1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/PriorityWorklist.h"
41#include "llvm/ADT/SetOperations.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/AliasSetTracker.h"
45#include "llvm/Analysis/AssumptionCache.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/GuardUtils.h"
48#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
49#include "llvm/Analysis/Loads.h"
50#include "llvm/Analysis/LoopInfo.h"
51#include "llvm/Analysis/LoopIterator.h"
52#include "llvm/Analysis/LoopNestAnalysis.h"
53#include "llvm/Analysis/LoopPass.h"
54#include "llvm/Analysis/MemorySSA.h"
55#include "llvm/Analysis/MemorySSAUpdater.h"
56#include "llvm/Analysis/MustExecute.h"
57#include "llvm/Analysis/OptimizationRemarkEmitter.h"
58#include "llvm/Analysis/ScalarEvolution.h"
59#include "llvm/Analysis/TargetLibraryInfo.h"
60#include "llvm/Analysis/TargetTransformInfo.h"
61#include "llvm/Analysis/ValueTracking.h"
62#include "llvm/IR/CFG.h"
63#include "llvm/IR/Constants.h"
64#include "llvm/IR/DataLayout.h"
65#include "llvm/IR/DebugInfoMetadata.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/IR/Dominators.h"
68#include "llvm/IR/Instructions.h"
69#include "llvm/IR/IntrinsicInst.h"
70#include "llvm/IR/IRBuilder.h"
71#include "llvm/IR/LLVMContext.h"
72#include "llvm/IR/Metadata.h"
73#include "llvm/IR/PatternMatch.h"
74#include "llvm/IR/PredIteratorCache.h"
75#include "llvm/InitializePasses.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Debug.h"
78#include "llvm/Support/raw_ostream.h"
79#include "llvm/Target/TargetOptions.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
82#include "llvm/Transforms/Utils/BasicBlockUtils.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include "llvm/Transforms/Utils/LoopUtils.h"
85#include "llvm/Transforms/Utils/SSAUpdater.h"
86#include <algorithm>
87#include <utility>
88using namespace llvm;
89
90namespace llvm {
91class LPMUpdater;
92} // namespace llvm
93
94#define DEBUG_TYPE "licm"
95
96STATISTIC(NumCreatedBlocks, "Number of blocks created");
97STATISTIC(NumClonedBranches, "Number of branches cloned");
98STATISTIC(NumSunk, "Number of instructions sunk out of loop");
99STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
100STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
101STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
102STATISTIC(NumPromotionCandidates, "Number of promotion candidates");
103STATISTIC(NumLoadPromoted, "Number of load-only promotions");
104STATISTIC(NumLoadStorePromoted, "Number of load and store promotions");
105STATISTIC(NumMinMaxHoisted,
106 "Number of min/max expressions hoisted out of the loop");
107STATISTIC(NumGEPsHoisted,
108 "Number of geps reassociated and hoisted out of the loop");
109STATISTIC(NumAddSubHoisted, "Number of add/subtract expressions reassociated "
110 "and hoisted out of the loop");
111STATISTIC(NumFPAssociationsHoisted, "Number of invariant FP expressions "
112 "reassociated and hoisted out of the loop");
113STATISTIC(NumIntAssociationsHoisted,
114 "Number of invariant int expressions "
115 "reassociated and hoisted out of the loop");
116
117/// Memory promotion is enabled by default.
118static cl::opt<bool>
119 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(Val: false),
120 cl::desc("Disable memory promotion in LICM pass"));
121
122static cl::opt<bool> ControlFlowHoisting(
123 "licm-control-flow-hoisting", cl::Hidden, cl::init(Val: false),
124 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
125
126static cl::opt<bool>
127 SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(Val: false),
128 cl::desc("Force thread model single in LICM pass"));
129
130static cl::opt<uint32_t> MaxNumUsesTraversed(
131 "licm-max-num-uses-traversed", cl::Hidden, cl::init(Val: 8),
132 cl::desc("Max num uses visited for identifying load "
133 "invariance in loop using invariant start (default = 8)"));
134
135static cl::opt<unsigned> FPAssociationUpperLimit(
136 "licm-max-num-fp-reassociations", cl::init(Val: 5U), cl::Hidden,
137 cl::desc(
138 "Set upper limit for the number of transformations performed "
139 "during a single round of hoisting the reassociated expressions."));
140
141cl::opt<unsigned> IntAssociationUpperLimit(
142 "licm-max-num-int-reassociations", cl::init(Val: 5U), cl::Hidden,
143 cl::desc(
144 "Set upper limit for the number of transformations performed "
145 "during a single round of hoisting the reassociated expressions."));
146
147// Experimental option to allow imprecision in LICM in pathological cases, in
148// exchange for faster compile. This is to be removed if MemorySSA starts to
149// address the same issue. LICM calls MemorySSAWalker's
150// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
151// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
152// which may not be precise, since optimizeUses is capped. The result is
153// correct, but we may not get as "far up" as possible to get which access is
154// clobbering the one queried.
155cl::opt<unsigned> llvm::SetLicmMssaOptCap(
156 "licm-mssa-optimization-cap", cl::init(Val: 100), cl::Hidden,
157 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
158 "for faster compile. Caps the MemorySSA clobbering calls."));
159
160// Experimentally, memory promotion carries less importance than sinking and
161// hoisting. Limit when we do promotion when using MemorySSA, in order to save
162// compile time.
163cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
164 "licm-mssa-max-acc-promotion", cl::init(Val: 250), cl::Hidden,
165 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
166 "effect. When MSSA in LICM is enabled, then this is the maximum "
167 "number of accesses allowed to be present in a loop in order to "
168 "enable memory promotion."));
169
170static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
171static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
172 const LoopSafetyInfo *SafetyInfo,
173 TargetTransformInfo *TTI,
174 bool &FoldableInLoop, bool LoopNestMode);
175static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
176 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
177 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
178 OptimizationRemarkEmitter *ORE);
179static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
180 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
181 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE);
182static bool isSafeToExecuteUnconditionally(
183 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
184 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
185 OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
186 AssumptionCache *AC, bool AllowSpeculation);
187static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
188 Loop *CurLoop, Instruction &I,
189 SinkAndHoistLICMFlags &Flags,
190 bool InvariantGroup);
191static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA,
192 MemoryUse &MU);
193/// Aggregates various functions for hoisting computations out of loop.
194static bool hoistArithmetics(Instruction &I, Loop &L,
195 ICFLoopSafetyInfo &SafetyInfo,
196 MemorySSAUpdater &MSSAU, AssumptionCache *AC,
197 DominatorTree *DT);
198static Instruction *cloneInstructionInExitBlock(
199 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
200 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU);
201
202static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
203 MemorySSAUpdater &MSSAU);
204
205static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
206 ICFLoopSafetyInfo &SafetyInfo,
207 MemorySSAUpdater &MSSAU, ScalarEvolution *SE);
208
209static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
210 function_ref<void(Instruction *)> Fn);
211using PointersAndHasReadsOutsideSet =
212 std::pair<SmallSetVector<Value *, 8>, bool>;
213static SmallVector<PointersAndHasReadsOutsideSet, 0>
214collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
215
216namespace {
217struct LoopInvariantCodeMotion {
218 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
219 AssumptionCache *AC, TargetLibraryInfo *TLI,
220 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
221 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
222
223 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
224 unsigned LicmMssaNoAccForPromotionCap,
225 bool LicmAllowSpeculation)
226 : LicmMssaOptCap(LicmMssaOptCap),
227 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
228 LicmAllowSpeculation(LicmAllowSpeculation) {}
229
230private:
231 unsigned LicmMssaOptCap;
232 unsigned LicmMssaNoAccForPromotionCap;
233 bool LicmAllowSpeculation;
234};
235
236struct LegacyLICMPass : public LoopPass {
237 static char ID; // Pass identification, replacement for typeid
238 LegacyLICMPass(
239 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
240 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
241 bool LicmAllowSpeculation = true)
242 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
243 LicmAllowSpeculation) {
244 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
245 }
246
247 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
248 if (skipLoop(L))
249 return false;
250
251 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
252 << L->getHeader()->getNameOrAsOperand() << "\n");
253
254 Function *F = L->getHeader()->getParent();
255
256 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
257 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
258 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
259 // pass. Function analyses need to be preserved across loop transformations
260 // but ORE cannot be preserved (see comment before the pass definition).
261 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
262 return LICM.runOnLoop(
263 L, AA: &getAnalysis<AAResultsWrapperPass>().getAAResults(),
264 LI: &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
265 DT: &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
266 AC: &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F&: *F),
267 TLI: &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F: *F),
268 TTI: &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F: *F),
269 SE: SE ? &SE->getSE() : nullptr, MSSA, ORE: &ORE);
270 }
271
272 /// This transformation requires natural loop information & requires that
273 /// loop preheaders be inserted into the CFG...
274 ///
275 void getAnalysisUsage(AnalysisUsage &AU) const override {
276 AU.addPreserved<DominatorTreeWrapperPass>();
277 AU.addPreserved<LoopInfoWrapperPass>();
278 AU.addRequired<TargetLibraryInfoWrapperPass>();
279 AU.addRequired<MemorySSAWrapperPass>();
280 AU.addPreserved<MemorySSAWrapperPass>();
281 AU.addRequired<TargetTransformInfoWrapperPass>();
282 AU.addRequired<AssumptionCacheTracker>();
283 getLoopAnalysisUsage(AU);
284 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
285 AU.addPreserved<LazyBlockFrequencyInfoPass>();
286 AU.addPreserved<LazyBranchProbabilityInfoPass>();
287 }
288
289private:
290 LoopInvariantCodeMotion LICM;
291};
292} // namespace
293
294PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
295 LoopStandardAnalysisResults &AR, LPMUpdater &) {
296 if (!AR.MSSA)
297 report_fatal_error(reason: "LICM requires MemorySSA (loop-mssa)",
298 /*GenCrashDiag*/gen_crash_diag: false);
299
300 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
301 // pass. Function analyses need to be preserved across loop transformations
302 // but ORE cannot be preserved (see comment before the pass definition).
303 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
304
305 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
306 Opts.AllowSpeculation);
307 if (!LICM.runOnLoop(L: &L, AA: &AR.AA, LI: &AR.LI, DT: &AR.DT, AC: &AR.AC, TLI: &AR.TLI, TTI: &AR.TTI,
308 SE: &AR.SE, MSSA: AR.MSSA, ORE: &ORE))
309 return PreservedAnalyses::all();
310
311 auto PA = getLoopPassPreservedAnalyses();
312 PA.preserve<MemorySSAAnalysis>();
313
314 return PA;
315}
316
317void LICMPass::printPipeline(
318 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
319 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline(
320 OS, MapClassName2PassName);
321
322 OS << '<';
323 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
324 OS << '>';
325}
326
327PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
328 LoopStandardAnalysisResults &AR,
329 LPMUpdater &) {
330 if (!AR.MSSA)
331 report_fatal_error(reason: "LNICM requires MemorySSA (loop-mssa)",
332 /*GenCrashDiag*/gen_crash_diag: false);
333
334 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
335 // pass. Function analyses need to be preserved across loop transformations
336 // but ORE cannot be preserved (see comment before the pass definition).
337 OptimizationRemarkEmitter ORE(LN.getParent());
338
339 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
340 Opts.AllowSpeculation);
341
342 Loop &OutermostLoop = LN.getOutermostLoop();
343 bool Changed = LICM.runOnLoop(L: &OutermostLoop, AA: &AR.AA, LI: &AR.LI, DT: &AR.DT, AC: &AR.AC,
344 TLI: &AR.TLI, TTI: &AR.TTI, SE: &AR.SE, MSSA: AR.MSSA, ORE: &ORE, LoopNestMode: true);
345
346 if (!Changed)
347 return PreservedAnalyses::all();
348
349 auto PA = getLoopPassPreservedAnalyses();
350
351 PA.preserve<DominatorTreeAnalysis>();
352 PA.preserve<LoopAnalysis>();
353 PA.preserve<MemorySSAAnalysis>();
354
355 return PA;
356}
357
358void LNICMPass::printPipeline(
359 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
360 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline(
361 OS, MapClassName2PassName);
362
363 OS << '<';
364 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
365 OS << '>';
366}
367
368char LegacyLICMPass::ID = 0;
369INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
370 false, false)
371INITIALIZE_PASS_DEPENDENCY(LoopPass)
372INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
373INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
374INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
375INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
376INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
377 false)
378
379Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
380
381llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop &L,
382 MemorySSA &MSSA)
383 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
384 IsSink, L, MSSA) {}
385
386llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
387 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
388 Loop &L, MemorySSA &MSSA)
389 : LicmMssaOptCap(LicmMssaOptCap),
390 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
391 IsSink(IsSink) {
392 unsigned AccessCapCount = 0;
393 for (auto *BB : L.getBlocks())
394 if (const auto *Accesses = MSSA.getBlockAccesses(BB))
395 for (const auto &MA : *Accesses) {
396 (void)MA;
397 ++AccessCapCount;
398 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
399 NoOfMemAccTooLarge = true;
400 return;
401 }
402 }
403}
404
405/// Hoist expressions out of the specified loop. Note, alias info for inner
406/// loop is not preserved so it is not a good idea to run LICM multiple
407/// times on one loop.
408bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI,
409 DominatorTree *DT, AssumptionCache *AC,
410 TargetLibraryInfo *TLI,
411 TargetTransformInfo *TTI,
412 ScalarEvolution *SE, MemorySSA *MSSA,
413 OptimizationRemarkEmitter *ORE,
414 bool LoopNestMode) {
415 bool Changed = false;
416
417 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
418
419 // If this loop has metadata indicating that LICM is not to be performed then
420 // just exit.
421 if (hasDisableLICMTransformsHint(L)) {
422 return false;
423 }
424
425 // Don't sink stores from loops with coroutine suspend instructions.
426 // LICM would sink instructions into the default destination of
427 // the coroutine switch. The default destination of the switch is to
428 // handle the case where the coroutine is suspended, by which point the
429 // coroutine frame may have been destroyed. No instruction can be sunk there.
430 // FIXME: This would unfortunately hurt the performance of coroutines, however
431 // there is currently no general solution for this. Similar issues could also
432 // potentially happen in other passes where instructions are being moved
433 // across that edge.
434 bool HasCoroSuspendInst = llvm::any_of(Range: L->getBlocks(), P: [](BasicBlock *BB) {
435 return llvm::any_of(Range&: *BB, P: [](Instruction &I) {
436 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &I);
437 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
438 });
439 });
440
441 MemorySSAUpdater MSSAU(MSSA);
442 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
443 /*IsSink=*/true, *L, *MSSA);
444
445 // Get the preheader block to move instructions into...
446 BasicBlock *Preheader = L->getLoopPreheader();
447
448 // Compute loop safety information.
