1 | //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs a simple dominator tree walk that eliminates trivially |
10 | // redundant instructions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/Transforms/Scalar/EarlyCSE.h" |
15 | #include "llvm/ADT/DenseMapInfo.h" |
16 | #include "llvm/ADT/Hashing.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/ScopedHashTable.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/AssumptionCache.h" |
22 | #include "llvm/Analysis/GlobalsModRef.h" |
23 | #include "llvm/Analysis/GuardUtils.h" |
24 | #include "llvm/Analysis/InstructionSimplify.h" |
25 | #include "llvm/Analysis/MemorySSA.h" |
26 | #include "llvm/Analysis/MemorySSAUpdater.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/TargetTransformInfo.h" |
29 | #include "llvm/Analysis/ValueTracking.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/Constants.h" |
32 | #include "llvm/IR/Dominators.h" |
33 | #include "llvm/IR/Function.h" |
34 | #include "llvm/IR/InstrTypes.h" |
35 | #include "llvm/IR/Instruction.h" |
36 | #include "llvm/IR/Instructions.h" |
37 | #include "llvm/IR/IntrinsicInst.h" |
38 | #include "llvm/IR/LLVMContext.h" |
39 | #include "llvm/IR/PassManager.h" |
40 | #include "llvm/IR/PatternMatch.h" |
41 | #include "llvm/IR/Type.h" |
42 | #include "llvm/IR/Value.h" |
43 | #include "llvm/InitializePasses.h" |
44 | #include "llvm/Pass.h" |
45 | #include "llvm/Support/Allocator.h" |
46 | #include "llvm/Support/AtomicOrdering.h" |
47 | #include "llvm/Support/Casting.h" |
48 | #include "llvm/Support/Debug.h" |
49 | #include "llvm/Support/DebugCounter.h" |
50 | #include "llvm/Support/RecyclingAllocator.h" |
51 | #include "llvm/Support/raw_ostream.h" |
52 | #include "llvm/Transforms/Scalar.h" |
53 | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" |
54 | #include "llvm/Transforms/Utils/Local.h" |
55 | #include <cassert> |
56 | #include <deque> |
57 | #include <memory> |
58 | #include <utility> |
59 | |
60 | using namespace llvm; |
61 | using namespace llvm::PatternMatch; |
62 | |
63 | #define DEBUG_TYPE "early-cse" |
64 | |
65 | STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd" ); |
66 | STATISTIC(NumCSE, "Number of instructions CSE'd" ); |
67 | STATISTIC(NumCSECVP, "Number of compare instructions CVP'd" ); |
68 | STATISTIC(NumCSELoad, "Number of load instructions CSE'd" ); |
69 | STATISTIC(NumCSECall, "Number of call instructions CSE'd" ); |
70 | STATISTIC(NumCSEGEP, "Number of GEP instructions CSE'd" ); |
71 | STATISTIC(NumDSE, "Number of trivial dead stores removed" ); |
72 | |
73 | DEBUG_COUNTER(CSECounter, "early-cse" , |
74 | "Controls which instructions are removed" ); |
75 | |
76 | static cl::opt<unsigned> EarlyCSEMssaOptCap( |
77 | "earlycse-mssa-optimization-cap" , cl::init(Val: 500), cl::Hidden, |
78 | cl::desc("Enable imprecision in EarlyCSE in pathological cases, in exchange " |
79 | "for faster compile. Caps the MemorySSA clobbering calls." )); |
80 | |
81 | static cl::opt<bool> EarlyCSEDebugHash( |
82 | "earlycse-debug-hash" , cl::init(Val: false), cl::Hidden, |
83 | cl::desc("Perform extra assertion checking to verify that SimpleValue's hash " |
84 | "function is well-behaved w.r.t. its isEqual predicate" )); |
85 | |
86 | //===----------------------------------------------------------------------===// |
87 | // SimpleValue |
88 | //===----------------------------------------------------------------------===// |
89 | |
90 | namespace { |
91 | |
92 | /// Struct representing the available values in the scoped hash table. |
93 | struct SimpleValue { |
94 | Instruction *Inst; |
95 | |
96 | SimpleValue(Instruction *I) : Inst(I) { |
97 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
98 | } |
99 | |
100 | bool isSentinel() const { |
101 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
102 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
103 | } |
104 | |
105 | static bool canHandle(Instruction *Inst) { |
106 | // This can only handle non-void readnone functions. |
107 | // Also handled are constrained intrinsic that look like the types |
108 | // of instruction handled below (UnaryOperator, etc.). |
109 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) { |
110 | if (Function *F = CI->getCalledFunction()) { |
111 | switch ((Intrinsic::ID)F->getIntrinsicID()) { |
112 | case Intrinsic::experimental_constrained_fadd: |
113 | case Intrinsic::experimental_constrained_fsub: |
114 | case Intrinsic::experimental_constrained_fmul: |
115 | case Intrinsic::experimental_constrained_fdiv: |
116 | case Intrinsic::experimental_constrained_frem: |
117 | case Intrinsic::experimental_constrained_fptosi: |
118 | case Intrinsic::experimental_constrained_sitofp: |
119 | case Intrinsic::experimental_constrained_fptoui: |
120 | case Intrinsic::experimental_constrained_uitofp: |
121 | case Intrinsic::experimental_constrained_fcmp: |
122 | case Intrinsic::experimental_constrained_fcmps: { |
123 | auto *CFP = cast<ConstrainedFPIntrinsic>(Val: CI); |
124 | if (CFP->getExceptionBehavior() && |
125 | CFP->getExceptionBehavior() == fp::ebStrict) |
126 | return false; |
127 | // Since we CSE across function calls we must not allow |
128 | // the rounding mode to change. |
129 | if (CFP->getRoundingMode() && |
130 | CFP->getRoundingMode() == RoundingMode::Dynamic) |
131 | return false; |
132 | return true; |
133 | } |
134 | } |
135 | } |
136 | return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy() && |
137 | // FIXME: Currently the calls which may access the thread id may |
138 | // be considered as not accessing the memory. But this is |
139 | // problematic for coroutines, since coroutines may resume in a |
140 | // different thread. So we disable the optimization here for the |
141 | // correctness. However, it may block many other correct |
142 | // optimizations. Revert this one when we detect the memory |
143 | // accessing kind more precisely. |
144 | !CI->getFunction()->isPresplitCoroutine(); |
145 | } |
146 | return isa<CastInst>(Val: Inst) || isa<UnaryOperator>(Val: Inst) || |
147 | isa<BinaryOperator>(Val: Inst) || isa<CmpInst>(Val: Inst) || |
148 | isa<SelectInst>(Val: Inst) || isa<ExtractElementInst>(Val: Inst) || |
149 | isa<InsertElementInst>(Val: Inst) || isa<ShuffleVectorInst>(Val: Inst) || |
150 | isa<ExtractValueInst>(Val: Inst) || isa<InsertValueInst>(Val: Inst) || |
151 | isa<FreezeInst>(Val: Inst); |
152 | } |
153 | }; |
154 | |
155 | } // end anonymous namespace |
156 | |
157 | namespace llvm { |
158 | |
159 | template <> struct DenseMapInfo<SimpleValue> { |
160 | static inline SimpleValue getEmptyKey() { |
161 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
162 | } |
163 | |
164 | static inline SimpleValue getTombstoneKey() { |
165 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
166 | } |
167 | |
168 | static unsigned getHashValue(SimpleValue Val); |
169 | static bool isEqual(SimpleValue LHS, SimpleValue RHS); |
170 | }; |
171 | |
172 | } // end namespace llvm |
173 | |
174 | /// Match a 'select' including an optional 'not's of the condition. |
175 | static bool matchSelectWithOptionalNotCond(Value *V, Value *&Cond, Value *&A, |
176 | Value *&B, |
177 | SelectPatternFlavor &Flavor) { |
178 | // Return false if V is not even a select. |
179 | if (!match(V, P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: A), R: m_Value(V&: B)))) |
180 | return false; |
181 | |
182 | // Look through a 'not' of the condition operand by swapping A/B. |
183 | Value *CondNot; |
184 | if (match(V: Cond, P: m_Not(V: m_Value(V&: CondNot)))) { |
185 | Cond = CondNot; |
186 | std::swap(a&: A, b&: B); |
187 | } |
188 | |
189 | // Match canonical forms of min/max. We are not using ValueTracking's |
190 | // more powerful matchSelectPattern() because it may rely on instruction flags |
191 | // such as "nsw". That would be incompatible with the current hashing |
192 | // mechanism that may remove flags to increase the likelihood of CSE. |
193 | |
194 | Flavor = SPF_UNKNOWN; |
195 | CmpInst::Predicate Pred; |
196 | |
197 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: A), R: m_Specific(V: B)))) { |
198 | // Check for commuted variants of min/max by swapping predicate. |
199 | // If we do not match the standard or commuted patterns, this is not a |
200 | // recognized form of min/max, but it is still a select, so return true. |
201 | if (!match(V: Cond, P: m_ICmp(Pred, L: m_Specific(V: B), R: m_Specific(V: A)))) |
202 | return true; |
203 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
204 | } |
205 | |
206 | switch (Pred) { |
207 | case CmpInst::ICMP_UGT: Flavor = SPF_UMAX; break; |
208 | case CmpInst::ICMP_ULT: Flavor = SPF_UMIN; break; |
209 | case CmpInst::ICMP_SGT: Flavor = SPF_SMAX; break; |
210 | case CmpInst::ICMP_SLT: Flavor = SPF_SMIN; break; |
211 | // Non-strict inequalities. |
212 | case CmpInst::ICMP_ULE: Flavor = SPF_UMIN; break; |
213 | case CmpInst::ICMP_UGE: Flavor = SPF_UMAX; break; |
214 | case CmpInst::ICMP_SLE: Flavor = SPF_SMIN; break; |
215 | case CmpInst::ICMP_SGE: Flavor = SPF_SMAX; break; |
216 | default: break; |
217 | } |
218 | |
219 | return true; |
220 | } |
221 | |
222 | static unsigned hashCallInst(CallInst *CI) { |
223 | // Don't CSE convergent calls in different basic blocks, because they |
224 | // implicitly depend on the set of threads that is currently executing. |
225 | if (CI->isConvergent()) { |
226 | return hash_combine( |
227 | args: CI->getOpcode(), args: CI->getParent(), |
228 | args: hash_combine_range(first: CI->value_op_begin(), last: CI->value_op_end())); |
229 | } |
230 | return hash_combine( |
231 | args: CI->getOpcode(), |
232 | args: hash_combine_range(first: CI->value_op_begin(), last: CI->value_op_end())); |
233 | } |
234 | |
235 | static unsigned getHashValueImpl(SimpleValue Val) { |
236 | Instruction *Inst = Val.Inst; |
237 | // Hash in all of the operands as pointers. |
238 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Inst)) { |
239 | Value *LHS = BinOp->getOperand(i_nocapture: 0); |
240 | Value *RHS = BinOp->getOperand(i_nocapture: 1); |
241 | if (BinOp->isCommutative() && BinOp->getOperand(i_nocapture: 0) > BinOp->getOperand(i_nocapture: 1)) |
242 | std::swap(a&: LHS, b&: RHS); |
243 | |
244 | return hash_combine(args: BinOp->getOpcode(), args: LHS, args: RHS); |
245 | } |
246 | |
247 | if (CmpInst *CI = dyn_cast<CmpInst>(Val: Inst)) { |
248 | // Compares can be commuted by swapping the comparands and |
249 | // updating the predicate. Choose the form that has the |
250 | // comparands in sorted order, or in the case of a tie, the |
