1 | //===- ADCE.cpp - Code to perform dead code elimination -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Aggressive Dead Code Elimination pass. This pass |
10 | // optimistically assumes that all instructions are dead until proven otherwise, |
11 | // allowing it to eliminate dead computations that other DCE passes do not |
12 | // catch, particularly involving loop computations. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/Transforms/Scalar/ADCE.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/DepthFirstIterator.h" |
19 | #include "llvm/ADT/GraphTraits.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/PostOrderIterator.h" |
22 | #include "llvm/ADT/SetVector.h" |
23 | #include "llvm/ADT/SmallPtrSet.h" |
24 | #include "llvm/ADT/SmallVector.h" |
25 | #include "llvm/ADT/Statistic.h" |
26 | #include "llvm/Analysis/DomTreeUpdater.h" |
27 | #include "llvm/Analysis/GlobalsModRef.h" |
28 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
29 | #include "llvm/Analysis/MemorySSA.h" |
30 | #include "llvm/Analysis/PostDominators.h" |
31 | #include "llvm/IR/BasicBlock.h" |
32 | #include "llvm/IR/CFG.h" |
33 | #include "llvm/IR/DebugInfo.h" |
34 | #include "llvm/IR/DebugInfoMetadata.h" |
35 | #include "llvm/IR/DebugLoc.h" |
36 | #include "llvm/IR/Dominators.h" |
37 | #include "llvm/IR/Function.h" |
38 | #include "llvm/IR/IRBuilder.h" |
39 | #include "llvm/IR/InstIterator.h" |
40 | #include "llvm/IR/Instruction.h" |
41 | #include "llvm/IR/Instructions.h" |
42 | #include "llvm/IR/IntrinsicInst.h" |
43 | #include "llvm/IR/PassManager.h" |
44 | #include "llvm/IR/Use.h" |
45 | #include "llvm/IR/Value.h" |
46 | #include "llvm/ProfileData/InstrProf.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/CommandLine.h" |
49 | #include "llvm/Support/Debug.h" |
50 | #include "llvm/Support/raw_ostream.h" |
51 | #include "llvm/Transforms/Utils/Local.h" |
52 | #include <cassert> |
53 | #include <cstddef> |
54 | #include <utility> |
55 | |
56 | using namespace llvm; |
57 | |
58 | #define DEBUG_TYPE "adce" |
59 | |
60 | STATISTIC(NumRemoved, "Number of instructions removed" ); |
61 | STATISTIC(NumBranchesRemoved, "Number of branch instructions removed" ); |
62 | |
63 | // This is a temporary option until we change the interface to this pass based |
64 | // on optimization level. |
65 | static cl::opt<bool> RemoveControlFlowFlag("adce-remove-control-flow" , |
66 | cl::init(Val: true), cl::Hidden); |
67 | |
68 | // This option enables removing of may-be-infinite loops which have no other |
69 | // effect. |
70 | static cl::opt<bool> RemoveLoops("adce-remove-loops" , cl::init(Val: false), |
71 | cl::Hidden); |
72 | |
73 | namespace { |
74 | |
75 | /// Information about Instructions |
76 | struct InstInfoType { |
77 | /// True if the associated instruction is live. |
78 | bool Live = false; |
79 | |
80 | /// Quick access to information for block containing associated Instruction. |
81 | struct BlockInfoType *Block = nullptr; |
82 | }; |
83 | |
84 | /// Information about basic blocks relevant to dead code elimination. |
85 | struct BlockInfoType { |
86 | /// True when this block contains a live instructions. |
87 | bool Live = false; |
88 | |
89 | /// True when this block ends in an unconditional branch. |
90 | bool UnconditionalBranch = false; |
91 | |
92 | /// True when this block is known to have live PHI nodes. |
93 | bool HasLivePhiNodes = false; |
94 | |
95 | /// Control dependence sources need to be live for this block. |
96 | bool CFLive = false; |
97 | |
98 | /// Quick access to the LiveInfo for the terminator, |
99 | /// holds the value &InstInfo[Terminator] |