449 ICFLoopSafetyInfo SafetyInfo;
450 SafetyInfo.computeLoopSafetyInfo(CurLoop: L);
451
452 // We want to visit all of the instructions in this loop... that are not parts
453 // of our subloops (they have already had their invariants hoisted out of
454 // their loop, into this loop, so there is no need to process the BODIES of
455 // the subloops).
456 //
457 // Traverse the body of the loop in depth first order on the dominator tree so
458 // that we are guaranteed to see definitions before we see uses. This allows
459 // us to sink instructions in one pass, without iteration. After sinking
460 // instructions, we perform another pass to hoist them out of the loop.
461 if (L->hasDedicatedExits())
462 Changed |=
463 LoopNestMode
464 ? sinkRegionForLoopNest(DT->getNode(BB: L->getHeader()), AA, LI, DT,
465 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE)
466 : sinkRegion(DT->getNode(BB: L->getHeader()), AA, LI, DT, TLI, TTI, CurLoop: L,
467 MSSAU, &SafetyInfo, Flags, ORE);
468 Flags.setIsSink(false);
469 if (Preheader)
470 Changed |= hoistRegion(DT->getNode(BB: L->getHeader()), AA, LI, DT, AC, TLI, L,
471 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
472 AllowSpeculation: LicmAllowSpeculation);
473
474 // Now that all loop invariants have been removed from the loop, promote any
475 // memory references to scalars that we can.
476 // Don't sink stores from loops without dedicated block exits. Exits
477 // containing indirect branches are not transformed by loop simplify,
478 // make sure we catch that. An additional load may be generated in the
479 // preheader for SSA updater, so also avoid sinking when no preheader
480 // is available.
481 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
482 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
483 // Figure out the loop exits and their insertion points
484 SmallVector<BasicBlock *, 8> ExitBlocks;
485 L->getUniqueExitBlocks(ExitBlocks);
486
487 // We can't insert into a catchswitch.
488 bool HasCatchSwitch = llvm::any_of(Range&: ExitBlocks, P: [](BasicBlock *Exit) {
489 return isa<CatchSwitchInst>(Val: Exit->getTerminator());
490 });
491
492 if (!HasCatchSwitch) {
493 SmallVector<BasicBlock::iterator, 8> InsertPts;
494 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
495 InsertPts.reserve(N: ExitBlocks.size());
496 MSSAInsertPts.reserve(N: ExitBlocks.size());
497 for (BasicBlock *ExitBlock : ExitBlocks) {
498 InsertPts.push_back(Elt: ExitBlock->getFirstInsertionPt());
499 MSSAInsertPts.push_back(Elt: nullptr);
500 }
501
502 PredIteratorCache PIC;
503
504 // Promoting one set of accesses may make the pointers for another set
505 // loop invariant, so run this in a loop.
506 bool Promoted = false;
507 bool LocalPromoted;
508 do {
509 LocalPromoted = false;
510 for (auto [PointerMustAliases, HasReadsOutsideSet] :
511 collectPromotionCandidates(MSSA, AA, L)) {
512 LocalPromoted |= promoteLoopAccessesToScalars(
513 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
514 DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE,
515 AllowSpeculation: LicmAllowSpeculation, HasReadsOutsideSet);
516 }
517 Promoted |= LocalPromoted;
518 } while (LocalPromoted);
519
520 // Once we have promoted values across the loop body we have to
521 // recursively reform LCSSA as any nested loop may now have values defined
522 // within the loop used in the outer loop.
523 // FIXME: This is really heavy handed. It would be a bit better to use an
524 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
525 // it as it went.
526 if (Promoted)
527 formLCSSARecursively(L&: *L, DT: *DT, LI, SE);
528
529 Changed |= Promoted;
530 }
531 }
532
533 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
534 // specifically moving instructions across the loop boundary and so it is
535 // especially in need of basic functional correctness checking here.
536 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
537 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
538 "Parent loop not left in LCSSA form after LICM!");
539
540 if (VerifyMemorySSA)
541 MSSA->verifyMemorySSA();
542
543 if (Changed && SE)
544 SE->forgetLoopDispositions();
545 return Changed;
546}
547
548/// Walk the specified region of the CFG (defined by all blocks dominated by
549/// the specified block, and that are in the current loop) in reverse depth
550/// first order w.r.t the DominatorTree. This allows us to visit uses before
551/// definitions, allowing us to sink a loop body in one pass without iteration.
552///
553bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
554 DominatorTree *DT, TargetLibraryInfo *TLI,
555 TargetTransformInfo *TTI, Loop *CurLoop,
556 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
557 SinkAndHoistLICMFlags &Flags,
558 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
559
560 // Verify inputs.
561 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
562 CurLoop != nullptr && SafetyInfo != nullptr &&
563 "Unexpected input to sinkRegion.");
564
565 // We want to visit children before parents. We will enqueue all the parents
566 // before their children in the worklist and process the worklist in reverse
567 // order.
568 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
569
570 bool Changed = false;
571 for (DomTreeNode *DTN : reverse(C&: Worklist)) {
572 BasicBlock *BB = DTN->getBlock();
573 // Only need to process the contents of this block if it is not part of a
574 // subloop (which would already have been processed).
575 if (inSubLoop(BB, CurLoop, LI))
576 continue;
577
578 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
579 Instruction &I = *--II;
580
581 // The instruction is not used in the loop if it is dead. In this case,
582 // we just delete it instead of sinking it.
583 if (isInstructionTriviallyDead(I: &I, TLI)) {
584 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
585 salvageKnowledge(I: &I);
586 salvageDebugInfo(I);
587 ++II;
588 eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU);
589 Changed = true;
590 continue;
591 }
592
593 // Check to see if we can sink this instruction to the exit blocks
594 // of the loop. We can do this if the all users of the instruction are
595 // outside of the loop. In this case, it doesn't even matter if the
596 // operands of the instruction are loop invariant.
597 //
598 bool FoldableInLoop = false;
599 bool LoopNestMode = OutermostLoop != nullptr;
600 if (!I.mayHaveSideEffects() &&
601 isNotUsedOrFoldableInLoop(I, CurLoop: LoopNestMode ? OutermostLoop : CurLoop,
602 SafetyInfo, TTI, FoldableInLoop,
603 LoopNestMode) &&
604 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, TargetExecutesOncePerLoop: true, LICMFlags&: Flags, ORE)) {
605 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
606 if (!FoldableInLoop) {
607 ++II;
608 salvageDebugInfo(I);
609 eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU);
610 }
611 Changed = true;
612 }
613 }
614 }
615 }
616 if (VerifyMemorySSA)
617 MSSAU.getMemorySSA()->verifyMemorySSA();
618 return Changed;
619}
620
621bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
622 DominatorTree *DT, TargetLibraryInfo *TLI,
623 TargetTransformInfo *TTI, Loop *CurLoop,
624 MemorySSAUpdater &MSSAU,
625 ICFLoopSafetyInfo *SafetyInfo,
626 SinkAndHoistLICMFlags &Flags,
627 OptimizationRemarkEmitter *ORE) {
628
629 bool Changed = false;
630 SmallPriorityWorklist<Loop *, 4> Worklist;
631 Worklist.insert(X: CurLoop);
632 appendLoopsToWorklist(*CurLoop, Worklist);
633 while (!Worklist.empty()) {
634 Loop *L = Worklist.pop_back_val();
635 Changed |= sinkRegion(N: DT->getNode(BB: L->getHeader()), AA, LI, DT, TLI, TTI, CurLoop: L,
636 MSSAU, SafetyInfo, Flags, ORE, OutermostLoop: CurLoop);
637 }
638 return Changed;
639}
640
641namespace {
642// This is a helper class for hoistRegion to make it able to hoist control flow
643// in order to be able to hoist phis. The way this works is that we initially
644// start hoisting to the loop preheader, and when we see a loop invariant branch
645// we make note of this. When we then come to hoist an instruction that's
646// conditional on such a branch we duplicate the branch and the relevant control
647// flow, then hoist the instruction into the block corresponding to its original
648// block in the duplicated control flow.
649class ControlFlowHoister {
650private:
651 // Information about the loop we are hoisting from
652 LoopInfo *LI;
653 DominatorTree *DT;
654 Loop *CurLoop;
655 MemorySSAUpdater &MSSAU;
656
657 // A map of blocks in the loop to the block their instructions will be hoisted
658 // to.
659 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
660
661 // The branches that we can hoist, mapped to the block that marks a
662 // convergence point of their control flow.
663 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
664
665public:
666 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
667 MemorySSAUpdater &MSSAU)
668 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
669
670 void registerPossiblyHoistableBranch(BranchInst *BI) {
671 // We can only hoist conditional branches with loop invariant operands.
672 if (!ControlFlowHoisting || !BI->isConditional() ||
673 !CurLoop->hasLoopInvariantOperands(I: BI))
674 return;
675
676 // The branch destinations need to be in the loop, and we don't gain
677 // anything by duplicating conditional branches with duplicate successors,
678 // as it's essentially the same as an unconditional branch.
679 BasicBlock *TrueDest = BI->getSuccessor(i: 0);
680 BasicBlock *FalseDest = BI->getSuccessor(i: 1);
681 if (!CurLoop->contains(BB: TrueDest) || !CurLoop->contains(BB: FalseDest) ||
682 TrueDest == FalseDest)
683 return;
684
685 // We can hoist BI if one branch destination is the successor of the other,
686 // or both have common successor which we check by seeing if the
687 // intersection of their successors is non-empty.
688 // TODO: This could be expanded to allowing branches where both ends
689 // eventually converge to a single block.
690 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
691 TrueDestSucc.insert(I: succ_begin(BB: TrueDest), E: succ_end(BB: TrueDest));
692 FalseDestSucc.insert(I: succ_begin(BB: FalseDest), E: succ_end(BB: FalseDest));
693 BasicBlock *CommonSucc = nullptr;
694 if (TrueDestSucc.count(Ptr: FalseDest)) {
695 CommonSucc = FalseDest;
696 } else if (FalseDestSucc.count(Ptr: TrueDest)) {
697 CommonSucc = TrueDest;
698 } else {
699 set_intersect(S1&: TrueDestSucc, S2: FalseDestSucc);
700 // If there's one common successor use that.
701 if (TrueDestSucc.size() == 1)
702 CommonSucc = *TrueDestSucc.begin();
703 // If there's more than one pick whichever appears first in the block list
704 // (we can't use the value returned by TrueDestSucc.begin() as it's
705 // unpredicatable which element gets returned).
706 else if (!TrueDestSucc.empty()) {
707 Function *F = TrueDest->getParent();
708 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(Ptr: &BB); };
709 auto It = llvm::find_if(Range&: *F, P: IsSucc);
710 assert(It != F->end() && "Could not find successor in function");
711 CommonSucc = &*It;
712 }
713 }
714 // The common successor has to be dominated by the branch, as otherwise
715 // there will be some other path to the successor that will not be
716 // controlled by this branch so any phi we hoist would be controlled by the
717 // wrong condition. This also takes care of avoiding hoisting of loop back
718 // edges.
719 // TODO: In some cases this could be relaxed if the successor is dominated
720 // by another block that's been hoisted and we can guarantee that the
721 // control flow has been replicated exactly.
722 if (CommonSucc && DT->dominates(Def: BI, BB: CommonSucc))
723 HoistableBranches[BI] = CommonSucc;
724 }
725
726 bool canHoistPHI(PHINode *PN) {
727 // The phi must have loop invariant operands.
728 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(I: PN))
729 return false;
730 // We can hoist phis if the block they are in is the target of hoistable
731 // branches which cover all of the predecessors of the block.
732 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
733 BasicBlock *BB = PN->getParent();
734 for (BasicBlock *PredBB : predecessors(BB))
735 PredecessorBlocks.insert(Ptr: PredBB);
736 // If we have less predecessor blocks than predecessors then the phi will
737 // have more than one incoming value for the same block which we can't
738 // handle.
739 // TODO: This could be handled be erasing some of the duplicate incoming
740 // values.
741 if (PredecessorBlocks.size() != pred_size(BB))
742 return false;
743 for (auto &Pair : HoistableBranches) {
744 if (Pair.second == BB) {
745 // Which blocks are predecessors via this branch depends on if the
746 // branch is triangle-like or diamond-like.
747 if (Pair.first->getSuccessor(i: 0) == BB) {
748 PredecessorBlocks.erase(Ptr: Pair.first->getParent());
749 PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 1));
750 } else if (Pair.first->getSuccessor(i: 1) == BB) {
751 PredecessorBlocks.erase(Ptr: Pair.first->getParent());
752 PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 0));
753 } else {
754 PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 0));
755 PredecessorBlocks.erase(Ptr: Pair.first->getSuccessor(i: 1));
756 }
757 }
758 }
759 // PredecessorBlocks will now be empty if for every predecessor of BB we
760 // found a hoistable branch source.
761 return PredecessorBlocks.empty();
762 }
763
764 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
765 if (!ControlFlowHoisting)
766 return CurLoop->getLoopPreheader();
767 // If BB has already been hoisted, return that
768 if (HoistDestinationMap.count(Val: BB))
769 return HoistDestinationMap[BB];
770
771 // Check if this block is conditional based on a pending branch
772 auto HasBBAsSuccessor =
773 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
774 return BB != Pair.second && (Pair.first->getSuccessor(i: 0) == BB ||
775 Pair.first->getSuccessor(i: 1) == BB);
776 };
777 auto It = llvm::find_if(Range&: HoistableBranches, P: HasBBAsSuccessor);
778
779 // If not involved in a pending branch, hoist to preheader
780 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
781 if (It == HoistableBranches.end()) {
782 LLVM_DEBUG(dbgs() << "LICM using "
783 << InitialPreheader->getNameOrAsOperand()
784 << " as hoist destination for "
785 << BB->getNameOrAsOperand() << "\n");
786 HoistDestinationMap[BB] = InitialPreheader;
787 return InitialPreheader;
788 }
789 BranchInst *BI = It->first;
790 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
791 HoistableBranches.end() &&
792 "BB is expected to be the target of at most one branch");
793
794 LLVMContext &C = BB->getContext();
795 BasicBlock *TrueDest = BI->getSuccessor(i: 0);
796 BasicBlock *FalseDest = BI->getSuccessor(i: 1);
797 BasicBlock *CommonSucc = HoistableBranches[BI];
798 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BB: BI->getParent());
799
800 // Create hoisted versions of blocks that currently don't have them
801 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
802 if (HoistDestinationMap.count(Val: Orig))
803 return HoistDestinationMap[Orig];
804 BasicBlock *New =
805 BasicBlock::Create(Context&: C, Name: Orig->getName() + ".licm", Parent: Orig->getParent());
806 HoistDestinationMap[Orig] = New;
807 DT->addNewBlock(BB: New, DomBB: HoistTarget);
808 if (CurLoop->getParentLoop())
809 CurLoop->getParentLoop()->addBasicBlockToLoop(NewBB: New, LI&: *LI);
810 ++NumCreatedBlocks;
811 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
812 << " as hoist destination for " << Orig->getName()
813 << "\n");
814 return New;
815 };
816 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
817 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
818 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
819
820 // Link up these blocks with branches.