251 | // one with the lower predicate. |
252 | Value *LHS = CI->getOperand(i_nocapture: 0); |
253 | Value *RHS = CI->getOperand(i_nocapture: 1); |
254 | CmpInst::Predicate Pred = CI->getPredicate(); |
255 | CmpInst::Predicate SwappedPred = CI->getSwappedPredicate(); |
256 | if (std::tie(args&: LHS, args&: Pred) > std::tie(args&: RHS, args&: SwappedPred)) { |
257 | std::swap(a&: LHS, b&: RHS); |
258 | Pred = SwappedPred; |
259 | } |
260 | return hash_combine(args: Inst->getOpcode(), args: Pred, args: LHS, args: RHS); |
261 | } |
262 | |
263 | // Hash general selects to allow matching commuted true/false operands. |
264 | SelectPatternFlavor SPF; |
265 | Value *Cond, *A, *B; |
266 | if (matchSelectWithOptionalNotCond(V: Inst, Cond, A, B, Flavor&: SPF)) { |
267 | // Hash min/max (cmp + select) to allow for commuted operands. |
268 | // Min/max may also have non-canonical compare predicate (eg, the compare for |
269 | // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the |
270 | // compare. |
271 | // TODO: We should also detect FP min/max. |
272 | if (SPF == SPF_SMIN || SPF == SPF_SMAX || |
273 | SPF == SPF_UMIN || SPF == SPF_UMAX) { |
274 | if (A > B) |
275 | std::swap(a&: A, b&: B); |
276 | return hash_combine(args: Inst->getOpcode(), args: SPF, args: A, args: B); |
277 | } |
278 | |
279 | // Hash general selects to allow matching commuted true/false operands. |
280 | |
281 | // If we do not have a compare as the condition, just hash in the condition. |
282 | CmpInst::Predicate Pred; |
283 | Value *X, *Y; |
284 | if (!match(V: Cond, P: m_Cmp(Pred, L: m_Value(V&: X), R: m_Value(V&: Y)))) |
285 | return hash_combine(args: Inst->getOpcode(), args: Cond, args: A, args: B); |
286 | |
287 | // Similar to cmp normalization (above) - canonicalize the predicate value: |
288 | // select (icmp Pred, X, Y), A, B --> select (icmp InvPred, X, Y), B, A |
289 | if (CmpInst::getInversePredicate(pred: Pred) < Pred) { |
290 | Pred = CmpInst::getInversePredicate(pred: Pred); |
291 | std::swap(a&: A, b&: B); |
292 | } |
293 | return hash_combine(args: Inst->getOpcode(), args: Pred, args: X, args: Y, args: A, args: B); |
294 | } |
295 | |
296 | if (CastInst *CI = dyn_cast<CastInst>(Val: Inst)) |
297 | return hash_combine(args: CI->getOpcode(), args: CI->getType(), args: CI->getOperand(i_nocapture: 0)); |
298 | |
299 | if (FreezeInst *FI = dyn_cast<FreezeInst>(Val: Inst)) |
300 | return hash_combine(args: FI->getOpcode(), args: FI->getOperand(i_nocapture: 0)); |
301 | |
302 | if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Val: Inst)) |
303 | return hash_combine(args: EVI->getOpcode(), args: EVI->getOperand(i_nocapture: 0), |
304 | args: hash_combine_range(first: EVI->idx_begin(), last: EVI->idx_end())); |
305 | |
306 | if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Val: Inst)) |
307 | return hash_combine(args: IVI->getOpcode(), args: IVI->getOperand(i_nocapture: 0), |
308 | args: IVI->getOperand(i_nocapture: 1), |
309 | args: hash_combine_range(first: IVI->idx_begin(), last: IVI->idx_end())); |
310 | |
311 | assert((isa<CallInst>(Inst) || isa<ExtractElementInst>(Inst) || |
312 | isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || |
313 | isa<UnaryOperator>(Inst) || isa<FreezeInst>(Inst)) && |
314 | "Invalid/unknown instruction" ); |
315 | |
316 | // Handle intrinsics with commutative operands. |
317 | auto *II = dyn_cast<IntrinsicInst>(Val: Inst); |
318 | if (II && II->isCommutative() && II->arg_size() >= 2) { |
319 | Value *LHS = II->getArgOperand(i: 0), *RHS = II->getArgOperand(i: 1); |
320 | if (LHS > RHS) |
321 | std::swap(a&: LHS, b&: RHS); |
322 | return hash_combine( |
323 | args: II->getOpcode(), args: LHS, args: RHS, |
324 | args: hash_combine_range(first: II->value_op_begin() + 2, last: II->value_op_end())); |
325 | } |
326 | |
327 | // gc.relocate is 'special' call: its second and third operands are |
328 | // not real values, but indices into statepoint's argument list. |
329 | // Get values they point to. |
330 | if (const GCRelocateInst *GCR = dyn_cast<GCRelocateInst>(Val: Inst)) |
331 | return hash_combine(args: GCR->getOpcode(), args: GCR->getOperand(i_nocapture: 0), |
332 | args: GCR->getBasePtr(), args: GCR->getDerivedPtr()); |
333 | |
334 | // Don't CSE convergent calls in different basic blocks, because they |
335 | // implicitly depend on the set of threads that is currently executing. |
336 | if (CallInst *CI = dyn_cast<CallInst>(Val: Inst)) |
337 | return hashCallInst(CI); |
338 | |
339 | // Mix in the opcode. |
340 | return hash_combine( |
341 | args: Inst->getOpcode(), |
342 | args: hash_combine_range(first: Inst->value_op_begin(), last: Inst->value_op_end())); |
343 | } |
344 | |
345 | unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { |
346 | #ifndef NDEBUG |
347 | // If -earlycse-debug-hash was specified, return a constant -- this |
348 | // will force all hashing to collide, so we'll exhaustively search |
349 | // the table for a match, and the assertion in isEqual will fire if |
350 | // there's a bug causing equal keys to hash differently. |
351 | if (EarlyCSEDebugHash) |
352 | return 0; |
353 | #endif |
354 | return getHashValueImpl(Val); |
355 | } |
356 | |
357 | static bool isEqualImpl(SimpleValue LHS, SimpleValue RHS) { |
358 | Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; |
359 | |
360 | if (LHS.isSentinel() || RHS.isSentinel()) |
361 | return LHSI == RHSI; |
362 | |
363 | if (LHSI->getOpcode() != RHSI->getOpcode()) |
364 | return false; |
365 | if (LHSI->isIdenticalToWhenDefined(I: RHSI)) { |
366 | // Convergent calls implicitly depend on the set of threads that is |
367 | // currently executing, so conservatively return false if they are in |
368 | // different basic blocks. |
369 | if (CallInst *CI = dyn_cast<CallInst>(Val: LHSI); |
370 | CI && CI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
371 | return false; |
372 | |
373 | return true; |
374 | } |
375 | |
376 | // If we're not strictly identical, we still might be a commutable instruction |
377 | if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(Val: LHSI)) { |
378 | if (!LHSBinOp->isCommutative()) |
379 | return false; |
380 | |
381 | assert(isa<BinaryOperator>(RHSI) && |
382 | "same opcode, but different instruction type?" ); |
383 | BinaryOperator *RHSBinOp = cast<BinaryOperator>(Val: RHSI); |
384 | |
385 | // Commuted equality |
386 | return LHSBinOp->getOperand(i_nocapture: 0) == RHSBinOp->getOperand(i_nocapture: 1) && |
387 | LHSBinOp->getOperand(i_nocapture: 1) == RHSBinOp->getOperand(i_nocapture: 0); |
388 | } |
389 | if (CmpInst *LHSCmp = dyn_cast<CmpInst>(Val: LHSI)) { |
390 | assert(isa<CmpInst>(RHSI) && |
391 | "same opcode, but different instruction type?" ); |
392 | CmpInst *RHSCmp = cast<CmpInst>(Val: RHSI); |
393 | // Commuted equality |
394 | return LHSCmp->getOperand(i_nocapture: 0) == RHSCmp->getOperand(i_nocapture: 1) && |
395 | LHSCmp->getOperand(i_nocapture: 1) == RHSCmp->getOperand(i_nocapture: 0) && |
396 | LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); |
397 | } |
398 | |
399 | auto *LII = dyn_cast<IntrinsicInst>(Val: LHSI); |
400 | auto *RII = dyn_cast<IntrinsicInst>(Val: RHSI); |
401 | if (LII && RII && LII->getIntrinsicID() == RII->getIntrinsicID() && |
402 | LII->isCommutative() && LII->arg_size() >= 2) { |
403 | return LII->getArgOperand(i: 0) == RII->getArgOperand(i: 1) && |
404 | LII->getArgOperand(i: 1) == RII->getArgOperand(i: 0) && |
405 | std::equal(first1: LII->arg_begin() + 2, last1: LII->arg_end(), |
406 | first2: RII->arg_begin() + 2, last2: RII->arg_end()); |
407 | } |
408 | |
409 | // See comment above in `getHashValue()`. |
410 | if (const GCRelocateInst *GCR1 = dyn_cast<GCRelocateInst>(Val: LHSI)) |
411 | if (const GCRelocateInst *GCR2 = dyn_cast<GCRelocateInst>(Val: RHSI)) |
412 | return GCR1->getOperand(i_nocapture: 0) == GCR2->getOperand(i_nocapture: 0) && |
413 | GCR1->getBasePtr() == GCR2->getBasePtr() && |
414 | GCR1->getDerivedPtr() == GCR2->getDerivedPtr(); |
415 | |
416 | // Min/max can occur with commuted operands, non-canonical predicates, |
417 | // and/or non-canonical operands. |
418 | // Selects can be non-trivially equivalent via inverted conditions and swaps. |
419 | SelectPatternFlavor LSPF, RSPF; |
420 | Value *CondL, *CondR, *LHSA, *RHSA, *LHSB, *RHSB; |
421 | if (matchSelectWithOptionalNotCond(V: LHSI, Cond&: CondL, A&: LHSA, B&: LHSB, Flavor&: LSPF) && |
422 | matchSelectWithOptionalNotCond(V: RHSI, Cond&: CondR, A&: RHSA, B&: RHSB, Flavor&: RSPF)) { |
423 | if (LSPF == RSPF) { |
424 | // TODO: We should also detect FP min/max. |
425 | if (LSPF == SPF_SMIN || LSPF == SPF_SMAX || |
426 | LSPF == SPF_UMIN || LSPF == SPF_UMAX) |
427 | return ((LHSA == RHSA && LHSB == RHSB) || |
428 | (LHSA == RHSB && LHSB == RHSA)); |
429 | |
430 | // select Cond, A, B <--> select not(Cond), B, A |
431 | if (CondL == CondR && LHSA == RHSA && LHSB == RHSB) |
432 | return true; |
433 | } |
434 | |
435 | // If the true/false operands are swapped and the conditions are compares |
436 | // with inverted predicates, the selects are equal: |
437 | // select (icmp Pred, X, Y), A, B <--> select (icmp InvPred, X, Y), B, A |
438 | // |
439 | // This also handles patterns with a double-negation in the sense of not + |
440 | // inverse, because we looked through a 'not' in the matching function and |
441 | // swapped A/B: |
442 | // select (cmp Pred, X, Y), A, B <--> select (not (cmp InvPred, X, Y)), B, A |
443 | // |
444 | // This intentionally does NOT handle patterns with a double-negation in |
445 | // the sense of not + not, because doing so could result in values |
446 | // comparing |
447 | // as equal that hash differently in the min/max cases like: |
448 | // select (cmp slt, X, Y), X, Y <--> select (not (not (cmp slt, X, Y))), X, Y |
449 | // ^ hashes as min ^ would not hash as min |
450 | // In the context of the EarlyCSE pass, however, such cases never reach |
451 | // this code, as we simplify the double-negation before hashing the second |
452 | // select (and so still succeed at CSEing them). |
453 | if (LHSA == RHSB && LHSB == RHSA) { |
454 | CmpInst::Predicate PredL, PredR; |
455 | Value *X, *Y; |
456 | if (match(V: CondL, P: m_Cmp(Pred&: PredL, L: m_Value(V&: X), R: m_Value(V&: Y))) && |
457 | match(V: CondR, P: m_Cmp(Pred&: PredR, L: m_Specific(V: X), R: m_Specific(V: Y))) && |
458 | CmpInst::getInversePredicate(pred: PredL) == PredR) |
459 | return true; |
460 | } |
461 | } |
462 | |
463 | return false; |