100 | InstInfoType *TerminatorLiveInfo = nullptr; |
101 | |
102 | /// Corresponding BasicBlock. |
103 | BasicBlock *BB = nullptr; |
104 | |
105 | /// Cache of BB->getTerminator(). |
106 | Instruction *Terminator = nullptr; |
107 | |
108 | /// Post-order numbering of reverse control flow graph. |
109 | unsigned PostOrder; |
110 | |
111 | bool terminatorIsLive() const { return TerminatorLiveInfo->Live; } |
112 | }; |
113 | |
114 | struct ADCEChanged { |
115 | bool ChangedAnything = false; |
116 | bool ChangedNonDebugInstr = false; |
117 | bool ChangedControlFlow = false; |
118 | }; |
119 | |
120 | class AggressiveDeadCodeElimination { |
121 | Function &F; |
122 | |
123 | // ADCE does not use DominatorTree per se, but it updates it to preserve the |
124 | // analysis. |
125 | DominatorTree *DT; |
126 | PostDominatorTree &PDT; |
127 | |
128 | /// Mapping of blocks to associated information, an element in BlockInfoVec. |
129 | /// Use MapVector to get deterministic iteration order. |
130 | MapVector<BasicBlock *, BlockInfoType> BlockInfo; |
131 | bool isLive(BasicBlock *BB) { return BlockInfo[BB].Live; } |
132 | |
133 | /// Mapping of instructions to associated information. |
134 | DenseMap<Instruction *, InstInfoType> InstInfo; |
135 | bool isLive(Instruction *I) { return InstInfo[I].Live; } |
136 | |
137 | /// Instructions known to be live where we need to mark |
138 | /// reaching definitions as live. |
139 | SmallVector<Instruction *, 128> Worklist; |
140 | |
141 | /// Debug info scopes around a live instruction. |
142 | SmallPtrSet<const Metadata *, 32> AliveScopes; |
143 | |
144 | /// Set of blocks with not known to have live terminators. |
145 | SmallSetVector<BasicBlock *, 16> BlocksWithDeadTerminators; |
146 | |
147 | /// The set of blocks which we have determined whose control |
148 | /// dependence sources must be live and which have not had |
149 | /// those dependences analyzed. |
150 | SmallPtrSet<BasicBlock *, 16> NewLiveBlocks; |
151 | |
152 | /// Set up auxiliary data structures for Instructions and BasicBlocks and |
153 | /// initialize the Worklist to the set of must-be-live Instruscions. |
154 | void initialize(); |
155 | |
156 | /// Return true for operations which are always treated as live. |
157 | bool isAlwaysLive(Instruction &I); |
158 | |
159 | /// Return true for instrumentation instructions for value profiling. |
160 | bool isInstrumentsConstant(Instruction &I); |
161 | |
162 | /// Propagate liveness to reaching definitions. |
163 | void markLiveInstructions(); |
164 | |
165 | /// Mark an instruction as live. |
166 | void markLive(Instruction *I); |
167 | |
168 | /// Mark a block as live. |
169 | void markLive(BlockInfoType &BB); |
170 | void markLive(BasicBlock *BB) { markLive(BB&: BlockInfo[BB]); } |
171 | |
172 | /// Mark terminators of control predecessors of a PHI node live. |
173 | void markPhiLive(PHINode *PN); |
174 | |
175 | /// Record the Debug Scopes which surround live debug information. |
176 | void collectLiveScopes(const DILocalScope &LS); |
177 | void collectLiveScopes(const DILocation &DL); |
178 | |
179 | /// Analyze dead branches to find those whose branches are the sources |
180 | /// of control dependences impacting a live block. Those branches are |
181 | /// marked live. |
182 | void markLiveBranchesFromControlDependences(); |
183 | |
184 | /// Remove instructions not marked live, return if any instruction was |
185 | /// removed. |
186 | ADCEChanged removeDeadInstructions(); |
187 | |
188 | /// Identify connected sections of the control flow graph which have |
189 | /// dead terminators and rewrite the control flow graph to remove them. |
