1 | //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass performs loop invariant code motion, attempting to remove as much |
10 | // code from the body of a loop as possible. It does this by either hoisting |
11 | // code into the preheader block, or by sinking code to the exit blocks if it is |
12 | // safe. This pass also promotes must-aliased memory locations in the loop to |
13 | // live in registers, thus hoisting and sinking "invariant" loads and stores. |
14 | // |
15 | // Hoisting operations out of loops is a canonicalization transform. It |
16 | // enables and simplifies subsequent optimizations in the middle-end. |
17 | // Rematerialization of hoisted instructions to reduce register pressure is the |
18 | // responsibility of the back-end, which has more accurate information about |
19 | // register pressure and also handles other optimizations than LICM that |
20 | // increase live-ranges. |
21 | // |
22 | // This pass uses alias analysis for two purposes: |
23 | // |
24 | // 1. Moving loop invariant loads and calls out of loops. If we can determine |
25 | // that a load or call inside of a loop never aliases anything stored to, |
26 | // we can hoist it or sink it like any other instruction. |
27 | // 2. Scalar Promotion of Memory - If there is a store instruction inside of |
28 | // the loop, we try to move the store to happen AFTER the loop instead of |
29 | // inside of the loop. This can only happen if a few conditions are true: |
30 | // A. The pointer stored through is loop invariant |
31 | // B. There are no stores or loads in the loop which _may_ alias the |
32 | // pointer. There are no calls in the loop which mod/ref the pointer. |
33 | // If these conditions are true, we can promote the loads and stores in the |
34 | // loop of the pointer to use a temporary alloca'd variable. We then use |
35 | // the SSAUpdater to construct the appropriate SSA form for the value. |
36 | // |
37 | //===----------------------------------------------------------------------===// |
38 | |
39 | #include "llvm/Transforms/Scalar/LICM.h" |
40 | #include "llvm/ADT/PriorityWorklist.h" |
41 | #include "llvm/ADT/SetOperations.h" |
42 | #include "llvm/ADT/Statistic.h" |
43 | #include "llvm/Analysis/AliasAnalysis.h" |
44 | #include "llvm/Analysis/AliasSetTracker.h" |
45 | #include "llvm/Analysis/AssumptionCache.h" |
46 | #include "llvm/Analysis/CaptureTracking.h" |
47 | #include "llvm/Analysis/GuardUtils.h" |
48 | #include "llvm/Analysis/LazyBlockFrequencyInfo.h" |
49 | #include "llvm/Analysis/Loads.h" |
50 | #include "llvm/Analysis/LoopInfo.h" |
51 | #include "llvm/Analysis/LoopIterator.h" |
52 | #include "llvm/Analysis/LoopNestAnalysis.h" |
53 | #include "llvm/Analysis/LoopPass.h" |
54 | #include "llvm/Analysis/MemorySSA.h" |
55 | #include "llvm/Analysis/MemorySSAUpdater.h" |
56 | #include "llvm/Analysis/MustExecute.h" |
57 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
58 | #include "llvm/Analysis/ScalarEvolution.h" |
59 | #include "llvm/Analysis/TargetLibraryInfo.h" |
60 | #include "llvm/Analysis/TargetTransformInfo.h" |
61 | #include "llvm/Analysis/ValueTracking.h" |
62 | #include "llvm/IR/CFG.h" |
63 | #include "llvm/IR/Constants.h" |
64 | #include "llvm/IR/DataLayout.h" |
65 | #include "llvm/IR/DebugInfoMetadata.h" |
66 | #include "llvm/IR/DerivedTypes.h" |
67 | #include "llvm/IR/Dominators.h" |
68 | #include "llvm/IR/Instructions.h" |
69 | #include "llvm/IR/IntrinsicInst.h" |
70 | #include "llvm/IR/IRBuilder.h" |
71 | #include "llvm/IR/LLVMContext.h" |
72 | #include "llvm/IR/Metadata.h" |
73 | #include "llvm/IR/PatternMatch.h" |
74 | #include "llvm/IR/PredIteratorCache.h" |
75 | #include "llvm/InitializePasses.h" |
76 | #include "llvm/Support/CommandLine.h" |
77 | #include "llvm/Support/Debug.h" |
78 | #include "llvm/Support/raw_ostream.h" |
79 | #include "llvm/Target/TargetOptions.h" |
80 | #include "llvm/Transforms/Scalar.h" |
81 | #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" |
82 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
83 | #include "llvm/Transforms/Utils/Local.h" |
84 | #include "llvm/Transforms/Utils/LoopUtils.h" |
85 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
86 | #include <algorithm> |
87 | #include <utility> |
88 | using namespace llvm; |
89 | |
90 | namespace llvm { |
91 | class LPMUpdater; |
92 | } // namespace llvm |
93 | |
94 | #define DEBUG_TYPE "licm" |
95 | |
96 | STATISTIC(NumCreatedBlocks, "Number of blocks created" ); |
97 | STATISTIC(NumClonedBranches, "Number of branches cloned" ); |
98 | STATISTIC(NumSunk, "Number of instructions sunk out of loop" ); |
99 | STATISTIC(NumHoisted, "Number of instructions hoisted out of loop" ); |
100 | STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk" ); |
101 | STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk" ); |
102 | STATISTIC(NumPromotionCandidates, "Number of promotion candidates" ); |
103 | STATISTIC(NumLoadPromoted, "Number of load-only promotions" ); |
104 | STATISTIC(NumLoadStorePromoted, "Number of load and store promotions" ); |
105 | STATISTIC(NumMinMaxHoisted, |
106 | "Number of min/max expressions hoisted out of the loop" ); |
107 | STATISTIC(NumGEPsHoisted, |
108 | "Number of geps reassociated and hoisted out of the loop" ); |
109 | STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated " |
110 | "and hoisted out of the loop" ); |
111 | STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions " |
112 | "reassociated and hoisted out of the loop" ); |
113 | STATISTIC(NumIntAssociationsHoisted, |
114 | "Number of invariant int expressions " |
115 | "reassociated and hoisted out of the loop" ); |
116 | |
117 | /// Memory promotion is enabled by default. |
118 | static cl::opt<bool> |
119 | DisablePromotion("disable-licm-promotion" , cl::Hidden, cl::init(Val: false), |
120 | cl::desc("Disable memory promotion in LICM pass" )); |
121 | |
122 | static cl::opt<bool> ControlFlowHoisting( |
123 | "licm-control-flow-hoisting" , cl::Hidden, cl::init(Val: false), |
124 | cl::desc("Enable control flow (and PHI) hoisting in LICM" )); |
125 | |
126 | static cl::opt<bool> |
127 | SingleThread("licm-force-thread-model-single" , cl::Hidden, cl::init(Val: false), |
128 | cl::desc("Force thread model single in LICM pass" )); |
129 | |
130 | static cl::opt<uint32_t> MaxNumUsesTraversed( |
131 | "licm-max-num-uses-traversed" , cl::Hidden, cl::init(Val: 8), |
132 | cl::desc("Max num uses visited for identifying load " |
133 | "invariance in loop using invariant start (default = 8)" )); |
134 | |
135 | static cl::opt<unsigned> FPAssociationUpperLimit( |
136 | "licm-max-num-fp-reassociations" , cl::init(Val: 5U), cl::Hidden, |
137 | cl::desc( |
138 | "Set upper limit for the number of transformations performed " |
139 | "during a single round of hoisting the reassociated expressions." )); |
140 | |
141 | cl::opt<unsigned> IntAssociationUpperLimit( |
142 | "licm-max-num-int-reassociations" , cl::init(Val: 5U), cl::Hidden, |
143 | cl::desc( |
144 | "Set upper limit for the number of transformations performed " |
145 | "during a single round of hoisting the reassociated expressions." )); |
146 | |
147 | // Experimental option to allow imprecision in LICM in pathological cases, in |
148 | // exchange for faster compile. This is to be removed if MemorySSA starts to |
149 | // address the same issue. LICM calls MemorySSAWalker's |
150 | // getClobberingMemoryAccess, up to the value of the Cap, getting perfect |
151 | // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, |
152 | // which may not be precise, since optimizeUses is capped. The result is |
153 | // correct, but we may not get as "far up" as possible to get which access is |
154 | // clobbering the one queried. |
155 | cl::opt<unsigned> llvm::SetLicmMssaOptCap( |
156 | "licm-mssa-optimization-cap" , cl::init(Val: 100), cl::Hidden, |
157 | cl::desc("Enable imprecision in LICM in pathological cases, in exchange " |
158 | "for faster compile. Caps the MemorySSA clobbering calls." )); |
159 | |
160 | // Experimentally, memory promotion carries less importance than sinking and |
161 | // hoisting. Limit when we do promotion when using MemorySSA, in order to save |
162 | // compile time. |
163 | cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( |
164 | "licm-mssa-max-acc-promotion" , cl::init(Val: 250), cl::Hidden, |
165 | cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " |
166 | "effect. When MSSA in LICM is enabled, then this is the maximum " |
167 | "number of accesses allowed to be present in a loop in order to " |
168 | "enable memory promotion." )); |
169 | |
170 | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); |
171 | static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, |
172 | const LoopSafetyInfo *SafetyInfo, |
173 | TargetTransformInfo *TTI, |
174 | bool &FoldableInLoop, bool LoopNestMode); |
175 | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, |
176 | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, |
177 | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, |
178 | OptimizationRemarkEmitter *ORE); |
179 | static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, |
180 | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, |
181 | MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); |
182 | static bool isSafeToExecuteUnconditionally( |
183 | Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, |
184 | const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, |
185 | OptimizationRemarkEmitter *ORE, const Instruction *CtxI, |
186 | AssumptionCache *AC, bool AllowSpeculation); |
187 | static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, |
188 | Loop *CurLoop, Instruction &I, |
189 | SinkAndHoistLICMFlags &Flags, |
190 | bool InvariantGroup); |
191 | static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, |
192 | MemoryUse &MU); |
193 | /// Aggregates various functions for hoisting computations out of loop. |
194 | static bool hoistArithmetics(Instruction &I, Loop &L, |
195 | ICFLoopSafetyInfo &SafetyInfo, |
196 | MemorySSAUpdater &MSSAU, AssumptionCache *AC, |
197 | DominatorTree *DT); |
198 | static Instruction *cloneInstructionInExitBlock( |
199 | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, |
200 | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); |
201 | |
202 | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, |
203 | MemorySSAUpdater &MSSAU); |
204 | |
205 | static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, |
206 | ICFLoopSafetyInfo &SafetyInfo, |
207 | MemorySSAUpdater &MSSAU, ScalarEvolution *SE); |
208 | |
209 | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, |
210 | function_ref<void(Instruction *)> Fn); |
211 | using PointersAndHasReadsOutsideSet = |
212 | std::pair<SmallSetVector<Value *, 8>, bool>; |
213 | static SmallVector<PointersAndHasReadsOutsideSet, 0> |
214 | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); |
215 | |
216 | namespace { |
217 | struct LoopInvariantCodeMotion { |
218 | bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, |
219 | AssumptionCache *AC, TargetLibraryInfo *TLI, |
220 | TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, |
221 | OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); |
222 | |
223 | LoopInvariantCodeMotion(unsigned LicmMssaOptCap, |
224 | unsigned LicmMssaNoAccForPromotionCap, |
225 | bool LicmAllowSpeculation) |
226 | : LicmMssaOptCap(LicmMssaOptCap), |
227 | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), |
228 | LicmAllowSpeculation(LicmAllowSpeculation) {} |
229 | |
230 | private: |
231 | unsigned LicmMssaOptCap; |
232 | unsigned LicmMssaNoAccForPromotionCap; |
233 | bool LicmAllowSpeculation; |
234 | }; |
235 | |
236 | struct LegacyLICMPass : public LoopPass { |
237 | static char ID; // Pass identification, replacement for typeid |
238 | LegacyLICMPass( |
239 | unsigned LicmMssaOptCap = SetLicmMssaOptCap, |
240 | unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, |
241 | bool LicmAllowSpeculation = true) |
242 | : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, |
243 | LicmAllowSpeculation) { |
244 | initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); |
245 | } |
246 | |
247 | bool runOnLoop(Loop *L, LPPassManager &LPM) override { |
248 | if (skipLoop(L)) |
249 | return false; |
250 | |
251 | LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " |
252 | << L->getHeader()->getNameOrAsOperand() << "\n" ); |
253 | |
254 | Function *F = L->getHeader()->getParent(); |
255 | |
256 | auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); |
257 | MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); |
258 | // For the old PM, we can't use OptimizationRemarkEmitter as an analysis |
259 | // pass. Function analyses need to be preserved across loop transformations |
260 | // but ORE cannot be preserved (see comment before the pass definition). |
261 | OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); |
262 | return LICM.runOnLoop( |
263 | L, AA: &getAnalysis<AAResultsWrapperPass>().getAAResults(), |
264 | LI: &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), |
265 | DT: &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
266 | AC: &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: *F), |
267 | TLI: &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F: *F), |
268 | TTI: &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F: *F), |
269 | SE: SE ? &SE->getSE() : nullptr, MSSA, ORE: &ORE); |
270 | } |
271 | |
272 | /// This transformation requires natural loop information & requires that |
273 | /// loop preheaders be inserted into the CFG... |
274 | /// |
275 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
276 | AU.addPreserved<DominatorTreeWrapperPass>(); |
277 | AU.addPreserved<LoopInfoWrapperPass>(); |
278 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
279 | AU.addRequired<MemorySSAWrapperPass>(); |
280 | AU.addPreserved<MemorySSAWrapperPass>(); |
281 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
282 | AU.addRequired<AssumptionCacheTracker>(); |
283 | getLoopAnalysisUsage(AU); |
284 | LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); |
285 | AU.addPreserved<LazyBlockFrequencyInfoPass>(); |
286 | AU.addPreserved<LazyBranchProbabilityInfoPass>(); |
287 | } |
288 | |
289 | private: |
290 | LoopInvariantCodeMotion LICM; |
291 | }; |
292 | } // namespace |
293 | |
294 | PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, |
295 | LoopStandardAnalysisResults &AR, LPMUpdater &) { |
296 | if (!AR.MSSA) |
297 | report_fatal_error(reason: "LICM requires MemorySSA (loop-mssa)" , |
298 | /*GenCrashDiag*/gen_crash_diag: false); |
299 | |
300 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis |
301 | // pass. Function analyses need to be preserved across loop transformations |
302 | // but ORE cannot be preserved (see comment before the pass definition). |
303 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); |
304 | |
305 | LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, |
306 | Opts.AllowSpeculation); |
307 | if (!LICM.runOnLoop(L: &L, AA: &AR.AA, LI: &AR.LI, DT: &AR.DT, AC: &AR.AC, TLI: &AR.TLI, TTI: &AR.TTI, |
308 | SE: &AR.SE, MSSA: AR.MSSA, ORE: &ORE)) |
309 | return PreservedAnalyses::all(); |
310 | |
311 | auto PA = getLoopPassPreservedAnalyses(); |
312 | PA.preserve<MemorySSAAnalysis>(); |
313 | |
314 | return PA; |
315 | } |
316 | |
317 | void LICMPass::printPipeline( |
318 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
319 | static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( |
320 | OS, MapClassName2PassName); |
321 | |
322 | OS << '<'; |
323 | OS << (Opts.AllowSpeculation ? "" : "no-" ) << "allowspeculation" ; |
324 | OS << '>'; |
325 | } |
326 | |
327 | PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, |
328 | LoopStandardAnalysisResults &AR, |
329 | LPMUpdater &) { |
330 | if (!AR.MSSA) |
331 | report_fatal_error(reason: "LNICM requires MemorySSA (loop-mssa)" , |
332 | /*GenCrashDiag*/gen_crash_diag: false); |
333 | |
334 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis |
335 | // pass. Function analyses need to be preserved across loop transformations |
336 | // but ORE cannot be preserved (see comment before the pass definition). |
337 | OptimizationRemarkEmitter ORE(LN.getParent()); |
338 | |