464 | } |
465 | |
466 | bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { |
467 | // These comparisons are nontrivial, so assert that equality implies |
468 | // hash equality (DenseMap demands this as an invariant). |
469 | bool Result = isEqualImpl(LHS, RHS); |
470 | assert(!Result || (LHS.isSentinel() && LHS.Inst == RHS.Inst) || |
471 | getHashValueImpl(LHS) == getHashValueImpl(RHS)); |
472 | return Result; |
473 | } |
474 | |
475 | //===----------------------------------------------------------------------===// |
476 | // CallValue |
477 | //===----------------------------------------------------------------------===// |
478 | |
479 | namespace { |
480 | |
481 | /// Struct representing the available call values in the scoped hash |
482 | /// table. |
483 | struct CallValue { |
484 | Instruction *Inst; |
485 | |
486 | CallValue(Instruction *I) : Inst(I) { |
487 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
488 | } |
489 | |
490 | bool isSentinel() const { |
491 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
492 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
493 | } |
494 | |
495 | static bool canHandle(Instruction *Inst) { |
496 | // Don't value number anything that returns void. |
497 | if (Inst->getType()->isVoidTy()) |
498 | return false; |
499 | |
500 | CallInst *CI = dyn_cast<CallInst>(Val: Inst); |
501 | if (!CI || !CI->onlyReadsMemory() || |
502 | // FIXME: Currently the calls which may access the thread id may |
503 | // be considered as not accessing the memory. But this is |
504 | // problematic for coroutines, since coroutines may resume in a |
505 | // different thread. So we disable the optimization here for the |
506 | // correctness. However, it may block many other correct |
507 | // optimizations. Revert this one when we detect the memory |
508 | // accessing kind more precisely. |
509 | CI->getFunction()->isPresplitCoroutine()) |
510 | return false; |
511 | return true; |
512 | } |
513 | }; |
514 | |
515 | } // end anonymous namespace |
516 | |
517 | namespace llvm { |
518 | |
519 | template <> struct DenseMapInfo<CallValue> { |
520 | static inline CallValue getEmptyKey() { |
521 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
522 | } |
523 | |
524 | static inline CallValue getTombstoneKey() { |
525 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
526 | } |
527 | |
528 | static unsigned getHashValue(CallValue Val); |
529 | static bool isEqual(CallValue LHS, CallValue RHS); |
530 | }; |
531 | |
532 | } // end namespace llvm |
533 | |
534 | unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { |
535 | Instruction *Inst = Val.Inst; |
536 | |
537 | // Hash all of the operands as pointers and mix in the opcode. |
538 | return hashCallInst(CI: cast<CallInst>(Val: Inst)); |
539 | } |
540 | |
541 | bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { |
542 | if (LHS.isSentinel() || RHS.isSentinel()) |
543 | return LHS.Inst == RHS.Inst; |
544 | |
545 | CallInst *LHSI = cast<CallInst>(Val: LHS.Inst); |
546 | CallInst *RHSI = cast<CallInst>(Val: RHS.Inst); |
547 | |
548 | // Convergent calls implicitly depend on the set of threads that is |
549 | // currently executing, so conservatively return false if they are in |
550 | // different basic blocks. |
551 | if (LHSI->isConvergent() && LHSI->getParent() != RHSI->getParent()) |
552 | return false; |
553 | |
554 | return LHSI->isIdenticalTo(I: RHSI); |
555 | } |
556 | |
557 | //===----------------------------------------------------------------------===// |
558 | // GEPValue |
559 | //===----------------------------------------------------------------------===// |
560 | |
561 | namespace { |
562 | |
563 | struct GEPValue { |
564 | Instruction *Inst; |
565 | std::optional<int64_t> ConstantOffset; |
566 | |
567 | GEPValue(Instruction *I) : Inst(I) { |
568 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
569 | } |
570 | |
571 | GEPValue(Instruction *I, std::optional<int64_t> ConstantOffset) |
572 | : Inst(I), ConstantOffset(ConstantOffset) { |
573 | assert((isSentinel() || canHandle(I)) && "Inst can't be handled!" ); |
574 | } |
575 | |
576 | bool isSentinel() const { |
577 | return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || |
578 | Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); |
579 | } |
580 | |
581 | static bool canHandle(Instruction *Inst) { |
582 | return isa<GetElementPtrInst>(Val: Inst); |
583 | } |
584 | }; |
585 | |
586 | } // namespace |
587 | |
588 | namespace llvm { |
589 | |
590 | template <> struct DenseMapInfo<GEPValue> { |
591 | static inline GEPValue getEmptyKey() { |
592 | return DenseMapInfo<Instruction *>::getEmptyKey(); |
593 | } |
594 | |
595 | static inline GEPValue getTombstoneKey() { |
596 | return DenseMapInfo<Instruction *>::getTombstoneKey(); |
597 | } |
598 | |
599 | static unsigned getHashValue(const GEPValue &Val); |
600 | static bool isEqual(const GEPValue &LHS, const GEPValue &RHS); |
601 | }; |
602 | |
603 | } // end namespace llvm |
604 | |
605 | unsigned DenseMapInfo<GEPValue>::getHashValue(const GEPValue &Val) { |
606 | auto *GEP = cast<GetElementPtrInst>(Val: Val.Inst); |
607 | if (Val.ConstantOffset.has_value()) |
608 | return hash_combine(args: GEP->getOpcode(), args: GEP->getPointerOperand(), |
609 | args: Val.ConstantOffset.value()); |
610 | return hash_combine( |
611 | args: GEP->getOpcode(), |
612 | args: hash_combine_range(first: GEP->value_op_begin(), last: GEP->value_op_end())); |
613 | } |
614 | |
615 | bool DenseMapInfo<GEPValue>::isEqual(const GEPValue &LHS, const GEPValue &RHS) { |
616 | if (LHS.isSentinel() || RHS.isSentinel()) |
617 | return LHS.Inst == RHS.Inst; |
618 | auto *LGEP = cast<GetElementPtrInst>(Val: LHS.Inst); |
619 | auto *RGEP = cast<GetElementPtrInst>(Val: RHS.Inst); |
620 | if (LGEP->getPointerOperand() != RGEP->getPointerOperand()) |
621 | return false; |
622 | if (LHS.ConstantOffset.has_value() && RHS.ConstantOffset.has_value()) |
623 | return LHS.ConstantOffset.value() == RHS.ConstantOffset.value(); |
624 | return LGEP->isIdenticalToWhenDefined(I: RGEP); |
625 | } |
626 | |
627 | //===----------------------------------------------------------------------===// |
628 | // EarlyCSE implementation |
629 | //===----------------------------------------------------------------------===// |
630 | |
631 | namespace { |
632 | |
633 | /// A simple and fast domtree-based CSE pass. |
634 | /// |
635 | /// This pass does a simple depth-first walk over the dominator tree, |
636 | /// eliminating trivially redundant instructions and using instsimplify to |
637 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
638 | /// cases so that instcombine and other passes are more effective. It is |
639 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
640 | class EarlyCSE { |
641 | public: |
642 | const TargetLibraryInfo &TLI; |
643 | const TargetTransformInfo &TTI; |
644 | DominatorTree &DT; |
645 | AssumptionCache &AC; |
646 | const SimplifyQuery SQ; |
647 | MemorySSA *MSSA; |
648 | std::unique_ptr<MemorySSAUpdater> MSSAUpdater; |
649 | |
650 | using AllocatorTy = |
651 | RecyclingAllocator<BumpPtrAllocator, |
652 | ScopedHashTableVal<SimpleValue, Value *>>; |
653 | using ScopedHTType = |
654 | ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, |
655 | AllocatorTy>; |
656 | |
657 | /// A scoped hash table of the current values of all of our simple |
658 | /// scalar expressions. |
659 | /// |
660 | /// As we walk down the domtree, we look to see if instructions are in this: |
661 | /// if so, we replace them with what we find, otherwise we insert them so |
662 | /// that dominated values can succeed in their lookup. |
663 | ScopedHTType AvailableValues; |
664 | |
665 | /// A scoped hash table of the current values of previously encountered |
666 | /// memory locations. |
667 | /// |
668 | /// This allows us to get efficient access to dominating loads or stores when |
669 | /// we have a fully redundant load. In addition to the most recent load, we |
670 | /// keep track of a generation count of the read, which is compared against |
671 | /// the current generation count. The current generation count is incremented |
672 | /// after every possibly writing memory operation, which ensures that we only |
673 | /// CSE loads with other loads that have no intervening store. Ordering |
674 | /// events (such as fences or atomic instructions) increment the generation |
675 | /// count as well; essentially, we model these as writes to all possible |
676 | /// locations. Note that atomic and/or volatile loads and stores can be |
677 | /// present the table; it is the responsibility of the consumer to inspect |
678 | /// the atomicity/volatility if needed. |
679 | struct LoadValue { |
680 | Instruction *DefInst = nullptr; |
681 | unsigned Generation = 0; |
682 | int MatchingId = -1; |
683 | bool IsAtomic = false; |
684 | bool IsLoad = false; |
685 | |
686 | LoadValue() = default; |
687 | LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId, |
688 | bool IsAtomic, bool IsLoad) |
689 | : DefInst(Inst), Generation(Generation), MatchingId(MatchingId), |
690 | IsAtomic(IsAtomic), IsLoad(IsLoad) {} |
691 | }; |
692 | |
693 | using LoadMapAllocator = |
694 | RecyclingAllocator<BumpPtrAllocator, |
695 | ScopedHashTableVal<Value *, LoadValue>>; |
696 | using LoadHTType = |
697 | ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>, |
698 | LoadMapAllocator>; |
699 | |
700 | LoadHTType AvailableLoads; |
701 | |
702 | // A scoped hash table mapping memory locations (represented as typed |
703 | // addresses) to generation numbers at which that memory location became |
704 | // (henceforth indefinitely) invariant. |
705 | using InvariantMapAllocator = |
706 | RecyclingAllocator<BumpPtrAllocator, |
707 | ScopedHashTableVal<MemoryLocation, unsigned>>; |
708 | using InvariantHTType = |
709 | ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>, |
710 | InvariantMapAllocator>; |
711 | InvariantHTType AvailableInvariants; |
712 | |
713 | /// A scoped hash table of the current values of read-only call |
714 | /// values. |
715 | /// |
716 | /// It uses the same generation count as loads. |
717 | using CallHTType = |
718 | ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>; |
719 | CallHTType AvailableCalls; |
720 | |
721 | using GEPMapAllocatorTy = |
722 | RecyclingAllocator<BumpPtrAllocator, |
723 | ScopedHashTableVal<GEPValue, Value *>>; |
724 | using GEPHTType = ScopedHashTable<GEPValue, Value *, DenseMapInfo<GEPValue>, |
725 | GEPMapAllocatorTy>; |