190 | bool updateDeadRegions(); |
191 | |
192 | /// Set the BlockInfo::PostOrder field based on a post-order |
193 | /// numbering of the reverse control flow graph. |
194 | void computeReversePostOrder(); |
195 | |
196 | /// Make the terminator of this block an unconditional branch to \p Target. |
197 | void makeUnconditional(BasicBlock *BB, BasicBlock *Target); |
198 | |
199 | public: |
200 | AggressiveDeadCodeElimination(Function &F, DominatorTree *DT, |
201 | PostDominatorTree &PDT) |
202 | : F(F), DT(DT), PDT(PDT) {} |
203 | |
204 | ADCEChanged performDeadCodeElimination(); |
205 | }; |
206 | |
207 | } // end anonymous namespace |
208 | |
209 | ADCEChanged AggressiveDeadCodeElimination::performDeadCodeElimination() { |
210 | initialize(); |
211 | markLiveInstructions(); |
212 | return removeDeadInstructions(); |
213 | } |
214 | |
215 | static bool isUnconditionalBranch(Instruction *Term) { |
216 | auto *BR = dyn_cast<BranchInst>(Val: Term); |
217 | return BR && BR->isUnconditional(); |
218 | } |
219 | |
220 | void AggressiveDeadCodeElimination::initialize() { |
221 | auto NumBlocks = F.size(); |
222 | |
223 | // We will have an entry in the map for each block so we grow the |
224 | // structure to twice that size to keep the load factor low in the hash table. |
225 | BlockInfo.reserve(NumEntries: NumBlocks); |
226 | size_t NumInsts = 0; |
227 | |
228 | // Iterate over blocks and initialize BlockInfoVec entries, count |
229 | // instructions to size the InstInfo hash table. |
230 | for (auto &BB : F) { |
231 | NumInsts += BB.size(); |
232 | auto &Info = BlockInfo[&BB]; |
233 | Info.BB = &BB; |
234 | Info.Terminator = BB.getTerminator(); |
235 | Info.UnconditionalBranch = isUnconditionalBranch(Term: Info.Terminator); |
236 | } |
237 | |
238 | // Initialize instruction map and set pointers to block info. |
239 | InstInfo.reserve(NumEntries: NumInsts); |
240 | for (auto &BBInfo : BlockInfo) |
241 | for (Instruction &I : *BBInfo.second.BB) |
242 | InstInfo[&I].Block = &BBInfo.second; |
243 | |
244 | // Since BlockInfoVec holds pointers into InstInfo and vice-versa, we may not |
245 | // add any more elements to either after this point. |
246 | for (auto &BBInfo : BlockInfo) |
247 | BBInfo.second.TerminatorLiveInfo = &InstInfo[BBInfo.second.Terminator]; |
248 | |
249 | // Collect the set of "root" instructions that are known live. |
250 | for (Instruction &I : instructions(F)) |
251 | if (isAlwaysLive(I)) |
252 | markLive(I: &I); |
253 | |
254 | if (!RemoveControlFlowFlag) |
255 | return; |
256 | |
257 | if (!RemoveLoops) { |
258 | // This stores state for the depth-first iterator. In addition |
259 | // to recording which nodes have been visited we also record whether |
260 | // a node is currently on the "stack" of active ancestors of the current |
261 | // node. |
262 | using StatusMap = DenseMap<BasicBlock *, bool>; |
263 | |
264 | class DFState : public StatusMap { |
265 | public: |
266 | std::pair<StatusMap::iterator, bool> insert(BasicBlock *BB) { |
267 | return StatusMap::insert(KV: std::make_pair(x&: BB, y: true)); |
268 | } |
269 | |
270 | // Invoked after we have visited all children of a node. |
271 | void completed(BasicBlock *BB) { (*this)[BB] = false; } |
272 | |
273 | // Return true if \p BB is currently on the active stack |
274 | // of ancestors. |
275 | bool onStack(BasicBlock *BB) { |
276 | auto Iter = find(Val: BB); |
277 | return Iter != end() && Iter->second; |
278 | } |
279 | } State; |
280 | |
281 | State.reserve(NumEntries: F.size()); |
282 | // Iterate over blocks in depth-first pre-order and |
283 | // treat all edges to a block already seen as loop back edges |