339 | LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, |
340 | Opts.AllowSpeculation); |
341 | |
342 | Loop &OutermostLoop = LN.getOutermostLoop(); |
343 | bool Changed = LICM.runOnLoop(L: &OutermostLoop, AA: &AR.AA, LI: &AR.LI, DT: &AR.DT, AC: &AR.AC, |
344 | TLI: &AR.TLI, TTI: &AR.TTI, SE: &AR.SE, MSSA: AR.MSSA, ORE: &ORE, LoopNestMode: true); |
345 | |
346 | if (!Changed) |
347 | return PreservedAnalyses::all(); |
348 | |
349 | auto PA = getLoopPassPreservedAnalyses(); |
350 | |
351 | PA.preserve<DominatorTreeAnalysis>(); |
352 | PA.preserve<LoopAnalysis>(); |
353 | PA.preserve<MemorySSAAnalysis>(); |
354 | |
355 | return PA; |
356 | } |
357 | |
358 | void LNICMPass::printPipeline( |
359 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
360 | static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( |
361 | OS, MapClassName2PassName); |
362 | |
363 | OS << '<'; |
364 | OS << (Opts.AllowSpeculation ? "" : "no-" ) << "allowspeculation" ; |
365 | OS << '>'; |
366 | } |
367 | |
368 | char LegacyLICMPass::ID = 0; |
369 | INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm" , "Loop Invariant Code Motion" , |
370 | false, false) |
371 | INITIALIZE_PASS_DEPENDENCY(LoopPass) |
372 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
373 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
374 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
375 | INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) |
376 | INITIALIZE_PASS_END(LegacyLICMPass, "licm" , "Loop Invariant Code Motion" , false, |
377 | false) |
378 | |
379 | Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } |
380 | |
381 | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L, |
382 | MemorySSA &MSSA) |
383 | : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, |
384 | IsSink, L, MSSA) {} |
385 | |
386 | llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( |
387 | unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, |
388 | Loop &L, MemorySSA &MSSA) |
389 | : LicmMssaOptCap(LicmMssaOptCap), |
390 | LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), |
391 | IsSink(IsSink) { |
392 | unsigned AccessCapCount = 0; |
393 | for (auto *BB : L.getBlocks()) |
394 | if (const auto *Accesses = MSSA.getBlockAccesses(BB)) |
395 | for (const auto &MA : *Accesses) { |
396 | (void)MA; |
397 | ++AccessCapCount; |
398 | if (AccessCapCount > LicmMssaNoAccForPromotionCap) { |
399 | NoOfMemAccTooLarge = true; |
400 | return; |
401 | } |
402 | } |
403 | } |
404 | |
405 | /// Hoist expressions out of the specified loop. Note, alias info for inner |
406 | /// loop is not preserved so it is not a good idea to run LICM multiple |
407 | /// times on one loop. |
408 | bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, |
409 | DominatorTree *DT, AssumptionCache *AC, |
410 | TargetLibraryInfo *TLI, |
411 | TargetTransformInfo *TTI, |
412 | ScalarEvolution *SE, MemorySSA *MSSA, |
413 | OptimizationRemarkEmitter *ORE, |
414 | bool LoopNestMode) { |
415 | bool Changed = false; |
416 | |
417 | assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form." ); |
418 | |
419 | // If this loop has metadata indicating that LICM is not to be performed then |
420 | // just exit. |
421 | if (hasDisableLICMTransformsHint(L)) { |
422 | return false; |
423 | } |
424 | |
425 | // Don't sink stores from loops with coroutine suspend instructions. |
426 | // LICM would sink instructions into the default destination of |
427 | // the coroutine switch. The default destination of the switch is to |
428 | // handle the case where the coroutine is suspended, by which point the |
429 | // coroutine frame may have been destroyed. No instruction can be sunk there. |
430 | // FIXME: This would unfortunately hurt the performance of coroutines, however |
431 | // there is currently no general solution for this. Similar issues could also |
432 | // potentially happen in other passes where instructions are being moved |
433 | // across that edge. |
434 | bool HasCoroSuspendInst = llvm::any_of(Range: L->getBlocks(), P: [](BasicBlock *BB) { |
435 | return llvm::any_of(Range&: *BB, P: [](Instruction &I) { |
436 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &I); |
437 | return II && II->getIntrinsicID() == Intrinsic::coro_suspend; |
438 | }); |
439 | }); |
440 | |
441 | MemorySSAUpdater MSSAU(MSSA); |
442 | SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, |
443 | /*IsSink=*/true, *L, *MSSA); |
444 | |
445 | // Get the preheader block to move instructions into... |
446 | BasicBlock * = L->getLoopPreheader(); |
447 | |
448 | // Compute loop safety information. |
449 | ICFLoopSafetyInfo SafetyInfo; |
450 | SafetyInfo.computeLoopSafetyInfo(CurLoop: L); |
451 | |
452 | // We want to visit all of the instructions in this loop... that are not parts |
453 | // of our subloops (they have already had their invariants hoisted out of |
454 | // their loop, into this loop, so there is no need to process the BODIES of |
455 | // the subloops). |
456 | // |
457 | // Traverse the body of the loop in depth first order on the dominator tree so |
458 | // that we are guaranteed to see definitions before we see uses. This allows |
459 | // us to sink instructions in one pass, without iteration. After sinking |
460 | // instructions, we perform another pass to hoist them out of the loop. |
461 | if (L->hasDedicatedExits()) |
462 | Changed |= |
463 | LoopNestMode |
464 | ? sinkRegionForLoopNest(DT->getNode(BB: L->getHeader()), AA, LI, DT, |
465 | TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) |
466 | : sinkRegion(DT->getNode(BB: L->getHeader()), AA, LI, DT, TLI, TTI, CurLoop: L, |
467 | MSSAU, &SafetyInfo, Flags, ORE); |
468 | Flags.setIsSink(false); |
469 | if (Preheader) |
470 | Changed |= hoistRegion(DT->getNode(BB: L->getHeader()), AA, LI, DT, AC, TLI, L, |
471 | MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, |
472 | AllowSpeculation: LicmAllowSpeculation); |
473 | |
474 | // Now that all loop invariants have been removed from the loop, promote any |
475 | // memory references to scalars that we can. |
476 | // Don't sink stores from loops without dedicated block exits. Exits |
477 | // containing indirect branches are not transformed by loop simplify, |
478 | // make sure we catch that. An additional load may be generated in the |
479 | // preheader for SSA updater, so also avoid sinking when no preheader |
480 | // is available. |
481 | if (!DisablePromotion && Preheader && L->hasDedicatedExits() && |
482 | !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { |
483 | // Figure out the loop exits and their insertion points |
484 | SmallVector<BasicBlock *, 8> ExitBlocks; |
485 | L->getUniqueExitBlocks(ExitBlocks); |
486 | |
487 | // We can't insert into a catchswitch. |
488 | bool HasCatchSwitch = llvm::any_of(Range&: ExitBlocks, P: [](BasicBlock *Exit) { |
489 | return isa<CatchSwitchInst>(Val: Exit->getTerminator()); |
490 | }); |
491 | |
492 | if (!HasCatchSwitch) { |
493 | SmallVector<BasicBlock::iterator, 8> InsertPts; |
494 | SmallVector<MemoryAccess *, 8> MSSAInsertPts; |
495 | InsertPts.reserve(N: ExitBlocks.size()); |
496 | MSSAInsertPts.reserve(N: ExitBlocks.size()); |
497 | for (BasicBlock *ExitBlock : ExitBlocks) { |
498 | InsertPts.push_back(Elt: ExitBlock->getFirstInsertionPt()); |
499 | MSSAInsertPts.push_back(Elt: nullptr); |
500 | } |
501 | |
502 | PredIteratorCache PIC; |
503 | |
504 | // Promoting one set of accesses may make the pointers for another set |
505 | // loop invariant, so run this in a loop. |
506 | bool Promoted = false; |
507 | bool LocalPromoted; |
508 | do { |
509 | LocalPromoted = false; |
510 | for (auto [PointerMustAliases, HasReadsOutsideSet] : |
511 | collectPromotionCandidates(MSSA, AA, L)) { |
512 | LocalPromoted |= promoteLoopAccessesToScalars( |
513 | PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, |
514 | DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, |
515 | AllowSpeculation: LicmAllowSpeculation, HasReadsOutsideSet); |
516 | } |
517 | Promoted |= LocalPromoted; |
518 | } while (LocalPromoted); |
519 | |
520 | // Once we have promoted values across the loop body we have to |
521 | // recursively reform LCSSA as any nested loop may now have values defined |
522 | // within the loop used in the outer loop. |
523 | // FIXME: This is really heavy handed. It would be a bit better to use an |
524 | // SSAUpdater strategy during promotion that was LCSSA aware and reformed |
525 | // it as it went. |
526 | if (Promoted) |
527 | formLCSSARecursively(L&: *L, DT: *DT, LI, SE); |
528 | |
529 | Changed |= Promoted; |
530 | } |
531 | } |
532 | |
533 | // Check that neither this loop nor its parent have had LCSSA broken. LICM is |
534 | // specifically moving instructions across the loop boundary and so it is |
535 | // especially in need of basic functional correctness checking here. |
536 | assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!" ); |
537 | assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && |
538 | "Parent loop not left in LCSSA form after LICM!" ); |
539 | |
540 | if (VerifyMemorySSA) |
541 | MSSA->verifyMemorySSA(); |
542 | |
543 | if (Changed && SE) |
544 | SE->forgetLoopDispositions(); |
545 | return Changed; |
546 | } |
547 | |
548 | /// Walk the specified region of the CFG (defined by all blocks dominated by |
549 | /// the specified block, and that are in the current loop) in reverse depth |
550 | /// first order w.r.t the DominatorTree. This allows us to visit uses before |
551 | /// definitions, allowing us to sink a loop body in one pass without iteration. |
552 | /// |
553 | bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, |
554 | DominatorTree *DT, TargetLibraryInfo *TLI, |
555 | TargetTransformInfo *TTI, Loop *CurLoop, |
556 | MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, |
557 | SinkAndHoistLICMFlags &Flags, |
558 | OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { |
559 | |
560 | // Verify inputs. |
561 | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && |
562 | CurLoop != nullptr && SafetyInfo != nullptr && |
563 | "Unexpected input to sinkRegion." ); |
564 | |
565 | // We want to visit children before parents. We will enqueue all the parents |
566 | // before their children in the worklist and process the worklist in reverse |
567 | // order. |
568 | SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); |
569 | |
570 | bool Changed = false; |
571 | for (DomTreeNode *DTN : reverse(C&: Worklist)) { |
572 | BasicBlock *BB = DTN->getBlock(); |
573 | // Only need to process the contents of this block if it is not part of a |
574 | // subloop (which would already have been processed). |
575 | if (inSubLoop(BB, CurLoop, LI)) |
576 | continue; |
577 | |
578 | for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { |
579 | Instruction &I = *--II; |
580 | |
581 | // The instruction is not used in the loop if it is dead. In this case, |
582 | // we just delete it instead of sinking it. |
583 | if (isInstructionTriviallyDead(I: &I, TLI)) { |
584 | LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); |
585 | salvageKnowledge(I: &I); |
586 | salvageDebugInfo(I); |
587 | ++II; |
588 | eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU); |
589 | Changed = true; |
590 | continue; |
591 | } |
592 | |
593 | // Check to see if we can sink this instruction to the exit blocks |
594 | // of the loop. We can do this if the all users of the instruction are |
595 | // outside of the loop. In this case, it doesn't even matter if the |
596 | // operands of the instruction are loop invariant. |
597 | // |
598 | bool FoldableInLoop = false; |
599 | bool LoopNestMode = OutermostLoop != nullptr; |
600 | if (!I.mayHaveSideEffects() && |
601 | isNotUsedOrFoldableInLoop(I, CurLoop: LoopNestMode ? OutermostLoop : CurLoop, |
602 | SafetyInfo, TTI, FoldableInLoop, |
603 | LoopNestMode) && |
604 | canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, TargetExecutesOncePerLoop: true, LICMFlags&: Flags, ORE)) { |
605 | if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { |
606 | if (!FoldableInLoop) { |
607 | ++II; |
608 | salvageDebugInfo(I); |
609 | eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU); |
610 | } |
611 | Changed = true; |
612 | } |
613 | } |
614 | } |
615 | } |
616 | if (VerifyMemorySSA) |
617 | MSSAU.getMemorySSA()->verifyMemorySSA(); |
618 | return Changed; |
619 | } |
620 | |
621 | bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, |
622 | DominatorTree *DT, TargetLibraryInfo *TLI, |
623 | TargetTransformInfo *TTI, Loop *CurLoop, |
624 | MemorySSAUpdater &MSSAU, |
625 | ICFLoopSafetyInfo *SafetyInfo, |
626 | SinkAndHoistLICMFlags &Flags, |
627 | OptimizationRemarkEmitter *ORE) { |
628 | |
629 | bool Changed = false; |
630 | SmallPriorityWorklist<Loop *, 4> Worklist; |
631 | Worklist.insert(X: CurLoop); |
632 | appendLoopsToWorklist(*CurLoop, Worklist); |
633 | while (!Worklist.empty()) { |
634 | Loop *L = Worklist.pop_back_val(); |
635 | Changed |= sinkRegion(N: DT->getNode(BB: L->getHeader()), AA, LI, DT, TLI, TTI, CurLoop: L, |
636 | MSSAU, SafetyInfo, Flags, ORE, OutermostLoop: CurLoop); |
637 | } |
638 | return Changed; |
639 | } |
640 | |
641 | namespace { |
642 | // This is a helper class for hoistRegion to make it able to hoist control flow |
643 | // in order to be able to hoist phis. The way this works is that we initially |
644 | // start hoisting to the loop preheader, and when we see a loop invariant branch |
645 | // we make note of this. When we then come to hoist an instruction that's |
646 | // conditional on such a branch we duplicate the branch and the relevant control |
647 | // flow, then hoist the instruction into the block corresponding to its original |
648 | // block in the duplicated control flow. |
649 | class ControlFlowHoister { |
650 | private: |
651 | // Information about the loop we are hoisting from |
652 | LoopInfo *LI; |
653 | DominatorTree *DT; |
654 | Loop *CurLoop; |
655 | MemorySSAUpdater &MSSAU; |
656 | |
657 | // A map of blocks in the loop to the block their instructions will be hoisted |
658 | // to. |
659 | DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; |
660 | |
661 | // The branches that we can hoist, mapped to the block that marks a |
662 | // convergence point of their control flow. |
663 | DenseMap<BranchInst *, BasicBlock *> HoistableBranches; |
664 | |
665 | public: |
666 | ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, |
667 | MemorySSAUpdater &MSSAU) |
668 | : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} |
669 | |
670 | void registerPossiblyHoistableBranch(BranchInst *BI) { |
671 | // We can only hoist conditional branches with loop invariant operands. |
672 | if (!ControlFlowHoisting || !BI->isConditional() || |
673 | !CurLoop->hasLoopInvariantOperands(I: BI)) |
674 | return; |
675 | |
676 | // The branch destinations need to be in the loop, and we don't gain |
677 | // anything by duplicating conditional branches with duplicate successors, |
678 | // as it's essentially the same as an unconditional branch. |
679 | BasicBlock *TrueDest = BI->getSuccessor(i: 0); |
680 | BasicBlock *FalseDest = BI->getSuccessor(i: 1); |
681 | if (!CurLoop->contains(BB: TrueDest) || !CurLoop->contains(BB: FalseDest) || |
682 | TrueDest == FalseDest) |
683 | return; |
684 | |
685 | // We can hoist BI if one branch destination is the successor of the other, |
686 | // or both have common successor which we check by seeing if the |
687 | // intersection of their successors is non-empty. |
688 | // TODO: This could be expanded to allowing branches where both ends |
689 | // eventually converge to a single block. |
690 | SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; |
691 | TrueDestSucc.insert(I: succ_begin(BB: TrueDest), E: succ_end(BB: TrueDest)); |
692 | FalseDestSucc.insert(I: succ_begin(BB: FalseDest), E: succ_end(BB: FalseDest)); |
693 | BasicBlock *CommonSucc = nullptr; |
694 | if (TrueDestSucc.count(Ptr: FalseDest)) { |
695 | CommonSucc = FalseDest; |
696 | } else if (FalseDestSucc.count(Ptr: TrueDest)) { |
697 | CommonSucc = TrueDest; |
698 | } else { |
699 | set_intersect(S1&: TrueDestSucc, S2: FalseDestSucc); |
700 | // If there's one common successor use that. |
701 | if (TrueDestSucc.size() == 1) |