726 | GEPHTType AvailableGEPs; |
727 | |
728 | /// This is the current generation of the memory value. |
729 | unsigned CurrentGeneration = 0; |
730 | |
731 | /// Set up the EarlyCSE runner for a particular function. |
732 | EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI, |
733 | const TargetTransformInfo &TTI, DominatorTree &DT, |
734 | AssumptionCache &AC, MemorySSA *MSSA) |
735 | : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA), |
736 | MSSAUpdater(std::make_unique<MemorySSAUpdater>(args&: MSSA)) {} |
737 | |
738 | bool run(); |
739 | |
740 | private: |
741 | unsigned ClobberCounter = 0; |
742 | // Almost a POD, but needs to call the constructors for the scoped hash |
743 | // tables so that a new scope gets pushed on. These are RAII so that the |
744 | // scope gets popped when the NodeScope is destroyed. |
745 | class NodeScope { |
746 | public: |
747 | NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
748 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
749 | GEPHTType &AvailableGEPs) |
750 | : Scope(AvailableValues), LoadScope(AvailableLoads), |
751 | InvariantScope(AvailableInvariants), CallScope(AvailableCalls), |
752 | GEPScope(AvailableGEPs) {} |
753 | NodeScope(const NodeScope &) = delete; |
754 | NodeScope &operator=(const NodeScope &) = delete; |
755 | |
756 | private: |
757 | ScopedHTType::ScopeTy Scope; |
758 | LoadHTType::ScopeTy LoadScope; |
759 | InvariantHTType::ScopeTy InvariantScope; |
760 | CallHTType::ScopeTy CallScope; |
761 | GEPHTType::ScopeTy GEPScope; |
762 | }; |
763 | |
764 | // Contains all the needed information to create a stack for doing a depth |
765 | // first traversal of the tree. This includes scopes for values, loads, and |
766 | // calls as well as the generation. There is a child iterator so that the |
767 | // children do not need to be store separately. |
768 | class StackNode { |
769 | public: |
770 | StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, |
771 | InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls, |
772 | GEPHTType &AvailableGEPs, unsigned cg, DomTreeNode *n, |
773 | DomTreeNode::const_iterator child, |
774 | DomTreeNode::const_iterator end) |
775 | : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), |
776 | EndIter(end), |
777 | Scopes(AvailableValues, AvailableLoads, AvailableInvariants, |
778 | AvailableCalls, AvailableGEPs) {} |
779 | StackNode(const StackNode &) = delete; |
780 | StackNode &operator=(const StackNode &) = delete; |
781 | |
782 | // Accessors. |
783 | unsigned currentGeneration() const { return CurrentGeneration; } |
784 | unsigned childGeneration() const { return ChildGeneration; } |
785 | void childGeneration(unsigned generation) { ChildGeneration = generation; } |
786 | DomTreeNode *node() { return Node; } |
787 | DomTreeNode::const_iterator childIter() const { return ChildIter; } |
788 | |
789 | DomTreeNode *nextChild() { |
790 | DomTreeNode *child = *ChildIter; |
791 | ++ChildIter; |
792 | return child; |
793 | } |
794 | |
795 | DomTreeNode::const_iterator end() const { return EndIter; } |
796 | bool isProcessed() const { return Processed; } |
797 | void process() { Processed = true; } |
798 | |
799 | private: |
800 | unsigned CurrentGeneration; |
801 | unsigned ChildGeneration; |
802 | DomTreeNode *Node; |
803 | DomTreeNode::const_iterator ChildIter; |
804 | DomTreeNode::const_iterator EndIter; |
805 | NodeScope Scopes; |
806 | bool Processed = false; |
807 | }; |
808 | |
809 | /// Wrapper class to handle memory instructions, including loads, |
810 | /// stores and intrinsic loads and stores defined by the target. |
811 | class ParseMemoryInst { |
812 | public: |
813 | ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) |
814 | : Inst(Inst) { |
815 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: Inst)) { |
816 | IntrID = II->getIntrinsicID(); |
817 | if (TTI.getTgtMemIntrinsic(Inst: II, Info)) |
818 | return; |
819 | if (isHandledNonTargetIntrinsic(ID: IntrID)) { |
820 | switch (IntrID) { |
821 | case Intrinsic::masked_load: |
822 | Info.PtrVal = Inst->getOperand(i: 0); |
823 | Info.MatchingId = Intrinsic::masked_load; |
824 | Info.ReadMem = true; |
825 | Info.WriteMem = false; |
826 | Info.IsVolatile = false; |
827 | break; |
828 | case Intrinsic::masked_store: |
829 | Info.PtrVal = Inst->getOperand(i: 1); |
830 | // Use the ID of masked load as the "matching id". This will |
831 | // prevent matching non-masked loads/stores with masked ones |
832 | // (which could be done), but at the moment, the code here |
833 | // does not support matching intrinsics with non-intrinsics, |
834 | // so keep the MatchingIds specific to masked instructions |
835 | // for now (TODO). |
836 | Info.MatchingId = Intrinsic::masked_load; |
837 | Info.ReadMem = false; |
838 | Info.WriteMem = true; |
839 | Info.IsVolatile = false; |
840 | break; |
841 | } |
842 | } |
843 | } |
844 | } |
845 | |
846 | Instruction *get() { return Inst; } |
847 | const Instruction *get() const { return Inst; } |
848 | |
849 | bool isLoad() const { |
850 | if (IntrID != 0) |
851 | return Info.ReadMem; |
852 | return isa<LoadInst>(Val: Inst); |
853 | } |
854 | |
855 | bool isStore() const { |
856 | if (IntrID != 0) |
857 | return Info.WriteMem; |
858 | return isa<StoreInst>(Val: Inst); |
859 | } |
860 | |
861 | bool isAtomic() const { |
862 | if (IntrID != 0) |
863 | return Info.Ordering != AtomicOrdering::NotAtomic; |
864 | return Inst->isAtomic(); |
865 | } |
866 | |
867 | bool isUnordered() const { |
868 | if (IntrID != 0) |
869 | return Info.isUnordered(); |
870 | |
871 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
872 | return LI->isUnordered(); |
873 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
874 | return SI->isUnordered(); |
875 | } |
876 | // Conservative answer |
877 | return !Inst->isAtomic(); |
878 | } |
879 | |
880 | bool isVolatile() const { |
881 | if (IntrID != 0) |
882 | return Info.IsVolatile; |
883 | |
884 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: Inst)) { |
885 | return LI->isVolatile(); |
886 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: Inst)) { |
887 | return SI->isVolatile(); |
888 | } |
889 | // Conservative answer |
890 | return true; |
891 | } |
892 | |
893 | bool isInvariantLoad() const { |
894 | if (auto *LI = dyn_cast<LoadInst>(Val: Inst)) |
895 | return LI->hasMetadata(KindID: LLVMContext::MD_invariant_load); |
896 | return false; |
897 | } |
898 | |
899 | bool isValid() const { return getPointerOperand() != nullptr; } |
900 | |
901 | // For regular (non-intrinsic) loads/stores, this is set to -1. For |
902 | // intrinsic loads/stores, the id is retrieved from the corresponding |
903 | // field in the MemIntrinsicInfo structure. That field contains |
904 | // non-negative values only. |
905 | int getMatchingId() const { |
906 | if (IntrID != 0) |
907 | return Info.MatchingId; |
908 | return -1; |
909 | } |
910 | |
911 | Value *getPointerOperand() const { |
912 | if (IntrID != 0) |
913 | return Info.PtrVal; |
914 | return getLoadStorePointerOperand(V: Inst); |
915 | } |
916 | |
917 | Type *getValueType() const { |
918 | // TODO: handle target-specific intrinsics. |
919 | return Inst->getAccessType(); |
920 | } |
921 | |
922 | bool mayReadFromMemory() const { |
923 | if (IntrID != 0) |
924 | return Info.ReadMem; |
925 | return Inst->mayReadFromMemory(); |
926 | } |
927 | |
928 | bool mayWriteToMemory() const { |
929 | if (IntrID != 0) |
930 | return Info.WriteMem; |
931 | return Inst->mayWriteToMemory(); |
932 | } |
933 | |
934 | private: |
935 | Intrinsic::ID IntrID = 0; |
936 | MemIntrinsicInfo Info; |
937 | Instruction *Inst; |
938 | }; |
939 | |
940 | // This function is to prevent accidentally passing a non-target |
941 | // intrinsic ID to TargetTransformInfo. |
942 | static bool isHandledNonTargetIntrinsic(Intrinsic::ID ID) { |
943 | switch (ID) { |
944 | case Intrinsic::masked_load: |
945 | case Intrinsic::masked_store: |
946 | return true; |
947 | } |
948 | return false; |
949 | } |
950 | static bool isHandledNonTargetIntrinsic(const Value *V) { |
951 | if (auto *II = dyn_cast<IntrinsicInst>(Val: V)) |
952 | return isHandledNonTargetIntrinsic(ID: II->getIntrinsicID()); |
953 | return false; |
954 | } |
955 | |
956 | bool processNode(DomTreeNode *Node); |
957 | |
958 | bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI, |
959 | const BasicBlock *BB, const BasicBlock *Pred); |
960 | |
961 | Value *getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
962 | unsigned CurrentGeneration); |
963 | |
964 | bool overridingStores(const ParseMemoryInst &Earlier, |
965 | const ParseMemoryInst &Later); |
966 | |
967 | Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { |
968 | // TODO: We could insert relevant casts on type mismatch here. |
969 | if (auto *LI = dyn_cast<LoadInst>(Val: Inst)) |
970 | return LI->getType() == ExpectedType ? LI : nullptr; |
971 | if (auto *SI = dyn_cast<StoreInst>(Val: Inst)) { |
972 | Value *V = SI->getValueOperand(); |
973 | return V->getType() == ExpectedType ? V : nullptr; |
974 | } |
975 | assert(isa<IntrinsicInst>(Inst) && "Instruction not supported" ); |
976 | auto *II = cast<IntrinsicInst>(Val: Inst); |
977 | if (isHandledNonTargetIntrinsic(ID: II->getIntrinsicID())) |
978 | return getOrCreateResultNonTargetMemIntrinsic(II, ExpectedType); |
979 | return TTI.getOrCreateResultFromMemIntrinsic(Inst: II, ExpectedType); |
980 | } |
981 | |
982 | Value *getOrCreateResultNonTargetMemIntrinsic(IntrinsicInst *II, |
983 | Type *ExpectedType) const { |
984 | // TODO: We could insert relevant casts on type mismatch here. |
985 | switch (II->getIntrinsicID()) { |
986 | case Intrinsic::masked_load: |
987 | return II->getType() == ExpectedType ? II : nullptr; |
988 | case Intrinsic::masked_store: { |
989 | Value *V = II->getOperand(i_nocapture: 0); |
990 | return V->getType() == ExpectedType ? V : nullptr; |
991 | } |
992 | } |
993 | return nullptr; |
994 | } |
995 | |
996 | /// Return true if the instruction is known to only operate on memory |
997 | /// provably invariant in the given "generation". |
998 | bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt); |
999 | |
1000 | bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration, |
1001 | Instruction *EarlierInst, Instruction *LaterInst); |
1002 | |
1003 | bool isNonTargetIntrinsicMatch(const IntrinsicInst *Earlier, |
1004 | const IntrinsicInst *Later) { |
1005 | auto IsSubmask = [](const Value *Mask0, const Value *Mask1) { |
1006 | // Is Mask0 a submask of Mask1? |