821 if (!HoistCommonSucc->getTerminator()) {
822 // The new common successor we've generated will branch to whatever that
823 // hoist target branched to.
824 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
825 assert(TargetSucc && "Expected hoist target to have a single successor");
826 HoistCommonSucc->moveBefore(MovePos: TargetSucc);
827 BranchInst::Create(IfTrue: TargetSucc, InsertBefore: HoistCommonSucc);
828 }
829 if (!HoistTrueDest->getTerminator()) {
830 HoistTrueDest->moveBefore(MovePos: HoistCommonSucc);
831 BranchInst::Create(IfTrue: HoistCommonSucc, InsertBefore: HoistTrueDest);
832 }
833 if (!HoistFalseDest->getTerminator()) {
834 HoistFalseDest->moveBefore(MovePos: HoistCommonSucc);
835 BranchInst::Create(IfTrue: HoistCommonSucc, InsertBefore: HoistFalseDest);
836 }
837
838 // If BI is being cloned to what was originally the preheader then
839 // HoistCommonSucc will now be the new preheader.
840 if (HoistTarget == InitialPreheader) {
841 // Phis in the loop header now need to use the new preheader.
842 InitialPreheader->replaceSuccessorsPhiUsesWith(New: HoistCommonSucc);
843 MSSAU.wireOldPredecessorsToNewImmediatePredecessor(
844 Old: HoistTarget->getSingleSuccessor(), New: HoistCommonSucc, Preds: {HoistTarget});
845 // The new preheader dominates the loop header.
846 DomTreeNode *PreheaderNode = DT->getNode(BB: HoistCommonSucc);
847 DomTreeNode *HeaderNode = DT->getNode(BB: CurLoop->getHeader());
848 DT->changeImmediateDominator(N: HeaderNode, NewIDom: PreheaderNode);
849 // The preheader hoist destination is now the new preheader, with the
850 // exception of the hoist destination of this branch.
851 for (auto &Pair : HoistDestinationMap)
852 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
853 Pair.second = HoistCommonSucc;
854 }
855
856 // Now finally clone BI.
857 ReplaceInstWithInst(
858 From: HoistTarget->getTerminator(),
859 To: BranchInst::Create(IfTrue: HoistTrueDest, IfFalse: HoistFalseDest, Cond: BI->getCondition()));
860 ++NumClonedBranches;
861
862 assert(CurLoop->getLoopPreheader() &&
863 "Hoisting blocks should not have destroyed preheader");
864 return HoistDestinationMap[BB];
865 }
866};
867} // namespace
868
869/// Walk the specified region of the CFG (defined by all blocks dominated by
870/// the specified block, and that are in the current loop) in depth first
871/// order w.r.t the DominatorTree. This allows us to visit definitions before
872/// uses, allowing us to hoist a loop body in one pass without iteration.
873///
874bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
875 DominatorTree *DT, AssumptionCache *AC,
876 TargetLibraryInfo *TLI, Loop *CurLoop,
877 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
878 ICFLoopSafetyInfo *SafetyInfo,
879 SinkAndHoistLICMFlags &Flags,
880 OptimizationRemarkEmitter *ORE, bool LoopNestMode,
881 bool AllowSpeculation) {
882 // Verify inputs.
883 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
884 CurLoop != nullptr && SafetyInfo != nullptr &&
885 "Unexpected input to hoistRegion.");
886
887 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
888
889 // Keep track of instructions that have been hoisted, as they may need to be
890 // re-hoisted if they end up not dominating all of their uses.
891 SmallVector<Instruction *, 16> HoistedInstructions;
892
893 // For PHI hoisting to work we need to hoist blocks before their successors.
894 // We can do this by iterating through the blocks in the loop in reverse
895 // post-order.
896 LoopBlocksRPO Worklist(CurLoop);
897 Worklist.perform(LI);
898 bool Changed = false;
899 BasicBlock *Preheader = CurLoop->getLoopPreheader();
900 for (BasicBlock *BB : Worklist) {
901 // Only need to process the contents of this block if it is not part of a
902 // subloop (which would already have been processed).
903 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
904 continue;
905
906 for (Instruction &I : llvm::make_early_inc_range(Range&: *BB)) {
907 // Try hoisting the instruction out to the preheader. We can only do
908 // this if all of the operands of the instruction are loop invariant and
909 // if it is safe to hoist the instruction. We also check block frequency
910 // to make sure instruction only gets hoisted into colder blocks.
911 // TODO: It may be safe to hoist if we are hoisting to a conditional block
912 // and we have accurately duplicated the control flow from the loop header
913 // to that block.
914 if (CurLoop->hasLoopInvariantOperands(I: &I) &&
915 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, TargetExecutesOncePerLoop: true, LICMFlags&: Flags, ORE) &&
916 isSafeToExecuteUnconditionally(
917 Inst&: I, DT, TLI, CurLoop, SafetyInfo, ORE,
918 CtxI: Preheader->getTerminator(), AC, AllowSpeculation)) {
919 hoist(I, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
920 MSSAU, SE, ORE);
921 HoistedInstructions.push_back(Elt: &I);
922 Changed = true;
923 continue;
924 }
925
926 // Attempt to remove floating point division out of the loop by
927 // converting it to a reciprocal multiplication.
928 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
929 CurLoop->isLoopInvariant(V: I.getOperand(i: 1))) {
930 auto Divisor = I.getOperand(i: 1);
931 auto One = llvm::ConstantFP::get(Ty: Divisor->getType(), V: 1.0);
932 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(V1: One, V2: Divisor);
933 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
934 SafetyInfo->insertInstructionTo(Inst: ReciprocalDivisor, BB: I.getParent());
935 ReciprocalDivisor->insertBefore(InsertPos: &I);
936 ReciprocalDivisor->setDebugLoc(I.getDebugLoc());
937
938 auto Product =
939 BinaryOperator::CreateFMul(V1: I.getOperand(i: 0), V2: ReciprocalDivisor);
940 Product->setFastMathFlags(I.getFastMathFlags());
941 SafetyInfo->insertInstructionTo(Inst: Product, BB: I.getParent());
942 Product->insertAfter(InsertPos: &I);
943 Product->setDebugLoc(I.getDebugLoc());
944 I.replaceAllUsesWith(V: Product);
945 eraseInstruction(I, SafetyInfo&: *SafetyInfo, MSSAU);
946
947 hoist(I&: *ReciprocalDivisor, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB),
948 SafetyInfo, MSSAU, SE, ORE);
949 HoistedInstructions.push_back(Elt: ReciprocalDivisor);
950 Changed = true;
951 continue;
952 }
953
954 auto IsInvariantStart = [&](Instruction &I) {
955 using namespace PatternMatch;
956 return I.use_empty() &&
957 match(V: &I, P: m_Intrinsic<Intrinsic::invariant_start>());
958 };
959 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
960 return SafetyInfo->isGuaranteedToExecute(Inst: I, DT, CurLoop) &&
961 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
962 };
963 if ((IsInvariantStart(I) || isGuard(U: &I)) &&
964 CurLoop->hasLoopInvariantOperands(I: &I) &&
965 MustExecuteWithoutWritesBefore(I)) {
966 hoist(I, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
967 MSSAU, SE, ORE);
968 HoistedInstructions.push_back(Elt: &I);
969 Changed = true;
970 continue;
971 }
972
973 if (PHINode *PN = dyn_cast<PHINode>(Val: &I)) {
974 if (CFH.canHoistPHI(PN)) {
975 // Redirect incoming blocks first to ensure that we create hoisted
976 // versions of those blocks before we hoist the phi.
977 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
978 PN->setIncomingBlock(
979 i, BB: CFH.getOrCreateHoistedBlock(BB: PN->getIncomingBlock(i)));
980 hoist(I&: *PN, DT, CurLoop, Dest: CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
981 MSSAU, SE, ORE);
982 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
983 Changed = true;
984 continue;
985 }
986 }
987
988 // Try to reassociate instructions so that part of computations can be
989 // done out of loop.
990 if (hoistArithmetics(I, L&: *CurLoop, SafetyInfo&: *SafetyInfo, MSSAU, AC, DT)) {
991 Changed = true;
992 continue;
993 }
994
995 // Remember possibly hoistable branches so we can actually hoist them
996 // later if needed.
997 if (BranchInst *BI = dyn_cast<BranchInst>(Val: &I))
998 CFH.registerPossiblyHoistableBranch(BI);
999 }
1000 }
1001
1002 // If we hoisted instructions to a conditional block they may not dominate
1003 // their uses that weren't hoisted (such as phis where some operands are not
1004 // loop invariant). If so make them unconditional by moving them to their
1005 // immediate dominator. We iterate through the instructions in reverse order
1006 // which ensures that when we rehoist an instruction we rehoist its operands,
1007 // and also keep track of where in the block we are rehoisting to make sure
1008 // that we rehoist instructions before the instructions that use them.
1009 Instruction *HoistPoint = nullptr;
1010 if (ControlFlowHoisting) {
1011 for (Instruction *I : reverse(C&: HoistedInstructions)) {
1012 if (!llvm::all_of(Range: I->uses(),
1013 P: [&](Use &U) { return DT->dominates(Def: I, U); })) {
1014 BasicBlock *Dominator =
1015 DT->getNode(BB: I->getParent())->getIDom()->getBlock();
1016 if (!HoistPoint || !DT->dominates(A: HoistPoint->getParent(), B: Dominator)) {
1017 if (HoistPoint)
1018 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
1019 "New hoist point expected to dominate old hoist point");
1020 HoistPoint = Dominator->getTerminator();
1021 }
1022 LLVM_DEBUG(dbgs() << "LICM rehoisting to "
1023 << HoistPoint->getParent()->getNameOrAsOperand()
1024 << ": " << *I << "\n");
1025 moveInstructionBefore(I&: *I, Dest: HoistPoint->getIterator(), SafetyInfo&: *SafetyInfo, MSSAU,
1026 SE);
1027 HoistPoint = I;
1028 Changed = true;
1029 }
1030 }
1031 }
1032 if (VerifyMemorySSA)
1033 MSSAU.getMemorySSA()->verifyMemorySSA();
1034
1035 // Now that we've finished hoisting make sure that LI and DT are still
1036 // valid.
1037#ifdef EXPENSIVE_CHECKS
1038 if (Changed) {
1039 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1040 "Dominator tree verification failed");
1041 LI->verify(*DT);
1042 }
1043#endif
1044
1045 return Changed;
1046}
1047
1048// Return true if LI is invariant within scope of the loop. LI is invariant if
1049// CurLoop is dominated by an invariant.start representing the same memory
1050// location and size as the memory location LI loads from, and also the
1051// invariant.start has no uses.
1052static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1053 Loop *CurLoop) {
1054 Value *Addr = LI->getPointerOperand();
1055 const DataLayout &DL = LI->getDataLayout();
1056 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(Ty: LI->getType());
1057
1058 // It is not currently possible for clang to generate an invariant.start
1059 // intrinsic with scalable vector types because we don't support thread local
1060 // sizeless types and we don't permit sizeless types in structs or classes.
1061 // Furthermore, even if support is added for this in future the intrinsic
1062 // itself is defined to have a size of -1 for variable sized objects. This
1063 // makes it impossible to verify if the intrinsic envelops our region of
1064 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1065 // types would have a -1 parameter, but the former is clearly double the size
1066 // of the latter.
1067 if (LocSizeInBits.isScalable())
1068 return false;
1069
1070 // If we've ended up at a global/constant, bail. We shouldn't be looking at
1071 // uselists for non-local Values in a loop pass.
1072 if (isa<Constant>(Val: Addr))
1073 return false;
1074
1075 unsigned UsesVisited = 0;
1076 // Traverse all uses of the load operand value, to see if invariant.start is
1077 // one of the uses, and whether it dominates the load instruction.
1078 for (auto *U : Addr->users()) {
1079 // Avoid traversing for Load operand with high number of users.
1080 if (++UsesVisited > MaxNumUsesTraversed)
1081 return false;
1082 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U);
1083 // If there are escaping uses of invariant.start instruction, the load maybe
1084 // non-invariant.
1085 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1086 !II->use_empty())
1087 continue;
1088 ConstantInt *InvariantSize = cast<ConstantInt>(Val: II->getArgOperand(i: 0));
1089 // The intrinsic supports having a -1 argument for variable sized objects
1090 // so we should check for that here.
1091 if (InvariantSize->isNegative())
1092 continue;
1093 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1094 // Confirm the invariant.start location size contains the load operand size
1095 // in bits. Also, the invariant.start should dominate the load, and we
1096 // should not hoist the load out of a loop that contains this dominating
1097 // invariant.start.
1098 if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits &&
1099 DT->properlyDominates(A: II->getParent(), B: CurLoop->getHeader()))
1100 return true;
1101 }
1102
1103 return false;
1104}
1105
1106namespace {
1107/// Return true if-and-only-if we know how to (mechanically) both hoist and
1108/// sink a given instruction out of a loop. Does not address legality
1109/// concerns such as aliasing or speculation safety.
1110bool isHoistableAndSinkableInst(Instruction &I) {
1111 // Only these instructions are hoistable/sinkable.
1112 return (isa<LoadInst>(Val: I) || isa<StoreInst>(Val: I) || isa<CallInst>(Val: I) ||
1113 isa<FenceInst>(Val: I) || isa<CastInst>(Val: I) || isa<UnaryOperator>(Val: I) ||
1114 isa<BinaryOperator>(Val: I) || isa<SelectInst>(Val: I) ||
1115 isa<GetElementPtrInst>(Val: I) || isa<CmpInst>(Val: I) ||
1116 isa<InsertElementInst>(Val: I) || isa<ExtractElementInst>(Val: I) ||
1117 isa<ShuffleVectorInst>(Val: I) || isa<ExtractValueInst>(Val: I) ||
1118 isa<InsertValueInst>(Val: I) || isa<FreezeInst>(Val: I));
1119}
1120/// Return true if MSSA knows there are no MemoryDefs in the loop.
1121bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) {
1122 for (auto *BB : L->getBlocks())
1123 if (MSSAU.getMemorySSA()->getBlockDefs(BB))
1124 return false;
1125 return true;
1126}
1127
1128/// Return true if I is the only Instruction with a MemoryAccess in L.
1129bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1130 const MemorySSAUpdater &MSSAU) {
1131 for (auto *BB : L->getBlocks())
1132 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) {
1133 int NotAPhi = 0;
1134 for (const auto &Acc : *Accs) {
1135 if (isa<MemoryPhi>(Val: &Acc))
1136 continue;
1137 const auto *MUD = cast<MemoryUseOrDef>(Val: &Acc);
1138 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1139 return false;
1140 }
1141 }
1142 return true;
1143}
1144}
1145
1146static MemoryAccess *getClobberingMemoryAccess(MemorySSA &MSSA,
1147 BatchAAResults &BAA,
1148 SinkAndHoistLICMFlags &Flags,
1149 MemoryUseOrDef *MA) {
1150 // See declaration of SetLicmMssaOptCap for usage details.