702 | CommonSucc = *TrueDestSucc.begin(); |
703 | // If there's more than one pick whichever appears first in the block list |
704 | // (we can't use the value returned by TrueDestSucc.begin() as it's |
705 | // unpredicatable which element gets returned). |
706 | else if (!TrueDestSucc.empty()) { |
707 | Function *F = TrueDest->getParent(); |
708 | auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(Ptr: &BB); }; |
709 | auto It = llvm::find_if(Range&: *F, P: IsSucc); |
710 | assert(It != F->end() && "Could not find successor in function" ); |
711 | CommonSucc = &*It; |
712 | } |
713 | } |
714 | // The common successor has to be dominated by the branch, as otherwise |
715 | // there will be some other path to the successor that will not be |
716 | // controlled by this branch so any phi we hoist would be controlled by the |
717 | // wrong condition. This also takes care of avoiding hoisting of loop back |
718 | // edges. |
719 | // TODO: In some cases this could be relaxed if the successor is dominated |
720 | // by another block that's been hoisted and we can guarantee that the |
721 | // control flow has been replicated exactly. |
722 | if (CommonSucc && DT->dominates(Def: BI, BB: CommonSucc)) |
723 | HoistableBranches[BI] = CommonSucc; |
724 | } |
725 | |
726 | bool canHoistPHI(PHINode *PN) { |
727 | // The phi must have loop invariant operands. |
728 | if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(I: PN)) |
729 | return false; |
730 | // We can hoist phis if the block they are in is the target of hoistable |
731 | // branches which cover all of the predecessors of the block. |
732 | SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; |
733 | BasicBlock *BB = PN->getParent(); |
734 | for (BasicBlock *PredBB : predecessors(BB)) |
735 | PredecessorBlocks.insert(Ptr: PredBB); |
736 | // If we have less predecessor blocks than predecessors then the phi will |
737 | // have more than one incoming value for the same block which we can't |
738 | // handle. |
739 | // TODO: This could be handled be erasing some of the duplicate incoming |
740 | // values. |
741 | if (PredecessorBlocks.size() != pred_size(BB)) |
742 | return false; |
743 | for (auto &Pair : HoistableBranches) { |
744 | if (Pair.second == BB) { |
745 | // Which blocks are predecessors via this branch depends on if the |
746 | // branch is triangle-like or diamond-like. |
747 | if (Pair.first->getSuccessor(i: 0) == BB) { |
748 | PredecessorBlocks.erase(Ptr: Pair.first->getParent()); |
749 | PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 1)); |
750 | } else if (Pair.first->getSuccessor(i: 1) == BB) { |
751 | PredecessorBlocks.erase(Ptr: Pair.first->getParent()); |
752 | PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 0)); |
753 | } else { |
754 | PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 0)); |
755 | PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 1)); |
756 | } |
757 | } |
758 | } |
759 | // PredecessorBlocks will now be empty if for every predecessor of BB we |
760 | // found a hoistable branch source. |
761 | return PredecessorBlocks.empty(); |
762 | } |
763 | |
764 | BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { |
765 | if (!ControlFlowHoisting) |
766 | return CurLoop->getLoopPreheader(); |
767 | // If BB has already been hoisted, return that |
768 | if (HoistDestinationMap.count(Val: BB)) |
769 | return HoistDestinationMap[BB]; |
770 | |
771 | // Check if this block is conditional based on a pending branch |
772 | auto HasBBAsSuccessor = |
773 | [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { |
774 | return BB != Pair.second && (Pair.first->getSuccessor(i: 0) == BB || |
775 | Pair.first->getSuccessor(i: 1) == BB); |
776 | }; |
777 | auto It = llvm::find_if(Range&: HoistableBranches, P: HasBBAsSuccessor); |
778 | |
779 | // If not involved in a pending branch, hoist to preheader |
780 | BasicBlock * = CurLoop->getLoopPreheader(); |
781 | if (It == HoistableBranches.end()) { |
782 | LLVM_DEBUG(dbgs() << "LICM using " |
783 | << InitialPreheader->getNameOrAsOperand() |
784 | << " as hoist destination for " |
785 | << BB->getNameOrAsOperand() << "\n" ); |
786 | HoistDestinationMap[BB] = InitialPreheader; |
787 | return InitialPreheader; |
788 | } |
789 | BranchInst *BI = It->first; |
790 | assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == |
791 | HoistableBranches.end() && |
792 | "BB is expected to be the target of at most one branch" ); |
793 | |
794 | LLVMContext &C = BB->getContext(); |
795 | BasicBlock *TrueDest = BI->getSuccessor(i: 0); |
796 | BasicBlock *FalseDest = BI->getSuccessor(i: 1); |
797 | BasicBlock *CommonSucc = HoistableBranches[BI]; |
798 | BasicBlock *HoistTarget = getOrCreateHoistedBlock(BB: BI->getParent()); |
799 | |
800 | // Create hoisted versions of blocks that currently don't have them |
801 | auto CreateHoistedBlock = [&](BasicBlock *Orig) { |
802 | if (HoistDestinationMap.count(Val: Orig)) |
803 | return HoistDestinationMap[Orig]; |
804 | BasicBlock *New = |
805 | BasicBlock::Create(Context&: C, Name: Orig->getName() + ".licm" , Parent: Orig->getParent()); |
806 | HoistDestinationMap[Orig] = New; |
807 | DT->addNewBlock(BB: New, DomBB: HoistTarget); |
808 | if (CurLoop->getParentLoop()) |
809 | CurLoop->getParentLoop()->addBasicBlockToLoop(NewBB: New, LI&: *LI); |
810 | ++NumCreatedBlocks; |
811 | LLVM_DEBUG(dbgs() << "LICM created " << New->getName() |
812 | << " as hoist destination for " << Orig->getName() |
813 | << "\n" ); |
814 | return New; |
815 | }; |
816 | BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); |
817 | BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); |
818 | BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); |
819 | |
820 | // Link up these blocks with branches. |
821 | if (!HoistCommonSucc->getTerminator()) { |
822 | // The new common successor we've generated will branch to whatever that |
823 | // hoist target branched to. |
824 | BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); |
825 | assert(TargetSucc && "Expected hoist target to have a single successor" ); |
826 | HoistCommonSucc->moveBefore(MovePos: TargetSucc); |
827 | BranchInst::Create(IfTrue: TargetSucc, InsertBefore: HoistCommonSucc); |
828 | } |
829 | if (!HoistTrueDest->getTerminator()) { |
830 | HoistTrueDest->moveBefore(MovePos: HoistCommonSucc); |
831 | BranchInst::Create(IfTrue: HoistCommonSucc, InsertBefore: HoistTrueDest); |
832 | } |
833 | if (!HoistFalseDest->getTerminator()) { |
834 | HoistFalseDest->moveBefore(MovePos: HoistCommonSucc); |
835 | BranchInst::Create(IfTrue: HoistCommonSucc, InsertBefore: HoistFalseDest); |
836 | } |
837 | |
838 | // If BI is being cloned to what was originally the preheader then |
839 | // HoistCommonSucc will now be the new preheader. |
840 | if (HoistTarget == InitialPreheader) { |
841 | // Phis in the loop header now need to use the new preheader. |
842 | InitialPreheader->replaceSuccessorsPhiUsesWith(New: HoistCommonSucc); |
843 | MSSAU.wireOldPredecessorsToNewImmediatePredecessor( |
844 | Old: HoistTarget->getSingleSuccessor(), New: HoistCommonSucc, Preds: {HoistTarget}); |
845 | // The new preheader dominates the loop header. |
846 | DomTreeNode * = DT->getNode(BB: HoistCommonSucc); |
847 | DomTreeNode * = DT->getNode(BB: CurLoop->getHeader()); |
848 | DT->changeImmediateDominator(N: HeaderNode, NewIDom: PreheaderNode); |
849 | // The preheader hoist destination is now the new preheader, with the |
850 | // exception of the hoist destination of this branch. |
851 | for (auto &Pair : HoistDestinationMap) |
852 | if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) |
853 | Pair.second = HoistCommonSucc; |
854 | } |
855 | |
856 | // Now finally clone BI. |
857 | ReplaceInstWithInst( |
858 | From: HoistTarget->getTerminator(), |
859 | To: BranchInst::Create(IfTrue: HoistTrueDest, IfFalse: HoistFalseDest, Cond: BI->getCondition())); |
860 | ++NumClonedBranches; |
861 | |
862 | assert(CurLoop->getLoopPreheader() && |
863 | "Hoisting blocks should not have destroyed preheader" ); |
864 | return HoistDestinationMap[BB]; |
865 | } |
866 | }; |
867 | } // namespace |
868 | |
869 | /// Walk the specified region of the CFG (defined by all blocks dominated by |
870 | /// the specified block, and that are in the current loop) in depth first |
871 | /// order w.r.t the DominatorTree. This allows us to visit definitions before |
872 | /// uses, allowing us to hoist a loop body in one pass without iteration. |
873 | /// |
874 | bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, |
875 | DominatorTree *DT, AssumptionCache *AC, |
876 | TargetLibraryInfo *TLI, Loop *CurLoop, |
877 | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, |
878 | ICFLoopSafetyInfo *SafetyInfo, |
879 | SinkAndHoistLICMFlags &Flags, |
880 | OptimizationRemarkEmitter *ORE, bool LoopNestMode, |
881 | bool AllowSpeculation) { |
882 | // Verify inputs. |
883 | assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && |
884 | CurLoop != nullptr && SafetyInfo != nullptr && |
885 | "Unexpected input to hoistRegion." ); |
886 | |
887 | ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); |
888 | |
889 | // Keep track of instructions that have been hoisted, as they may need to be |
890 | // re-hoisted if they end up not dominating all of their uses. |
891 | SmallVector<Instruction *, 16> HoistedInstructions; |
892 | |
893 | // For PHI hoisting to work we need to hoist blocks before their successors. |
894 | // We can do this by iterating through the blocks in the loop in reverse |
895 | // post-order. |
896 | LoopBlocksRPO Worklist(CurLoop); |
897 | Worklist.perform(LI); |
898 | bool Changed = false; |
899 | BasicBlock * = CurLoop->getLoopPreheader(); |
900 | for (BasicBlock *BB : Worklist) { |
901 | // Only need to process the contents of this block if it is not part of a |
902 | // subloop (which would already have been processed). |
903 | if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) |
904 | continue; |
905 | |
906 | for (Instruction &I : llvm::make_early_inc_range(Range&: *BB)) { |
907 | // Try hoisting the instruction out to the preheader. We can only do |
908 | // this if all of the operands of the instruction are loop invariant and |
909 | // if it is safe to hoist the instruction. We also check block frequency |
910 | // to make sure instruction only gets hoisted into colder blocks. |
911 | // TODO: It may be safe to hoist if we are hoisting to a conditional block |
912 | // and we have accurately duplicated the control flow from the loop header |
913 | // to that block. |
914 | if (CurLoop->hasLoopInvariantOperands(I: &I) && |
915 | canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, TargetExecutesOncePerLoop: true, LICMFlags&: Flags, ORE) && |
916 | isSafeToExecuteUnconditionally( |
917 | Inst&: I, DT, TLI, CurLoop, SafetyInfo, ORE, |
918 | CtxI: Preheader->getTerminator(), AC, AllowSpeculation)) { |
919 | hoist(I, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo, |
920 | MSSAU, SE, ORE); |
921 | HoistedInstructions.push_back(Elt: &I); |
922 | Changed = true; |
923 | continue; |
924 | } |
925 | |
926 | // Attempt to remove floating point division out of the loop by |
927 | // converting it to a reciprocal multiplication. |
928 | if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && |
929 | CurLoop->isLoopInvariant(V: I.getOperand(i: 1))) { |
930 | auto Divisor = I.getOperand(i: 1); |
931 | auto One = llvm::ConstantFP::get(Ty: Divisor->getType(), V: 1.0); |
932 | auto ReciprocalDivisor = BinaryOperator::CreateFDiv(V1: One, V2: Divisor); |
933 | ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); |
934 | SafetyInfo->insertInstructionTo(Inst: ReciprocalDivisor, BB: I.getParent()); |
935 | ReciprocalDivisor->insertBefore(InsertPos: &I); |
936 | ReciprocalDivisor->setDebugLoc(I.getDebugLoc()); |
937 | |
938 | auto Product = |
939 | BinaryOperator::CreateFMul(V1: I.getOperand(i: 0), V2: ReciprocalDivisor); |
940 | Product->setFastMathFlags(I.getFastMathFlags()); |
941 | SafetyInfo->insertInstructionTo(Inst: Product, BB: I.getParent()); |
942 | Product->insertAfter(InsertPos: &I); |
943 | Product->setDebugLoc(I.getDebugLoc()); |
944 | I.replaceAllUsesWith(V: Product); |
945 | eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU); |
946 | |
947 | hoist(I&: *ReciprocalDivisor, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), |
948 | SafetyInfo, MSSAU, SE, ORE); |
949 | HoistedInstructions.push_back(Elt: ReciprocalDivisor); |
950 | Changed = true; |
951 | continue; |
952 | } |
953 | |
954 | auto IsInvariantStart = [&](Instruction &I) { |
955 | using namespace PatternMatch; |
956 | return I.use_empty() && |
957 | match(V: &I, P: m_Intrinsic<Intrinsic::invariant_start>()); |
958 | }; |
959 | auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { |
960 | return SafetyInfo->isGuaranteedToExecute(Inst: I, DT, CurLoop) && |
961 | SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); |
962 | }; |
963 | if ((IsInvariantStart(I) || isGuard(U: &I)) && |
964 | CurLoop->hasLoopInvariantOperands(I: &I) && |
965 | MustExecuteWithoutWritesBefore(I)) { |
966 | hoist(I, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo, |
967 | MSSAU, SE, ORE); |
968 | HoistedInstructions.push_back(Elt: &I); |
969 | Changed = true; |
970 | continue; |
971 | } |
972 | |
973 | if (PHINode *PN = dyn_cast<PHINode>(Val: &I)) { |
974 | if (CFH.canHoistPHI(PN)) { |
975 | // Redirect incoming blocks first to ensure that we create hoisted |
976 | // versions of those blocks before we hoist the phi. |
977 | for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) |
978 | PN->setIncomingBlock( |
979 | i, BB: CFH.getOrCreateHoistedBlock(BB: PN->getIncomingBlock(i))); |
980 | hoist(I&: *PN, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo, |
981 | MSSAU, SE, ORE); |
982 | assert(DT->dominates(PN, BB) && "Conditional PHIs not expected" ); |
983 | Changed = true; |
984 | continue; |
985 | } |
986 | } |
987 | |
988 | // Try to reassociate instructions so that part of computations can be |
989 | // done out of loop. |
990 | if (hoistArithmetics(I, L&: *CurLoop, SafetyInfo&: *SafetyInfo, MSSAU, AC, DT)) { |
991 | Changed = true; |
992 | continue; |
993 | } |
994 | |
995 | // Remember possibly hoistable branches so we can actually hoist them |
996 | // later if needed. |
997 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: &I)) |
998 | CFH.registerPossiblyHoistableBranch(BI); |
999 | } |
1000 | } |
1001 | |
1002 | // If we hoisted instructions to a conditional block they may not dominate |
1003 | // their uses that weren't hoisted (such as phis where some operands are not |
1004 | // loop invariant). If so make them unconditional by moving them to their |
1005 | // immediate dominator. We iterate through the instructions in reverse order |
1006 | // which ensures that when we rehoist an instruction we rehoist its operands, |
1007 | // and also keep track of where in the block we are rehoisting to make sure |
1008 | // that we rehoist instructions before the instructions that use them. |
1009 | Instruction *HoistPoint = nullptr; |
1010 | if (ControlFlowHoisting) { |
1011 | for (Instruction *I : reverse(C&: HoistedInstructions)) { |
1012 | if (!llvm::all_of(Range: I->uses(), |
1013 | P: [&](Use &U) { return DT->dominates(Def: I, U); })) { |
1014 | BasicBlock *Dominator = |
1015 | DT->getNode(BB: I->getParent())->getIDom()->getBlock(); |
1016 | if (!HoistPoint || !DT->dominates(A: HoistPoint->getParent(), B: Dominator)) { |
1017 | if (HoistPoint) |
1018 | assert(DT->dominates(Dominator, HoistPoint->getParent()) && |
1019 | "New hoist point expected to dominate old hoist point" ); |
1020 | HoistPoint = Dominator->getTerminator(); |
1021 | } |
1022 | LLVM_DEBUG(dbgs() << "LICM rehoisting to " |
1023 | << HoistPoint->getParent()->getNameOrAsOperand() |
1024 | << ": " << *I << "\n" ); |
1025 | moveInstructionBefore(I&: *I, Dest: HoistPoint->getIterator(), SafetyInfo&: *SafetyInfo, MSSAU, |
1026 | SE); |
1027 | HoistPoint = I; |
1028 | Changed = true; |
1029 | } |
1030 | } |
1031 | } |
1032 | if (VerifyMemorySSA) |
1033 | MSSAU.getMemorySSA()->verifyMemorySSA(); |
1034 | |
1035 | // Now that we've finished hoisting make sure that LI and DT are still |
1036 | // valid. |
1037 | #ifdef EXPENSIVE_CHECKS |