1007 | if (Mask0 == Mask1) |
1008 | return true; |
1009 | if (isa<UndefValue>(Val: Mask0) || isa<UndefValue>(Val: Mask1)) |
1010 | return false; |
1011 | auto *Vec0 = dyn_cast<ConstantVector>(Val: Mask0); |
1012 | auto *Vec1 = dyn_cast<ConstantVector>(Val: Mask1); |
1013 | if (!Vec0 || !Vec1) |
1014 | return false; |
1015 | if (Vec0->getType() != Vec1->getType()) |
1016 | return false; |
1017 | for (int i = 0, e = Vec0->getNumOperands(); i != e; ++i) { |
1018 | Constant *Elem0 = Vec0->getOperand(i_nocapture: i); |
1019 | Constant *Elem1 = Vec1->getOperand(i_nocapture: i); |
1020 | auto *Int0 = dyn_cast<ConstantInt>(Val: Elem0); |
1021 | if (Int0 && Int0->isZero()) |
1022 | continue; |
1023 | auto *Int1 = dyn_cast<ConstantInt>(Val: Elem1); |
1024 | if (Int1 && !Int1->isZero()) |
1025 | continue; |
1026 | if (isa<UndefValue>(Val: Elem0) || isa<UndefValue>(Val: Elem1)) |
1027 | return false; |
1028 | if (Elem0 == Elem1) |
1029 | continue; |
1030 | return false; |
1031 | } |
1032 | return true; |
1033 | }; |
1034 | auto PtrOp = [](const IntrinsicInst *II) { |
1035 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1036 | return II->getOperand(i_nocapture: 0); |
1037 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
1038 | return II->getOperand(i_nocapture: 1); |
1039 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1040 | }; |
1041 | auto MaskOp = [](const IntrinsicInst *II) { |
1042 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1043 | return II->getOperand(i_nocapture: 2); |
1044 | if (II->getIntrinsicID() == Intrinsic::masked_store) |
1045 | return II->getOperand(i_nocapture: 3); |
1046 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1047 | }; |
1048 | auto ThruOp = [](const IntrinsicInst *II) { |
1049 | if (II->getIntrinsicID() == Intrinsic::masked_load) |
1050 | return II->getOperand(i_nocapture: 3); |
1051 | llvm_unreachable("Unexpected IntrinsicInst" ); |
1052 | }; |
1053 | |
1054 | if (PtrOp(Earlier) != PtrOp(Later)) |
1055 | return false; |
1056 | |
1057 | Intrinsic::ID IDE = Earlier->getIntrinsicID(); |
1058 | Intrinsic::ID IDL = Later->getIntrinsicID(); |
1059 | // We could really use specific intrinsic classes for masked loads |
1060 | // and stores in IntrinsicInst.h. |
1061 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_load) { |
1062 | // Trying to replace later masked load with the earlier one. |
1063 | // Check that the pointers are the same, and |
1064 | // - masks and pass-throughs are the same, or |
1065 | // - replacee's pass-through is "undef" and replacer's mask is a |
1066 | // super-set of the replacee's mask. |
1067 | if (MaskOp(Earlier) == MaskOp(Later) && ThruOp(Earlier) == ThruOp(Later)) |
1068 | return true; |
1069 | if (!isa<UndefValue>(Val: ThruOp(Later))) |
1070 | return false; |
1071 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
1072 | } |
1073 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_load) { |
1074 | // Trying to replace a load of a stored value with the store's value. |
1075 | // Check that the pointers are the same, and |
1076 | // - load's mask is a subset of store's mask, and |
1077 | // - load's pass-through is "undef". |
1078 | if (!IsSubmask(MaskOp(Later), MaskOp(Earlier))) |
1079 | return false; |
1080 | return isa<UndefValue>(Val: ThruOp(Later)); |
1081 | } |
1082 | if (IDE == Intrinsic::masked_load && IDL == Intrinsic::masked_store) { |
1083 | // Trying to remove a store of the loaded value. |
1084 | // Check that the pointers are the same, and |
1085 | // - store's mask is a subset of the load's mask. |
1086 | return IsSubmask(MaskOp(Later), MaskOp(Earlier)); |
1087 | } |
1088 | if (IDE == Intrinsic::masked_store && IDL == Intrinsic::masked_store) { |
1089 | // Trying to remove a dead store (earlier). |
1090 | // Check that the pointers are the same, |
1091 | // - the to-be-removed store's mask is a subset of the other store's |
1092 | // mask. |
1093 | return IsSubmask(MaskOp(Earlier), MaskOp(Later)); |
1094 | } |
1095 | return false; |
1096 | } |
1097 | |
1098 | void removeMSSA(Instruction &Inst) { |
1099 | if (!MSSA) |
1100 | return; |
1101 | if (VerifyMemorySSA) |
1102 | MSSA->verifyMemorySSA(); |
1103 | // Removing a store here can leave MemorySSA in an unoptimized state by |
1104 | // creating MemoryPhis that have identical arguments and by creating |
1105 | // MemoryUses whose defining access is not an actual clobber. The phi case |
1106 | // is handled by MemorySSA when passing OptimizePhis = true to |
1107 | // removeMemoryAccess. The non-optimized MemoryUse case is lazily updated |
1108 | // by MemorySSA's getClobberingMemoryAccess. |
1109 | MSSAUpdater->removeMemoryAccess(I: &Inst, OptimizePhis: true); |
1110 | } |
1111 | }; |
1112 | |
1113 | } // end anonymous namespace |
1114 | |
1115 | /// Determine if the memory referenced by LaterInst is from the same heap |
1116 | /// version as EarlierInst. |
1117 | /// This is currently called in two scenarios: |
1118 | /// |
1119 | /// load p |
1120 | /// ... |
1121 | /// load p |
1122 | /// |
1123 | /// and |
1124 | /// |
1125 | /// x = load p |
1126 | /// ... |
1127 | /// store x, p |
1128 | /// |
1129 | /// in both cases we want to verify that there are no possible writes to the |
1130 | /// memory referenced by p between the earlier and later instruction. |
1131 | bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration, |
1132 | unsigned LaterGeneration, |
1133 | Instruction *EarlierInst, |
1134 | Instruction *LaterInst) { |
1135 | // Check the simple memory generation tracking first. |
1136 | if (EarlierGeneration == LaterGeneration) |
1137 | return true; |
1138 | |
1139 | if (!MSSA) |
1140 | return false; |
1141 | |
1142 | // If MemorySSA has determined that one of EarlierInst or LaterInst does not |
1143 | // read/write memory, then we can safely return true here. |
1144 | // FIXME: We could be more aggressive when checking doesNotAccessMemory(), |
1145 | // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass |
1146 | // by also checking the MemorySSA MemoryAccess on the instruction. Initial |
1147 | // experiments suggest this isn't worthwhile, at least for C/C++ code compiled |
1148 | // with the default optimization pipeline. |
1149 | auto *EarlierMA = MSSA->getMemoryAccess(I: EarlierInst); |
1150 | if (!EarlierMA) |
1151 | return true; |
1152 | auto *LaterMA = MSSA->getMemoryAccess(I: LaterInst); |
1153 | if (!LaterMA) |
1154 | return true; |
1155 | |
1156 | // Since we know LaterDef dominates LaterInst and EarlierInst dominates |
1157 | // LaterInst, if LaterDef dominates EarlierInst then it can't occur between |
1158 | // EarlierInst and LaterInst and neither can any other write that potentially |
1159 | // clobbers LaterInst. |
1160 | MemoryAccess *LaterDef; |
1161 | if (ClobberCounter < EarlyCSEMssaOptCap) { |
1162 | LaterDef = MSSA->getWalker()->getClobberingMemoryAccess(I: LaterInst); |
1163 | ClobberCounter++; |
1164 | } else |
1165 | LaterDef = LaterMA->getDefiningAccess(); |
1166 | |
1167 | return MSSA->dominates(A: LaterDef, B: EarlierMA); |
1168 | } |
1169 | |
1170 | bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) { |
1171 | // A location loaded from with an invariant_load is assumed to *never* change |
1172 | // within the visible scope of the compilation. |
1173 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
1174 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
1175 | return true; |
1176 | |
1177 | auto MemLocOpt = MemoryLocation::getOrNone(Inst: I); |
1178 | if (!MemLocOpt) |
1179 | // "target" intrinsic forms of loads aren't currently known to |
1180 | // MemoryLocation::get. TODO |
1181 | return false; |
1182 | MemoryLocation MemLoc = *MemLocOpt; |
1183 | if (!AvailableInvariants.count(Key: MemLoc)) |
1184 | return false; |
1185 | |
1186 | // Is the generation at which this became invariant older than the |
1187 | // current one? |
1188 | return AvailableInvariants.lookup(Key: MemLoc) <= GenAt; |
1189 | } |
1190 | |
1191 | bool EarlyCSE::handleBranchCondition(Instruction *CondInst, |
1192 | const BranchInst *BI, const BasicBlock *BB, |
1193 | const BasicBlock *Pred) { |
1194 | assert(BI->isConditional() && "Should be a conditional branch!" ); |
1195 | assert(BI->getCondition() == CondInst && "Wrong condition?" ); |
1196 | assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB); |
1197 | auto *TorF = (BI->getSuccessor(i: 0) == BB) |
1198 | ? ConstantInt::getTrue(Context&: BB->getContext()) |
1199 | : ConstantInt::getFalse(Context&: BB->getContext()); |
1200 | auto MatchBinOp = [](Instruction *I, unsigned Opcode, Value *&LHS, |
1201 | Value *&RHS) { |
1202 | if (Opcode == Instruction::And && |
1203 | match(V: I, P: m_LogicalAnd(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1204 | return true; |
1205 | else if (Opcode == Instruction::Or && |
1206 | match(V: I, P: m_LogicalOr(L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
1207 | return true; |
1208 | return false; |
1209 | }; |
1210 | // If the condition is AND operation, we can propagate its operands into the |
1211 | // true branch. If it is OR operation, we can propagate them into the false |
1212 | // branch. |
1213 | unsigned PropagateOpcode = |
1214 | (BI->getSuccessor(i: 0) == BB) ? Instruction::And : Instruction::Or; |
1215 | |
1216 | bool MadeChanges = false; |
1217 | SmallVector<Instruction *, 4> WorkList; |
1218 | SmallPtrSet<Instruction *, 4> Visited; |
1219 | WorkList.push_back(Elt: CondInst); |
1220 | while (!WorkList.empty()) { |
1221 | Instruction *Curr = WorkList.pop_back_val(); |
1222 | |
1223 | AvailableValues.insert(Key: Curr, Val: TorF); |
1224 | LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '" |
1225 | << Curr->getName() << "' as " << *TorF << " in " |
1226 | << BB->getName() << "\n" ); |
1227 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1228 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1229 | } else { |
1230 | // Replace all dominated uses with the known value. |
1231 | if (unsigned Count = replaceDominatedUsesWith(From: Curr, To: TorF, DT, |
1232 | Edge: BasicBlockEdge(Pred, BB))) { |
1233 | NumCSECVP += Count; |
1234 | MadeChanges = true; |
1235 | } |
1236 | } |
1237 | |
1238 | Value *LHS, *RHS; |
1239 | if (MatchBinOp(Curr, PropagateOpcode, LHS, RHS)) |
1240 | for (auto *Op : { LHS, RHS }) |
1241 | if (Instruction *OPI = dyn_cast<Instruction>(Val: Op)) |
1242 | if (SimpleValue::canHandle(Inst: OPI) && Visited.insert(Ptr: OPI).second) |
1243 | WorkList.push_back(Elt: OPI); |
1244 | } |
1245 | |
1246 | return MadeChanges; |