284 | // and mark the branch live it if there is a back edge. |
285 | for (auto *BB: depth_first_ext(G: &F.getEntryBlock(), S&: State)) { |
286 | Instruction *Term = BB->getTerminator(); |
287 | if (isLive(I: Term)) |
288 | continue; |
289 | |
290 | for (auto *Succ : successors(BB)) |
291 | if (State.onStack(BB: Succ)) { |
292 | // back edge.... |
293 | markLive(I: Term); |
294 | break; |
295 | } |
296 | } |
297 | } |
298 | |
299 | // Mark blocks live if there is no path from the block to a |
300 | // return of the function. |
301 | // We do this by seeing which of the postdomtree root children exit the |
302 | // program, and for all others, mark the subtree live. |
303 | for (const auto &PDTChild : children<DomTreeNode *>(G: PDT.getRootNode())) { |
304 | auto *BB = PDTChild->getBlock(); |
305 | auto &Info = BlockInfo[BB]; |
306 | // Real function return |
307 | if (isa<ReturnInst>(Val: Info.Terminator)) { |
308 | LLVM_DEBUG(dbgs() << "post-dom root child is a return: " << BB->getName() |
309 | << '\n';); |
310 | continue; |
311 | } |
312 | |
313 | // This child is something else, like an infinite loop. |
314 | for (auto *DFNode : depth_first(G: PDTChild)) |
315 | markLive(I: BlockInfo[DFNode->getBlock()].Terminator); |
316 | } |
317 | |
318 | // Treat the entry block as always live |
319 | auto *BB = &F.getEntryBlock(); |
320 | auto &EntryInfo = BlockInfo[BB]; |
321 | EntryInfo.Live = true; |
322 | if (EntryInfo.UnconditionalBranch) |
323 | markLive(I: EntryInfo.Terminator); |
324 | |
325 | // Build initial collection of blocks with dead terminators |
326 | for (auto &BBInfo : BlockInfo) |
327 | if (!BBInfo.second.terminatorIsLive()) |
328 | BlocksWithDeadTerminators.insert(X: BBInfo.second.BB); |
329 | } |
330 | |
331 | bool AggressiveDeadCodeElimination::isAlwaysLive(Instruction &I) { |
332 | // TODO -- use llvm::isInstructionTriviallyDead |
333 | if (I.isEHPad() || I.mayHaveSideEffects()) { |
334 | // Skip any value profile instrumentation calls if they are |
335 | // instrumenting constants. |
336 | if (isInstrumentsConstant(I)) |
337 | return false; |
338 | return true; |
339 | } |
340 | if (!I.isTerminator()) |
341 | return false; |
342 | if (RemoveControlFlowFlag && (isa<BranchInst>(Val: I) || isa<SwitchInst>(Val: I))) |
343 | return false; |
344 | return true; |
345 | } |
346 | |
347 | // Check if this instruction is a runtime call for value profiling and |
348 | // if it's instrumenting a constant. |
349 | bool AggressiveDeadCodeElimination::isInstrumentsConstant(Instruction &I) { |
350 | // TODO -- move this test into llvm::isInstructionTriviallyDead |
351 | if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) |
352 | if (Function *Callee = CI->getCalledFunction()) |
353 | if (Callee->getName() == getInstrProfValueProfFuncName()) |
354 | if (isa<Constant>(Val: CI->getArgOperand(i: 0))) |
355 | return true; |
356 | return false; |
357 | } |
358 | |
359 | void AggressiveDeadCodeElimination::markLiveInstructions() { |
360 | // Propagate liveness backwards to operands. |
361 | do { |
362 | // Worklist holds newly discovered live instructions |
363 | // where we need to mark the inputs as live. |
364 | while (!Worklist.empty()) { |
365 | Instruction *LiveInst = Worklist.pop_back_val(); |
366 | LLVM_DEBUG(dbgs() << "work live: " ; LiveInst->dump();); |
367 | |
368 | for (Use &OI : LiveInst->operands()) |
369 | if (Instruction *Inst = dyn_cast<Instruction>(Val&: OI)) |
370 | markLive(I: Inst); |
371 | |
372 | if (auto *PN = dyn_cast<PHINode>(Val: LiveInst)) |
373 | markPhiLive(PN); |
374 | } |
375 | |
376 | // After data flow liveness has been identified, examine which branch |