1038 | if (Changed) { |
1039 | assert(DT->verify(DominatorTree::VerificationLevel::Fast) && |
1040 | "Dominator tree verification failed" ); |
1041 | LI->verify(*DT); |
1042 | } |
1043 | #endif |
1044 | |
1045 | return Changed; |
1046 | } |
1047 | |
1048 | // Return true if LI is invariant within scope of the loop. LI is invariant if |
1049 | // CurLoop is dominated by an invariant.start representing the same memory |
1050 | // location and size as the memory location LI loads from, and also the |
1051 | // invariant.start has no uses. |
1052 | static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, |
1053 | Loop *CurLoop) { |
1054 | Value *Addr = LI->getPointerOperand(); |
1055 | const DataLayout &DL = LI->getDataLayout(); |
1056 | const TypeSize LocSizeInBits = DL.getTypeSizeInBits(Ty: LI->getType()); |
1057 | |
1058 | // It is not currently possible for clang to generate an invariant.start |
1059 | // intrinsic with scalable vector types because we don't support thread local |
1060 | // sizeless types and we don't permit sizeless types in structs or classes. |
1061 | // Furthermore, even if support is added for this in future the intrinsic |
1062 | // itself is defined to have a size of -1 for variable sized objects. This |
1063 | // makes it impossible to verify if the intrinsic envelops our region of |
1064 | // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> |
1065 | // types would have a -1 parameter, but the former is clearly double the size |
1066 | // of the latter. |
1067 | if (LocSizeInBits.isScalable()) |
1068 | return false; |
1069 | |
1070 | // If we've ended up at a global/constant, bail. We shouldn't be looking at |
1071 | // uselists for non-local Values in a loop pass. |
1072 | if (isa<Constant>(Val: Addr)) |
1073 | return false; |
1074 | |
1075 | unsigned UsesVisited = 0; |
1076 | // Traverse all uses of the load operand value, to see if invariant.start is |
1077 | // one of the uses, and whether it dominates the load instruction. |
1078 | for (auto *U : Addr->users()) { |
1079 | // Avoid traversing for Load operand with high number of users. |
1080 | if (++UsesVisited > MaxNumUsesTraversed) |
1081 | return false; |
1082 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U); |
1083 | // If there are escaping uses of invariant.start instruction, the load maybe |
1084 | // non-invariant. |
1085 | if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || |
1086 | !II->use_empty()) |
1087 | continue; |
1088 | ConstantInt *InvariantSize = cast<ConstantInt>(Val: II->getArgOperand(i: 0)); |
1089 | // The intrinsic supports having a -1 argument for variable sized objects |
1090 | // so we should check for that here. |
1091 | if (InvariantSize->isNegative()) |
1092 | continue; |
1093 | uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; |
1094 | // Confirm the invariant.start location size contains the load operand size |
1095 | // in bits. Also, the invariant.start should dominate the load, and we |
1096 | // should not hoist the load out of a loop that contains this dominating |
1097 | // invariant.start. |
1098 | if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && |
1099 | DT->properlyDominates(A: II->getParent(), B: CurLoop->getHeader())) |
1100 | return true; |
1101 | } |
1102 | |
1103 | return false; |
1104 | } |
1105 | |
1106 | namespace { |
1107 | /// Return true if-and-only-if we know how to (mechanically) both hoist and |
1108 | /// sink a given instruction out of a loop. Does not address legality |
1109 | /// concerns such as aliasing or speculation safety. |
1110 | bool isHoistableAndSinkableInst(Instruction &I) { |
1111 | // Only these instructions are hoistable/sinkable. |
1112 | return (isa<LoadInst>(Val: I) || isa<StoreInst>(Val: I) || isa<CallInst>(Val: I) || |
1113 | isa<FenceInst>(Val: I) || isa<CastInst>(Val: I) || isa<UnaryOperator>(Val: I) || |
1114 | isa<BinaryOperator>(Val: I) || isa<SelectInst>(Val: I) || |
1115 | isa<GetElementPtrInst>(Val: I) || isa<CmpInst>(Val: I) || |
1116 | isa<InsertElementInst>(Val: I) || isa<ExtractElementInst>(Val: I) || |
1117 | isa<ShuffleVectorInst>(Val: I) || isa<ExtractValueInst>(Val: I) || |
1118 | isa<InsertValueInst>(Val: I) || isa<FreezeInst>(Val: I)); |
1119 | } |
1120 | /// Return true if MSSA knows there are no MemoryDefs in the loop. |
1121 | bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { |
1122 | for (auto *BB : L->getBlocks()) |
1123 | if (MSSAU.getMemorySSA()->getBlockDefs(BB)) |
1124 | return false; |
1125 | return true; |
1126 | } |
1127 | |
1128 | /// Return true if I is the only Instruction with a MemoryAccess in L. |
1129 | bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, |
1130 | const MemorySSAUpdater &MSSAU) { |
1131 | for (auto *BB : L->getBlocks()) |
1132 | if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { |
1133 | int NotAPhi = 0; |
1134 | for (const auto &Acc : *Accs) { |
1135 | if (isa<MemoryPhi>(Val: &Acc)) |
1136 | continue; |
1137 | const auto *MUD = cast<MemoryUseOrDef>(Val: &Acc); |
1138 | if (MUD->getMemoryInst() != I || NotAPhi++ == 1) |
1139 | return false; |
1140 | } |
1141 | } |
1142 | return true; |
1143 | } |
1144 | } |
1145 | |
1146 | static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA, |
1147 | BatchAAResults &BAA, |
1148 | SinkAndHoistLICMFlags &Flags, |
1149 | MemoryUseOrDef *MA) { |
1150 | // See declaration of SetLicmMssaOptCap for usage details. |
1151 | if (Flags.tooManyClobberingCalls()) |
1152 | return MA->getDefiningAccess(); |
1153 | |
1154 | MemoryAccess *Source = |
1155 | MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, AA&: BAA); |
1156 | Flags.incrementClobberingCalls(); |
1157 | return Source; |
1158 | } |
1159 | |
1160 | bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, |
1161 | Loop *CurLoop, MemorySSAUpdater &MSSAU, |
1162 | bool TargetExecutesOncePerLoop, |
1163 | SinkAndHoistLICMFlags &Flags, |
1164 | OptimizationRemarkEmitter *ORE) { |
1165 | // If we don't understand the instruction, bail early. |
1166 | if (!isHoistableAndSinkableInst(I)) |
1167 | return false; |
1168 | |
1169 | MemorySSA *MSSA = MSSAU.getMemorySSA(); |
1170 | // Loads have extra constraints we have to verify before we can hoist them. |
1171 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: &I)) { |
1172 | if (!LI->isUnordered()) |
1173 | return false; // Don't sink/hoist volatile or ordered atomic loads! |
1174 | |
1175 | // Loads from constant memory are always safe to move, even if they end up |
1176 | // in the same alias set as something that ends up being modified. |
1177 | if (!isModSet(MRI: AA->getModRefInfoMask(P: LI->getOperand(i_nocapture: 0)))) |
1178 | return true; |
1179 | if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load)) |
1180 | return true; |
1181 | |
1182 | if (LI->isAtomic() && !TargetExecutesOncePerLoop) |
1183 | return false; // Don't risk duplicating unordered loads |
1184 | |
1185 | // This checks for an invariant.start dominating the load. |
1186 | if (isLoadInvariantInLoop(LI, DT, CurLoop)) |
1187 | return true; |
1188 | |
1189 | auto MU = cast<MemoryUse>(Val: MSSA->getMemoryAccess(I: LI)); |
1190 | |
1191 | bool InvariantGroup = LI->hasMetadata(KindID: LLVMContext::MD_invariant_group); |
1192 | |
1193 | bool Invalidated = pointerInvalidatedByLoop( |
1194 | MSSA, MU, CurLoop, I, Flags, InvariantGroup); |
1195 | // Check loop-invariant address because this may also be a sinkable load |
1196 | // whose address is not necessarily loop-invariant. |
1197 | if (ORE && Invalidated && CurLoop->isLoopInvariant(V: LI->getPointerOperand())) |
1198 | ORE->emit(RemarkBuilder: [&]() { |
1199 | return OptimizationRemarkMissed( |
1200 | DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated" , LI) |
1201 | << "failed to move load with loop-invariant address " |
1202 | "because the loop may invalidate its value" ; |
1203 | }); |
1204 | |
1205 | return !Invalidated; |
1206 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) { |
1207 | // Don't sink or hoist dbg info; it's legal, but not useful. |
1208 | if (isa<DbgInfoIntrinsic>(Val: I)) |
1209 | return false; |
1210 | |
1211 | // Don't sink calls which can throw. |
1212 | if (CI->mayThrow()) |
1213 | return false; |
1214 | |
1215 | // Convergent attribute has been used on operations that involve |
1216 | // inter-thread communication which results are implicitly affected by the |
1217 | // enclosing control flows. It is not safe to hoist or sink such operations |
1218 | // across control flow. |
1219 | if (CI->isConvergent()) |
1220 | return false; |
1221 | |
1222 | // FIXME: Current LLVM IR semantics don't work well with coroutines and |
1223 | // thread local globals. We currently treat getting the address of a thread |
1224 | // local global as not accessing memory, even though it may not be a |
1225 | // constant throughout a function with coroutines. Remove this check after |
1226 | // we better model semantics of thread local globals. |
1227 | if (CI->getFunction()->isPresplitCoroutine()) |
1228 | return false; |
1229 | |
1230 | using namespace PatternMatch; |
1231 | if (match(V: CI, P: m_Intrinsic<Intrinsic::assume>())) |
1232 | // Assumes don't actually alias anything or throw |
1233 | return true; |
1234 | |
1235 | // Handle simple cases by querying alias analysis. |
1236 | MemoryEffects Behavior = AA->getMemoryEffects(Call: CI); |
1237 | |
1238 | if (Behavior.doesNotAccessMemory()) |
1239 | return true; |
1240 | if (Behavior.onlyReadsMemory()) { |
1241 | // A readonly argmemonly function only reads from memory pointed to by |
1242 | // it's arguments with arbitrary offsets. If we can prove there are no |
1243 | // writes to this memory in the loop, we can hoist or sink. |
1244 | if (Behavior.onlyAccessesArgPointees()) { |
1245 | // TODO: expand to writeable arguments |
1246 | for (Value *Op : CI->args()) |
1247 | if (Op->getType()->isPointerTy() && |
1248 | pointerInvalidatedByLoop( |
1249 | MSSA, MU: cast<MemoryUse>(Val: MSSA->getMemoryAccess(I: CI)), CurLoop, I, |
1250 | Flags, /*InvariantGroup=*/false)) |
1251 | return false; |
1252 | return true; |
1253 | } |
1254 | |
1255 | // If this call only reads from memory and there are no writes to memory |
1256 | // in the loop, we can hoist or sink the call as appropriate. |
1257 | if (isReadOnly(MSSAU, L: CurLoop)) |
1258 | return true; |
1259 | } |
1260 | |
1261 | // FIXME: This should use mod/ref information to see if we can hoist or |
1262 | // sink the call. |
1263 | |
1264 | return false; |
1265 | } else if (auto *FI = dyn_cast<FenceInst>(Val: &I)) { |
1266 | // Fences alias (most) everything to provide ordering. For the moment, |
1267 | // just give up if there are any other memory operations in the loop. |
1268 | return isOnlyMemoryAccess(I: FI, L: CurLoop, MSSAU); |
1269 | } else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) { |
1270 | if (!SI->isUnordered()) |
1271 | return false; // Don't sink/hoist volatile or ordered atomic store! |
1272 | |
1273 | // We can only hoist a store that we can prove writes a value which is not |
1274 | // read or overwritten within the loop. For those cases, we fallback to |
1275 | // load store promotion instead. TODO: We can extend this to cases where |
1276 | // there is exactly one write to the location and that write dominates an |
1277 | // arbitrary number of reads in the loop. |
1278 | if (isOnlyMemoryAccess(I: SI, L: CurLoop, MSSAU)) |
1279 | return true; |
1280 | // If there are more accesses than the Promotion cap, then give up as we're |
1281 | // not walking a list that long. |
1282 | if (Flags.tooManyMemoryAccesses()) |
1283 | return false; |
1284 | |
1285 | auto *SIMD = MSSA->getMemoryAccess(I: SI); |
1286 | BatchAAResults BAA(*AA); |
1287 | auto *Source = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags, MA: SIMD); |
1288 | // Make sure there are no clobbers inside the loop. |
1289 | if (!MSSA->isLiveOnEntryDef(MA: Source) && |
1290 | CurLoop->contains(BB: Source->getBlock())) |
1291 | return false; |
1292 | |
1293 | // If there are interfering Uses (i.e. their defining access is in the |
1294 | // loop), or ordered loads (stored as Defs!), don't move this store. |
1295 | // Could do better here, but this is conservatively correct. |
1296 | // TODO: Cache set of Uses on the first walk in runOnLoop, update when |
1297 | // moving accesses. Can also extend to dominating uses. |
1298 | for (auto *BB : CurLoop->getBlocks()) |
1299 | if (auto *Accesses = MSSA->getBlockAccesses(BB)) { |
1300 | for (const auto &MA : *Accesses) |
1301 | if (const auto *MU = dyn_cast<MemoryUse>(Val: &MA)) { |
1302 | auto *MD = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags, |
1303 | MA: const_cast<MemoryUse *>(MU)); |
1304 | if (!MSSA->isLiveOnEntryDef(MA: MD) && |
1305 | CurLoop->contains(BB: MD->getBlock())) |
1306 | return false; |
1307 | // Disable hoisting past potentially interfering loads. Optimized |
1308 | // Uses may point to an access outside the loop, as getClobbering |
1309 | // checks the previous iteration when walking the backedge. |
1310 | // FIXME: More precise: no Uses that alias SI. |
1311 | if (!Flags.getIsSink() && !MSSA->dominates(A: SIMD, B: MU)) |
1312 | return false; |
1313 | } else if (const auto *MD = dyn_cast<MemoryDef>(Val: &MA)) { |
1314 | if (auto *LI = dyn_cast<LoadInst>(Val: MD->getMemoryInst())) { |
1315 | (void)LI; // Silence warning. |
1316 | assert(!LI->isUnordered() && "Expected unordered load" ); |
1317 | return false; |
1318 | } |
1319 | // Any call, while it may not be clobbering SI, it may be a use. |
1320 | if (auto *CI = dyn_cast<CallInst>(Val: MD->getMemoryInst())) { |
1321 | // Check if the call may read from the memory location written |
1322 | // to by SI. Check CI's attributes and arguments; the number of |
1323 | // such checks performed is limited above by NoOfMemAccTooLarge. |
1324 | ModRefInfo MRI = BAA.getModRefInfo(I: CI, OptLoc: MemoryLocation::get(SI)); |
1325 | if (isModOrRefSet(MRI)) |
1326 | return false; |
1327 | } |
1328 | } |
1329 | } |
1330 | return true; |
1331 | } |
1332 | |
1333 | assert(!I.mayReadOrWriteMemory() && "unhandled aliasing" ); |
1334 | |
1335 | // We've established mechanical ability and aliasing, it's up to the caller |
1336 | // to check fault safety |
1337 | return true; |
1338 | } |
1339 | |
1340 | /// Returns true if a PHINode is a trivially replaceable with an |
1341 | /// Instruction. |
1342 | /// This is true when all incoming values are that instruction. |
1343 | /// This pattern occurs most often with LCSSA PHI nodes. |
1344 | /// |
1345 | static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { |
1346 | for (const Value *IncValue : PN.incoming_values()) |
1347 | if (IncValue != &I) |
1348 | return false; |
1349 | |
1350 | return true; |
1351 | } |
1352 | |
1353 | /// Return true if the instruction is foldable in the loop. |
1354 | static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop, |
1355 | const TargetTransformInfo *TTI) { |
1356 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
1357 | InstructionCost CostI = |
1358 | TTI->getInstructionCost(U: &I, CostKind: TargetTransformInfo::TCK_SizeAndLatency); |
1359 | if (CostI != TargetTransformInfo::TCC_Free) |
1360 | return false; |
1361 | // For a GEP, we cannot simply use getInstructionCost because currently |
1362 | // it optimistically assumes that a GEP will fold into addressing mode |
1363 | // regardless of its users. |
1364 | const BasicBlock *BB = GEP->getParent(); |
1365 | for (const User *U : GEP->users()) { |
1366 | const Instruction *UI = cast<Instruction>(Val: U); |
1367 | if (CurLoop->contains(Inst: UI) && |
1368 | (BB != UI->getParent() || |
1369 | (!isa<StoreInst>(Val: UI) && !isa<LoadInst>(Val: UI)))) |
1370 | return false; |
1371 | } |
1372 | return true; |
1373 | } |
1374 | |
1375 | return false; |
1376 | } |
1377 | |
1378 | /// Return true if the only users of this instruction are outside of |
1379 | /// the loop. If this is true, we can sink the instruction to the exit |
1380 | /// blocks of the loop. |
1381 | /// |
1382 | /// We also return true if the instruction could be folded away in lowering. |
1383 | /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). |
1384 | static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop, |