1151 if (Flags.tooManyClobberingCalls())
1152 return MA->getDefiningAccess();
1153
1154 MemoryAccess *Source =
1155 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(MA, AA&: BAA);
1156 Flags.incrementClobberingCalls();
1157 return Source;
1158}
1159
1160bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1161 Loop *CurLoop, MemorySSAUpdater &MSSAU,
1162 bool TargetExecutesOncePerLoop,
1163 SinkAndHoistLICMFlags &Flags,
1164 OptimizationRemarkEmitter *ORE) {
1165 // If we don't understand the instruction, bail early.
1166 if (!isHoistableAndSinkableInst(I))
1167 return false;
1168
1169 MemorySSA *MSSA = MSSAU.getMemorySSA();
1170 // Loads have extra constraints we have to verify before we can hoist them.
1171 if (LoadInst *LI = dyn_cast<LoadInst>(Val: &I)) {
1172 if (!LI->isUnordered())
1173 return false; // Don't sink/hoist volatile or ordered atomic loads!
1174
1175 // Loads from constant memory are always safe to move, even if they end up
1176 // in the same alias set as something that ends up being modified.
1177 if (!isModSet(MRI: AA->getModRefInfoMask(P: LI->getOperand(i_nocapture: 0))))
1178 return true;
1179 if (LI->hasMetadata(KindID: LLVMContext::MD_invariant_load))
1180 return true;
1181
1182 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1183 return false; // Don't risk duplicating unordered loads
1184
1185 // This checks for an invariant.start dominating the load.
1186 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1187 return true;
1188
1189 auto MU = cast<MemoryUse>(Val: MSSA->getMemoryAccess(I: LI));
1190
1191 bool InvariantGroup = LI->hasMetadata(KindID: LLVMContext::MD_invariant_group);
1192
1193 bool Invalidated = pointerInvalidatedByLoop(
1194 MSSA, MU, CurLoop, I, Flags, InvariantGroup);
1195 // Check loop-invariant address because this may also be a sinkable load
1196 // whose address is not necessarily loop-invariant.
1197 if (ORE && Invalidated && CurLoop->isLoopInvariant(V: LI->getPointerOperand()))
1198 ORE->emit(RemarkBuilder: [&]() {
1199 return OptimizationRemarkMissed(
1200 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1201 << "failed to move load with loop-invariant address "
1202 "because the loop may invalidate its value";
1203 });
1204
1205 return !Invalidated;
1206 } else if (CallInst *CI = dyn_cast<CallInst>(Val: &I)) {
1207 // Don't sink or hoist dbg info; it's legal, but not useful.
1208 if (isa<DbgInfoIntrinsic>(Val: I))
1209 return false;
1210
1211 // Don't sink calls which can throw.
1212 if (CI->mayThrow())
1213 return false;
1214
1215 // Convergent attribute has been used on operations that involve
1216 // inter-thread communication which results are implicitly affected by the
1217 // enclosing control flows. It is not safe to hoist or sink such operations
1218 // across control flow.
1219 if (CI->isConvergent())
1220 return false;
1221
1222 // FIXME: Current LLVM IR semantics don't work well with coroutines and
1223 // thread local globals. We currently treat getting the address of a thread
1224 // local global as not accessing memory, even though it may not be a
1225 // constant throughout a function with coroutines. Remove this check after
1226 // we better model semantics of thread local globals.
1227 if (CI->getFunction()->isPresplitCoroutine())
1228 return false;
1229
1230 using namespace PatternMatch;
1231 if (match(V: CI, P: m_Intrinsic<Intrinsic::assume>()))
1232 // Assumes don't actually alias anything or throw
1233 return true;
1234
1235 // Handle simple cases by querying alias analysis.
1236 MemoryEffects Behavior = AA->getMemoryEffects(Call: CI);
1237
1238 if (Behavior.doesNotAccessMemory())
1239 return true;
1240 if (Behavior.onlyReadsMemory()) {
1241 // A readonly argmemonly function only reads from memory pointed to by
1242 // it's arguments with arbitrary offsets. If we can prove there are no
1243 // writes to this memory in the loop, we can hoist or sink.
1244 if (Behavior.onlyAccessesArgPointees()) {
1245 // TODO: expand to writeable arguments
1246 for (Value *Op : CI->args())
1247 if (Op->getType()->isPointerTy() &&
1248 pointerInvalidatedByLoop(
1249 MSSA, MU: cast<MemoryUse>(Val: MSSA->getMemoryAccess(I: CI)), CurLoop, I,
1250 Flags, /*InvariantGroup=*/false))
1251 return false;
1252 return true;
1253 }
1254
1255 // If this call only reads from memory and there are no writes to memory
1256 // in the loop, we can hoist or sink the call as appropriate.
1257 if (isReadOnly(MSSAU, L: CurLoop))
1258 return true;
1259 }
1260
1261 // FIXME: This should use mod/ref information to see if we can hoist or
1262 // sink the call.
1263
1264 return false;
1265 } else if (auto *FI = dyn_cast<FenceInst>(Val: &I)) {
1266 // Fences alias (most) everything to provide ordering. For the moment,
1267 // just give up if there are any other memory operations in the loop.
1268 return isOnlyMemoryAccess(I: FI, L: CurLoop, MSSAU);
1269 } else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) {
1270 if (!SI->isUnordered())
1271 return false; // Don't sink/hoist volatile or ordered atomic store!
1272
1273 // We can only hoist a store that we can prove writes a value which is not
1274 // read or overwritten within the loop. For those cases, we fallback to
1275 // load store promotion instead. TODO: We can extend this to cases where
1276 // there is exactly one write to the location and that write dominates an
1277 // arbitrary number of reads in the loop.
1278 if (isOnlyMemoryAccess(I: SI, L: CurLoop, MSSAU))
1279 return true;
1280 // If there are more accesses than the Promotion cap, then give up as we're
1281 // not walking a list that long.
1282 if (Flags.tooManyMemoryAccesses())
1283 return false;
1284
1285 auto *SIMD = MSSA->getMemoryAccess(I: SI);
1286 BatchAAResults BAA(*AA);
1287 auto *Source = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags, MA: SIMD);
1288 // Make sure there are no clobbers inside the loop.
1289 if (!MSSA->isLiveOnEntryDef(MA: Source) &&
1290 CurLoop->contains(BB: Source->getBlock()))
1291 return false;
1292
1293 // If there are interfering Uses (i.e. their defining access is in the
1294 // loop), or ordered loads (stored as Defs!), don't move this store.
1295 // Could do better here, but this is conservatively correct.
1296 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1297 // moving accesses. Can also extend to dominating uses.
1298 for (auto *BB : CurLoop->getBlocks())
1299 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1300 for (const auto &MA : *Accesses)
1301 if (const auto *MU = dyn_cast<MemoryUse>(Val: &MA)) {
1302 auto *MD = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags,
1303 MA: const_cast<MemoryUse *>(MU));
1304 if (!MSSA->isLiveOnEntryDef(MA: MD) &&
1305 CurLoop->contains(BB: MD->getBlock()))
1306 return false;
1307 // Disable hoisting past potentially interfering loads. Optimized
1308 // Uses may point to an access outside the loop, as getClobbering
1309 // checks the previous iteration when walking the backedge.
1310 // FIXME: More precise: no Uses that alias SI.
1311 if (!Flags.getIsSink() && !MSSA->dominates(A: SIMD, B: MU))
1312 return false;
1313 } else if (const auto *MD = dyn_cast<MemoryDef>(Val: &MA)) {
1314 if (auto *LI = dyn_cast<LoadInst>(Val: MD->getMemoryInst())) {
1315 (void)LI; // Silence warning.
1316 assert(!LI->isUnordered() && "Expected unordered load");
1317 return false;
1318 }
1319 // Any call, while it may not be clobbering SI, it may be a use.
1320 if (auto *CI = dyn_cast<CallInst>(Val: MD->getMemoryInst())) {
1321 // Check if the call may read from the memory location written
1322 // to by SI. Check CI's attributes and arguments; the number of
1323 // such checks performed is limited above by NoOfMemAccTooLarge.
1324 ModRefInfo MRI = BAA.getModRefInfo(I: CI, OptLoc: MemoryLocation::get(SI));
1325 if (isModOrRefSet(MRI))
1326 return false;
1327 }
1328 }
1329 }
1330 return true;
1331 }
1332
1333 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1334
1335 // We've established mechanical ability and aliasing, it's up to the caller
1336 // to check fault safety
1337 return true;
1338}
1339
1340/// Returns true if a PHINode is a trivially replaceable with an
1341/// Instruction.
1342/// This is true when all incoming values are that instruction.
1343/// This pattern occurs most often with LCSSA PHI nodes.
1344///
1345static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1346 for (const Value *IncValue : PN.incoming_values())
1347 if (IncValue != &I)
1348 return false;
1349
1350 return true;
1351}
1352
1353/// Return true if the instruction is foldable in the loop.
1354static bool isFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1355 const TargetTransformInfo *TTI) {
1356 if (auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) {
1357 InstructionCost CostI =
1358 TTI->getInstructionCost(U: &I, CostKind: TargetTransformInfo::TCK_SizeAndLatency);
1359 if (CostI != TargetTransformInfo::TCC_Free)
1360 return false;
1361 // For a GEP, we cannot simply use getInstructionCost because currently
1362 // it optimistically assumes that a GEP will fold into addressing mode
1363 // regardless of its users.
1364 const BasicBlock *BB = GEP->getParent();
1365 for (const User *U : GEP->users()) {
1366 const Instruction *UI = cast<Instruction>(Val: U);
1367 if (CurLoop->contains(Inst: UI) &&
1368 (BB != UI->getParent() ||
1369 (!isa<StoreInst>(Val: UI) && !isa<LoadInst>(Val: UI))))
1370 return false;
1371 }
1372 return true;
1373 }
1374
1375 return false;
1376}
1377
1378/// Return true if the only users of this instruction are outside of
1379/// the loop. If this is true, we can sink the instruction to the exit
1380/// blocks of the loop.
1381///
1382/// We also return true if the instruction could be folded away in lowering.
1383/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1384static bool isNotUsedOrFoldableInLoop(const Instruction &I, const Loop *CurLoop,
1385 const LoopSafetyInfo *SafetyInfo,
1386 TargetTransformInfo *TTI,
1387 bool &FoldableInLoop, bool LoopNestMode) {
1388 const auto &BlockColors = SafetyInfo->getBlockColors();
1389 bool IsFoldable = isFoldableInLoop(I, CurLoop, TTI);
1390 for (const User *U : I.users()) {
1391 const Instruction *UI = cast<Instruction>(Val: U);
1392 if (const PHINode *PN = dyn_cast<PHINode>(Val: UI)) {
1393 const BasicBlock *BB = PN->getParent();
1394 // We cannot sink uses in catchswitches.
1395 if (isa<CatchSwitchInst>(Val: BB->getTerminator()))
1396 return false;
1397
1398 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1399 // phi use is too muddled.
1400 if (isa<CallInst>(Val: I))
1401 if (!BlockColors.empty() &&
1402 BlockColors.find(Val: const_cast<BasicBlock *>(BB))->second.size() != 1)
1403 return false;
1404
1405 if (LoopNestMode) {
1406 while (isa<PHINode>(Val: UI) && UI->hasOneUser() &&
1407 UI->getNumOperands() == 1) {
1408 if (!CurLoop->contains(Inst: UI))
1409 break;
1410 UI = cast<Instruction>(Val: UI->user_back());
1411 }
1412 }
1413 }
1414
1415 if (CurLoop->contains(Inst: UI)) {
1416 if (IsFoldable) {
1417 FoldableInLoop = true;
1418 continue;
1419 }
1420 return false;
1421 }
1422 }
1423 return true;
1424}
1425
1426static Instruction *cloneInstructionInExitBlock(
1427 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1428 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) {
1429 Instruction *New;
1430 if (auto *CI = dyn_cast<CallInst>(Val: &I)) {
1431 const auto &BlockColors = SafetyInfo->getBlockColors();
1432
1433 // Sinking call-sites need to be handled differently from other
1434 // instructions. The cloned call-site needs a funclet bundle operand
1435 // appropriate for its location in the CFG.
1436 SmallVector<OperandBundleDef, 1> OpBundles;
1437 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1438 BundleIdx != BundleEnd; ++BundleIdx) {
1439 OperandBundleUse Bundle = CI->getOperandBundleAt(Index: BundleIdx);
1440 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1441 continue;
1442
1443 OpBundles.emplace_back(Args&: Bundle);
1444 }
1445
1446 if (!BlockColors.empty()) {
1447 const ColorVector &CV = BlockColors.find(Val: &ExitBlock)->second;
1448 assert(CV.size() == 1 && "non-unique color for exit block!");
1449 BasicBlock *BBColor = CV.front();
1450 Instruction *EHPad = BBColor->getFirstNonPHI();
1451 if (EHPad->isEHPad())
1452 OpBundles.emplace_back(Args: "funclet", Args&: EHPad);
1453 }
1454
1455 New = CallInst::Create(CI, Bundles: OpBundles);
1456 New->copyMetadata(SrcInst: *CI);
1457 } else {
1458 New = I.clone();
1459 }
1460
1461 New->insertInto(ParentBB: &ExitBlock, It: ExitBlock.getFirstInsertionPt());
1462 if (!I.getName().empty())
1463 New->setName(I.getName() + ".le");
1464
1465 if (MSSAU.getMemorySSA()->getMemoryAccess(I: &I)) {
1466 // Create a new MemoryAccess and let MemorySSA set its defining access.
1467 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB(
1468 I: New, Definition: nullptr, BB: New->getParent(), Point: MemorySSA::Beginning);
1469 if (NewMemAcc) {
1470 if (auto *MemDef = dyn_cast<MemoryDef>(Val: NewMemAcc))
1471 MSSAU.insertDef(Def: MemDef, /*RenameUses=*/true);
1472 else {
1473 auto *MemUse = cast<MemoryUse>(Val: NewMemAcc);
1474 MSSAU.insertUse(Use: MemUse, /*RenameUses=*/true);
1475 }
1476 }
1477 }
1478
1479 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1480 // this is particularly cheap because we can rip off the PHI node that we're
1481 // replacing for the number and blocks of the predecessors.
1482 // OPT: If this shows up in a profile, we can instead finish sinking all
1483 // invariant instructions, and then walk their operands to re-establish
1484 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1485 // sinking bottom-up.