1247 | } |
1248 | |
1249 | Value *EarlyCSE::getMatchingValue(LoadValue &InVal, ParseMemoryInst &MemInst, |
1250 | unsigned CurrentGeneration) { |
1251 | if (InVal.DefInst == nullptr) |
1252 | return nullptr; |
1253 | if (InVal.MatchingId != MemInst.getMatchingId()) |
1254 | return nullptr; |
1255 | // We don't yet handle removing loads with ordering of any kind. |
1256 | if (MemInst.isVolatile() || !MemInst.isUnordered()) |
1257 | return nullptr; |
1258 | // We can't replace an atomic load with one which isn't also atomic. |
1259 | if (MemInst.isLoad() && !InVal.IsAtomic && MemInst.isAtomic()) |
1260 | return nullptr; |
1261 | // The value V returned from this function is used differently depending |
1262 | // on whether MemInst is a load or a store. If it's a load, we will replace |
1263 | // MemInst with V, if it's a store, we will check if V is the same as the |
1264 | // available value. |
1265 | bool MemInstMatching = !MemInst.isLoad(); |
1266 | Instruction *Matching = MemInstMatching ? MemInst.get() : InVal.DefInst; |
1267 | Instruction *Other = MemInstMatching ? InVal.DefInst : MemInst.get(); |
1268 | |
1269 | // For stores check the result values before checking memory generation |
1270 | // (otherwise isSameMemGeneration may crash). |
1271 | Value *Result = MemInst.isStore() |
1272 | ? getOrCreateResult(Inst: Matching, ExpectedType: Other->getType()) |
1273 | : nullptr; |
1274 | if (MemInst.isStore() && InVal.DefInst != Result) |
1275 | return nullptr; |
1276 | |
1277 | // Deal with non-target memory intrinsics. |
1278 | bool MatchingNTI = isHandledNonTargetIntrinsic(V: Matching); |
1279 | bool OtherNTI = isHandledNonTargetIntrinsic(V: Other); |
1280 | if (OtherNTI != MatchingNTI) |
1281 | return nullptr; |
1282 | if (OtherNTI && MatchingNTI) { |
1283 | if (!isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: InVal.DefInst), |
1284 | Later: cast<IntrinsicInst>(Val: MemInst.get()))) |
1285 | return nullptr; |
1286 | } |
1287 | |
1288 | if (!isOperatingOnInvariantMemAt(I: MemInst.get(), GenAt: InVal.Generation) && |
1289 | !isSameMemGeneration(EarlierGeneration: InVal.Generation, LaterGeneration: CurrentGeneration, EarlierInst: InVal.DefInst, |
1290 | LaterInst: MemInst.get())) |
1291 | return nullptr; |
1292 | |
1293 | if (!Result) |
1294 | Result = getOrCreateResult(Inst: Matching, ExpectedType: Other->getType()); |
1295 | return Result; |
1296 | } |
1297 | |
1298 | static void combineIRFlags(Instruction &From, Value *To) { |
1299 | if (auto *I = dyn_cast<Instruction>(Val: To)) { |
1300 | // If I being poison triggers UB, there is no need to drop those |
1301 | // flags. Otherwise, only retain flags present on both I and Inst. |
1302 | // TODO: Currently some fast-math flags are not treated as |
1303 | // poison-generating even though they should. Until this is fixed, |
1304 | // always retain flags present on both I and Inst for floating point |
1305 | // instructions. |
1306 | if (isa<FPMathOperator>(Val: I) || |
1307 | (I->hasPoisonGeneratingFlags() && !programUndefinedIfPoison(Inst: I))) |
1308 | I->andIRFlags(V: &From); |
1309 | } |
1310 | } |
1311 | |
1312 | bool EarlyCSE::overridingStores(const ParseMemoryInst &Earlier, |
1313 | const ParseMemoryInst &Later) { |
1314 | // Can we remove Earlier store because of Later store? |
1315 | |
1316 | assert(Earlier.isUnordered() && !Earlier.isVolatile() && |
1317 | "Violated invariant" ); |
1318 | if (Earlier.getPointerOperand() != Later.getPointerOperand()) |
1319 | return false; |
1320 | if (!Earlier.getValueType() || !Later.getValueType() || |
1321 | Earlier.getValueType() != Later.getValueType()) |
1322 | return false; |
1323 | if (Earlier.getMatchingId() != Later.getMatchingId()) |
1324 | return false; |
1325 | // At the moment, we don't remove ordered stores, but do remove |
1326 | // unordered atomic stores. There's no special requirement (for |
1327 | // unordered atomics) about removing atomic stores only in favor of |
1328 | // other atomic stores since we were going to execute the non-atomic |
1329 | // one anyway and the atomic one might never have become visible. |
1330 | if (!Earlier.isUnordered() || !Later.isUnordered()) |
1331 | return false; |
1332 | |
1333 | // Deal with non-target memory intrinsics. |
1334 | bool ENTI = isHandledNonTargetIntrinsic(V: Earlier.get()); |
1335 | bool LNTI = isHandledNonTargetIntrinsic(V: Later.get()); |
1336 | if (ENTI && LNTI) |
1337 | return isNonTargetIntrinsicMatch(Earlier: cast<IntrinsicInst>(Val: Earlier.get()), |
1338 | Later: cast<IntrinsicInst>(Val: Later.get())); |
1339 | |
1340 | // Because of the check above, at least one of them is false. |
1341 | // For now disallow matching intrinsics with non-intrinsics, |
1342 | // so assume that the stores match if neither is an intrinsic. |
1343 | return ENTI == LNTI; |
1344 | } |
1345 | |
1346 | bool EarlyCSE::processNode(DomTreeNode *Node) { |
1347 | bool Changed = false; |
1348 | BasicBlock *BB = Node->getBlock(); |
1349 | |
1350 | // If this block has a single predecessor, then the predecessor is the parent |
1351 | // of the domtree node and all of the live out memory values are still current |
1352 | // in this block. If this block has multiple predecessors, then they could |
1353 | // have invalidated the live-out memory values of our parent value. For now, |
1354 | // just be conservative and invalidate memory if this block has multiple |
1355 | // predecessors. |
1356 | if (!BB->getSinglePredecessor()) |
1357 | ++CurrentGeneration; |
1358 | |
1359 | // If this node has a single predecessor which ends in a conditional branch, |
1360 | // we can infer the value of the branch condition given that we took this |
1361 | // path. We need the single predecessor to ensure there's not another path |
1362 | // which reaches this block where the condition might hold a different |
1363 | // value. Since we're adding this to the scoped hash table (like any other |
1364 | // def), it will have been popped if we encounter a future merge block. |
1365 | if (BasicBlock *Pred = BB->getSinglePredecessor()) { |
1366 | auto *BI = dyn_cast<BranchInst>(Val: Pred->getTerminator()); |
1367 | if (BI && BI->isConditional()) { |
1368 | auto *CondInst = dyn_cast<Instruction>(Val: BI->getCondition()); |
1369 | if (CondInst && SimpleValue::canHandle(Inst: CondInst)) |
1370 | Changed |= handleBranchCondition(CondInst, BI, BB, Pred); |
1371 | } |
1372 | } |
1373 | |
1374 | /// LastStore - Keep track of the last non-volatile store that we saw... for |
1375 | /// as long as there in no instruction that reads memory. If we see a store |
1376 | /// to the same location, we delete the dead store. This zaps trivial dead |
1377 | /// stores which can occur in bitfield code among other things. |
1378 | Instruction *LastStore = nullptr; |
1379 | |
1380 | // See if any instructions in the block can be eliminated. If so, do it. If |
1381 | // not, add them to AvailableValues. |
1382 | for (Instruction &Inst : make_early_inc_range(Range&: *BB)) { |
1383 | // Dead instructions should just be removed. |
1384 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
1385 | LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << Inst << '\n'); |
1386 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1387 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1388 | continue; |
1389 | } |
1390 | |
1391 | salvageKnowledge(I: &Inst, AC: &AC); |
1392 | salvageDebugInfo(I&: Inst); |
1393 | removeMSSA(Inst); |
1394 | Inst.eraseFromParent(); |
1395 | Changed = true; |
1396 | ++NumSimplify; |
1397 | continue; |
1398 | } |
1399 | |
1400 | // Skip assume intrinsics, they don't really have side effects (although |
1401 | // they're marked as such to ensure preservation of control dependencies), |
1402 | // and this pass will not bother with its removal. However, we should mark |
1403 | // its condition as true for all dominated blocks. |
1404 | if (auto *Assume = dyn_cast<AssumeInst>(Val: &Inst)) { |
1405 | auto *CondI = dyn_cast<Instruction>(Val: Assume->getArgOperand(i: 0)); |
1406 | if (CondI && SimpleValue::canHandle(Inst: CondI)) { |
1407 | LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << Inst |
1408 | << '\n'); |
1409 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
1410 | } else |
1411 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << Inst << '\n'); |
1412 | continue; |
1413 | } |
1414 | |
1415 | // Likewise, noalias intrinsics don't actually write. |
1416 | if (match(V: &Inst, |
1417 | P: m_Intrinsic<Intrinsic::experimental_noalias_scope_decl>())) { |
1418 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping noalias intrinsic: " << Inst |
1419 | << '\n'); |
1420 | continue; |
1421 | } |
1422 | |
1423 | // Skip sideeffect intrinsics, for the same reason as assume intrinsics. |
1424 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::sideeffect>())) { |
1425 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << Inst << '\n'); |
1426 | continue; |
1427 | } |
1428 | |
1429 | // Skip pseudoprobe intrinsics, for the same reason as assume intrinsics. |
1430 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::pseudoprobe>())) { |
1431 | LLVM_DEBUG(dbgs() << "EarlyCSE skipping pseudoprobe: " << Inst << '\n'); |
1432 | continue; |
1433 | } |
1434 | |
1435 | // We can skip all invariant.start intrinsics since they only read memory, |
1436 | // and we can forward values across it. For invariant starts without |
1437 | // invariant ends, we can use the fact that the invariantness never ends to |
1438 | // start a scope in the current generaton which is true for all future |
1439 | // generations. Also, we dont need to consume the last store since the |
1440 | // semantics of invariant.start allow us to perform DSE of the last |
1441 | // store, if there was a store following invariant.start. Consider: |
1442 | // |
1443 | // store 30, i8* p |
1444 | // invariant.start(p) |
1445 | // store 40, i8* p |
1446 | // We can DSE the store to 30, since the store 40 to invariant location p |
1447 | // causes undefined behaviour. |
1448 | if (match(V: &Inst, P: m_Intrinsic<Intrinsic::invariant_start>())) { |
1449 | // If there are any uses, the scope might end. |
1450 | if (!Inst.use_empty()) |
1451 | continue; |
1452 | MemoryLocation MemLoc = |
1453 | MemoryLocation::getForArgument(Call: &cast<CallInst>(Val&: Inst), ArgIdx: 1, TLI); |
1454 | // Don't start a scope if we already have a better one pushed |
1455 | if (!AvailableInvariants.count(Key: MemLoc)) |