1385 | const LoopSafetyInfo *SafetyInfo, |
1386 | TargetTransformInfo *TTI, |
1387 | bool &FoldableInLoop, bool LoopNestMode) { |
1388 | const auto &BlockColors = SafetyInfo->getBlockColors(); |
1389 | bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI); |
1390 | for (const User *U : I.users()) { |
1391 | const Instruction *UI = cast<Instruction>(Val: U); |
1392 | if (const PHINode *PN = dyn_cast<PHINode>(Val: UI)) { |
1393 | const BasicBlock *BB = PN->getParent(); |
1394 | // We cannot sink uses in catchswitches. |
1395 | if (isa<CatchSwitchInst>(Val: BB->getTerminator())) |
1396 | return false; |
1397 | |
1398 | // We need to sink a callsite to a unique funclet. Avoid sinking if the |
1399 | // phi use is too muddled. |
1400 | if (isa<CallInst>(Val: I)) |
1401 | if (!BlockColors.empty() && |
1402 | BlockColors.find(Val: const_cast<BasicBlock *>(BB))->second.size() != 1) |
1403 | return false; |
1404 | |
1405 | if (LoopNestMode) { |
1406 | while (isa<PHINode>(Val: UI) && UI->hasOneUser() && |
1407 | UI->getNumOperands() == 1) { |
1408 | if (!CurLoop->contains(Inst: UI)) |
1409 | break; |
1410 | UI = cast<Instruction>(Val: UI->user_back()); |
1411 | } |
1412 | } |
1413 | } |
1414 | |
1415 | if (CurLoop->contains(Inst: UI)) { |
1416 | if (IsFoldable) { |
1417 | FoldableInLoop = true; |
1418 | continue; |
1419 | } |
1420 | return false; |
1421 | } |
1422 | } |
1423 | return true; |
1424 | } |
1425 | |
1426 | static Instruction *cloneInstructionInExitBlock( |
1427 | Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, |
1428 | const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { |
1429 | Instruction *New; |
1430 | if (auto *CI = dyn_cast<CallInst>(Val: &I)) { |
1431 | const auto &BlockColors = SafetyInfo->getBlockColors(); |
1432 | |
1433 | // Sinking call-sites need to be handled differently from other |
1434 | // instructions. The cloned call-site needs a funclet bundle operand |
1435 | // appropriate for its location in the CFG. |
1436 | SmallVector<OperandBundleDef, 1> OpBundles; |
1437 | for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); |
1438 | BundleIdx != BundleEnd; ++BundleIdx) { |
1439 | OperandBundleUse Bundle = CI->getOperandBundleAt(Index: BundleIdx); |
1440 | if (Bundle.getTagID() == LLVMContext::OB_funclet) |
1441 | continue; |
1442 | |
1443 | OpBundles.emplace_back(Args&: Bundle); |
1444 | } |
1445 | |
1446 | if (!BlockColors.empty()) { |
1447 | const ColorVector &CV = BlockColors.find(Val: &ExitBlock)->second; |
1448 | assert(CV.size() == 1 && "non-unique color for exit block!" ); |
1449 | BasicBlock *BBColor = CV.front(); |
1450 | Instruction *EHPad = BBColor->getFirstNonPHI(); |
1451 | if (EHPad->isEHPad()) |
1452 | OpBundles.emplace_back(Args: "funclet" , Args&: EHPad); |
1453 | } |
1454 | |
1455 | New = CallInst::Create(CI, Bundles: OpBundles); |
1456 | New->copyMetadata(SrcInst: *CI); |
1457 | } else { |
1458 | New = I.clone(); |
1459 | } |
1460 | |
1461 | New->insertInto(ParentBB: &ExitBlock, It: ExitBlock.getFirstInsertionPt()); |
1462 | if (!I.getName().empty()) |
1463 | New->setName(I.getName() + ".le" ); |
1464 | |
1465 | if (MSSAU.getMemorySSA()->getMemoryAccess(I: &I)) { |
1466 | // Create a new MemoryAccess and let MemorySSA set its defining access. |
1467 | MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( |
1468 | I: New, Definition: nullptr, BB: New->getParent(), Point: MemorySSA::Beginning); |
1469 | if (NewMemAcc) { |
1470 | if (auto *MemDef = dyn_cast<MemoryDef>(Val: NewMemAcc)) |
1471 | MSSAU.insertDef(Def: MemDef, /*RenameUses=*/true); |
1472 | else { |
1473 | auto *MemUse = cast<MemoryUse>(Val: NewMemAcc); |
1474 | MSSAU.insertUse(Use: MemUse, /*RenameUses=*/true); |
1475 | } |
1476 | } |
1477 | } |
1478 | |
1479 | // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that |
1480 | // this is particularly cheap because we can rip off the PHI node that we're |
1481 | // replacing for the number and blocks of the predecessors. |
1482 | // OPT: If this shows up in a profile, we can instead finish sinking all |
1483 | // invariant instructions, and then walk their operands to re-establish |
1484 | // LCSSA. That will eliminate creating PHI nodes just to nuke them when |
1485 | // sinking bottom-up. |
1486 | for (Use &Op : New->operands()) |
1487 | if (LI->wouldBeOutOfLoopUseRequiringLCSSA(V: Op.get(), ExitBB: PN.getParent())) { |
1488 | auto *OInst = cast<Instruction>(Val: Op.get()); |
1489 | PHINode *OpPN = |
1490 | PHINode::Create(Ty: OInst->getType(), NumReservedValues: PN.getNumIncomingValues(), |
1491 | NameStr: OInst->getName() + ".lcssa" ); |
1492 | OpPN->insertBefore(InsertPos: ExitBlock.begin()); |
1493 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) |
1494 | OpPN->addIncoming(V: OInst, BB: PN.getIncomingBlock(i)); |
1495 | Op = OpPN; |
1496 | } |
1497 | return New; |
1498 | } |
1499 | |
1500 | static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, |
1501 | MemorySSAUpdater &MSSAU) { |
1502 | MSSAU.removeMemoryAccess(I: &I); |
1503 | SafetyInfo.removeInstruction(Inst: &I); |
1504 | I.eraseFromParent(); |
1505 | } |
1506 | |
1507 | static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest, |
1508 | ICFLoopSafetyInfo &SafetyInfo, |
1509 | MemorySSAUpdater &MSSAU, |
1510 | ScalarEvolution *SE) { |
1511 | SafetyInfo.removeInstruction(Inst: &I); |
1512 | SafetyInfo.insertInstructionTo(Inst: &I, BB: Dest->getParent()); |
1513 | I.moveBefore(BB&: *Dest->getParent(), I: Dest); |
1514 | if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( |
1515 | Val: MSSAU.getMemorySSA()->getMemoryAccess(I: &I))) |
1516 | MSSAU.moveToPlace(What: OldMemAcc, BB: Dest->getParent(), |
1517 | Where: MemorySSA::BeforeTerminator); |
1518 | if (SE) |
1519 | SE->forgetBlockAndLoopDispositions(V: &I); |
1520 | } |
1521 | |
1522 | static Instruction *sinkThroughTriviallyReplaceablePHI( |
1523 | PHINode *TPN, Instruction *I, LoopInfo *LI, |
1524 | SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, |
1525 | const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, |
1526 | MemorySSAUpdater &MSSAU) { |
1527 | assert(isTriviallyReplaceablePHI(*TPN, *I) && |
1528 | "Expect only trivially replaceable PHI" ); |
1529 | BasicBlock *ExitBlock = TPN->getParent(); |
1530 | Instruction *New; |
1531 | auto It = SunkCopies.find(Val: ExitBlock); |
1532 | if (It != SunkCopies.end()) |
1533 | New = It->second; |
1534 | else |
1535 | New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( |
1536 | I&: *I, ExitBlock&: *ExitBlock, PN&: *TPN, LI, SafetyInfo, MSSAU); |
1537 | return New; |
1538 | } |
1539 | |
1540 | static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { |
1541 | BasicBlock *BB = PN->getParent(); |
1542 | if (!BB->canSplitPredecessors()) |
1543 | return false; |
1544 | // It's not impossible to split EHPad blocks, but if BlockColors already exist |
1545 | // it require updating BlockColors for all offspring blocks accordingly. By |
1546 | // skipping such corner case, we can make updating BlockColors after splitting |
1547 | // predecessor fairly simple. |
1548 | if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) |
1549 | return false; |
1550 | for (BasicBlock *BBPred : predecessors(BB)) { |
1551 | if (isa<IndirectBrInst>(Val: BBPred->getTerminator())) |
1552 | return false; |
1553 | } |
1554 | return true; |
1555 | } |
1556 | |
1557 | static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, |
1558 | LoopInfo *LI, const Loop *CurLoop, |
1559 | LoopSafetyInfo *SafetyInfo, |
1560 | MemorySSAUpdater *MSSAU) { |
1561 | #ifndef NDEBUG |
1562 | SmallVector<BasicBlock *, 32> ExitBlocks; |
1563 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
1564 | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), |
1565 | ExitBlocks.end()); |
1566 | #endif |
1567 | BasicBlock *ExitBB = PN->getParent(); |
1568 | assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block." ); |
1569 | |
1570 | // Split predecessors of the loop exit to make instructions in the loop are |
1571 | // exposed to exit blocks through trivially replaceable PHIs while keeping the |
1572 | // loop in the canonical form where each predecessor of each exit block should |
1573 | // be contained within the loop. For example, this will convert the loop below |
1574 | // from |
1575 | // |
1576 | // LB1: |
1577 | // %v1 = |
1578 | // br %LE, %LB2 |
1579 | // LB2: |
1580 | // %v2 = |
1581 | // br %LE, %LB1 |
1582 | // LE: |
1583 | // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable |
1584 | // |
1585 | // to |
1586 | // |
1587 | // LB1: |
1588 | // %v1 = |
1589 | // br %LE.split, %LB2 |
1590 | // LB2: |
1591 | // %v2 = |
1592 | // br %LE.split2, %LB1 |
1593 | // LE.split: |
1594 | // %p1 = phi [%v1, %LB1] <-- trivially replaceable |
1595 | // br %LE |
1596 | // LE.split2: |
1597 | // %p2 = phi [%v2, %LB2] <-- trivially replaceable |
1598 | // br %LE |
1599 | // LE: |
1600 | // %p = phi [%p1, %LE.split], [%p2, %LE.split2] |
1601 | // |
1602 | const auto &BlockColors = SafetyInfo->getBlockColors(); |
1603 | SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(BB: ExitBB), pred_end(BB: ExitBB)); |
1604 | while (!PredBBs.empty()) { |
1605 | BasicBlock *PredBB = *PredBBs.begin(); |
1606 | assert(CurLoop->contains(PredBB) && |
1607 | "Expect all predecessors are in the loop" ); |
1608 | if (PN->getBasicBlockIndex(BB: PredBB) >= 0) { |
1609 | BasicBlock *NewPred = SplitBlockPredecessors( |
1610 | BB: ExitBB, Preds: PredBB, Suffix: ".split.loop.exit" , DT, LI, MSSAU, PreserveLCSSA: true); |
1611 | // Since we do not allow splitting EH-block with BlockColors in |
1612 | // canSplitPredecessors(), we can simply assign predecessor's color to |
1613 | // the new block. |
1614 | if (!BlockColors.empty()) |
1615 | // Grab a reference to the ColorVector to be inserted before getting the |
1616 | // reference to the vector we are copying because inserting the new |
1617 | // element in BlockColors might cause the map to be reallocated. |
1618 | SafetyInfo->copyColors(New: NewPred, Old: PredBB); |
1619 | } |
1620 | PredBBs.remove(X: PredBB); |
1621 | } |
1622 | } |
1623 | |
1624 | /// When an instruction is found to only be used outside of the loop, this |
1625 | /// function moves it to the exit blocks and patches up SSA form as needed. |
1626 | /// This method is guaranteed to remove the original instruction from its |
1627 | /// position, and may either delete it or move it to outside of the loop. |
1628 | /// |
1629 | static bool (Instruction &I, LoopInfo *LI, DominatorTree *DT, |
1630 | const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, |
1631 | MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { |
1632 | bool Changed = false; |
1633 | LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n" ); |
1634 | |
1635 | // Iterate over users to be ready for actual sinking. Replace users via |
1636 | // unreachable blocks with undef and make all user PHIs trivially replaceable. |
1637 | SmallPtrSet<Instruction *, 8> VisitedUsers; |
1638 | for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { |
1639 | auto *User = cast<Instruction>(Val: *UI); |
1640 | Use &U = UI.getUse(); |
1641 | ++UI; |
1642 | |
1643 | if (VisitedUsers.count(Ptr: User) || CurLoop->contains(Inst: User)) |
1644 | continue; |
1645 | |
1646 | if (!DT->isReachableFromEntry(A: User->getParent())) { |
1647 | U = PoisonValue::get(T: I.getType()); |
1648 | Changed = true; |
1649 | continue; |
1650 | } |
1651 | |
1652 | // The user must be a PHI node. |
1653 | PHINode *PN = cast<PHINode>(Val: User); |
1654 | |
1655 | // Surprisingly, instructions can be used outside of loops without any |
1656 | // exits. This can only happen in PHI nodes if the incoming block is |
1657 | // unreachable. |
1658 | BasicBlock *BB = PN->getIncomingBlock(U); |
1659 | if (!DT->isReachableFromEntry(A: BB)) { |
1660 | U = PoisonValue::get(T: I.getType()); |
1661 | Changed = true; |
1662 | continue; |
1663 | } |
1664 | |
1665 | VisitedUsers.insert(Ptr: PN); |
1666 | if (isTriviallyReplaceablePHI(PN: *PN, I)) |
1667 | continue; |
1668 | |
1669 | if (!canSplitPredecessors(PN, SafetyInfo)) |
1670 | return Changed; |
1671 | |
1672 | // Split predecessors of the PHI so that we can make users trivially |
1673 | // replaceable. |
1674 | splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU: &MSSAU); |
1675 | |
1676 | // Should rebuild the iterators, as they may be invalidated by |
1677 | // splitPredecessorsOfLoopExit(). |
1678 | UI = I.user_begin(); |
1679 | UE = I.user_end(); |
1680 | } |
1681 | |
1682 | if (VisitedUsers.empty()) |
1683 | return Changed; |
1684 | |
1685 | ORE->emit(RemarkBuilder: [&]() { |
1686 | return OptimizationRemark(DEBUG_TYPE, "InstSunk" , &I) |
1687 | << "sinking " << ore::NV("Inst" , &I); |
1688 | }); |
1689 | if (isa<LoadInst>(Val: I)) |
1690 | ++NumMovedLoads; |
1691 | else if (isa<CallInst>(Val: I)) |
1692 | ++NumMovedCalls; |
1693 | ++NumSunk; |
1694 | |
1695 | #ifndef NDEBUG |
1696 | SmallVector<BasicBlock *, 32> ExitBlocks; |
1697 | CurLoop->getUniqueExitBlocks(ExitBlocks); |
1698 | SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), |
1699 | ExitBlocks.end()); |
1700 | #endif |
1701 | |
1702 | // Clones of this instruction. Don't create more than one per exit block! |
1703 | SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; |
1704 | |
1705 | // If this instruction is only used outside of the loop, then all users are |
1706 | // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of |
1707 | // the instruction. |
1708 | // First check if I is worth sinking for all uses. Sink only when it is worth |
1709 | // across all uses. |
1710 | SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); |
1711 | for (auto *UI : Users) { |
1712 | auto *User = cast<Instruction>(Val: UI); |
1713 | |
1714 | if (CurLoop->contains(Inst: User)) |
1715 | continue; |
1716 | |
1717 | PHINode *PN = cast<PHINode>(Val: User); |
1718 | assert(ExitBlockSet.count(PN->getParent()) && |
1719 | "The LCSSA PHI is not in an exit block!" ); |
1720 | |
1721 | // The PHI must be trivially replaceable. |
1722 | Instruction *New = sinkThroughTriviallyReplaceablePHI( |
1723 | TPN: PN, I: &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); |
1724 | // As we sink the instruction out of the BB, drop its debug location. |
1725 | New->dropLocation(); |
1726 | PN->replaceAllUsesWith(V: New); |
1727 | eraseInstruction(I&: *PN, SafetyInfo&: *SafetyInfo, MSSAU); |
1728 | Changed = true; |
1729 | } |
1730 | return Changed; |
1731 | } |
1732 | |
1733 | /// When an instruction is found to only use loop invariant operands that |
1734 | /// is safe to hoist, this instruction is called to do the dirty work. |
1735 | /// |
1736 | static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, |
1737 | BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, |
1738 | MemorySSAUpdater &MSSAU, ScalarEvolution *SE, |
1739 | OptimizationRemarkEmitter *ORE) { |
1740 | LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " |
1741 | << I << "\n" ); |
1742 | ORE->emit(RemarkBuilder: [&]() { |
1743 | return OptimizationRemark(DEBUG_TYPE, "Hoisted" , &I) << "hoisting " |
1744 | << ore::NV("Inst" , &I); |
1745 | }); |
1746 | |
1747 | // Metadata can be dependent on conditions we are hoisting above. |
1748 | // Conservatively strip all metadata on the instruction unless we were |
1749 | // guaranteed to execute I if we entered the loop, in which case the metadata |
1750 | // is valid in the loop preheader. |
1751 | // Similarly, If I is a call and it is not guaranteed to execute in the loop, |
1752 | // then moving to the preheader means we should strip attributes on the call |
1753 | // that can cause UB since we may be hoisting above conditions that allowed |
1754 | // inferring those attributes. They may not be valid at the preheader. |
1755 | if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(Val: I)) && |
1756 | // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning |
1757 | // time in isGuaranteedToExecute if we don't actually have anything to |
1758 | // drop. It is a compile time optimization, not required for correctness. |
1759 | !SafetyInfo->isGuaranteedToExecute(Inst: I, DT, CurLoop)) |
1760 | I.dropUBImplyingAttrsAndMetadata(); |
1761 | |
1762 | if (isa<PHINode>(Val: I)) |
1763 | // Move the new node to the end of the phi list in the destination block. |