377 | // decisions are required to determine live instructions are executed. |
378 | markLiveBranchesFromControlDependences(); |
379 | |
380 | } while (!Worklist.empty()); |
381 | } |
382 | |
383 | void AggressiveDeadCodeElimination::markLive(Instruction *I) { |
384 | auto &Info = InstInfo[I]; |
385 | if (Info.Live) |
386 | return; |
387 | |
388 | LLVM_DEBUG(dbgs() << "mark live: " ; I->dump()); |
389 | Info.Live = true; |
390 | Worklist.push_back(Elt: I); |
391 | |
392 | // Collect the live debug info scopes attached to this instruction. |
393 | if (const DILocation *DL = I->getDebugLoc()) |
394 | collectLiveScopes(DL: *DL); |
395 | |
396 | // Mark the containing block live |
397 | auto &BBInfo = *Info.Block; |
398 | if (BBInfo.Terminator == I) { |
399 | BlocksWithDeadTerminators.remove(X: BBInfo.BB); |
400 | // For live terminators, mark destination blocks |
401 | // live to preserve this control flow edges. |
402 | if (!BBInfo.UnconditionalBranch) |
403 | for (auto *BB : successors(BB: I->getParent())) |
404 | markLive(BB); |
405 | } |
406 | markLive(BB&: BBInfo); |
407 | } |
408 | |
409 | void AggressiveDeadCodeElimination::markLive(BlockInfoType &BBInfo) { |
410 | if (BBInfo.Live) |
411 | return; |
412 | LLVM_DEBUG(dbgs() << "mark block live: " << BBInfo.BB->getName() << '\n'); |
413 | BBInfo.Live = true; |
414 | if (!BBInfo.CFLive) { |
415 | BBInfo.CFLive = true; |
416 | NewLiveBlocks.insert(Ptr: BBInfo.BB); |
417 | } |
418 | |
419 | // Mark unconditional branches at the end of live |
420 | // blocks as live since there is no work to do for them later |
421 | if (BBInfo.UnconditionalBranch) |
422 | markLive(I: BBInfo.Terminator); |
423 | } |
424 | |
425 | void AggressiveDeadCodeElimination::collectLiveScopes(const DILocalScope &LS) { |
426 | if (!AliveScopes.insert(Ptr: &LS).second) |
427 | return; |
428 | |
429 | if (isa<DISubprogram>(Val: LS)) |
430 | return; |
431 | |
432 | // Tail-recurse through the scope chain. |
433 | collectLiveScopes(LS: cast<DILocalScope>(Val&: *LS.getScope())); |
434 | } |
435 | |
436 | void AggressiveDeadCodeElimination::collectLiveScopes(const DILocation &DL) { |
437 | // Even though DILocations are not scopes, shove them into AliveScopes so we |
438 | // don't revisit them. |
439 | if (!AliveScopes.insert(Ptr: &DL).second) |
440 | return; |
441 | |
442 | // Collect live scopes from the scope chain. |
443 | collectLiveScopes(LS: *DL.getScope()); |
444 | |
445 | // Tail-recurse through the inlined-at chain. |
446 | if (const DILocation *IA = DL.getInlinedAt()) |
447 | collectLiveScopes(DL: *IA); |
448 | } |
449 | |
450 | void AggressiveDeadCodeElimination::markPhiLive(PHINode *PN) { |
451 | auto &Info = BlockInfo[PN->getParent()]; |
452 | // Only need to check this once per block. |
453 | if (Info.HasLivePhiNodes) |
454 | return; |
455 | Info.HasLivePhiNodes = true; |
456 | |
457 | // If a predecessor block is not live, mark it as control-flow live |
458 | // which will trigger marking live branches upon which |
459 | // that block is control dependent. |
460 | for (auto *PredBB : predecessors(BB: Info.BB)) { |
461 | auto &Info = BlockInfo[PredBB]; |
462 | if (!Info.CFLive) { |
463 | Info.CFLive = true; |
464 | NewLiveBlocks.insert(Ptr: PredBB); |
465 | } |
466 | } |
467 | } |
468 | |
469 | void AggressiveDeadCodeElimination::markLiveBranchesFromControlDependences() { |
470 | if (BlocksWithDeadTerminators.empty()) |
471 | return; |
472 | |
473 | LLVM_DEBUG({ |
474 | dbgs() << "new live blocks:\n" ; |
475 | for (auto *BB : NewLiveBlocks) |
476 | dbgs() << "\t" << BB->getName() << '\n'; |
477 | dbgs() << "dead terminator blocks:\n" ; |