1456 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
1457 | continue; |
1458 | } |
1459 | |
1460 | if (isGuard(U: &Inst)) { |
1461 | if (auto *CondI = |
1462 | dyn_cast<Instruction>(Val: cast<CallInst>(Val&: Inst).getArgOperand(i: 0))) { |
1463 | if (SimpleValue::canHandle(Inst: CondI)) { |
1464 | // Do we already know the actual value of this condition? |
1465 | if (auto *KnownCond = AvailableValues.lookup(Key: CondI)) { |
1466 | // Is the condition known to be true? |
1467 | if (isa<ConstantInt>(Val: KnownCond) && |
1468 | cast<ConstantInt>(Val: KnownCond)->isOne()) { |
1469 | LLVM_DEBUG(dbgs() |
1470 | << "EarlyCSE removing guard: " << Inst << '\n'); |
1471 | salvageKnowledge(I: &Inst, AC: &AC); |
1472 | removeMSSA(Inst); |
1473 | Inst.eraseFromParent(); |
1474 | Changed = true; |
1475 | continue; |
1476 | } else |
1477 | // Use the known value if it wasn't true. |
1478 | cast<CallInst>(Val&: Inst).setArgOperand(i: 0, v: KnownCond); |
1479 | } |
1480 | // The condition we're on guarding here is true for all dominated |
1481 | // locations. |
1482 | AvailableValues.insert(Key: CondI, Val: ConstantInt::getTrue(Context&: BB->getContext())); |
1483 | } |
1484 | } |
1485 | |
1486 | // Guard intrinsics read all memory, but don't write any memory. |
1487 | // Accordingly, don't update the generation but consume the last store (to |
1488 | // avoid an incorrect DSE). |
1489 | LastStore = nullptr; |
1490 | continue; |
1491 | } |
1492 | |
1493 | // If the instruction can be simplified (e.g. X+0 = X) then replace it with |
1494 | // its simpler value. |
1495 | if (Value *V = simplifyInstruction(I: &Inst, Q: SQ)) { |
1496 | LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << Inst << " to: " << *V |
1497 | << '\n'); |
1498 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1499 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1500 | } else { |
1501 | bool Killed = false; |
1502 | if (!Inst.use_empty()) { |
1503 | Inst.replaceAllUsesWith(V); |
1504 | Changed = true; |
1505 | } |
1506 | if (isInstructionTriviallyDead(I: &Inst, TLI: &TLI)) { |
1507 | salvageKnowledge(I: &Inst, AC: &AC); |
1508 | removeMSSA(Inst); |
1509 | Inst.eraseFromParent(); |
1510 | Changed = true; |
1511 | Killed = true; |
1512 | } |
1513 | if (Changed) |
1514 | ++NumSimplify; |
1515 | if (Killed) |
1516 | continue; |
1517 | } |
1518 | } |
1519 | |
1520 | // If this is a simple instruction that we can value number, process it. |
1521 | if (SimpleValue::canHandle(Inst: &Inst)) { |
1522 | if ([[maybe_unused]] auto *CI = dyn_cast<ConstrainedFPIntrinsic>(Val: &Inst)) { |
1523 | assert(CI->getExceptionBehavior() != fp::ebStrict && |
1524 | "Unexpected ebStrict from SimpleValue::canHandle()" ); |
1525 | assert((!CI->getRoundingMode() || |
1526 | CI->getRoundingMode() != RoundingMode::Dynamic) && |
1527 | "Unexpected dynamic rounding from SimpleValue::canHandle()" ); |
1528 | } |
1529 | // See if the instruction has an available value. If so, use it. |
1530 | if (Value *V = AvailableValues.lookup(Key: &Inst)) { |
1531 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << Inst << " to: " << *V |
1532 | << '\n'); |
1533 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1534 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1535 | continue; |
1536 | } |
1537 | combineIRFlags(From&: Inst, To: V); |
1538 | Inst.replaceAllUsesWith(V); |
1539 | salvageKnowledge(I: &Inst, AC: &AC); |
1540 | removeMSSA(Inst); |
1541 | Inst.eraseFromParent(); |
1542 | Changed = true; |
1543 | ++NumCSE; |
1544 | continue; |
1545 | } |
1546 | |
1547 | // Otherwise, just remember that this value is available. |
1548 | AvailableValues.insert(Key: &Inst, Val: &Inst); |
1549 | continue; |
1550 | } |
1551 | |
1552 | ParseMemoryInst MemInst(&Inst, TTI); |
1553 | // If this is a non-volatile load, process it. |
1554 | if (MemInst.isValid() && MemInst.isLoad()) { |
1555 | // (conservatively) we can't peak past the ordering implied by this |
1556 | // operation, but we can add this load to our set of available values |
1557 | if (MemInst.isVolatile() || !MemInst.isUnordered()) { |
1558 | LastStore = nullptr; |
1559 | ++CurrentGeneration; |
1560 | } |
1561 | |
1562 | if (MemInst.isInvariantLoad()) { |
1563 | // If we pass an invariant load, we know that memory location is |
1564 | // indefinitely constant from the moment of first dereferenceability. |
1565 | // We conservatively treat the invariant_load as that moment. If we |
1566 | // pass a invariant load after already establishing a scope, don't |
1567 | // restart it since we want to preserve the earliest point seen. |
1568 | auto MemLoc = MemoryLocation::get(Inst: &Inst); |
1569 | if (!AvailableInvariants.count(Key: MemLoc)) |
1570 | AvailableInvariants.insert(Key: MemLoc, Val: CurrentGeneration); |
1571 | } |
1572 | |
1573 | // If we have an available version of this load, and if it is the right |
1574 | // generation or the load is known to be from an invariant location, |
1575 | // replace this instruction. |
1576 | // |
1577 | // If either the dominating load or the current load are invariant, then |
1578 | // we can assume the current load loads the same value as the dominating |
1579 | // load. |
1580 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
1581 | if (Value *Op = getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
1582 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << Inst |
1583 | << " to: " << *InVal.DefInst << '\n'); |
1584 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1585 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1586 | continue; |
1587 | } |
1588 | if (InVal.IsLoad) |
1589 | if (auto *I = dyn_cast<Instruction>(Val: Op)) |
1590 | combineMetadataForCSE(K: I, J: &Inst, DoesKMove: false); |
1591 | if (!Inst.use_empty()) |
1592 | Inst.replaceAllUsesWith(V: Op); |
1593 | salvageKnowledge(I: &Inst, AC: &AC); |
1594 | removeMSSA(Inst); |
1595 | Inst.eraseFromParent(); |
1596 | Changed = true; |
1597 | ++NumCSELoad; |
1598 | continue; |
1599 | } |
1600 | |
1601 | // Otherwise, remember that we have this instruction. |
1602 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
1603 | Val: LoadValue(&Inst, CurrentGeneration, |
1604 | MemInst.getMatchingId(), |
1605 | MemInst.isAtomic(), |
1606 | MemInst.isLoad())); |
1607 | LastStore = nullptr; |
1608 | continue; |
1609 | } |
1610 | |
1611 | // If this instruction may read from memory or throw (and potentially read |
1612 | // from memory in the exception handler), forget LastStore. Load/store |
1613 | // intrinsics will indicate both a read and a write to memory. The target |
1614 | // may override this (e.g. so that a store intrinsic does not read from |
1615 | // memory, and thus will be treated the same as a regular store for |
1616 | // commoning purposes). |
1617 | if ((Inst.mayReadFromMemory() || Inst.mayThrow()) && |
1618 | !(MemInst.isValid() && !MemInst.mayReadFromMemory())) |
1619 | LastStore = nullptr; |
1620 | |
1621 | // If this is a read-only call, process it. |
1622 | if (CallValue::canHandle(Inst: &Inst)) { |
1623 | // If we have an available version of this call, and if it is the right |
1624 | // generation, replace this instruction. |
1625 | std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Key: &Inst); |
1626 | if (InVal.first != nullptr && |
1627 | isSameMemGeneration(EarlierGeneration: InVal.second, LaterGeneration: CurrentGeneration, EarlierInst: InVal.first, |
1628 | LaterInst: &Inst)) { |
1629 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << Inst |
1630 | << " to: " << *InVal.first << '\n'); |
1631 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1632 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1633 | continue; |
1634 | } |
1635 | if (!Inst.use_empty()) |
1636 | Inst.replaceAllUsesWith(V: InVal.first); |
1637 | salvageKnowledge(I: &Inst, AC: &AC); |
1638 | removeMSSA(Inst); |
1639 | Inst.eraseFromParent(); |
1640 | Changed = true; |
1641 | ++NumCSECall; |
1642 | continue; |
1643 | } |
1644 | |
1645 | // Otherwise, remember that we have this instruction. |
1646 | AvailableCalls.insert(Key: &Inst, Val: std::make_pair(x: &Inst, y&: CurrentGeneration)); |
1647 | continue; |
1648 | } |
1649 | |
1650 | // Compare GEP instructions based on offset. |
1651 | if (GEPValue::canHandle(Inst: &Inst)) { |
1652 | auto *GEP = cast<GetElementPtrInst>(Val: &Inst); |
1653 | APInt Offset = APInt(SQ.DL.getIndexTypeSizeInBits(Ty: GEP->getType()), 0); |
1654 | GEPValue GEPVal(GEP, GEP->accumulateConstantOffset(DL: SQ.DL, Offset) |
1655 | ? Offset.trySExtValue() |
1656 | : std::nullopt); |
1657 | if (Value *V = AvailableGEPs.lookup(Key: GEPVal)) { |
1658 | LLVM_DEBUG(dbgs() << "EarlyCSE CSE GEP: " << Inst << " to: " << *V |
1659 | << '\n'); |
1660 | combineIRFlags(From&: Inst, To: V); |
1661 | Inst.replaceAllUsesWith(V); |
1662 | salvageKnowledge(I: &Inst, AC: &AC); |
1663 | removeMSSA(Inst); |
1664 | Inst.eraseFromParent(); |
1665 | Changed = true; |
1666 | ++NumCSEGEP; |
1667 | continue; |
1668 | } |
1669 | |
1670 | // Otherwise, just remember that we have this GEP. |
1671 | AvailableGEPs.insert(Key: GEPVal, Val: &Inst); |
1672 | continue; |
1673 | } |
1674 | |
1675 | // A release fence requires that all stores complete before it, but does |
1676 | // not prevent the reordering of following loads 'before' the fence. As a |
1677 | // result, we don't need to consider it as writing to memory and don't need |
1678 | // to advance the generation. We do need to prevent DSE across the fence, |
1679 | // but that's handled above. |
1680 | if (auto *FI = dyn_cast<FenceInst>(Val: &Inst)) |
1681 | if (FI->getOrdering() == AtomicOrdering::Release) { |
1682 | assert(Inst.mayReadFromMemory() && "relied on to prevent DSE above" ); |
1683 | continue; |
1684 | } |
1685 | |
1686 | // write back DSE - If we write back the same value we just loaded from |
1687 | // the same location and haven't passed any intervening writes or ordering |
1688 | // operations, we can remove the write. The primary benefit is in allowing |
1689 | // the available load table to remain valid and value forward past where |
1690 | // the store originally was. |
1691 | if (MemInst.isValid() && MemInst.isStore()) { |
1692 | LoadValue InVal = AvailableLoads.lookup(Key: MemInst.getPointerOperand()); |
1693 | if (InVal.DefInst && |
1694 | InVal.DefInst == getMatchingValue(InVal, MemInst, CurrentGeneration)) { |
1695 | // It is okay to have a LastStore to a different pointer here if MemorySSA |
1696 | // tells us that the load and store are from the same memory generation. |