1486 for (Use &Op : New->operands())
1487 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(V: Op.get(), ExitBB: PN.getParent())) {
1488 auto *OInst = cast<Instruction>(Val: Op.get());
1489 PHINode *OpPN =
1490 PHINode::Create(Ty: OInst->getType(), NumReservedValues: PN.getNumIncomingValues(),
1491 NameStr: OInst->getName() + ".lcssa");
1492 OpPN->insertBefore(InsertPos: ExitBlock.begin());
1493 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1494 OpPN->addIncoming(V: OInst, BB: PN.getIncomingBlock(i));
1495 Op = OpPN;
1496 }
1497 return New;
1498}
1499
1500static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1501 MemorySSAUpdater &MSSAU) {
1502 MSSAU.removeMemoryAccess(I: &I);
1503 SafetyInfo.removeInstruction(Inst: &I);
1504 I.eraseFromParent();
1505}
1506
1507static void moveInstructionBefore(Instruction &I, BasicBlock::iterator Dest,
1508 ICFLoopSafetyInfo &SafetyInfo,
1509 MemorySSAUpdater &MSSAU,
1510 ScalarEvolution *SE) {
1511 SafetyInfo.removeInstruction(Inst: &I);
1512 SafetyInfo.insertInstructionTo(Inst: &I, BB: Dest->getParent());
1513 I.moveBefore(BB&: *Dest->getParent(), I: Dest);
1514 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1515 Val: MSSAU.getMemorySSA()->getMemoryAccess(I: &I)))
1516 MSSAU.moveToPlace(What: OldMemAcc, BB: Dest->getParent(),
1517 Where: MemorySSA::BeforeTerminator);
1518 if (SE)
1519 SE->forgetBlockAndLoopDispositions(V: &I);
1520}
1521
1522static Instruction *sinkThroughTriviallyReplaceablePHI(
1523 PHINode *TPN, Instruction *I, LoopInfo *LI,
1524 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1525 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1526 MemorySSAUpdater &MSSAU) {
1527 assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1528 "Expect only trivially replaceable PHI");
1529 BasicBlock *ExitBlock = TPN->getParent();
1530 Instruction *New;
1531 auto It = SunkCopies.find(Val: ExitBlock);
1532 if (It != SunkCopies.end())
1533 New = It->second;
1534 else
1535 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1536 I&: *I, ExitBlock&: *ExitBlock, PN&: *TPN, LI, SafetyInfo, MSSAU);
1537 return New;
1538}
1539
1540static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1541 BasicBlock *BB = PN->getParent();
1542 if (!BB->canSplitPredecessors())
1543 return false;
1544 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1545 // it require updating BlockColors for all offspring blocks accordingly. By
1546 // skipping such corner case, we can make updating BlockColors after splitting
1547 // predecessor fairly simple.
1548 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1549 return false;
1550 for (BasicBlock *BBPred : predecessors(BB)) {
1551 if (isa<IndirectBrInst>(Val: BBPred->getTerminator()))
1552 return false;
1553 }
1554 return true;
1555}
1556
1557static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1558 LoopInfo *LI, const Loop *CurLoop,
1559 LoopSafetyInfo *SafetyInfo,
1560 MemorySSAUpdater *MSSAU) {
1561#ifndef NDEBUG
1562 SmallVector<BasicBlock *, 32> ExitBlocks;
1563 CurLoop->getUniqueExitBlocks(ExitBlocks);
1564 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1565 ExitBlocks.end());
1566#endif
1567 BasicBlock *ExitBB = PN->getParent();
1568 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1569
1570 // Split predecessors of the loop exit to make instructions in the loop are
1571 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1572 // loop in the canonical form where each predecessor of each exit block should
1573 // be contained within the loop. For example, this will convert the loop below
1574 // from
1575 //
1576 // LB1:
1577 // %v1 =
1578 // br %LE, %LB2
1579 // LB2:
1580 // %v2 =
1581 // br %LE, %LB1
1582 // LE:
1583 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1584 //
1585 // to
1586 //
1587 // LB1:
1588 // %v1 =
1589 // br %LE.split, %LB2
1590 // LB2:
1591 // %v2 =
1592 // br %LE.split2, %LB1
1593 // LE.split:
1594 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1595 // br %LE
1596 // LE.split2:
1597 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1598 // br %LE
1599 // LE:
1600 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1601 //
1602 const auto &BlockColors = SafetyInfo->getBlockColors();
1603 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(BB: ExitBB), pred_end(BB: ExitBB));
1604 while (!PredBBs.empty()) {
1605 BasicBlock *PredBB = *PredBBs.begin();
1606 assert(CurLoop->contains(PredBB) &&
1607 "Expect all predecessors are in the loop");
1608 if (PN->getBasicBlockIndex(BB: PredBB) >= 0) {
1609 BasicBlock *NewPred = SplitBlockPredecessors(
1610 BB: ExitBB, Preds: PredBB, Suffix: ".split.loop.exit", DT, LI, MSSAU, PreserveLCSSA: true);
1611 // Since we do not allow splitting EH-block with BlockColors in
1612 // canSplitPredecessors(), we can simply assign predecessor's color to
1613 // the new block.
1614 if (!BlockColors.empty())
1615 // Grab a reference to the ColorVector to be inserted before getting the
1616 // reference to the vector we are copying because inserting the new
1617 // element in BlockColors might cause the map to be reallocated.
1618 SafetyInfo->copyColors(New: NewPred, Old: PredBB);
1619 }
1620 PredBBs.remove(X: PredBB);
1621 }
1622}
1623
1624/// When an instruction is found to only be used outside of the loop, this
1625/// function moves it to the exit blocks and patches up SSA form as needed.
1626/// This method is guaranteed to remove the original instruction from its
1627/// position, and may either delete it or move it to outside of the loop.
1628///
1629static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1630 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1631 MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) {
1632 bool Changed = false;
1633 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1634
1635 // Iterate over users to be ready for actual sinking. Replace users via
1636 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1637 SmallPtrSet<Instruction *, 8> VisitedUsers;
1638 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1639 auto *User = cast<Instruction>(Val: *UI);
1640 Use &U = UI.getUse();
1641 ++UI;
1642
1643 if (VisitedUsers.count(Ptr: User) || CurLoop->contains(Inst: User))
1644 continue;
1645
1646 if (!DT->isReachableFromEntry(A: User->getParent())) {
1647 U = PoisonValue::get(T: I.getType());
1648 Changed = true;
1649 continue;
1650 }
1651
1652 // The user must be a PHI node.
1653 PHINode *PN = cast<PHINode>(Val: User);
1654
1655 // Surprisingly, instructions can be used outside of loops without any
1656 // exits. This can only happen in PHI nodes if the incoming block is
1657 // unreachable.
1658 BasicBlock *BB = PN->getIncomingBlock(U);
1659 if (!DT->isReachableFromEntry(A: BB)) {
1660 U = PoisonValue::get(T: I.getType());
1661 Changed = true;
1662 continue;
1663 }
1664
1665 VisitedUsers.insert(Ptr: PN);
1666 if (isTriviallyReplaceablePHI(PN: *PN, I))
1667 continue;
1668
1669 if (!canSplitPredecessors(PN, SafetyInfo))
1670 return Changed;
1671
1672 // Split predecessors of the PHI so that we can make users trivially
1673 // replaceable.
1674 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU: &MSSAU);
1675
1676 // Should rebuild the iterators, as they may be invalidated by
1677 // splitPredecessorsOfLoopExit().
1678 UI = I.user_begin();
1679 UE = I.user_end();
1680 }
1681
1682 if (VisitedUsers.empty())
1683 return Changed;
1684
1685 ORE->emit(RemarkBuilder: [&]() {
1686 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1687 << "sinking " << ore::NV("Inst", &I);
1688 });
1689 if (isa<LoadInst>(Val: I))
1690 ++NumMovedLoads;
1691 else if (isa<CallInst>(Val: I))
1692 ++NumMovedCalls;
1693 ++NumSunk;
1694
1695#ifndef NDEBUG
1696 SmallVector<BasicBlock *, 32> ExitBlocks;
1697 CurLoop->getUniqueExitBlocks(ExitBlocks);
1698 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1699 ExitBlocks.end());
1700#endif
1701
1702 // Clones of this instruction. Don't create more than one per exit block!
1703 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1704
1705 // If this instruction is only used outside of the loop, then all users are
1706 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1707 // the instruction.
1708 // First check if I is worth sinking for all uses. Sink only when it is worth
1709 // across all uses.
1710 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1711 for (auto *UI : Users) {
1712 auto *User = cast<Instruction>(Val: UI);
1713
1714 if (CurLoop->contains(Inst: User))
1715 continue;
1716
1717 PHINode *PN = cast<PHINode>(Val: User);
1718 assert(ExitBlockSet.count(PN->getParent()) &&
1719 "The LCSSA PHI is not in an exit block!");
1720
1721 // The PHI must be trivially replaceable.
1722 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1723 TPN: PN, I: &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1724 // As we sink the instruction out of the BB, drop its debug location.
1725 New->dropLocation();
1726 PN->replaceAllUsesWith(V: New);
1727 eraseInstruction(I&: *PN, SafetyInfo&: *SafetyInfo, MSSAU);
1728 Changed = true;
1729 }
1730 return Changed;
1731}
1732
1733/// When an instruction is found to only use loop invariant operands that
1734/// is safe to hoist, this instruction is called to do the dirty work.
1735///
1736static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1737 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1738 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
1739 OptimizationRemarkEmitter *ORE) {
1740 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1741 << I << "\n");
1742 ORE->emit(RemarkBuilder: [&]() {
1743 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1744 << ore::NV("Inst", &I);
1745 });
1746
1747 // Metadata can be dependent on conditions we are hoisting above.
1748 // Conservatively strip all metadata on the instruction unless we were
1749 // guaranteed to execute I if we entered the loop, in which case the metadata
1750 // is valid in the loop preheader.
1751 // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1752 // then moving to the preheader means we should strip attributes on the call
1753 // that can cause UB since we may be hoisting above conditions that allowed
1754 // inferring those attributes. They may not be valid at the preheader.
1755 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(Val: I)) &&
1756 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1757 // time in isGuaranteedToExecute if we don't actually have anything to
1758 // drop. It is a compile time optimization, not required for correctness.
1759 !SafetyInfo->isGuaranteedToExecute(Inst: I, DT, CurLoop))
1760 I.dropUBImplyingAttrsAndMetadata();
1761
1762 if (isa<PHINode>(Val: I))
1763 // Move the new node to the end of the phi list in the destination block.
1764 moveInstructionBefore(I, Dest: Dest->getFirstNonPHIIt(), SafetyInfo&: *SafetyInfo, MSSAU, SE);
1765 else
1766 // Move the new node to the destination block, before its terminator.
1767 moveInstructionBefore(I, Dest: Dest->getTerminator()->getIterator(), SafetyInfo&: *SafetyInfo,
1768 MSSAU, SE);
1769
1770 I.updateLocationAfterHoist();
1771
1772 if (isa<LoadInst>(Val: I))
1773 ++NumMovedLoads;
1774 else if (isa<CallInst>(Val: I))
1775 ++NumMovedCalls;
1776 ++NumHoisted;
1777}
1778
1779/// Only sink or hoist an instruction if it is not a trapping instruction,
1780/// or if the instruction is known not to trap when moved to the preheader.
1781/// or if it is a trapping instruction and is guaranteed to execute.
1782static bool isSafeToExecuteUnconditionally(
1783 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1784 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1785 OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1786 AssumptionCache *AC, bool AllowSpeculation) {
1787 if (AllowSpeculation &&
1788 isSafeToSpeculativelyExecute(I: &Inst, CtxI, AC, DT, TLI))
1789 return true;
1790
1791 bool GuaranteedToExecute =
1792 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1793
1794 if (!GuaranteedToExecute) {
1795 auto *LI = dyn_cast<LoadInst>(Val: &Inst);
1796 if (LI && CurLoop->isLoopInvariant(V: LI->getPointerOperand()))
1797 ORE->emit(RemarkBuilder: [&]() {
1798 return OptimizationRemarkMissed(
1799 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1800 << "failed to hoist load with loop-invariant address "
1801 "because load is conditionally executed";
1802 });
1803 }
1804
1805 return GuaranteedToExecute;
1806}
1807
1808namespace {
1809class LoopPromoter : public LoadAndStorePromoter {
1810 Value *SomePtr; // Designated pointer to store to.
1811 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1812 SmallVectorImpl<BasicBlock::iterator> &LoopInsertPts;
1813 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1814 PredIteratorCache &PredCache;
1815 MemorySSAUpdater &MSSAU;
1816 LoopInfo &LI;
1817 DebugLoc DL;
1818 Align Alignment;
1819 bool UnorderedAtomic;
1820 AAMDNodes AATags;
1821 ICFLoopSafetyInfo &SafetyInfo;
1822 bool CanInsertStoresInExitBlocks;
1823 ArrayRef<const Instruction *> Uses;
1824
1825 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1826 // (if legal) if doing so would add an out-of-loop use to an instruction
1827 // defined in-loop.
1828 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1829 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, ExitBB: BB))
1830 return V;
1831
1832 Instruction *I = cast<Instruction>(Val: V);
1833 // We need to create an LCSSA PHI node for the incoming value and
1834 // store that.
1835 PHINode *PN = PHINode::Create(Ty: I->getType(), NumReservedValues: PredCache.size(BB),
1836 NameStr: I->getName() + ".lcssa");
1837 PN->insertBefore(InsertPos: BB->begin());
1838 for (BasicBlock *Pred : PredCache.get(BB))
1839 PN->addIncoming(V: I, BB: Pred);
1840 return PN;
1841 }
1842
1843public:
1844 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1845 SmallVectorImpl<BasicBlock *> &LEB,
1846 SmallVectorImpl<BasicBlock::iterator> &LIP,
1847 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1848 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl,
1849 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1850 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1851 : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB),
1852 LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU),
1853 LI(li), DL(std::move(dl)), Alignment(Alignment),
1854 UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1855 SafetyInfo(SafetyInfo),
1856 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {}
1857
1858 void insertStoresInLoopExitBlocks() {
1859 // Insert stores after in the loop exit blocks. Each exit block gets a
1860 // store of the live-out values that feed them. Since we've already told
1861 // the SSA updater about the defs in the loop and the preheader
1862 // definition, it is all set and we can start using it.
1863 DIAssignID *NewID = nullptr;
1864 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1865 BasicBlock *ExitBlock = LoopExitBlocks[i];
1866 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(BB: ExitBlock);
1867 LiveInValue = maybeInsertLCSSAPHI(V: LiveInValue, BB: ExitBlock);
1868 Value *Ptr = maybeInsertLCSSAPHI(V: SomePtr, BB: ExitBlock);
1869 BasicBlock::iterator InsertPos = LoopInsertPts[i];
1870 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1871 if (UnorderedAtomic)
1872 NewSI->setOrdering(AtomicOrdering::Unordered);
1873 NewSI->setAlignment(Alignment);
1874 NewSI->setDebugLoc(DL);
1875 // Attach DIAssignID metadata to the new store, generating it on the
1876 // first loop iteration.