478 | for (auto *BB : BlocksWithDeadTerminators) |
479 | dbgs() << "\t" << BB->getName() << '\n'; |
480 | }); |
481 | |
482 | // The dominance frontier of a live block X in the reverse |
483 | // control graph is the set of blocks upon which X is control |
484 | // dependent. The following sequence computes the set of blocks |
485 | // which currently have dead terminators that are control |
486 | // dependence sources of a block which is in NewLiveBlocks. |
487 | |
488 | const SmallPtrSet<BasicBlock *, 16> BWDT{ |
489 | BlocksWithDeadTerminators.begin(), |
490 | BlocksWithDeadTerminators.end() |
491 | }; |
492 | SmallVector<BasicBlock *, 32> IDFBlocks; |
493 | ReverseIDFCalculator IDFs(PDT); |
494 | IDFs.setDefiningBlocks(NewLiveBlocks); |
495 | IDFs.setLiveInBlocks(BWDT); |
496 | IDFs.calculate(IDFBlocks); |
497 | NewLiveBlocks.clear(); |
498 | |
499 | // Dead terminators which control live blocks are now marked live. |
500 | for (auto *BB : IDFBlocks) { |
501 | LLVM_DEBUG(dbgs() << "live control in: " << BB->getName() << '\n'); |
502 | markLive(I: BB->getTerminator()); |
503 | } |
504 | } |
505 | |
506 | //===----------------------------------------------------------------------===// |
507 | // |
508 | // Routines to update the CFG and SSA information before removing dead code. |
509 | // |
510 | //===----------------------------------------------------------------------===// |
511 | ADCEChanged AggressiveDeadCodeElimination::removeDeadInstructions() { |
512 | ADCEChanged Changed; |
513 | // Updates control and dataflow around dead blocks |
514 | Changed.ChangedControlFlow = updateDeadRegions(); |
515 | |
516 | LLVM_DEBUG({ |
517 | for (Instruction &I : instructions(F)) { |
518 | // Check if the instruction is alive. |
519 | if (isLive(&I)) |
520 | continue; |
521 | |
522 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { |
523 | // Check if the scope of this variable location is alive. |
524 | if (AliveScopes.count(DII->getDebugLoc()->getScope())) |
525 | continue; |
526 | |
527 | // If intrinsic is pointing at a live SSA value, there may be an |
528 | // earlier optimization bug: if we know the location of the variable, |
529 | // why isn't the scope of the location alive? |
530 | for (Value *V : DII->location_ops()) { |
531 | if (Instruction *II = dyn_cast<Instruction>(V)) { |
532 | if (isLive(II)) { |
533 | dbgs() << "Dropping debug info for " << *DII << "\n" ; |
534 | break; |
535 | } |
536 | } |
537 | } |
538 | } |
539 | } |
540 | }); |
541 | |
542 | // The inverse of the live set is the dead set. These are those instructions |
543 | // that have no side effects and do not influence the control flow or return |
544 | // value of the function, and may therefore be deleted safely. |
545 | // NOTE: We reuse the Worklist vector here for memory efficiency. |
546 | for (Instruction &I : llvm::reverse(C: instructions(F))) { |
547 | // With "RemoveDIs" debug-info stored in DbgVariableRecord objects, |
548 | // debug-info attached to this instruction, and drop any for scopes that |
549 | // aren't alive, like the rest of this loop does. Extending support to |
550 | // assignment tracking is future work. |
551 | for (DbgRecord &DR : make_early_inc_range(Range: I.getDbgRecordRange())) { |
552 | // Avoid removing a DVR that is linked to instructions because it holds |
553 | // information about an existing store. |
554 | if (DbgVariableRecord *DVR = dyn_cast<DbgVariableRecord>(Val: &DR); |
555 | DVR && DVR->isDbgAssign()) |
556 | if (!at::getAssignmentInsts(DVR).empty()) |
557 | continue; |
558 | if (AliveScopes.count(Ptr: DR.getDebugLoc()->getScope())) |