1697 | // In that case, LastStore should keep its present value since we're |
1698 | // removing the current store. |
1699 | assert((!LastStore || |
1700 | ParseMemoryInst(LastStore, TTI).getPointerOperand() == |
1701 | MemInst.getPointerOperand() || |
1702 | MSSA) && |
1703 | "can't have an intervening store if not using MemorySSA!" ); |
1704 | LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << Inst << '\n'); |
1705 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1706 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1707 | continue; |
1708 | } |
1709 | salvageKnowledge(I: &Inst, AC: &AC); |
1710 | removeMSSA(Inst); |
1711 | Inst.eraseFromParent(); |
1712 | Changed = true; |
1713 | ++NumDSE; |
1714 | // We can avoid incrementing the generation count since we were able |
1715 | // to eliminate this store. |
1716 | continue; |
1717 | } |
1718 | } |
1719 | |
1720 | // Okay, this isn't something we can CSE at all. Check to see if it is |
1721 | // something that could modify memory. If so, our available memory values |
1722 | // cannot be used so bump the generation count. |
1723 | if (Inst.mayWriteToMemory()) { |
1724 | ++CurrentGeneration; |
1725 | |
1726 | if (MemInst.isValid() && MemInst.isStore()) { |
1727 | // We do a trivial form of DSE if there are two stores to the same |
1728 | // location with no intervening loads. Delete the earlier store. |
1729 | if (LastStore) { |
1730 | if (overridingStores(Earlier: ParseMemoryInst(LastStore, TTI), Later: MemInst)) { |
1731 | LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore |
1732 | << " due to: " << Inst << '\n'); |
1733 | if (!DebugCounter::shouldExecute(CounterName: CSECounter)) { |
1734 | LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n" ); |
1735 | } else { |
1736 | salvageKnowledge(I: &Inst, AC: &AC); |
1737 | removeMSSA(Inst&: *LastStore); |
1738 | LastStore->eraseFromParent(); |
1739 | Changed = true; |
1740 | ++NumDSE; |
1741 | LastStore = nullptr; |
1742 | } |
1743 | } |
1744 | // fallthrough - we can exploit information about this store |
1745 | } |
1746 | |
1747 | // Okay, we just invalidated anything we knew about loaded values. Try |
1748 | // to salvage *something* by remembering that the stored value is a live |
1749 | // version of the pointer. It is safe to forward from volatile stores |
1750 | // to non-volatile loads, so we don't have to check for volatility of |
1751 | // the store. |
1752 | AvailableLoads.insert(Key: MemInst.getPointerOperand(), |
1753 | Val: LoadValue(&Inst, CurrentGeneration, |
1754 | MemInst.getMatchingId(), |
1755 | MemInst.isAtomic(), |
1756 | MemInst.isLoad())); |
1757 | |
1758 | // Remember that this was the last unordered store we saw for DSE. We |
1759 | // don't yet handle DSE on ordered or volatile stores since we don't |
1760 | // have a good way to model the ordering requirement for following |
1761 | // passes once the store is removed. We could insert a fence, but |
1762 | // since fences are slightly stronger than stores in their ordering, |
1763 | // it's not clear this is a profitable transform. Another option would |
1764 | // be to merge the ordering with that of the post dominating store. |
1765 | if (MemInst.isUnordered() && !MemInst.isVolatile()) |
1766 | LastStore = &Inst; |
1767 | else |
1768 | LastStore = nullptr; |
1769 | } |
1770 | } |
1771 | } |
1772 | |
1773 | return Changed; |
1774 | } |
1775 | |
1776 | bool EarlyCSE::run() { |
1777 | // Note, deque is being used here because there is significant performance |
1778 | // gains over vector when the container becomes very large due to the |
1779 | // specific access patterns. For more information see the mailing list |
1780 | // discussion on this: |
1781 | // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html |
1782 | std::deque<StackNode *> nodesToProcess; |
1783 | |
1784 | bool Changed = false; |
1785 | |
1786 | // Process the root node. |
1787 | nodesToProcess.push_back(x: new StackNode( |
1788 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
1789 | AvailableGEPs, CurrentGeneration, DT.getRootNode(), |
1790 | DT.getRootNode()->begin(), DT.getRootNode()->end())); |
1791 | |
1792 | assert(!CurrentGeneration && "Create a new EarlyCSE instance to rerun it." ); |
1793 | |
1794 | // Process the stack. |
1795 | while (!nodesToProcess.empty()) { |
1796 | // Grab the first item off the stack. Set the current generation, remove |
1797 | // the node from the stack, and process it. |
1798 | StackNode *NodeToProcess = nodesToProcess.back(); |
1799 | |
1800 | // Initialize class members. |
1801 | CurrentGeneration = NodeToProcess->currentGeneration(); |
1802 | |
1803 | // Check if the node needs to be processed. |
1804 | if (!NodeToProcess->isProcessed()) { |
1805 | // Process the node. |
1806 | Changed |= processNode(Node: NodeToProcess->node()); |
1807 | NodeToProcess->childGeneration(generation: CurrentGeneration); |
1808 | NodeToProcess->process(); |
1809 | } else if (NodeToProcess->childIter() != NodeToProcess->end()) { |
1810 | // Push the next child onto the stack. |
1811 | DomTreeNode *child = NodeToProcess->nextChild(); |
1812 | nodesToProcess.push_back(x: new StackNode( |
1813 | AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls, |
1814 | AvailableGEPs, NodeToProcess->childGeneration(), child, |
1815 | child->begin(), child->end())); |
1816 | } else { |
1817 | // It has been processed, and there are no more children to process, |
1818 | // so delete it and pop it off the stack. |
1819 | delete NodeToProcess; |
1820 | nodesToProcess.pop_back(); |
1821 | } |
1822 | } // while (!nodes...) |
1823 | |
1824 | return Changed; |
1825 | } |
1826 | |
1827 | PreservedAnalyses EarlyCSEPass::run(Function &F, |
1828 | FunctionAnalysisManager &AM) { |
1829 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F); |
1830 | auto &TTI = AM.getResult<TargetIRAnalysis>(IR&: F); |
1831 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1832 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
1833 | auto *MSSA = |
1834 | UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA() : nullptr; |
1835 | |
1836 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
1837 | |
1838 | if (!CSE.run()) |
1839 | return PreservedAnalyses::all(); |
1840 | |
1841 | PreservedAnalyses PA; |
1842 | PA.preserveSet<CFGAnalyses>(); |
1843 | if (UseMemorySSA) |
1844 | PA.preserve<MemorySSAAnalysis>(); |
1845 | return PA; |
1846 | } |
1847 | |
1848 | void EarlyCSEPass::printPipeline( |
1849 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
1850 | static_cast<PassInfoMixin<EarlyCSEPass> *>(this)->printPipeline( |
1851 | OS, MapClassName2PassName); |
1852 | OS << '<'; |
1853 | if (UseMemorySSA) |
1854 | OS << "memssa" ; |
1855 | OS << '>'; |
1856 | } |
1857 | |
1858 | namespace { |
1859 | |
1860 | /// A simple and fast domtree-based CSE pass. |
1861 | /// |
1862 | /// This pass does a simple depth-first walk over the dominator tree, |
1863 | /// eliminating trivially redundant instructions and using instsimplify to |
1864 | /// canonicalize things as it goes. It is intended to be fast and catch obvious |
1865 | /// cases so that instcombine and other passes are more effective. It is |
1866 | /// expected that a later pass of GVN will catch the interesting/hard cases. |
1867 | template<bool UseMemorySSA> |
1868 | class EarlyCSELegacyCommonPass : public FunctionPass { |
1869 | public: |
1870 | static char ID; |
1871 | |
1872 | EarlyCSELegacyCommonPass() : FunctionPass(ID) { |
1873 | if (UseMemorySSA) |
1874 | initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry()); |
1875 | else |
1876 | initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); |
1877 | } |
1878 | |
1879 | bool runOnFunction(Function &F) override { |
1880 | if (skipFunction(F)) |
1881 | return false; |
1882 | |
1883 | auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
1884 | auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
1885 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
1886 | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1887 | auto *MSSA = |
1888 | UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr; |
1889 | |
1890 | EarlyCSE CSE(F.getDataLayout(), TLI, TTI, DT, AC, MSSA); |
1891 | |
1892 | return CSE.run(); |
1893 | } |
1894 | |
1895 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
1896 | AU.addRequired<AssumptionCacheTracker>(); |
1897 | AU.addRequired<DominatorTreeWrapperPass>(); |
1898 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
1899 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
1900 | if (UseMemorySSA) { |
1901 | AU.addRequired<AAResultsWrapperPass>(); |
1902 | AU.addRequired<MemorySSAWrapperPass>(); |
1903 | AU.addPreserved<MemorySSAWrapperPass>(); |
1904 | } |
1905 | AU.addPreserved<GlobalsAAWrapperPass>(); |
1906 | AU.addPreserved<AAResultsWrapperPass>(); |
1907 | AU.setPreservesCFG(); |
1908 | } |
1909 | }; |
1910 | |
1911 | } // end anonymous namespace |
1912 | |
1913 | using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>; |
1914 | |
1915 | template<> |
1916 | char EarlyCSELegacyPass::ID = 0; |
1917 | |
1918 | INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, |
1919 | false) |
1920 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1921 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1922 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
1923 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
1924 | INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse" , "Early CSE" , false, false) |
1925 | |
1926 | using EarlyCSEMemSSALegacyPass = |
1927 | EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>; |
1928 | |
1929 | template<> |
1930 | char EarlyCSEMemSSALegacyPass::ID = 0; |
1931 | |
1932 | FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) { |
1933 | if (UseMemorySSA) |
1934 | return new EarlyCSEMemSSALegacyPass(); |
1935 | else |
1936 | return new EarlyCSELegacyPass(); |
1937 | } |
1938 | |
1939 | INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
1940 | "Early CSE w/ MemorySSA" , false, false) |
1941 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
1942 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
1943 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
1944 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
1945 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
1946 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
1947 | INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa" , |
1948 | "Early CSE w/ MemorySSA" , false, false) |
1949 | |