1877 if (i == 0) {
1878 // NewSI will have its DIAssignID set here if there are any stores in
1879 // Uses with a DIAssignID attachment. This merged ID will then be
1880 // attached to the other inserted stores (in the branch below).
1881 NewSI->mergeDIAssignID(SourceInstructions: Uses);
1882 NewID = cast_or_null<DIAssignID>(
1883 Val: NewSI->getMetadata(KindID: LLVMContext::MD_DIAssignID));
1884 } else {
1885 // Attach the DIAssignID (or nullptr) merged from Uses in the branch
1886 // above.
1887 NewSI->setMetadata(KindID: LLVMContext::MD_DIAssignID, Node: NewID);
1888 }
1889
1890 if (AATags)
1891 NewSI->setAAMetadata(AATags);
1892
1893 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1894 MemoryAccess *NewMemAcc;
1895 if (!MSSAInsertPoint) {
1896 NewMemAcc = MSSAU.createMemoryAccessInBB(
1897 I: NewSI, Definition: nullptr, BB: NewSI->getParent(), Point: MemorySSA::Beginning);
1898 } else {
1899 NewMemAcc =
1900 MSSAU.createMemoryAccessAfter(I: NewSI, Definition: nullptr, InsertPt: MSSAInsertPoint);
1901 }
1902 MSSAInsertPts[i] = NewMemAcc;
1903 MSSAU.insertDef(Def: cast<MemoryDef>(Val: NewMemAcc), RenameUses: true);
1904 // FIXME: true for safety, false may still be correct.
1905 }
1906 }
1907
1908 void doExtraRewritesBeforeFinalDeletion() override {
1909 if (CanInsertStoresInExitBlocks)
1910 insertStoresInLoopExitBlocks();
1911 }
1912
1913 void instructionDeleted(Instruction *I) const override {
1914 SafetyInfo.removeInstruction(Inst: I);
1915 MSSAU.removeMemoryAccess(I);
1916 }
1917
1918 bool shouldDelete(Instruction *I) const override {
1919 if (isa<StoreInst>(Val: I))
1920 return CanInsertStoresInExitBlocks;
1921 return true;
1922 }
1923};
1924
1925bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1926 DominatorTree *DT) {
1927 // We can perform the captured-before check against any instruction in the
1928 // loop header, as the loop header is reachable from any instruction inside
1929 // the loop.
1930 // TODO: ReturnCaptures=true shouldn't be necessary here.
1931 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1932 /* StoreCaptures */ true,
1933 I: L->getHeader()->getTerminator(), DT);
1934}
1935
1936/// Return true if we can prove that a caller cannot inspect the object if an
1937/// unwind occurs inside the loop.
1938bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1939 DominatorTree *DT) {
1940 bool RequiresNoCaptureBeforeUnwind;
1941 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1942 return false;
1943
1944 return !RequiresNoCaptureBeforeUnwind ||
1945 isNotCapturedBeforeOrInLoop(V: Object, L, DT);
1946}
1947
1948bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT,
1949 TargetTransformInfo *TTI) {
1950 // The object must be function-local to start with, and then not captured
1951 // before/in the loop.
1952 return (isIdentifiedFunctionLocal(V: Object) &&
1953 isNotCapturedBeforeOrInLoop(V: Object, L, DT)) ||
1954 (TTI->isSingleThreaded() || SingleThread);
1955}
1956
1957} // namespace
1958
1959/// Try to promote memory values to scalars by sinking stores out of the
1960/// loop and moving loads to before the loop. We do this by looping over
1961/// the stores in the loop, looking for stores to Must pointers which are
1962/// loop invariant.
1963///
1964bool llvm::promoteLoopAccessesToScalars(
1965 const SmallSetVector<Value *, 8> &PointerMustAliases,
1966 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1967 SmallVectorImpl<BasicBlock::iterator> &InsertPts,
1968 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1969 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC,
1970 const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop,
1971 MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1972 OptimizationRemarkEmitter *ORE, bool AllowSpeculation,
1973 bool HasReadsOutsideSet) {
1974 // Verify inputs.
1975 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1976 SafetyInfo != nullptr &&
1977 "Unexpected Input to promoteLoopAccessesToScalars");
1978
1979 LLVM_DEBUG({
1980 dbgs() << "Trying to promote set of must-aliased pointers:\n";
1981 for (Value *Ptr : PointerMustAliases)
1982 dbgs() << " " << *Ptr << "\n";
1983 });
1984 ++NumPromotionCandidates;
1985
1986 Value *SomePtr = *PointerMustAliases.begin();
1987 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1988
1989 // It is not safe to promote a load/store from the loop if the load/store is
1990 // conditional. For example, turning:
1991 //
1992 // for () { if (c) *P += 1; }
1993 //
1994 // into:
1995 //
1996 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1997 //
1998 // is not safe, because *P may only be valid to access if 'c' is true.
1999 //
2000 // The safety property divides into two parts:
2001 // p1) The memory may not be dereferenceable on entry to the loop. In this
2002 // case, we can't insert the required load in the preheader.
2003 // p2) The memory model does not allow us to insert a store along any dynamic
2004 // path which did not originally have one.
2005 //
2006 // If at least one store is guaranteed to execute, both properties are
2007 // satisfied, and promotion is legal.
2008 //
2009 // This, however, is not a necessary condition. Even if no store/load is
2010 // guaranteed to execute, we can still establish these properties.
2011 // We can establish (p1) by proving that hoisting the load into the preheader
2012 // is safe (i.e. proving dereferenceability on all paths through the loop). We
2013 // can use any access within the alias set to prove dereferenceability,
2014 // since they're all must alias.
2015 //
2016 // There are two ways establish (p2):
2017 // a) Prove the location is thread-local. In this case the memory model
2018 // requirement does not apply, and stores are safe to insert.
2019 // b) Prove a store dominates every exit block. In this case, if an exit
2020 // blocks is reached, the original dynamic path would have taken us through
2021 // the store, so inserting a store into the exit block is safe. Note that this
2022 // is different from the store being guaranteed to execute. For instance,
2023 // if an exception is thrown on the first iteration of the loop, the original
2024 // store is never executed, but the exit blocks are not executed either.
2025
2026 bool DereferenceableInPH = false;
2027 bool StoreIsGuanteedToExecute = false;
2028 bool FoundLoadToPromote = false;
2029 // Goes from Unknown to either Safe or Unsafe, but can't switch between them.
2030 enum {
2031 StoreSafe,
2032 StoreUnsafe,
2033 StoreSafetyUnknown,
2034 } StoreSafety = StoreSafetyUnknown;
2035
2036 SmallVector<Instruction *, 64> LoopUses;
2037
2038 // We start with an alignment of one and try to find instructions that allow
2039 // us to prove better alignment.
2040 Align Alignment;
2041 // Keep track of which types of access we see
2042 bool SawUnorderedAtomic = false;
2043 bool SawNotAtomic = false;
2044 AAMDNodes AATags;
2045
2046 const DataLayout &MDL = Preheader->getDataLayout();
2047
2048 // If there are reads outside the promoted set, then promoting stores is
2049 // definitely not safe.
2050 if (HasReadsOutsideSet)
2051 StoreSafety = StoreUnsafe;
2052
2053 if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) {
2054 // If a loop can throw, we have to insert a store along each unwind edge.
2055 // That said, we can't actually make the unwind edge explicit. Therefore,
2056 // we have to prove that the store is dead along the unwind edge. We do
2057 // this by proving that the caller can't have a reference to the object
2058 // after return and thus can't possibly load from the object.
2059 Value *Object = getUnderlyingObject(V: SomePtr);
2060 if (!isNotVisibleOnUnwindInLoop(Object, L: CurLoop, DT))
2061 StoreSafety = StoreUnsafe;
2062 }
2063
2064 // Check that all accesses to pointers in the alias set use the same type.
2065 // We cannot (yet) promote a memory location that is loaded and stored in
2066 // different sizes. While we are at it, collect alignment and AA info.
2067 Type *AccessTy = nullptr;
2068 for (Value *ASIV : PointerMustAliases) {
2069 for (Use &U : ASIV->uses()) {
2070 // Ignore instructions that are outside the loop.
2071 Instruction *UI = dyn_cast<Instruction>(Val: U.getUser());
2072 if (!UI || !CurLoop->contains(Inst: UI))
2073 continue;
2074
2075 // If there is an non-load/store instruction in the loop, we can't promote
2076 // it.
2077 if (LoadInst *Load = dyn_cast<LoadInst>(Val: UI)) {
2078 if (!Load->isUnordered())
2079 return false;
2080
2081 SawUnorderedAtomic |= Load->isAtomic();
2082 SawNotAtomic |= !Load->isAtomic();
2083 FoundLoadToPromote = true;
2084
2085 Align InstAlignment = Load->getAlign();
2086
2087 // Note that proving a load safe to speculate requires proving
2088 // sufficient alignment at the target location. Proving it guaranteed
2089 // to execute does as well. Thus we can increase our guaranteed
2090 // alignment as well.
2091 if (!DereferenceableInPH || (InstAlignment > Alignment))
2092 if (isSafeToExecuteUnconditionally(
2093 Inst&: *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2094 CtxI: Preheader->getTerminator(), AC, AllowSpeculation)) {
2095 DereferenceableInPH = true;
2096 Alignment = std::max(a: Alignment, b: InstAlignment);
2097 }
2098 } else if (const StoreInst *Store = dyn_cast<StoreInst>(Val: UI)) {
2099 // Stores *of* the pointer are not interesting, only stores *to* the
2100 // pointer.
2101 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
2102 continue;
2103 if (!Store->isUnordered())
2104 return false;
2105
2106 SawUnorderedAtomic |= Store->isAtomic();
2107 SawNotAtomic |= !Store->isAtomic();
2108
2109 // If the store is guaranteed to execute, both properties are satisfied.
2110 // We may want to check if a store is guaranteed to execute even if we
2111 // already know that promotion is safe, since it may have higher
2112 // alignment than any other guaranteed stores, in which case we can
2113 // raise the alignment on the promoted store.
2114 Align InstAlignment = Store->getAlign();
2115 bool GuaranteedToExecute =
2116 SafetyInfo->isGuaranteedToExecute(Inst: *UI, DT, CurLoop);
2117 StoreIsGuanteedToExecute |= GuaranteedToExecute;
2118 if (GuaranteedToExecute) {
2119 DereferenceableInPH = true;
2120 if (StoreSafety == StoreSafetyUnknown)
2121 StoreSafety = StoreSafe;
2122 Alignment = std::max(a: Alignment, b: InstAlignment);
2123 }
2124
2125 // If a store dominates all exit blocks, it is safe to sink.
2126 // As explained above, if an exit block was executed, a dominating
2127 // store must have been executed at least once, so we are not
2128 // introducing stores on paths that did not have them.
2129 // Note that this only looks at explicit exit blocks. If we ever
2130 // start sinking stores into unwind edges (see above), this will break.
2131 if (StoreSafety == StoreSafetyUnknown &&
2132 llvm::all_of(Range&: ExitBlocks, P: [&](BasicBlock *Exit) {
2133 return DT->dominates(A: Store->getParent(), B: Exit);
2134 }))
2135 StoreSafety = StoreSafe;
2136
2137 // If the store is not guaranteed to execute, we may still get
2138 // deref info through it.
2139 if (!DereferenceableInPH) {
2140 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2141 V: Store->getPointerOperand(), Ty: Store->getValueOperand()->getType(),
2142 Alignment: Store->getAlign(), DL: MDL, CtxI: Preheader->getTerminator(), AC, DT, TLI);
2143 }
2144 } else
2145 continue; // Not a load or store.
2146
2147 if (!AccessTy)
2148 AccessTy = getLoadStoreType(I: UI);
2149 else if (AccessTy != getLoadStoreType(I: UI))
2150 return false;
2151
2152 // Merge the AA tags.
2153 if (LoopUses.empty()) {
2154 // On the first load/store, just take its AA tags.
2155 AATags = UI->getAAMetadata();
2156 } else if (AATags) {
2157 AATags = AATags.merge(Other: UI->getAAMetadata());
2158 }
2159
2160 LoopUses.push_back(Elt: UI);
2161 }
2162 }
2163
2164 // If we found both an unordered atomic instruction and a non-atomic memory
2165 // access, bail. We can't blindly promote non-atomic to atomic since we
2166 // might not be able to lower the result. We can't downgrade since that
2167 // would violate memory model. Also, align 0 is an error for atomics.
2168 if (SawUnorderedAtomic && SawNotAtomic)
2169 return false;
2170
2171 // If we're inserting an atomic load in the preheader, we must be able to
2172 // lower it. We're only guaranteed to be able to lower naturally aligned
2173 // atomics.
2174 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(Ty: AccessTy))
2175 return false;
2176
2177 // If we couldn't prove we can hoist the load, bail.
2178 if (!DereferenceableInPH) {
2179 LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n");
2180 return false;
2181 }
2182
2183 // We know we can hoist the load, but don't have a guaranteed store.
2184 // Check whether the location is writable and thread-local. If it is, then we
2185 // can insert stores along paths which originally didn't have them without
2186 // violating the memory model.
2187 if (StoreSafety == StoreSafetyUnknown) {
2188 Value *Object = getUnderlyingObject(V: SomePtr);
2189 bool ExplicitlyDereferenceableOnly;
2190 if (isWritableObject(Object, ExplicitlyDereferenceableOnly) &&
2191 (!ExplicitlyDereferenceableOnly ||
2192 isDereferenceablePointer(V: SomePtr, Ty: AccessTy, DL: MDL)) &&
2193 isThreadLocalObject(Object, L: CurLoop, DT, TTI))
2194 StoreSafety = StoreSafe;
2195 }
2196
2197 // If we've still failed to prove we can sink the store, hoist the load
2198 // only, if possible.
2199 if (StoreSafety != StoreSafe && !FoundLoadToPromote)
2200 // If we cannot hoist the load either, give up.
2201 return false;
2202
2203 // Lets do the promotion!
2204 if (StoreSafety == StoreSafe) {
2205 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2206 << '\n');
2207 ++NumLoadStorePromoted;
2208 } else {
2209 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2210 << '\n');
2211 ++NumLoadPromoted;
2212 }
2213
2214 ORE->emit(RemarkBuilder: [&]() {
2215 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2216 LoopUses[0])
2217 << "Moving accesses to memory location out of the loop";
2218 });
2219
2220 // Look at all the loop uses, and try to merge their locations.
2221 std::vector<DILocation *> LoopUsesLocs;
2222 for (auto *U : LoopUses)
2223 LoopUsesLocs.push_back(x: U->getDebugLoc().get());
2224 auto DL = DebugLoc(DILocation::getMergedLocations(Locs: LoopUsesLocs));
2225
2226 // We use the SSAUpdater interface to insert phi nodes as required.
2227 SmallVector<PHINode *, 16> NewPHIs;
2228 SSAUpdater SSA(&NewPHIs);
2229 LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts,
2230 MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment,
2231 SawUnorderedAtomic, AATags, *SafetyInfo,
2232 StoreSafety == StoreSafe);
2233
2234 // Set up the preheader to have a definition of the value. It is the live-out
2235 // value from the preheader that uses in the loop will use.