559 | continue; |
560 | I.dropOneDbgRecord(I: &DR); |
561 | } |
562 | |
563 | // Check if the instruction is alive. |
564 | if (isLive(I: &I)) |
565 | continue; |
566 | |
567 | if (auto *DII = dyn_cast<DbgInfoIntrinsic>(Val: &I)) { |
568 | // Avoid removing a dbg.assign that is linked to instructions because it |
569 | // holds information about an existing store. |
570 | if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DII)) |
571 | if (!at::getAssignmentInsts(DAI).empty()) |
572 | continue; |
573 | // Check if the scope of this variable location is alive. |
574 | if (AliveScopes.count(Ptr: DII->getDebugLoc()->getScope())) |
575 | continue; |
576 | |
577 | // Fallthrough and drop the intrinsic. |
578 | } else { |
579 | Changed.ChangedNonDebugInstr = true; |
580 | } |
581 | |
582 | // Prepare to delete. |
583 | Worklist.push_back(Elt: &I); |
584 | salvageDebugInfo(I); |
585 | } |
586 | |
587 | for (Instruction *&I : Worklist) |
588 | I->dropAllReferences(); |
589 | |
590 | for (Instruction *&I : Worklist) { |
591 | ++NumRemoved; |
592 | I->eraseFromParent(); |
593 | } |
594 | |
595 | Changed.ChangedAnything = Changed.ChangedControlFlow || !Worklist.empty(); |
596 | |
597 | return Changed; |
598 | } |
599 | |
600 | // A dead region is the set of dead blocks with a common live post-dominator. |
601 | bool AggressiveDeadCodeElimination::updateDeadRegions() { |
602 | LLVM_DEBUG({ |
603 | dbgs() << "final dead terminator blocks: " << '\n'; |
604 | for (auto *BB : BlocksWithDeadTerminators) |
605 | dbgs() << '\t' << BB->getName() |
606 | << (BlockInfo[BB].Live ? " LIVE\n" : "\n" ); |
607 | }); |
608 | |
609 | // Don't compute the post ordering unless we needed it. |
610 | bool HavePostOrder = false; |
611 | bool Changed = false; |
612 | SmallVector<DominatorTree::UpdateType, 10> DeletedEdges; |
613 | |
614 | for (auto *BB : BlocksWithDeadTerminators) { |
615 | auto &Info = BlockInfo[BB]; |
616 | if (Info.UnconditionalBranch) { |
617 | InstInfo[Info.Terminator].Live = true; |
618 | continue; |
619 | } |
620 | |
621 | if (!HavePostOrder) { |
622 | computeReversePostOrder(); |
623 | HavePostOrder = true; |
624 | } |
625 | |
626 | // Add an unconditional branch to the successor closest to the |
627 | // end of the function which insures a path to the exit for each |
628 | // live edge. |
629 | BlockInfoType *PreferredSucc = nullptr; |
630 | for (auto *Succ : successors(BB)) { |
631 | auto *Info = &BlockInfo[Succ]; |
632 | if (!PreferredSucc || PreferredSucc->PostOrder < Info->PostOrder) |
633 | PreferredSucc = Info; |
634 | } |
635 | assert((PreferredSucc && PreferredSucc->PostOrder > 0) && |
636 | "Failed to find safe successor for dead branch" ); |
637 | |
638 | // Collect removed successors to update the (Post)DominatorTrees. |
639 | SmallPtrSet<BasicBlock *, 4> RemovedSuccessors; |
640 | bool First = true; |
641 | for (auto *Succ : successors(BB)) { |
642 | if (!First || Succ != PreferredSucc->BB) { |
643 | Succ->removePredecessor(Pred: BB); |
644 | RemovedSuccessors.insert(Ptr: Succ); |
645 | } else |
646 | First = false; |
647 | } |
648 | makeUnconditional(BB, Target: PreferredSucc->BB); |
649 | |
650 | // Inform the dominators about the deleted CFG edges. |
651 | for (auto *Succ : RemovedSuccessors) { |
652 | // It might have happened that the same successor appeared multiple times |
653 | // and the CFG edge wasn't really removed. |
654 | if (Succ != PreferredSucc->BB) { |
655 | LLVM_DEBUG(dbgs() << "ADCE: (Post)DomTree edge enqueued for deletion" |
656 | << BB->getName() << " -> " << Succ->getName() |
657 | << "\n" ); |
658 | DeletedEdges.push_back(Elt: {DominatorTree::Delete, BB, Succ}); |