1764 | moveInstructionBefore(I, Dest: Dest->getFirstNonPHIIt(), SafetyInfo&: *SafetyInfo, MSSAU, SE); |
1765 | else |
1766 | // Move the new node to the destination block, before its terminator. |
1767 | moveInstructionBefore(I, Dest: Dest->getTerminator()->getIterator(), SafetyInfo&: *SafetyInfo, |
1768 | MSSAU, SE); |
1769 | |
1770 | I.updateLocationAfterHoist(); |
1771 | |
1772 | if (isa<LoadInst>(Val: I)) |
1773 | ++NumMovedLoads; |
1774 | else if (isa<CallInst>(Val: I)) |
1775 | ++NumMovedCalls; |
1776 | ++NumHoisted; |
1777 | } |
1778 | |
1779 | /// Only sink or hoist an instruction if it is not a trapping instruction, |
1780 | /// or if the instruction is known not to trap when moved to the preheader. |
1781 | /// or if it is a trapping instruction and is guaranteed to execute. |
1782 | static bool isSafeToExecuteUnconditionally( |
1783 | Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, |
1784 | const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, |
1785 | OptimizationRemarkEmitter *ORE, const Instruction *CtxI, |
1786 | AssumptionCache *AC, bool AllowSpeculation) { |
1787 | if (AllowSpeculation && |
1788 | isSafeToSpeculativelyExecute(I: &Inst, CtxI, AC, DT, TLI)) |
1789 | return true; |
1790 | |
1791 | bool GuaranteedToExecute = |
1792 | SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); |
1793 | |
1794 | if (!GuaranteedToExecute) { |
1795 | auto *LI = dyn_cast<LoadInst>(Val: &Inst); |
1796 | if (LI && CurLoop->isLoopInvariant(V: LI->getPointerOperand())) |
1797 | ORE->emit(RemarkBuilder: [&]() { |
1798 | return OptimizationRemarkMissed( |
1799 | DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted" , LI) |
1800 | << "failed to hoist load with loop-invariant address " |
1801 | "because load is conditionally executed" ; |
1802 | }); |
1803 | } |
1804 | |
1805 | return GuaranteedToExecute; |
1806 | } |
1807 | |
1808 | namespace { |
1809 | class LoopPromoter : public LoadAndStorePromoter { |
1810 | Value *SomePtr; // Designated pointer to store to. |
1811 | SmallVectorImpl<BasicBlock *> &LoopExitBlocks; |
1812 | SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts; |
1813 | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; |
1814 | PredIteratorCache &PredCache; |
1815 | MemorySSAUpdater &MSSAU; |
1816 | LoopInfo &LI; |
1817 | DebugLoc DL; |
1818 | Align Alignment; |
1819 | bool UnorderedAtomic; |
1820 | AAMDNodes AATags; |
1821 | ICFLoopSafetyInfo &SafetyInfo; |
1822 | bool CanInsertStoresInExitBlocks; |
1823 | ArrayRef<const Instruction *> Uses; |
1824 | |
1825 | // We're about to add a use of V in a loop exit block. Insert an LCSSA phi |
1826 | // (if legal) if doing so would add an out-of-loop use to an instruction |
1827 | // defined in-loop. |
1828 | Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { |
1829 | if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, ExitBB: BB)) |
1830 | return V; |
1831 | |
1832 | Instruction *I = cast<Instruction>(Val: V); |
1833 | // We need to create an LCSSA PHI node for the incoming value and |
1834 | // store that. |
1835 | PHINode *PN = PHINode::Create(Ty: I->getType(), NumReservedValues: PredCache.size(BB), |
1836 | NameStr: I->getName() + ".lcssa" ); |
1837 | PN->insertBefore(InsertPos: BB->begin()); |
1838 | for (BasicBlock *Pred : PredCache.get(BB)) |
1839 | PN->addIncoming(V: I, BB: Pred); |
1840 | return PN; |
1841 | } |
1842 | |
1843 | public: |
1844 | LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, |
1845 | SmallVectorImpl<BasicBlock *> &LEB, |
1846 | SmallVectorImpl<BasicBlock::iterator> &LIP, |
1847 | SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, |
1848 | MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, |
1849 | Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, |
1850 | ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) |
1851 | : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), |
1852 | LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), |
1853 | LI(li), DL(std::move(dl)), Alignment(Alignment), |
1854 | UnorderedAtomic(UnorderedAtomic), AATags(AATags), |
1855 | SafetyInfo(SafetyInfo), |
1856 | CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} |
1857 | |
1858 | void insertStoresInLoopExitBlocks() { |
1859 | // Insert stores after in the loop exit blocks. Each exit block gets a |
1860 | // store of the live-out values that feed them. Since we've already told |
1861 | // the SSA updater about the defs in the loop and the preheader |
1862 | // definition, it is all set and we can start using it. |
1863 | DIAssignID *NewID = nullptr; |
1864 | for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { |
1865 | BasicBlock *ExitBlock = LoopExitBlocks[i]; |
1866 | Value *LiveInValue = SSA.GetValueInMiddleOfBlock(BB: ExitBlock); |
1867 | LiveInValue = maybeInsertLCSSAPHI(V: LiveInValue, BB: ExitBlock); |
1868 | Value *Ptr = maybeInsertLCSSAPHI(V: SomePtr, BB: ExitBlock); |
1869 | BasicBlock::iterator InsertPos = LoopInsertPts[i]; |
1870 | StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); |
1871 | if (UnorderedAtomic) |
1872 | NewSI->setOrdering(AtomicOrdering::Unordered); |
1873 | NewSI->setAlignment(Alignment); |
1874 | NewSI->setDebugLoc(DL); |
1875 | // Attach DIAssignID metadata to the new store, generating it on the |
1876 | // first loop iteration. |
1877 | if (i == 0) { |
1878 | // NewSI will have its DIAssignID set here if there are any stores in |
1879 | // Uses with a DIAssignID attachment. This merged ID will then be |
1880 | // attached to the other inserted stores (in the branch below). |
1881 | NewSI->mergeDIAssignID(SourceInstructions: Uses); |
1882 | NewID = cast_or_null<DIAssignID>( |
1883 | Val: NewSI->getMetadata(KindID: LLVMContext::MD_DIAssignID)); |
1884 | } else { |
1885 | // Attach the DIAssignID (or nullptr) merged from Uses in the branch |
1886 | // above. |
1887 | NewSI->setMetadata(KindID: LLVMContext::MD_DIAssignID, Node: NewID); |
1888 | } |
1889 | |
1890 | if (AATags) |
1891 | NewSI->setAAMetadata(AATags); |
1892 | |
1893 | MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; |
1894 | MemoryAccess *NewMemAcc; |
1895 | if (!MSSAInsertPoint) { |
1896 | NewMemAcc = MSSAU.createMemoryAccessInBB( |
1897 | I: NewSI, Definition: nullptr, BB: NewSI->getParent(), Point: MemorySSA::Beginning); |
1898 | } else { |
1899 | NewMemAcc = |
1900 | MSSAU.createMemoryAccessAfter(I: NewSI, Definition: nullptr, InsertPt: MSSAInsertPoint); |
1901 | } |
1902 | MSSAInsertPts[i] = NewMemAcc; |
1903 | MSSAU.insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true); |
1904 | // FIXME: true for safety, false may still be correct. |
1905 | } |
1906 | } |
1907 | |
1908 | void () override { |
1909 | if (CanInsertStoresInExitBlocks) |
1910 | insertStoresInLoopExitBlocks(); |
1911 | } |
1912 | |
1913 | void instructionDeleted(Instruction *I) const override { |
1914 | SafetyInfo.removeInstruction(Inst: I); |
1915 | MSSAU.removeMemoryAccess(I); |
1916 | } |
1917 | |
1918 | bool shouldDelete(Instruction *I) const override { |
1919 | if (isa<StoreInst>(Val: I)) |
1920 | return CanInsertStoresInExitBlocks; |
1921 | return true; |
1922 | } |
1923 | }; |
1924 | |
1925 | bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, |
1926 | DominatorTree *DT) { |
1927 | // We can perform the captured-before check against any instruction in the |
1928 | // loop header, as the loop header is reachable from any instruction inside |
1929 | // the loop. |
1930 | // TODO: ReturnCaptures=true shouldn't be necessary here. |
1931 | return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, |
1932 | /* StoreCaptures */ true, |
1933 | I: L->getHeader()->getTerminator(), DT); |
1934 | } |
1935 | |
1936 | /// Return true if we can prove that a caller cannot inspect the object if an |
1937 | /// unwind occurs inside the loop. |
1938 | bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, |
1939 | DominatorTree *DT) { |
1940 | bool RequiresNoCaptureBeforeUnwind; |
1941 | if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) |
1942 | return false; |
1943 | |
1944 | return !RequiresNoCaptureBeforeUnwind || |
1945 | isNotCapturedBeforeOrInLoop(V: Object, L, DT); |
1946 | } |
1947 | |
1948 | bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, |
1949 | TargetTransformInfo *TTI) { |
1950 | // The object must be function-local to start with, and then not captured |
1951 | // before/in the loop. |
1952 | return (isIdentifiedFunctionLocal(V: Object) && |
1953 | isNotCapturedBeforeOrInLoop(V: Object, L, DT)) || |
1954 | (TTI->isSingleThreaded() || SingleThread); |
1955 | } |
1956 | |
1957 | } // namespace |
1958 | |
1959 | /// Try to promote memory values to scalars by sinking stores out of the |
1960 | /// loop and moving loads to before the loop. We do this by looping over |
1961 | /// the stores in the loop, looking for stores to Must pointers which are |
1962 | /// loop invariant. |
1963 | /// |
1964 | bool llvm::promoteLoopAccessesToScalars( |
1965 | const SmallSetVector<Value *, 8> &PointerMustAliases, |
1966 | SmallVectorImpl<BasicBlock *> &ExitBlocks, |
1967 | SmallVectorImpl<BasicBlock::iterator> &InsertPts, |
1968 | SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, |
1969 | LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, |
1970 | const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, |
1971 | MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, |
1972 | OptimizationRemarkEmitter *ORE, bool AllowSpeculation, |
1973 | bool HasReadsOutsideSet) { |
1974 | // Verify inputs. |
1975 | assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && |
1976 | SafetyInfo != nullptr && |
1977 | "Unexpected Input to promoteLoopAccessesToScalars" ); |
1978 | |
1979 | LLVM_DEBUG({ |
1980 | dbgs() << "Trying to promote set of must-aliased pointers:\n" ; |
1981 | for (Value *Ptr : PointerMustAliases) |
1982 | dbgs() << " " << *Ptr << "\n" ; |
1983 | }); |
1984 | ++NumPromotionCandidates; |
1985 | |
1986 | Value *SomePtr = *PointerMustAliases.begin(); |
1987 | BasicBlock * = CurLoop->getLoopPreheader(); |
1988 | |
1989 | // It is not safe to promote a load/store from the loop if the load/store is |
1990 | // conditional. For example, turning: |
1991 | // |
1992 | // for () { if (c) *P += 1; } |
1993 | // |
1994 | // into: |
1995 | // |
1996 | // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; |
1997 | // |
1998 | // is not safe, because *P may only be valid to access if 'c' is true. |
1999 | // |
2000 | // The safety property divides into two parts: |
2001 | // p1) The memory may not be dereferenceable on entry to the loop. In this |
2002 | // case, we can't insert the required load in the preheader. |
2003 | // p2) The memory model does not allow us to insert a store along any dynamic |
2004 | // path which did not originally have one. |
2005 | // |
2006 | // If at least one store is guaranteed to execute, both properties are |
2007 | // satisfied, and promotion is legal. |
2008 | // |
2009 | // This, however, is not a necessary condition. Even if no store/load is |
2010 | // guaranteed to execute, we can still establish these properties. |
2011 | // We can establish (p1) by proving that hoisting the load into the preheader |
2012 | // is safe (i.e. proving dereferenceability on all paths through the loop). We |
2013 | // can use any access within the alias set to prove dereferenceability, |
2014 | // since they're all must alias. |
2015 | // |
2016 | // There are two ways establish (p2): |
2017 | // a) Prove the location is thread-local. In this case the memory model |
2018 | // requirement does not apply, and stores are safe to insert. |
2019 | // b) Prove a store dominates every exit block. In this case, if an exit |
2020 | // blocks is reached, the original dynamic path would have taken us through |
2021 | // the store, so inserting a store into the exit block is safe. Note that this |
2022 | // is different from the store being guaranteed to execute. For instance, |
2023 | // if an exception is thrown on the first iteration of the loop, the original |
2024 | // store is never executed, but the exit blocks are not executed either. |
2025 | |
2026 | bool DereferenceableInPH = false; |
2027 | bool StoreIsGuanteedToExecute = false; |
2028 | bool FoundLoadToPromote = false; |
2029 | // Goes from Unknown to either Safe or Unsafe, but can't switch between them. |
2030 | enum { |
2031 | StoreSafe, |
2032 | StoreUnsafe, |
2033 | StoreSafetyUnknown, |
2034 | } StoreSafety = StoreSafetyUnknown; |
2035 | |
2036 | SmallVector<Instruction *, 64> LoopUses; |
2037 | |
2038 | // We start with an alignment of one and try to find instructions that allow |
2039 | // us to prove better alignment. |
2040 | Align Alignment; |
2041 | // Keep track of which types of access we see |
2042 | bool SawUnorderedAtomic = false; |
2043 | bool SawNotAtomic = false; |
2044 | AAMDNodes AATags; |
2045 | |
2046 | const DataLayout &MDL = Preheader->getDataLayout(); |
2047 | |
2048 | // If there are reads outside the promoted set, then promoting stores is |
2049 | // definitely not safe. |
2050 | if (HasReadsOutsideSet) |
2051 | StoreSafety = StoreUnsafe; |
2052 | |
2053 | if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { |
2054 | // If a loop can throw, we have to insert a store along each unwind edge. |
2055 | // That said, we can't actually make the unwind edge explicit. Therefore, |
2056 | // we have to prove that the store is dead along the unwind edge. We do |
2057 | // this by proving that the caller can't have a reference to the object |
2058 | // after return and thus can't possibly load from the object. |
2059 | Value *Object = getUnderlyingObject(V: SomePtr); |
2060 | if (!isNotVisibleOnUnwindInLoop(Object, L: CurLoop, DT)) |
2061 | StoreSafety = StoreUnsafe; |
2062 | } |
2063 | |
2064 | // Check that all accesses to pointers in the alias set use the same type. |
2065 | // We cannot (yet) promote a memory location that is loaded and stored in |
2066 | // different sizes. While we are at it, collect alignment and AA info. |
2067 | Type *AccessTy = nullptr; |
2068 | for (Value *ASIV : PointerMustAliases) { |
2069 | for (Use &U : ASIV->uses()) { |
2070 | // Ignore instructions that are outside the loop. |
2071 | Instruction *UI = dyn_cast<Instruction>(Val: U.getUser()); |
2072 | if (!UI || !CurLoop->contains(Inst: UI)) |
2073 | continue; |
2074 | |
2075 | // If there is an non-load/store instruction in the loop, we can't promote |
2076 | // it. |
2077 | if (LoadInst *Load = dyn_cast<LoadInst>(Val: UI)) { |
2078 | if (!Load->isUnordered()) |
2079 | return false; |
2080 | |
2081 | SawUnorderedAtomic |= Load->isAtomic(); |
2082 | SawNotAtomic |= !Load->isAtomic(); |
2083 | FoundLoadToPromote = true; |
2084 | |
2085 | Align InstAlignment = Load->getAlign(); |
2086 | |
2087 | // Note that proving a load safe to speculate requires proving |
2088 | // sufficient alignment at the target location. Proving it guaranteed |
2089 | // to execute does as well. Thus we can increase our guaranteed |
2090 | // alignment as well. |
2091 | if (!DereferenceableInPH || (InstAlignment > Alignment)) |
2092 | if (isSafeToExecuteUnconditionally( |
2093 | Inst&: *Load, DT, TLI, CurLoop, SafetyInfo, ORE, |
2094 | CtxI: Preheader->getTerminator(), AC, AllowSpeculation)) { |
2095 | DereferenceableInPH = true; |
2096 | Alignment = std::max(a: Alignment, b: InstAlignment); |
2097 | } |
2098 | } else if (const StoreInst *Store = dyn_cast<StoreInst>(Val: UI)) { |
2099 | // Stores *of* the pointer are not interesting, only stores *to* the |
2100 | // pointer. |
2101 | if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) |
2102 | continue; |
2103 | if (!Store->isUnordered()) |
2104 | return false; |
2105 | |
2106 | SawUnorderedAtomic |= Store->isAtomic(); |
2107 | SawNotAtomic |= !Store->isAtomic(); |
2108 | |
2109 | // If the store is guaranteed to execute, both properties are satisfied. |
2110 | // We may want to check if a store is guaranteed to execute even if we |
2111 | // already know that promotion is safe, since it may have higher |
2112 | // alignment than any other guaranteed stores, in which case we can |
2113 | // raise the alignment on the promoted store. |
2114 | Align InstAlignment = Store->getAlign(); |
2115 | bool GuaranteedToExecute = |