2236 LoadInst *PreheaderLoad = nullptr;
2237 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2238 PreheaderLoad =
2239 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2240 Preheader->getTerminator()->getIterator());
2241 if (SawUnorderedAtomic)
2242 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2243 PreheaderLoad->setAlignment(Alignment);
2244 PreheaderLoad->setDebugLoc(DebugLoc());
2245 if (AATags)
2246 PreheaderLoad->setAAMetadata(AATags);
2247
2248 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB(
2249 I: PreheaderLoad, Definition: nullptr, BB: PreheaderLoad->getParent(), Point: MemorySSA::End);
2250 MemoryUse *NewMemUse = cast<MemoryUse>(Val: PreheaderLoadMemoryAccess);
2251 MSSAU.insertUse(Use: NewMemUse, /*RenameUses=*/true);
2252 SSA.AddAvailableValue(BB: Preheader, V: PreheaderLoad);
2253 } else {
2254 SSA.AddAvailableValue(BB: Preheader, V: PoisonValue::get(T: AccessTy));
2255 }
2256
2257 if (VerifyMemorySSA)
2258 MSSAU.getMemorySSA()->verifyMemorySSA();
2259 // Rewrite all the loads in the loop and remember all the definitions from
2260 // stores in the loop.
2261 Promoter.run(Insts: LoopUses);
2262
2263 if (VerifyMemorySSA)
2264 MSSAU.getMemorySSA()->verifyMemorySSA();
2265 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2266 if (PreheaderLoad && PreheaderLoad->use_empty())
2267 eraseInstruction(I&: *PreheaderLoad, SafetyInfo&: *SafetyInfo, MSSAU);
2268
2269 return true;
2270}
2271
2272static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2273 function_ref<void(Instruction *)> Fn) {
2274 for (const BasicBlock *BB : L->blocks())
2275 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2276 for (const auto &Access : *Accesses)
2277 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(Val: &Access))
2278 Fn(MUD->getMemoryInst());
2279}
2280
2281// The bool indicates whether there might be reads outside the set, in which
2282// case only loads may be promoted.
2283static SmallVector<PointersAndHasReadsOutsideSet, 0>
2284collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2285 BatchAAResults BatchAA(*AA);
2286 AliasSetTracker AST(BatchAA);
2287
2288 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2289 if (const auto *SI = dyn_cast<StoreInst>(Val: I))
2290 return L->isLoopInvariant(V: SI->getPointerOperand());
2291 if (const auto *LI = dyn_cast<LoadInst>(Val: I))
2292 return L->isLoopInvariant(V: LI->getPointerOperand());
2293 return false;
2294 };
2295
2296 // Populate AST with potentially promotable accesses.
2297 SmallPtrSet<Value *, 16> AttemptingPromotion;
2298 foreachMemoryAccess(MSSA, L, Fn: [&](Instruction *I) {
2299 if (IsPotentiallyPromotable(I)) {
2300 AttemptingPromotion.insert(Ptr: I);
2301 AST.add(I);
2302 }
2303 });
2304
2305 // We're only interested in must-alias sets that contain a mod.
2306 SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets;
2307 for (AliasSet &AS : AST)
2308 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2309 Sets.push_back(Elt: {&AS, false});
2310
2311 if (Sets.empty())
2312 return {}; // Nothing to promote...
2313
2314 // Discard any sets for which there is an aliasing non-promotable access.
2315 foreachMemoryAccess(MSSA, L, Fn: [&](Instruction *I) {
2316 if (AttemptingPromotion.contains(Ptr: I))
2317 return;
2318
2319 llvm::erase_if(C&: Sets, P: [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) {
2320 ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(Inst: I, AA&: BatchAA);
2321 // Cannot promote if there are writes outside the set.
2322 if (isModSet(MRI: MR))
2323 return true;
2324 if (isRefSet(MRI: MR)) {
2325 // Remember reads outside the set.
2326 Pair.setInt(true);
2327 // If this is a mod-only set and there are reads outside the set,
2328 // we will not be able to promote, so bail out early.
2329 return !Pair.getPointer()->isRef();
2330 }
2331 return false;
2332 });
2333 });
2334
2335 SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result;
2336 for (auto [Set, HasReadsOutsideSet] : Sets) {
2337 SmallSetVector<Value *, 8> PointerMustAliases;
2338 for (const auto &MemLoc : *Set)
2339 PointerMustAliases.insert(X: const_cast<Value *>(MemLoc.Ptr));
2340 Result.emplace_back(Args: std::move(PointerMustAliases), Args&: HasReadsOutsideSet);
2341 }
2342
2343 return Result;
2344}
2345
2346static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
2347 Loop *CurLoop, Instruction &I,
2348 SinkAndHoistLICMFlags &Flags,
2349 bool InvariantGroup) {
2350 // For hoisting, use the walker to determine safety
2351 if (!Flags.getIsSink()) {
2352 // If hoisting an invariant group, we only need to check that there
2353 // is no store to the loaded pointer between the start of the loop,
2354 // and the load (since all values must be the same).
2355
2356 // This can be checked in two conditions:
2357 // 1) if the memoryaccess is outside the loop
2358 // 2) the earliest access is at the loop header,
2359 // if the memory loaded is the phi node
2360
2361 BatchAAResults BAA(MSSA->getAA());
2362 MemoryAccess *Source = getClobberingMemoryAccess(MSSA&: *MSSA, BAA, Flags, MA: MU);
2363 return !MSSA->isLiveOnEntryDef(MA: Source) &&
2364 CurLoop->contains(BB: Source->getBlock()) &&
2365 !(InvariantGroup && Source->getBlock() == CurLoop->getHeader() && isa<MemoryPhi>(Val: Source));
2366 }
2367
2368 // For sinking, we'd need to check all Defs below this use. The getClobbering
2369 // call will look on the backedge of the loop, but will check aliasing with
2370 // the instructions on the previous iteration.
2371 // For example:
2372 // for (i ... )
2373 // load a[i] ( Use (LoE)
2374 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2375 // i++;
2376 // The load sees no clobbering inside the loop, as the backedge alias check
2377 // does phi translation, and will check aliasing against store a[i-1].
2378 // However sinking the load outside the loop, below the store is incorrect.
2379
2380 // For now, only sink if there are no Defs in the loop, and the existing ones
2381 // precede the use and are in the same block.
2382 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2383 // needs PostDominatorTreeAnalysis.
2384 // FIXME: More precise: no Defs that alias this Use.
2385 if (Flags.tooManyMemoryAccesses())
2386 return true;
2387 for (auto *BB : CurLoop->getBlocks())
2388 if (pointerInvalidatedByBlock(BB&: *BB, MSSA&: *MSSA, MU&: *MU))
2389 return true;
2390 // When sinking, the source block may not be part of the loop so check it.
2391 if (!CurLoop->contains(Inst: &I))
2392 return pointerInvalidatedByBlock(BB&: *I.getParent(), MSSA&: *MSSA, MU&: *MU);
2393
2394 return false;
2395}
2396
2397bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) {
2398 if (const auto *Accesses = MSSA.getBlockDefs(BB: &BB))
2399 for (const auto &MA : *Accesses)
2400 if (const auto *MD = dyn_cast<MemoryDef>(Val: &MA))
2401 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(A: MD, B: &MU))
2402 return true;
2403 return false;
2404}
2405
2406/// Try to simplify things like (A < INV_1 AND icmp A < INV_2) into (A <
2407/// min(INV_1, INV_2)), if INV_1 and INV_2 are both loop invariants and their
2408/// minimun can be computed outside of loop, and X is not a loop-invariant.
2409static bool hoistMinMax(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2410 MemorySSAUpdater &MSSAU) {
2411 bool Inverse = false;
2412 using namespace PatternMatch;
2413 Value *Cond1, *Cond2;
2414 if (match(V: &I, P: m_LogicalOr(L: m_Value(V&: Cond1), R: m_Value(V&: Cond2)))) {
2415 Inverse = true;
2416 } else if (match(V: &I, P: m_LogicalAnd(L: m_Value(V&: Cond1), R: m_Value(V&: Cond2)))) {
2417 // Do nothing
2418 } else
2419 return false;
2420
2421 auto MatchICmpAgainstInvariant = [&](Value *C, ICmpInst::Predicate &P,
2422 Value *&LHS, Value *&RHS) {
2423 if (!match(V: C, P: m_OneUse(SubPattern: m_ICmp(Pred&: P, L: m_Value(V&: LHS), R: m_Value(V&: RHS)))))
2424 return false;
2425 if (!LHS->getType()->isIntegerTy())
2426 return false;
2427 if (!ICmpInst::isRelational(P))
2428 return false;
2429 if (L.isLoopInvariant(V: LHS)) {
2430 std::swap(a&: LHS, b&: RHS);
2431 P = ICmpInst::getSwappedPredicate(pred: P);
2432 }
2433 if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS))
2434 return false;
2435 if (Inverse)
2436 P = ICmpInst::getInversePredicate(pred: P);
2437 return true;
2438 };
2439 ICmpInst::Predicate P1, P2;
2440 Value *LHS1, *LHS2, *RHS1, *RHS2;
2441 if (!MatchICmpAgainstInvariant(Cond1, P1, LHS1, RHS1) ||
2442 !MatchICmpAgainstInvariant(Cond2, P2, LHS2, RHS2))
2443 return false;
2444 if (P1 != P2 || LHS1 != LHS2)
2445 return false;
2446
2447 // Everything is fine, we can do the transform.
2448 bool UseMin = ICmpInst::isLT(P: P1) || ICmpInst::isLE(P: P1);
2449 assert(
2450 (UseMin || ICmpInst::isGT(P1) || ICmpInst::isGE(P1)) &&
2451 "Relational predicate is either less (or equal) or greater (or equal)!");
2452 Intrinsic::ID id = ICmpInst::isSigned(predicate: P1)
2453 ? (UseMin ? Intrinsic::smin : Intrinsic::smax)
2454 : (UseMin ? Intrinsic::umin : Intrinsic::umax);
2455 auto *Preheader = L.getLoopPreheader();
2456 assert(Preheader && "Loop is not in simplify form?");
2457 IRBuilder<> Builder(Preheader->getTerminator());
2458 // We are about to create a new guaranteed use for RHS2 which might not exist
2459 // before (if it was a non-taken input of logical and/or instruction). If it
2460 // was poison, we need to freeze it. Note that no new use for LHS and RHS1 are
2461 // introduced, so they don't need this.
2462 if (isa<SelectInst>(Val: I))
2463 RHS2 = Builder.CreateFreeze(V: RHS2, Name: RHS2->getName() + ".fr");
2464 Value *NewRHS = Builder.CreateBinaryIntrinsic(
2465 ID: id, LHS: RHS1, RHS: RHS2, FMFSource: nullptr, Name: StringRef("invariant.") +
2466 (ICmpInst::isSigned(predicate: P1) ? "s" : "u") +
2467 (UseMin ? "min" : "max"));
2468 Builder.SetInsertPoint(&I);
2469 ICmpInst::Predicate P = P1;
2470 if (Inverse)
2471 P = ICmpInst::getInversePredicate(pred: P);
2472 Value *NewCond = Builder.CreateICmp(P, LHS: LHS1, RHS: NewRHS);
2473 NewCond->takeName(V: &I);
2474 I.replaceAllUsesWith(V: NewCond);
2475 eraseInstruction(I, SafetyInfo, MSSAU);
2476 eraseInstruction(I&: *cast<Instruction>(Val: Cond1), SafetyInfo, MSSAU);
2477 eraseInstruction(I&: *cast<Instruction>(Val: Cond2), SafetyInfo, MSSAU);
2478 return true;
2479}
2480
2481/// Reassociate gep (gep ptr, idx1), idx2 to gep (gep ptr, idx2), idx1 if
2482/// this allows hoisting the inner GEP.
2483static bool hoistGEP(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2484 MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2485 DominatorTree *DT) {
2486 auto *GEP = dyn_cast<GetElementPtrInst>(Val: &I);
2487 if (!GEP)
2488 return false;
2489
2490 auto *Src = dyn_cast<GetElementPtrInst>(Val: GEP->getPointerOperand());
2491 if (!Src || !Src->hasOneUse() || !L.contains(Inst: Src))
2492 return false;
2493
2494 Value *SrcPtr = Src->getPointerOperand();
2495 auto LoopInvariant = [&](Value *V) { return L.isLoopInvariant(V); };
2496 if (!L.isLoopInvariant(V: SrcPtr) || !all_of(Range: GEP->indices(), P: LoopInvariant))
2497 return false;
2498
2499 // This can only happen if !AllowSpeculation, otherwise this would already be
2500 // handled.
2501 // FIXME: Should we respect AllowSpeculation in these reassociation folds?
2502 // The flag exists to prevent metadata dropping, which is not relevant here.
2503 if (all_of(Range: Src->indices(), P: LoopInvariant))
2504 return false;
2505
2506 // The swapped GEPs are inbounds if both original GEPs are inbounds
2507 // and the sign of the offsets is the same. For simplicity, only
2508 // handle both offsets being non-negative.
2509 const DataLayout &DL = GEP->getDataLayout();
2510 auto NonNegative = [&](Value *V) {
2511 return isKnownNonNegative(V, SQ: SimplifyQuery(DL, DT, AC, GEP));
2512 };
2513 bool IsInBounds = Src->isInBounds() && GEP->isInBounds() &&
2514 all_of(Range: Src->indices(), P: NonNegative) &&
2515 all_of(Range: GEP->indices(), P: NonNegative);
2516
2517 BasicBlock *Preheader = L.getLoopPreheader();
2518 IRBuilder<> Builder(Preheader->getTerminator());
2519 Value *NewSrc = Builder.CreateGEP(Ty: GEP->getSourceElementType(), Ptr: SrcPtr,
2520 IdxList: SmallVector<Value *>(GEP->indices()),
2521 Name: "invariant.gep", NW: IsInBounds);
2522 Builder.SetInsertPoint(GEP);
2523 Value *NewGEP = Builder.CreateGEP(Ty: Src->getSourceElementType(), Ptr: NewSrc,
2524 IdxList: SmallVector<Value *>(Src->indices()), Name: "gep",
2525 NW: IsInBounds);
2526 GEP->replaceAllUsesWith(V: NewGEP);
2527 eraseInstruction(I&: *GEP, SafetyInfo, MSSAU);
2528 eraseInstruction(I&: *Src, SafetyInfo, MSSAU);
2529 return true;
2530}
2531
2532/// Try to turn things like "LV + C1 < C2" into "LV < C2 - C1". Here
2533/// C1 and C2 are loop invariants and LV is a loop-variant.
2534static bool hoistAdd(ICmpInst::Predicate Pred, Value *VariantLHS,
2535 Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2536 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2537 AssumptionCache *AC, DominatorTree *DT) {
2538 assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2539 assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2540 assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2541
2542 // Try to represent VariantLHS as sum of invariant and variant operands.