659 | } |
660 | } |
661 | |
662 | NumBranchesRemoved += 1; |
663 | Changed = true; |
664 | } |
665 | |
666 | if (!DeletedEdges.empty()) |
667 | DomTreeUpdater(DT, &PDT, DomTreeUpdater::UpdateStrategy::Eager) |
668 | .applyUpdates(Updates: DeletedEdges); |
669 | |
670 | return Changed; |
671 | } |
672 | |
673 | // reverse top-sort order |
674 | void AggressiveDeadCodeElimination::computeReversePostOrder() { |
675 | // This provides a post-order numbering of the reverse control flow graph |
676 | // Note that it is incomplete in the presence of infinite loops but we don't |
677 | // need numbers blocks which don't reach the end of the functions since |
678 | // all branches in those blocks are forced live. |
679 | |
680 | // For each block without successors, extend the DFS from the block |
681 | // backward through the graph |
682 | SmallPtrSet<BasicBlock*, 16> Visited; |
683 | unsigned PostOrder = 0; |
684 | for (auto &BB : F) { |
685 | if (!succ_empty(BB: &BB)) |
686 | continue; |
687 | for (BasicBlock *Block : inverse_post_order_ext(G: &BB,S&: Visited)) |
688 | BlockInfo[Block].PostOrder = PostOrder++; |
689 | } |
690 | } |
691 | |
692 | void AggressiveDeadCodeElimination::makeUnconditional(BasicBlock *BB, |
693 | BasicBlock *Target) { |
694 | Instruction *PredTerm = BB->getTerminator(); |
695 | // Collect the live debug info scopes attached to this instruction. |
696 | if (const DILocation *DL = PredTerm->getDebugLoc()) |
697 | collectLiveScopes(DL: *DL); |
698 | |
699 | // Just mark live an existing unconditional branch |
700 | if (isUnconditionalBranch(Term: PredTerm)) { |
701 | PredTerm->setSuccessor(Idx: 0, BB: Target); |
702 | InstInfo[PredTerm].Live = true; |
703 | return; |
704 | } |
705 | LLVM_DEBUG(dbgs() << "making unconditional " << BB->getName() << '\n'); |
706 | NumBranchesRemoved += 1; |
707 | IRBuilder<> Builder(PredTerm); |
708 | auto *NewTerm = Builder.CreateBr(Dest: Target); |
709 | InstInfo[NewTerm].Live = true; |
710 | if (const DILocation *DL = PredTerm->getDebugLoc()) |
711 | NewTerm->setDebugLoc(DL); |
712 | |
713 | InstInfo.erase(Val: PredTerm); |
714 | PredTerm->eraseFromParent(); |
715 | } |
716 | |
717 | //===----------------------------------------------------------------------===// |
718 | // |
719 | // Pass Manager integration code |
720 | // |
721 | //===----------------------------------------------------------------------===// |
722 | PreservedAnalyses ADCEPass::run(Function &F, FunctionAnalysisManager &FAM) { |
723 | // ADCE does not need DominatorTree, but require DominatorTree here |
724 | // to update analysis if it is already available. |
725 | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(IR&: F); |
726 | auto &PDT = FAM.getResult<PostDominatorTreeAnalysis>(IR&: F); |
727 | ADCEChanged Changed = |
728 | AggressiveDeadCodeElimination(F, DT, PDT).performDeadCodeElimination(); |
729 | if (!Changed.ChangedAnything) |
730 | return PreservedAnalyses::all(); |
731 | |
732 | PreservedAnalyses PA; |
733 | if (!Changed.ChangedControlFlow) { |
734 | PA.preserveSet<CFGAnalyses>(); |
735 | if (!Changed.ChangedNonDebugInstr) { |
736 | // Only removing debug instructions does not affect MemorySSA. |
737 | // |
738 | // Therefore we preserve MemorySSA when only removing debug instructions |
739 | // since otherwise later passes may behave differently which then makes |
740 | // the presence of debug info affect code generation. |
741 | PA.preserve<MemorySSAAnalysis>(); |
742 | } |
743 | } |
744 | PA.preserve<DominatorTreeAnalysis>(); |
745 | PA.preserve<PostDominatorTreeAnalysis>(); |
746 | |
747 | return PA; |
748 | } |
749 | |