2116 | SafetyInfo->isGuaranteedToExecute(Inst: *UI, DT, CurLoop); |
2117 | StoreIsGuanteedToExecute |= GuaranteedToExecute; |
2118 | if (GuaranteedToExecute) { |
2119 | DereferenceableInPH = true; |
2120 | if (StoreSafety == StoreSafetyUnknown) |
2121 | StoreSafety = StoreSafe; |
2122 | Alignment = std::max(a: Alignment, b: InstAlignment); |
2123 | } |
2124 | |
2125 | // If a store dominates all exit blocks, it is safe to sink. |
2126 | // As explained above, if an exit block was executed, a dominating |
2127 | // store must have been executed at least once, so we are not |
2128 | // introducing stores on paths that did not have them. |
2129 | // Note that this only looks at explicit exit blocks. If we ever |
2130 | // start sinking stores into unwind edges (see above), this will break. |
2131 | if (StoreSafety == StoreSafetyUnknown && |
2132 | llvm::all_of(Range&: ExitBlocks, P: [&](BasicBlock *Exit) { |
2133 | return DT->dominates(A: Store->getParent(), B: Exit); |
2134 | })) |
2135 | StoreSafety = StoreSafe; |
2136 | |
2137 | // If the store is not guaranteed to execute, we may still get |
2138 | // deref info through it. |
2139 | if (!DereferenceableInPH) { |
2140 | DereferenceableInPH = isDereferenceableAndAlignedPointer( |
2141 | V: Store->getPointerOperand(), Ty: Store->getValueOperand()->getType(), |
2142 | Alignment: Store->getAlign(), DL: MDL, CtxI: Preheader->getTerminator(), AC, DT, TLI); |
2143 | } |
2144 | } else |
2145 | continue; // Not a load or store. |
2146 | |
2147 | if (!AccessTy) |
2148 | AccessTy = getLoadStoreType(I: UI); |
2149 | else if (AccessTy != getLoadStoreType(I: UI)) |
2150 | return false; |
2151 | |
2152 | // Merge the AA tags. |
2153 | if (LoopUses.empty()) { |
2154 | // On the first load/store, just take its AA tags. |
2155 | AATags = UI->getAAMetadata(); |
2156 | } else if (AATags) { |
2157 | AATags = AATags.merge(Other: UI->getAAMetadata()); |
2158 | } |
2159 | |
2160 | LoopUses.push_back(Elt: UI); |
2161 | } |
2162 | } |
2163 | |
2164 | // If we found both an unordered atomic instruction and a non-atomic memory |
2165 | // access, bail. We can't blindly promote non-atomic to atomic since we |
2166 | // might not be able to lower the result. We can't downgrade since that |
2167 | // would violate memory model. Also, align 0 is an error for atomics. |
2168 | if (SawUnorderedAtomic && SawNotAtomic) |
2169 | return false; |
2170 | |
2171 | // If we're inserting an atomic load in the preheader, we must be able to |
2172 | // lower it. We're only guaranteed to be able to lower naturally aligned |
2173 | // atomics. |
2174 | if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(Ty: AccessTy)) |
2175 | return false; |
2176 | |
2177 | // If we couldn't prove we can hoist the load, bail. |
2178 | if (!DereferenceableInPH) { |
2179 | LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n" ); |
2180 | return false; |
2181 | } |
2182 | |
2183 | // We know we can hoist the load, but don't have a guaranteed store. |
2184 | // Check whether the location is writable and thread-local. If it is, then we |
2185 | // can insert stores along paths which originally didn't have them without |
2186 | // violating the memory model. |
2187 | if (StoreSafety == StoreSafetyUnknown) { |
2188 | Value *Object = getUnderlyingObject(V: SomePtr); |
2189 | bool ExplicitlyDereferenceableOnly; |
2190 | if (isWritableObject(Object, ExplicitlyDereferenceableOnly) && |
2191 | (!ExplicitlyDereferenceableOnly || |
2192 | isDereferenceablePointer(V: SomePtr, Ty: AccessTy, DL: MDL)) && |
2193 | isThreadLocalObject(Object, L: CurLoop, DT, TTI)) |
2194 | StoreSafety = StoreSafe; |
2195 | } |
2196 | |
2197 | // If we've still failed to prove we can sink the store, hoist the load |
2198 | // only, if possible. |
2199 | if (StoreSafety != StoreSafe && !FoundLoadToPromote) |
2200 | // If we cannot hoist the load either, give up. |
2201 | return false; |
2202 | |
2203 | // Lets do the promotion! |
2204 | if (StoreSafety == StoreSafe) { |
2205 | LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr |
2206 | << '\n'); |
2207 | ++NumLoadStorePromoted; |
2208 | } else { |
2209 | LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr |
2210 | << '\n'); |
2211 | ++NumLoadPromoted; |
2212 | } |
2213 | |
2214 | ORE->emit(RemarkBuilder: [&]() { |
2215 | return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar" , |
2216 | LoopUses[0]) |
2217 | << "Moving accesses to memory location out of the loop" ; |
2218 | }); |
2219 | |
2220 | // Look at all the loop uses, and try to merge their locations. |
2221 | std::vector<DILocation *> LoopUsesLocs; |
2222 | for (auto *U : LoopUses) |
2223 | LoopUsesLocs.push_back(x: U->getDebugLoc().get()); |
2224 | auto DL = DebugLoc(DILocation::getMergedLocations(Locs: LoopUsesLocs)); |
2225 | |
2226 | // We use the SSAUpdater interface to insert phi nodes as required. |
2227 | SmallVector<PHINode *, 16> NewPHIs; |
2228 | SSAUpdater SSA(&NewPHIs); |
2229 | LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, |
2230 | MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, |
2231 | SawUnorderedAtomic, AATags, *SafetyInfo, |
2232 | StoreSafety == StoreSafe); |
2233 | |
2234 | // Set up the preheader to have a definition of the value. It is the live-out |
2235 | // value from the preheader that uses in the loop will use. |
2236 | LoadInst * = nullptr; |
2237 | if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { |
2238 | PreheaderLoad = |
2239 | new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted" , |
2240 | Preheader->getTerminator()->getIterator()); |
2241 | if (SawUnorderedAtomic) |
2242 | PreheaderLoad->setOrdering(AtomicOrdering::Unordered); |
2243 | PreheaderLoad->setAlignment(Alignment); |
2244 | PreheaderLoad->setDebugLoc(DebugLoc()); |
2245 | if (AATags) |
2246 | PreheaderLoad->setAAMetadata(AATags); |
2247 | |
2248 | MemoryAccess * = MSSAU.createMemoryAccessInBB( |
2249 | I: PreheaderLoad, Definition: nullptr, BB: PreheaderLoad->getParent(), Point: MemorySSA::End); |
2250 | MemoryUse *NewMemUse = cast<MemoryUse>(Val: PreheaderLoadMemoryAccess); |
2251 | MSSAU.insertUse(Use: NewMemUse, /*RenameUses=*/true); |
2252 | SSA.AddAvailableValue(BB: Preheader, V: PreheaderLoad); |
2253 | } else { |
2254 | SSA.AddAvailableValue(BB: Preheader, V: PoisonValue::get(T: AccessTy)); |
2255 | } |
2256 | |
2257 | if (VerifyMemorySSA) |
2258 | MSSAU.getMemorySSA()->verifyMemorySSA(); |
2259 | // Rewrite all the loads in the loop and remember all the definitions from |
2260 | // stores in the loop. |
2261 | Promoter.run(Insts: LoopUses); |
2262 | |
2263 | if (VerifyMemorySSA) |
2264 | MSSAU.getMemorySSA()->verifyMemorySSA(); |
2265 | // If the SSAUpdater didn't use the load in the preheader, just zap it now. |
2266 | if (PreheaderLoad && PreheaderLoad->use_empty()) |
2267 | eraseInstruction(I&: *PreheaderLoad, SafetyInfo&: *SafetyInfo, MSSAU); |
2268 | |
2269 | return true; |
2270 | } |
2271 | |
2272 | static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, |
2273 | function_ref<void(Instruction *)> Fn) { |
2274 | for (const BasicBlock *BB : L->blocks()) |
2275 | if (const auto *Accesses = MSSA->getBlockAccesses(BB)) |
2276 | for (const auto &Access : *Accesses) |
2277 | if (const auto *MUD = dyn_cast<MemoryUseOrDef>(Val: &Access)) |
2278 | Fn(MUD->getMemoryInst()); |
2279 | } |
2280 | |
2281 | // The bool indicates whether there might be reads outside the set, in which |
2282 | // case only loads may be promoted. |
2283 | static SmallVector<PointersAndHasReadsOutsideSet, 0> |
2284 | collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { |
2285 | BatchAAResults BatchAA(*AA); |
2286 | AliasSetTracker AST(BatchAA); |
2287 | |
2288 | auto IsPotentiallyPromotable = [L](const Instruction *I) { |
2289 | if (const auto *SI = dyn_cast<StoreInst>(Val: I)) |
2290 | return L->isLoopInvariant(V: SI->getPointerOperand()); |
2291 | if (const auto *LI = dyn_cast<LoadInst>(Val: I)) |
2292 | return L->isLoopInvariant(V: LI->getPointerOperand()); |
2293 | return false; |
2294 | }; |
2295 | |
2296 | // Populate AST with potentially promotable accesses. |
2297 | SmallPtrSet<Value *, 16> AttemptingPromotion; |
2298 | foreachMemoryAccess(MSSA, L, Fn: [&](Instruction *I) { |
2299 | if (IsPotentiallyPromotable(I)) { |
2300 | AttemptingPromotion.insert(Ptr: I); |
2301 | AST.add(I); |
2302 | } |
2303 | }); |
2304 | |
2305 | // We're only interested in must-alias sets that contain a mod. |
2306 | SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; |
2307 | for (AliasSet &AS : AST) |
2308 | if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) |
2309 | Sets.push_back(Elt: {&AS, false}); |
2310 | |
2311 | if (Sets.empty()) |
2312 | return {}; // Nothing to promote... |
2313 | |
2314 | // Discard any sets for which there is an aliasing non-promotable access. |
2315 | foreachMemoryAccess(MSSA, L, Fn: [&](Instruction *I) { |
2316 | if (AttemptingPromotion.contains(Ptr: I)) |
2317 | return; |
2318 | |
2319 | llvm::erase_if(C&: Sets, P: [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { |
2320 | ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(Inst: I, AA&: BatchAA); |
2321 | // Cannot promote if there are writes outside the set. |
2322 | if (isModSet(MRI: MR)) |
2323 | return true; |
2324 | if (isRefSet(MRI: MR)) { |
2325 | // Remember reads outside the set. |
2326 | Pair.setInt(true); |
2327 | // If this is a mod-only set and there are reads outside the set, |
2328 | // we will not be able to promote, so bail out early. |
2329 | return !Pair.getPointer()->isRef(); |
2330 | } |
2331 | return false; |
2332 | }); |
2333 | }); |
2334 | |
2335 | SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; |
2336 | for (auto [Set, HasReadsOutsideSet] : Sets) { |
2337 | SmallSetVector<Value *, 8> PointerMustAliases; |
2338 | for (const auto &MemLoc : *Set) |
2339 | PointerMustAliases.insert(X: const_cast<Value *>(MemLoc.Ptr)); |
2340 | Result.emplace_back(Args: std::move(PointerMustAliases), Args&: HasReadsOutsideSet); |
2341 | } |
2342 | |
2343 | return Result; |
2344 | } |
2345 | |
2346 | static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, |
2347 | Loop *CurLoop, Instruction &I, |
2348 | SinkAndHoistLICMFlags &Flags, |
2349 | bool InvariantGroup) { |
2350 | // For hoisting, use the walker to determine safety |
2351 | if (!Flags.getIsSink()) { |
2352 | // If hoisting an invariant group, we only need to check that there |
2353 | // is no store to the loaded pointer between the start of the loop, |
2354 | // and the load (since all values must be the same). |
2355 | |
2356 | // This can be checked in two conditions: |
2357 | // 1) if the memoryaccess is outside the loop |
2358 | // 2) the earliest access is at the loop header, |
2359 | // if the memory loaded is the phi node |
2360 | |
2361 | BatchAAResults BAA(MSSA->getAA()); |
2362 | MemoryAccess *Source = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags, MA: MU); |
2363 | return !MSSA->isLiveOnEntryDef(MA: Source) && |
2364 | CurLoop->contains(BB: Source->getBlock()) && |
2365 | !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Val: Source)); |
2366 | } |
2367 | |
2368 | // For sinking, we'd need to check all Defs below this use. The getClobbering |
2369 | // call will look on the backedge of the loop, but will check aliasing with |
2370 | // the instructions on the previous iteration. |
2371 | // For example: |
2372 | // for (i ... ) |
2373 | // load a[i] ( Use (LoE) |
2374 | // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. |
2375 | // i++; |
2376 | // The load sees no clobbering inside the loop, as the backedge alias check |
2377 | // does phi translation, and will check aliasing against store a[i-1]. |
2378 | // However sinking the load outside the loop, below the store is incorrect. |
2379 | |
2380 | // For now, only sink if there are no Defs in the loop, and the existing ones |
2381 | // precede the use and are in the same block. |
2382 | // FIXME: Increase precision: Safe to sink if Use post dominates the Def; |
2383 | // needs PostDominatorTreeAnalysis. |
2384 | // FIXME: More precise: no Defs that alias this Use. |
2385 | if (Flags.tooManyMemoryAccesses()) |
2386 | return true; |
2387 | for (auto *BB : CurLoop->getBlocks()) |
2388 | if (pointerInvalidatedByBlock(BB&: *BB, MSSA&: *MSSA, MU&: *MU)) |
2389 | return true; |
2390 | // When sinking, the source block may not be part of the loop so check it. |
2391 | if (!CurLoop->contains(Inst: &I)) |
2392 | return pointerInvalidatedByBlock(BB&: *I.getParent(), MSSA&: *MSSA, MU&: *MU); |
2393 | |
2394 | return false; |
2395 | } |
2396 | |
2397 | bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { |
2398 | if (const auto *Accesses = MSSA.getBlockDefs(BB: &BB)) |
2399 | for (const auto &MA : *Accesses) |
2400 | if (const auto *MD = dyn_cast<MemoryDef>(Val: &MA)) |
2401 | if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(A: MD, B: &MU)) |
2402 | return true; |
2403 | return false; |
2404 | } |
2405 | |
2406 | /// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A < |
2407 | /// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their |
2408 | /// minimun can be computed outside of loop, and X is not a loop-invariant. |
2409 | static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, |
2410 | MemorySSAUpdater &MSSAU) { |
2411 | bool Inverse = false; |
2412 | using namespace PatternMatch; |
2413 | Value *Cond1, *Cond2; |
2414 | if (match(V: &I, P: m_LogicalOr(L: m_Value(V&: Cond1), R: m_Value(V&: Cond2)))) { |
2415 | Inverse = true; |
2416 | } else if (match(V: &I, P: m_LogicalAnd(L: m_Value(V&: Cond1), R: m_Value(V&: Cond2)))) { |
2417 | // Do nothing |
2418 | } else |
2419 | return false; |
2420 | |
2421 | auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P, |
2422 | Value *&LHS, Value *&RHS) { |
2423 | if (!match(V: C, P: m_OneUse(SubPattern: m_ICmp(Pred&: P, L: m_Value(V&: LHS), R: m_Value(V&: RHS))))) |
2424 | return false; |
2425 | if (!LHS->getType()->isIntegerTy()) |
2426 | return false; |
2427 | if (!ICmpInst::isRelational(P)) |
2428 | return false; |
2429 | if (L.isLoopInvariant(V: LHS)) { |
2430 | std::swap(a&: LHS, b&: RHS); |
2431 | P = ICmpInst::getSwappedPredicate(pred: P); |
2432 | } |
2433 | if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS)) |
2434 | return false; |
2435 | if (Inverse) |
2436 | P = ICmpInst::getInversePredicate(pred: P); |
2437 | return true; |
2438 | }; |
2439 | ICmpInst::Predicate P1, P2; |
2440 | Value *LHS1, *LHS2, *RHS1, *RHS2; |
2441 | if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) || |
2442 | !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2)) |
2443 | return false; |
2444 | if (P1 != P2 || LHS1 != LHS2) |
2445 | return false; |
2446 | |
2447 | // Everything is fine, we can do the transform. |
2448 | bool UseMin = ICmpInst::isLT(P: P1) || ICmpInst::isLE(P: P1); |
2449 | assert( |
2450 | (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) && |
2451 | "Relational predicate is either less (or equal) or greater (or equal)!" ); |
2452 | Intrinsic::ID id = ICmpInst::isSigned(predicate: P1) |
2453 | ? (UseMin ? Intrinsic::smin : Intrinsic::smax) |
2454 | : (UseMin ? Intrinsic::umin : Intrinsic::umax); |
2455 | auto * = L.getLoopPreheader(); |
2456 | assert(Preheader && "Loop is not in simplify form?" ); |
2457 | IRBuilder<> Builder(Preheader->getTerminator()); |
2458 | // We are about to create a new guaranteed use for RHS2 which might not exist |
2459 | // before (if it was a non-taken input of logical and/or instruction). If it |
2460 | // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are |
2461 | // introduced, so they don't need this. |
2462 | if (isa<SelectInst>(Val: I)) |
2463 | RHS2 = Builder.CreateFreeze(V: RHS2, Name: RHS2->getName() + ".fr" ); |
2464 | Value *NewRHS = Builder.CreateBinaryIntrinsic( |
2465 | ID: id, LHS: RHS1, RHS: RHS2, FMFSource: nullptr, Name: StringRef("invariant." ) + |
2466 | (ICmpInst::isSigned(predicate: P1) ? "s" : "u" ) + |
2467 | (UseMin ? "min" : "max" )); |
2468 | Builder.SetInsertPoint(&I); |
2469 | ICmpInst::Predicate P = P1; |
2470 | if (Inverse) |
2471 | P = ICmpInst::getInversePredicate(pred: P); |
2472 | Value *NewCond = Builder.CreateICmp(P, LHS: LHS1, RHS: NewRHS); |
2473 | NewCond->takeName(V: &I); |
2474 | I.replaceAllUsesWith(V: NewCond); |