2543 using namespace PatternMatch;
2544 Value *VariantOp, *InvariantOp;
2545 if (!match(V: VariantLHS, P: m_NSWAdd(L: m_Value(V&: VariantOp), R: m_Value(V&: InvariantOp))))
2546 return false;
2547
2548 // LHS itself is a loop-variant, try to represent it in the form:
2549 // "VariantOp + InvariantOp". If it is possible, then we can reassociate.
2550 if (L.isLoopInvariant(V: VariantOp))
2551 std::swap(a&: VariantOp, b&: InvariantOp);
2552 if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp))
2553 return false;
2554
2555 // In order to turn "LV + C1 < C2" into "LV < C2 - C1", we need to be able to
2556 // freely move values from left side of inequality to right side (just as in
2557 // normal linear arithmetics). Overflows make things much more complicated, so
2558 // we want to avoid this.
2559 auto &DL = L.getHeader()->getDataLayout();
2560 bool ProvedNoOverflowAfterReassociate =
2561 computeOverflowForSignedSub(LHS: InvariantRHS, RHS: InvariantOp,
2562 SQ: SimplifyQuery(DL, DT, AC, &ICmp)) ==
2563 llvm::OverflowResult::NeverOverflows;
2564 if (!ProvedNoOverflowAfterReassociate)
2565 return false;
2566 auto *Preheader = L.getLoopPreheader();
2567 assert(Preheader && "Loop is not in simplify form?");
2568 IRBuilder<> Builder(Preheader->getTerminator());
2569 Value *NewCmpOp = Builder.CreateSub(LHS: InvariantRHS, RHS: InvariantOp, Name: "invariant.op",
2570 /*HasNUW*/ false, /*HasNSW*/ true);
2571 ICmp.setPredicate(Pred);
2572 ICmp.setOperand(i_nocapture: 0, Val_nocapture: VariantOp);
2573 ICmp.setOperand(i_nocapture: 1, Val_nocapture: NewCmpOp);
2574 eraseInstruction(I&: cast<Instruction>(Val&: *VariantLHS), SafetyInfo, MSSAU);
2575 return true;
2576}
2577
2578/// Try to reassociate and hoist the following two patterns:
2579/// LV - C1 < C2 --> LV < C1 + C2,
2580/// C1 - LV < C2 --> LV > C1 - C2.
2581static bool hoistSub(ICmpInst::Predicate Pred, Value *VariantLHS,
2582 Value *InvariantRHS, ICmpInst &ICmp, Loop &L,
2583 ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU,
2584 AssumptionCache *AC, DominatorTree *DT) {
2585 assert(ICmpInst::isSigned(Pred) && "Not supported yet!");
2586 assert(!L.isLoopInvariant(VariantLHS) && "Precondition.");
2587 assert(L.isLoopInvariant(InvariantRHS) && "Precondition.");
2588
2589 // Try to represent VariantLHS as sum of invariant and variant operands.
2590 using namespace PatternMatch;
2591 Value *VariantOp, *InvariantOp;
2592 if (!match(V: VariantLHS, P: m_NSWSub(L: m_Value(V&: VariantOp), R: m_Value(V&: InvariantOp))))
2593 return false;
2594
2595 bool VariantSubtracted = false;
2596 // LHS itself is a loop-variant, try to represent it in the form:
2597 // "VariantOp + InvariantOp". If it is possible, then we can reassociate. If
2598 // the variant operand goes with minus, we use a slightly different scheme.
2599 if (L.isLoopInvariant(V: VariantOp)) {
2600 std::swap(a&: VariantOp, b&: InvariantOp);
2601 VariantSubtracted = true;
2602 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
2603 }
2604 if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp))
2605 return false;
2606
2607 // In order to turn "LV - C1 < C2" into "LV < C2 + C1", we need to be able to
2608 // freely move values from left side of inequality to right side (just as in
2609 // normal linear arithmetics). Overflows make things much more complicated, so
2610 // we want to avoid this. Likewise, for "C1 - LV < C2" we need to prove that
2611 // "C1 - C2" does not overflow.
2612 auto &DL = L.getHeader()->getDataLayout();
2613 SimplifyQuery SQ(DL, DT, AC, &ICmp);
2614 if (VariantSubtracted) {
2615 // C1 - LV < C2 --> LV > C1 - C2
2616 if (computeOverflowForSignedSub(LHS: InvariantOp, RHS: InvariantRHS, SQ) !=
2617 llvm::OverflowResult::NeverOverflows)
2618 return false;
2619 } else {
2620 // LV - C1 < C2 --> LV < C1 + C2
2621 if (computeOverflowForSignedAdd(LHS: InvariantOp, RHS: InvariantRHS, SQ) !=
2622 llvm::OverflowResult::NeverOverflows)
2623 return false;
2624 }
2625 auto *Preheader = L.getLoopPreheader();
2626 assert(Preheader && "Loop is not in simplify form?");
2627 IRBuilder<> Builder(Preheader->getTerminator());
2628 Value *NewCmpOp =
2629 VariantSubtracted
2630 ? Builder.CreateSub(LHS: InvariantOp, RHS: InvariantRHS, Name: "invariant.op",
2631 /*HasNUW*/ false, /*HasNSW*/ true)
2632 : Builder.CreateAdd(LHS: InvariantOp, RHS: InvariantRHS, Name: "invariant.op",
2633 /*HasNUW*/ false, /*HasNSW*/ true);
2634 ICmp.setPredicate(Pred);
2635 ICmp.setOperand(i_nocapture: 0, Val_nocapture: VariantOp);
2636 ICmp.setOperand(i_nocapture: 1, Val_nocapture: NewCmpOp);
2637 eraseInstruction(I&: cast<Instruction>(Val&: *VariantLHS), SafetyInfo, MSSAU);
2638 return true;
2639}
2640
2641/// Reassociate and hoist add/sub expressions.
2642static bool hoistAddSub(Instruction &I, Loop &L, ICFLoopSafetyInfo &SafetyInfo,
2643 MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2644 DominatorTree *DT) {
2645 using namespace PatternMatch;
2646 ICmpInst::Predicate Pred;
2647 Value *LHS, *RHS;
2648 if (!match(V: &I, P: m_ICmp(Pred, L: m_Value(V&: LHS), R: m_Value(V&: RHS))))
2649 return false;
2650
2651 // TODO: Support unsigned predicates?
2652 if (!ICmpInst::isSigned(predicate: Pred))
2653 return false;
2654
2655 // Put variant operand to LHS position.
2656 if (L.isLoopInvariant(V: LHS)) {
2657 std::swap(a&: LHS, b&: RHS);
2658 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
2659 }
2660 // We want to delete the initial operation after reassociation, so only do it
2661 // if it has no other uses.
2662 if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS) || !LHS->hasOneUse())
2663 return false;
2664
2665 // TODO: We could go with smarter context, taking common dominator of all I's
2666 // users instead of I itself.
2667 if (hoistAdd(Pred, VariantLHS: LHS, InvariantRHS: RHS, ICmp&: cast<ICmpInst>(Val&: I), L, SafetyInfo, MSSAU, AC, DT))
2668 return true;
2669
2670 if (hoistSub(Pred, VariantLHS: LHS, InvariantRHS: RHS, ICmp&: cast<ICmpInst>(Val&: I), L, SafetyInfo, MSSAU, AC, DT))
2671 return true;
2672
2673 return false;
2674}
2675
2676static bool isReassociableOp(Instruction *I, unsigned IntOpcode,
2677 unsigned FPOpcode) {
2678 if (I->getOpcode() == IntOpcode)
2679 return true;
2680 if (I->getOpcode() == FPOpcode && I->hasAllowReassoc() &&
2681 I->hasNoSignedZeros())
2682 return true;
2683 return false;
2684}
2685
2686/// Try to reassociate expressions like ((A1 * B1) + (A2 * B2) + ...) * C where
2687/// A1, A2, ... and C are loop invariants into expressions like
2688/// ((A1 * C * B1) + (A2 * C * B2) + ...) and hoist the (A1 * C), (A2 * C), ...
2689/// invariant expressions. This functions returns true only if any hoisting has
2690/// actually occured.
2691static bool hoistMulAddAssociation(Instruction &I, Loop &L,
2692 ICFLoopSafetyInfo &SafetyInfo,
2693 MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2694 DominatorTree *DT) {
2695 if (!isReassociableOp(I: &I, IntOpcode: Instruction::Mul, FPOpcode: Instruction::FMul))
2696 return false;
2697 Value *VariantOp = I.getOperand(i: 0);
2698 Value *InvariantOp = I.getOperand(i: 1);
2699 if (L.isLoopInvariant(V: VariantOp))
2700 std::swap(a&: VariantOp, b&: InvariantOp);
2701 if (L.isLoopInvariant(V: VariantOp) || !L.isLoopInvariant(V: InvariantOp))
2702 return false;
2703 Value *Factor = InvariantOp;
2704
2705 // First, we need to make sure we should do the transformation.
2706 SmallVector<Use *> Changes;
2707 SmallVector<BinaryOperator *> Adds;
2708 SmallVector<BinaryOperator *> Worklist;
2709 if (BinaryOperator *VariantBinOp = dyn_cast<BinaryOperator>(Val: VariantOp))
2710 Worklist.push_back(Elt: VariantBinOp);
2711 while (!Worklist.empty()) {
2712 BinaryOperator *BO = Worklist.pop_back_val();
2713 if (!BO->hasOneUse())
2714 return false;
2715 if (isReassociableOp(I: BO, IntOpcode: Instruction::Add, FPOpcode: Instruction::FAdd) &&
2716 isa<BinaryOperator>(Val: BO->getOperand(i_nocapture: 0)) &&
2717 isa<BinaryOperator>(Val: BO->getOperand(i_nocapture: 1))) {
2718 Worklist.push_back(Elt: cast<BinaryOperator>(Val: BO->getOperand(i_nocapture: 0)));
2719 Worklist.push_back(Elt: cast<BinaryOperator>(Val: BO->getOperand(i_nocapture: 1)));
2720 Adds.push_back(Elt: BO);
2721 continue;
2722 }
2723 if (!isReassociableOp(I: BO, IntOpcode: Instruction::Mul, FPOpcode: Instruction::FMul) ||
2724 L.isLoopInvariant(V: BO))
2725 return false;
2726 Use &U0 = BO->getOperandUse(i: 0);
2727 Use &U1 = BO->getOperandUse(i: 1);
2728 if (L.isLoopInvariant(V: U0))
2729 Changes.push_back(Elt: &U0);
2730 else if (L.isLoopInvariant(V: U1))
2731 Changes.push_back(Elt: &U1);
2732 else
2733 return false;
2734 unsigned Limit = I.getType()->isIntOrIntVectorTy()
2735 ? IntAssociationUpperLimit
2736 : FPAssociationUpperLimit;
2737 if (Changes.size() > Limit)
2738 return false;
2739 }
2740 if (Changes.empty())
2741 return false;
2742
2743 // Drop the poison flags for any adds we looked through.
2744 if (I.getType()->isIntOrIntVectorTy()) {
2745 for (auto *Add : Adds)
2746 Add->dropPoisonGeneratingFlags();
2747 }
2748
2749 // We know we should do it so let's do the transformation.
2750 auto *Preheader = L.getLoopPreheader();
2751 assert(Preheader && "Loop is not in simplify form?");
2752 IRBuilder<> Builder(Preheader->getTerminator());
2753 for (auto *U : Changes) {
2754 assert(L.isLoopInvariant(U->get()));
2755 auto *Ins = cast<BinaryOperator>(Val: U->getUser());
2756 Value *Mul;
2757 if (I.getType()->isIntOrIntVectorTy()) {
2758 Mul = Builder.CreateMul(LHS: U->get(), RHS: Factor, Name: "factor.op.mul");
2759 // Drop the poison flags on the original multiply.
2760 Ins->dropPoisonGeneratingFlags();
2761 } else
2762 Mul = Builder.CreateFMulFMF(L: U->get(), R: Factor, FMFSource: Ins, Name: "factor.op.fmul");
2763
2764 // Rewrite the reassociable instruction.
2765 unsigned OpIdx = U->getOperandNo();
2766 auto *LHS = OpIdx == 0 ? Mul : Ins->getOperand(i_nocapture: 0);
2767 auto *RHS = OpIdx == 1 ? Mul : Ins->getOperand(i_nocapture: 1);
2768 auto *NewBO = BinaryOperator::Create(Op: Ins->getOpcode(), S1: LHS, S2: RHS,
2769 Name: Ins->getName() + ".reass", InsertBefore: Ins);
2770 NewBO->copyIRFlags(V: Ins);
2771 if (VariantOp == Ins)
2772 VariantOp = NewBO;
2773 Ins->replaceAllUsesWith(V: NewBO);
2774 eraseInstruction(I&: *Ins, SafetyInfo, MSSAU);
2775 }
2776
2777 I.replaceAllUsesWith(V: VariantOp);
2778 eraseInstruction(I, SafetyInfo, MSSAU);
2779 return true;
2780}
2781
2782static bool hoistArithmetics(Instruction &I, Loop &L,
2783 ICFLoopSafetyInfo &SafetyInfo,
2784 MemorySSAUpdater &MSSAU, AssumptionCache *AC,
2785 DominatorTree *DT) {
2786 // Optimize complex patterns, such as (x < INV1 && x < INV2), turning them
2787 // into (x < min(INV1, INV2)), and hoisting the invariant part of this
2788 // expression out of the loop.
2789 if (hoistMinMax(I, L, SafetyInfo, MSSAU)) {
2790 ++NumHoisted;
2791 ++NumMinMaxHoisted;
2792 return true;
2793 }
2794
2795 // Try to hoist GEPs by reassociation.
2796 if (hoistGEP(I, L, SafetyInfo, MSSAU, AC, DT)) {
2797 ++NumHoisted;
2798 ++NumGEPsHoisted;
2799 return true;
2800 }
2801
2802 // Try to hoist add/sub's by reassociation.
2803 if (hoistAddSub(I, L, SafetyInfo, MSSAU, AC, DT)) {
2804 ++NumHoisted;
2805 ++NumAddSubHoisted;
2806 return true;
2807 }
2808
2809 bool IsInt = I.getType()->isIntOrIntVectorTy();
2810 if (hoistMulAddAssociation(I, L, SafetyInfo, MSSAU, AC, DT)) {
2811 ++NumHoisted;
2812 if (IsInt)
2813 ++NumIntAssociationsHoisted;
2814 else
2815 ++NumFPAssociationsHoisted;
2816 return true;
2817 }
2818
2819 return false;
2820}
2821
2822/// Little predicate that returns true if the specified basic block is in
2823/// a subloop of the current one, not the current one itself.
2824///
2825static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2826 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2827 return LI->getLoopFor(BB) != CurLoop;
2828}
2829