Instruction *I) { |
364 | assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) && |
365 | "Expecting pseudo probe or call instructions" ); |
366 | if (!I->getDebugLoc()) { |
367 | if (auto *SP = F.getSubprogram()) { |
368 | auto DIL = DILocation::get(Context&: SP->getContext(), Line: 0, Column: 0, Scope: SP); |
369 | I->setDebugLoc(DIL); |
370 | ArtificialDbgLine++; |
371 | LLVM_DEBUG({ |
372 | dbgs() << "\nIn Function " << F.getName() |
373 | << " Probe gets an artificial debug line\n" ; |
374 | I->dump(); |
375 | }); |
376 | } |
377 | } |
378 | }; |
379 | |
380 | // Probe basic blocks. |
381 | for (auto &I : BlockProbeIds) { |
382 | BasicBlock *BB = I.first; |
383 | uint32_t Index = I.second; |
384 | // Insert a probe before an instruction with a valid debug line number which |
385 | // will be assigned to the probe. The line number will be used later to |
386 | // model the inline context when the probe is inlined into other functions. |
387 | // Debug instructions, phi nodes and lifetime markers do not have an valid |
388 | // line number. Real instructions generated by optimizations may not come |
389 | // with a line number either. |
390 | auto HasValidDbgLine = [](Instruction *J) { |
391 | return !isa<PHINode>(Val: J) && !isa<DbgInfoIntrinsic>(Val: J) && |
392 | !J->isLifetimeStartOrEnd() && J->getDebugLoc(); |
393 | }; |
394 | |
395 | Instruction *J = &*BB->getFirstInsertionPt(); |
396 | while (J != BB->getTerminator() && !HasValidDbgLine(J)) { |
397 | J = J->getNextNode(); |
398 | } |
399 | |
400 | IRBuilder<> Builder(J); |
401 | assert(Builder.GetInsertPoint() != BB->end() && |
402 | "Cannot get the probing point" ); |
403 | Function *ProbeFn = |
404 | llvm::Intrinsic::getDeclaration(M, id: Intrinsic::pseudoprobe); |
405 | Value *Args[] = {Builder.getInt64(C: Guid), Builder.getInt64(C: Index), |
406 | Builder.getInt32(C: 0), |
407 | Builder.getInt64(C: PseudoProbeFullDistributionFactor)}; |
408 | auto *Probe = Builder.CreateCall(Callee: ProbeFn, Args); |
409 | AssignDebugLoc(Probe); |
410 | // Reset the dwarf discriminator if the debug location comes with any. The |
411 | // discriminator field may be used by FS-AFDO later in the pipeline. |
412 | if (auto DIL = Probe->getDebugLoc()) { |
413 | if (DIL->getDiscriminator()) { |
414 | DIL = DIL->cloneWithDiscriminator(Discriminator: 0); |
415 | Probe->setDebugLoc(DIL); |
416 | } |
417 | } |
418 | } |
419 | |
420 | // Probe both direct calls and indirect calls. Direct calls are probed so that |
421 | // their probe ID can be used as an call site identifier to represent a |
422 | // calling context. |
423 | for (auto &I : CallProbeIds) { |
424 | auto *Call = I.first; |
425 | uint32_t Index = I.second; |
426 | uint32_t Type = cast<CallBase>(Val: Call)->getCalledFunction() |
427 | ? (uint32_t)PseudoProbeType::DirectCall |
428 | : (uint32_t)PseudoProbeType::IndirectCall; |
429 | AssignDebugLoc(Call); |
430 | if (auto DIL = Call->getDebugLoc()) { |
431 | // Levarge the 32-bit discriminator field of debug data to store the ID |
432 | // and type of a callsite probe. This gets rid of the dependency on |
433 | // plumbing a customized metadata through the codegen pipeline. |
434 | uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData( |
435 | Index, Type, Flags: 0, Factor: PseudoProbeDwarfDiscriminator::FullDistributionFactor, |
436 | DwarfBaseDiscriminator: DIL->getBaseDiscriminator()); |
437 | DIL = DIL->cloneWithDiscriminator(Discriminator: V); |
438 | Call->setDebugLoc(DIL); |
439 | } |
440 | } |
441 | |
442 | // Create module-level metadata that contains function info necessary to |
443 | // synthesize probe-based sample counts, which are |
444 | // - FunctionGUID |
445 | // - FunctionHash. |
446 | // - FunctionName |
447 | auto Hash = getFunctionHash(); |
448 | auto *MD = MDB.createPseudoProbeDesc(GUID: Guid, Hash, FName); |
449 | auto *NMD = M->getNamedMetadata(Name: PseudoProbeDescMetadataName); |
450 | assert(NMD && "llvm.pseudo_probe_desc should be pre-created" ); |
451 | NMD->addOperand(M: MD); |
452 | } |
453 | |
454 | PreservedAnalyses SampleProfileProbePass::run(Module &M, |
455 | ModuleAnalysisManager &AM) { |
456 | auto ModuleId = getUniqueModuleId(M: &M); |
457 | // Create the pseudo probe desc metadata beforehand. |
458 | // Note that modules with only data but no functions will require this to |
459 | // be set up so that they will be known as probed later. |
460 | M.getOrInsertNamedMetadata(Name: PseudoProbeDescMetadataName); |
461 | |
462 | for (auto &F : M) { |
463 | if (F.isDeclaration()) |
464 | continue; |
465 | SampleProfileProber ProbeManager(F, ModuleId); |
466 | ProbeManager.instrumentOneFunc(F, TM); |
467 | } |
468 | |
469 | return PreservedAnalyses::none(); |
470 | } |
471 | |
472 | void PseudoProbeUpdatePass::runOnFunction(Function &F, |
473 | FunctionAnalysisManager &FAM) { |
474 | BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
475 | auto BBProfileCount = [&BFI](BasicBlock *BB) { |
476 | return BFI.getBlockProfileCount(BB).value_or(u: 0); |
477 | }; |
478 | |
479 | // Collect the sum of execution weight for each probe. |
480 | ProbeFactorMap ProbeFactors; |
481 | for (auto &Block : F) { |
482 | for (auto &I : Block) { |
483 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
484 | uint64_t Hash = computeCallStackHash(Inst: I); |
485 | ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block); |
486 | } |
487 | } |
488 | } |
489 | |
490 | // Fix up over-counted probes. |
491 | for (auto &Block : F) { |
492 | for (auto &I : Block) { |
493 | if (std::optional<PseudoProbe> Probe = extractProbe(Inst: I)) { |
494 | uint64_t Hash = computeCallStackHash(Inst: I); |
495 | float Sum = ProbeFactors[{Probe->Id, Hash}]; |
496 | if (Sum != 0) |
497 | setProbeDistributionFactor(Inst&: I, Factor: BBProfileCount(&Block) / Sum); |
498 | } |
499 | } |
500 | } |
501 | } |
502 | |
503 | PreservedAnalyses PseudoProbeUpdatePass::run(Module &M, |
504 | ModuleAnalysisManager &AM) { |
505 | if (UpdatePseudoProbe) { |
506 | for (auto &F : M) { |
507 | if (F.isDeclaration()) |
508 | continue; |
509 | FunctionAnalysisManager &FAM = |
510 | AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
511 | runOnFunction(F, FAM); |
512 | } |
513 | } |
514 | return PreservedAnalyses::none(); |
515 | } |
516 | |