2475 | eraseInstruction(I, SafetyInfo, MSSAU); |
2476 | eraseInstruction(I&: *cast<Instruction>(Val: Cond1), SafetyInfo, MSSAU); |
2477 | eraseInstruction(I&: *cast<Instruction>(Val: Cond2), SafetyInfo, MSSAU); |
2478 | return true; |
2479 | } |
2480 | |
2481 | /// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if |
2482 | /// this allows hoisting the inner GEP. |
2483 | static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, |
2484 | MemorySSAUpdater &MSSAU, AssumptionCache *AC, |
2485 | DominatorTree *DT) { |
2486 | auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I); |
2487 | if (!GEP) |
2488 | return false; |
2489 | |
2490 | auto *Src = dyn_cast<GetElementPtrInst>(Val: GEP->getPointerOperand()); |
2491 | if (!Src || !Src->hasOneUse() || !L.contains(Inst: Src)) |
2492 | return false; |
2493 | |
2494 | Value *SrcPtr = Src->getPointerOperand(); |
2495 | auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); }; |
2496 | if (!L.isLoopInvariant(V: SrcPtr) || !all_of(Range: GEP->indices(), P: LoopInvariant)) |
2497 | return false; |
2498 | |
2499 | // This can only happen if !AllowSpeculation, otherwise this would already be |
2500 | // handled. |
2501 | // FIXME: Should we respect AllowSpeculation in these reassociation folds? |
2502 | // The flag exists to prevent metadata dropping, which is not relevant here. |
2503 | if (all_of(Range: Src->indices(), P: LoopInvariant)) |
2504 | return false; |
2505 | |
2506 | // The swapped GEPs are inbounds if both original GEPs are inbounds |
2507 | // and the sign of the offsets is the same. For simplicity, only |
2508 | // handle both offsets being non-negative. |
2509 | const DataLayout &DL = GEP->getDataLayout(); |
2510 | auto NonNegative = [&](Value *V) { |
2511 | return isKnownNonNegative(V, SQ: SimplifyQuery(DL, DT, AC, GEP)); |
2512 | }; |
2513 | bool IsInBounds = Src->isInBounds() && GEP->isInBounds() && |
2514 | all_of(Range: Src->indices(), P: NonNegative) && |
2515 | all_of(Range: GEP->indices(), P: NonNegative); |
2516 | |
2517 | BasicBlock * = L.getLoopPreheader(); |
2518 | IRBuilder<> Builder(Preheader->getTerminator()); |
2519 | Value *NewSrc = Builder.CreateGEP(Ty: GEP->getSourceElementType(), Ptr: SrcPtr, |
2520 | IdxList: SmallVector<Value *>(GEP->indices()), |
2521 | Name: "invariant.gep" , NW: IsInBounds); |
2522 | Builder.SetInsertPoint(GEP); |
2523 | Value *NewGEP = Builder.CreateGEP(Ty: Src->getSourceElementType(), Ptr: NewSrc, |
2524 | IdxList: SmallVector<Value *>(Src->indices()), Name: "gep" , |
2525 | NW: IsInBounds); |
2526 | GEP->replaceAllUsesWith(V: NewGEP); |
2527 | eraseInstruction(I&: *GEP, SafetyInfo, MSSAU); |
2528 | eraseInstruction(I&: *Src, SafetyInfo, MSSAU); |
2529 | return true; |
2530 | } |
2531 | |
2532 | /// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here |
2533 | /// C1 and C2 are loop invariants and LV is a loop-variant. |
2534 | static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS, |
2535 | Value *InvariantRHS, ICmpInst &ICmp, Loop &L, |
2536 | ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, |
2537 | AssumptionCache *AC, DominatorTree *DT) { |
2538 | assert(ICmpInst::isSigned(Pred) && "Not supported yet!" ); |
2539 | assert(!L.isLoopInvariant(VariantLHS) && "Precondition." ); |
2540 | assert(L.isLoopInvariant(InvariantRHS) && "Precondition." ); |
2541 | |
2542 | // Try to represent VariantLHS as sum of invariant and variant operands. |
2543 | using namespace PatternMatch; |
2544 | Value *VariantOp, *InvariantOp; |
2545 | if (!match(V: VariantLHS, P: m_NSWAdd(L: m_Value(V&: VariantOp), R: m_Value(V&: InvariantOp)))) |
2546 | return false; |
2547 | |
2548 | // LHS itself is a loop-variant, try to represent it in the form: |
2549 | // "VariantOp + InvariantOp". If it is possible, then we can reassociate. |
2550 | if (L.isLoopInvariant(V: VariantOp)) |
2551 | std::swap(a&: VariantOp, b&: InvariantOp); |
2552 | if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp)) |
2553 | return false; |
2554 | |
2555 | // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to |
2556 | // freely move values from left side of inequality to right side (just as in |
2557 | // normal linear arithmetics). Overflows make things much more complicated, so |
2558 | // we want to avoid this. |
2559 | auto &DL = L.getHeader()->getDataLayout(); |
2560 | bool ProvedNoOverflowAfterReassociate = |
2561 | computeOverflowForSignedSub(LHS: InvariantRHS, RHS: InvariantOp, |
2562 | SQ: SimplifyQuery(DL, DT, AC, &ICmp)) == |
2563 | llvm::OverflowResult::NeverOverflows; |
2564 | if (!ProvedNoOverflowAfterReassociate) |
2565 | return false; |
2566 | auto * = L.getLoopPreheader(); |
2567 | assert(Preheader && "Loop is not in simplify form?" ); |
2568 | IRBuilder<> Builder(Preheader->getTerminator()); |
2569 | Value *NewCmpOp = Builder.CreateSub(LHS: InvariantRHS, RHS: InvariantOp, Name: "invariant.op" , |
2570 | /*HasNUW*/ false, /*HasNSW*/ true); |
2571 | ICmp.setPredicate(Pred); |
2572 | ICmp.setOperand(i_nocapture: 0, Val_nocapture: VariantOp); |
2573 | ICmp.setOperand(i_nocapture: 1, Val_nocapture: NewCmpOp); |
2574 | eraseInstruction(I&: cast<Instruction>(Val&: *VariantLHS), SafetyInfo, MSSAU); |
2575 | return true; |
2576 | } |
2577 | |
2578 | /// Try to reassociate and hoist the following two patterns: |
2579 | /// LV - C1 < C2 --> LV < C1 + C2, |
2580 | /// C1 - LV < C2 --> LV > C1 - C2. |
2581 | static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS, |
2582 | Value *InvariantRHS, ICmpInst &ICmp, Loop &L, |
2583 | ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU, |
2584 | AssumptionCache *AC, DominatorTree *DT) { |
2585 | assert(ICmpInst::isSigned(Pred) && "Not supported yet!" ); |
2586 | assert(!L.isLoopInvariant(VariantLHS) && "Precondition." ); |
2587 | assert(L.isLoopInvariant(InvariantRHS) && "Precondition." ); |
2588 | |
2589 | // Try to represent VariantLHS as sum of invariant and variant operands. |
2590 | using namespace PatternMatch; |
2591 | Value *VariantOp, *InvariantOp; |
2592 | if (!match(V: VariantLHS, P: m_NSWSub(L: m_Value(V&: VariantOp), R: m_Value(V&: InvariantOp)))) |
2593 | return false; |
2594 | |
2595 | bool VariantSubtracted = false; |
2596 | // LHS itself is a loop-variant, try to represent it in the form: |
2597 | // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If |
2598 | // the variant operand goes with minus, we use a slightly different scheme. |
2599 | if (L.isLoopInvariant(V: VariantOp)) { |
2600 | std::swap(a&: VariantOp, b&: InvariantOp); |
2601 | VariantSubtracted = true; |
2602 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
2603 | } |
2604 | if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp)) |
2605 | return false; |
2606 | |
2607 | // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to |
2608 | // freely move values from left side of inequality to right side (just as in |
2609 | // normal linear arithmetics). Overflows make things much more complicated, so |
2610 | // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that |
2611 | // "C1 - C2" does not overflow. |
2612 | auto &DL = L.getHeader()->getDataLayout(); |
2613 | SimplifyQuery SQ(DL, DT, AC, &ICmp); |
2614 | if (VariantSubtracted) { |
2615 | // C1 - LV < C2 --> LV > C1 - C2 |
2616 | if (computeOverflowForSignedSub(LHS: InvariantOp, RHS: InvariantRHS, SQ) != |
2617 | llvm::OverflowResult::NeverOverflows) |
2618 | return false; |
2619 | } else { |
2620 | // LV - C1 < C2 --> LV < C1 + C2 |
2621 | if (computeOverflowForSignedAdd(LHS: InvariantOp, RHS: InvariantRHS, SQ) != |
2622 | llvm::OverflowResult::NeverOverflows) |
2623 | return false; |
2624 | } |
2625 | auto * = L.getLoopPreheader(); |
2626 | assert(Preheader && "Loop is not in simplify form?" ); |
2627 | IRBuilder<> Builder(Preheader->getTerminator()); |
2628 | Value *NewCmpOp = |
2629 | VariantSubtracted |
2630 | ? Builder.CreateSub(LHS: InvariantOp, RHS: InvariantRHS, Name: "invariant.op" , |
2631 | /*HasNUW*/ false, /*HasNSW*/ true) |
2632 | : Builder.CreateAdd(LHS: InvariantOp, RHS: InvariantRHS, Name: "invariant.op" , |
2633 | /*HasNUW*/ false, /*HasNSW*/ true); |
2634 | ICmp.setPredicate(Pred); |
2635 | ICmp.setOperand(i_nocapture: 0, Val_nocapture: VariantOp); |
2636 | ICmp.setOperand(i_nocapture: 1, Val_nocapture: NewCmpOp); |
2637 | eraseInstruction(I&: cast<Instruction>(Val&: *VariantLHS), SafetyInfo, MSSAU); |
2638 | return true; |
2639 | } |
2640 | |
2641 | /// Reassociate and hoist add/sub expressions. |
2642 | static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo, |
2643 | MemorySSAUpdater &MSSAU, AssumptionCache *AC, |
2644 | DominatorTree *DT) { |
2645 | using namespace PatternMatch; |
2646 | ICmpInst::Predicate Pred; |
2647 | Value *LHS, *RHS; |
2648 | if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: LHS), R: m_Value(V&: RHS)))) |
2649 | return false; |
2650 | |
2651 | // TODO: Support unsigned predicates? |
2652 | if (!ICmpInst::isSigned(predicate: Pred)) |
2653 | return false; |
2654 | |
2655 | // Put variant operand to LHS position. |
2656 | if (L.isLoopInvariant(V: LHS)) { |
2657 | std::swap(a&: LHS, b&: RHS); |
2658 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
2659 | } |
2660 | // We want to delete the initial operation after reassociation, so only do it |
2661 | // if it has no other uses. |
2662 | if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS) || !LHS->hasOneUse()) |
2663 | return false; |
2664 | |
2665 | // TODO: We could go with smarter context, taking common dominator of all I's |
2666 | // users instead of I itself. |
2667 | if (hoistAdd(Pred, VariantLHS: LHS, InvariantRHS: RHS, ICmp&: cast<ICmpInst>(Val&: I), L, SafetyInfo, MSSAU, AC, DT)) |
2668 | return true; |
2669 | |
2670 | if (hoistSub(Pred, VariantLHS: LHS, InvariantRHS: RHS, ICmp&: cast<ICmpInst>(Val&: I), L, SafetyInfo, MSSAU, AC, DT)) |
2671 | return true; |
2672 | |
2673 | return false; |
2674 | } |
2675 | |
2676 | static bool isReassociableOp(Instruction *I, unsigned IntOpcode, |
2677 | unsigned FPOpcode) { |
2678 | if (I->getOpcode() == IntOpcode) |
2679 | return true; |
2680 | if (I->getOpcode() == FPOpcode && I->hasAllowReassoc() && |
2681 | I->hasNoSignedZeros()) |
2682 | return true; |
2683 | return false; |
2684 | } |
2685 | |
2686 | /// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where |
2687 | /// A1, A2, ... and C are loop invariants into expressions like |
2688 | /// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ... |
2689 | /// invariant expressions. This functions returns true only if any hoisting has |
2690 | /// actually occured. |
2691 | static bool hoistMulAddAssociation(Instruction &I, Loop &L, |
2692 | ICFLoopSafetyInfo &SafetyInfo, |
2693 | MemorySSAUpdater &MSSAU, AssumptionCache *AC, |
2694 | DominatorTree *DT) { |
2695 | if (!isReassociableOp(I: &I, IntOpcode: Instruction::Mul, FPOpcode: Instruction::FMul)) |
2696 | return false; |
2697 | Value *VariantOp = I.getOperand(i: 0); |
2698 | Value *InvariantOp = I.getOperand(i: 1); |
2699 | if (L.isLoopInvariant(V: VariantOp)) |
2700 | std::swap(a&: VariantOp, b&: InvariantOp); |
2701 | if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp)) |
2702 | return false; |
2703 | Value *Factor = InvariantOp; |
2704 | |
2705 | // First, we need to make sure we should do the transformation. |
2706 | SmallVector<Use *> Changes; |
2707 | SmallVector<BinaryOperator *> Adds; |
2708 | SmallVector<BinaryOperator *> Worklist; |
2709 | if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(Val: VariantOp)) |
2710 | Worklist.push_back(Elt: VariantBinOp); |
2711 | while (!Worklist.empty()) { |
2712 | BinaryOperator *BO = Worklist.pop_back_val(); |
2713 | if (!BO->hasOneUse()) |
2714 | return false; |
2715 | if (isReassociableOp(I: BO, IntOpcode: Instruction::Add, FPOpcode: Instruction::FAdd) && |
2716 | isa<BinaryOperator>(Val: BO->getOperand(i_nocapture: 0)) && |
2717 | isa<BinaryOperator>(Val: BO->getOperand(i_nocapture: 1))) { |
2718 | Worklist.push_back(Elt: cast<BinaryOperator>(Val: BO->getOperand(i_nocapture: 0))); |
2719 | Worklist.push_back(Elt: cast<BinaryOperator>(Val: BO->getOperand(i_nocapture: 1))); |
2720 | Adds.push_back(Elt: BO); |
2721 | continue; |
2722 | } |
2723 | if (!isReassociableOp(I: BO, IntOpcode: Instruction::Mul, FPOpcode: Instruction::FMul) || |
2724 | L.isLoopInvariant(V: BO)) |
2725 | return false; |
2726 | Use &U0 = BO->getOperandUse(i: 0); |
2727 | Use &U1 = BO->getOperandUse(i: 1); |
2728 | if (L.isLoopInvariant(V: U0)) |
2729 | Changes.push_back(Elt: &U0); |
2730 | else if (L.isLoopInvariant(V: U1)) |
2731 | Changes.push_back(Elt: &U1); |
2732 | else |
2733 | return false; |
2734 | unsigned Limit = I.getType()->isIntOrIntVectorTy() |
2735 | ? IntAssociationUpperLimit |
2736 | : FPAssociationUpperLimit; |
2737 | if (Changes.size() > Limit) |
2738 | return false; |
2739 | } |
2740 | if (Changes.empty()) |
2741 | return false; |
2742 | |
2743 | // Drop the poison flags for any adds we looked through. |
2744 | if (I.getType()->isIntOrIntVectorTy()) { |
2745 | for (auto *Add : Adds) |
2746 | Add->dropPoisonGeneratingFlags(); |
2747 | } |
2748 | |
2749 | // We know we should do it so let's do the transformation. |
2750 | auto * = L.getLoopPreheader(); |
2751 | assert(Preheader && "Loop is not in simplify form?" ); |
2752 | IRBuilder<> Builder(Preheader->getTerminator()); |
2753 | for (auto *U : Changes) { |
2754 | assert(L.isLoopInvariant(U->get())); |
2755 | auto *Ins = cast<BinaryOperator>(Val: U->getUser()); |
2756 | Value *Mul; |
2757 | if (I.getType()->isIntOrIntVectorTy()) { |
2758 | Mul = Builder.CreateMul(LHS: U->get(), RHS: Factor, Name: "factor.op.mul" ); |
2759 | // Drop the poison flags on the original multiply. |
2760 | Ins->dropPoisonGeneratingFlags(); |
2761 | } else |
2762 | Mul = Builder.CreateFMulFMF(L: U->get(), R: Factor, FMFSource: Ins, Name: "factor.op.fmul" ); |
2763 | |
2764 | // Rewrite the reassociable instruction. |
2765 | unsigned OpIdx = U->getOperandNo(); |
2766 | auto *LHS = OpIdx == 0 ? Mul : Ins->getOperand(i_nocapture: 0); |
2767 | auto *RHS = OpIdx == 1 ? Mul : Ins->getOperand(i_nocapture: 1); |
2768 | auto *NewBO = BinaryOperator::Create(Op: Ins->getOpcode(), S1: LHS, S2: RHS, |
2769 | Name: Ins->getName() + ".reass" , InsertBefore: Ins); |
2770 | NewBO->copyIRFlags(V: Ins); |
2771 | if (VariantOp == Ins) |
2772 | VariantOp = NewBO; |
2773 | Ins->replaceAllUsesWith(V: NewBO); |
2774 | eraseInstruction(I&: *Ins, SafetyInfo, MSSAU); |
2775 | } |
2776 | |
2777 | I.replaceAllUsesWith(V: VariantOp); |
2778 | eraseInstruction(I, SafetyInfo, MSSAU); |
2779 | return true; |
2780 | } |
2781 | |
2782 | static bool hoistArithmetics(Instruction &I, Loop &L, |
2783 | ICFLoopSafetyInfo &SafetyInfo, |
2784 | MemorySSAUpdater &MSSAU, AssumptionCache *AC, |
2785 | DominatorTree *DT) { |
2786 | // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them |
2787 | // into (x < min(INV1, INV2)), and hoisting the invariant part of this |
2788 | // expression out of the loop. |
2789 | if (hoistMinMax(I, L, SafetyInfo, MSSAU)) { |
2790 | ++NumHoisted; |
2791 | ++NumMinMaxHoisted; |
2792 | return true; |
2793 | } |
2794 | |
2795 | // Try to hoist GEPs by reassociation. |
2796 | if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) { |
2797 | ++NumHoisted; |
2798 | ++NumGEPsHoisted; |
2799 | return true; |
2800 | } |
2801 | |
2802 | // Try to hoist add/sub's by reassociation. |
2803 | if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) { |
2804 | ++NumHoisted; |
2805 | ++NumAddSubHoisted; |
2806 | return true; |
2807 | } |
2808 | |
2809 | bool IsInt = I.getType()->isIntOrIntVectorTy(); |
2810 | if (hoistMulAddAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) { |
2811 | ++NumHoisted; |
2812 | if (IsInt) |
2813 | ++NumIntAssociationsHoisted; |
2814 | else |
2815 | ++NumFPAssociationsHoisted; |
2816 | return true; |
2817 | } |
2818 | |
2819 | return false; |
2820 | } |
2821 | |
2822 | /// Little predicate that returns true if the specified basic block is in |
2823 | /// a subloop of the current one, not the current one itself. |
2824 | /// |
2825 | static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { |
2826 | assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop" ); |
2827 | return LI->getLoopFor(BB) != CurLoop; |
2828 | } |
2829 | |