1 | //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Loop SimplifyCFG Pass. This pass is responsible for |
10 | // basic loop CFG cleanup, primarily to assist other loop passes. If you |
11 | // encounter a noncanonical CFG construct that causes another loop pass to |
12 | // perform suboptimally, this is the place to fix it up. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h" |
17 | #include "llvm/ADT/SmallVector.h" |
18 | #include "llvm/ADT/Statistic.h" |
19 | #include "llvm/Analysis/DomTreeUpdater.h" |
20 | #include "llvm/Analysis/LoopInfo.h" |
21 | #include "llvm/Analysis/LoopIterator.h" |
22 | #include "llvm/Analysis/MemorySSA.h" |
23 | #include "llvm/Analysis/MemorySSAUpdater.h" |
24 | #include "llvm/Analysis/ScalarEvolution.h" |
25 | #include "llvm/IR/Dominators.h" |
26 | #include "llvm/IR/IRBuilder.h" |
27 | #include "llvm/Support/CommandLine.h" |
28 | #include "llvm/Transforms/Scalar.h" |
29 | #include "llvm/Transforms/Scalar/LoopPassManager.h" |
30 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
31 | #include "llvm/Transforms/Utils/LoopUtils.h" |
32 | #include <optional> |
33 | using namespace llvm; |
34 | |
35 | #define DEBUG_TYPE "loop-simplifycfg" |
36 | |
37 | static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding" , |
38 | cl::init(Val: true)); |
39 | |
40 | STATISTIC(NumTerminatorsFolded, |
41 | "Number of terminators folded to unconditional branches" ); |
42 | STATISTIC(NumLoopBlocksDeleted, |
43 | "Number of loop blocks deleted" ); |
44 | STATISTIC(NumLoopExitsDeleted, |
45 | "Number of loop exiting edges deleted" ); |
46 | |
47 | /// If \p BB is a switch or a conditional branch, but only one of its successors |
48 | /// can be reached from this block in runtime, return this successor. Otherwise, |
49 | /// return nullptr. |
50 | static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) { |
51 | Instruction *TI = BB->getTerminator(); |
52 | if (BranchInst *BI = dyn_cast<BranchInst>(Val: TI)) { |
53 | if (BI->isUnconditional()) |
54 | return nullptr; |
55 | if (BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1)) |
56 | return BI->getSuccessor(i: 0); |
57 | ConstantInt *Cond = dyn_cast<ConstantInt>(Val: BI->getCondition()); |
58 | if (!Cond) |
59 | return nullptr; |
60 | return Cond->isZero() ? BI->getSuccessor(i: 1) : BI->getSuccessor(i: 0); |
61 | } |
62 | |
63 | if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: TI)) { |
64 | auto *CI = dyn_cast<ConstantInt>(Val: SI->getCondition()); |
65 | if (!CI) |
66 | return nullptr; |
67 | for (auto Case : SI->cases()) |
68 | if (Case.getCaseValue() == CI) |
69 | return Case.getCaseSuccessor(); |
70 | return SI->getDefaultDest(); |
71 | } |
72 | |
73 | return nullptr; |
74 | } |
75 | |
76 | /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain. |
77 | static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop, |
78 | Loop *LastLoop = nullptr) { |
79 | assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) && |
80 | "First loop is supposed to be inside of last loop!" ); |
81 | assert(FirstLoop->contains(BB) && "Must be a loop block!" ); |
82 | for (Loop *Current = FirstLoop; Current != LastLoop; |
83 | Current = Current->getParentLoop()) |
84 | Current->removeBlockFromLoop(BB); |
85 | } |
86 | |
87 | /// Find innermost loop that contains at least one block from \p BBs and |
88 | /// contains the header of loop \p L. |
89 | static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs, |
90 | Loop &L, LoopInfo &LI) { |
91 | Loop *Innermost = nullptr; |
92 | for (BasicBlock *BB : BBs) { |
93 | Loop *BBL = LI.getLoopFor(BB); |
94 | while (BBL && !BBL->contains(BB: L.getHeader())) |
95 | BBL = BBL->getParentLoop(); |
96 | if (BBL == &L) |
97 | BBL = BBL->getParentLoop(); |
98 | if (!BBL) |
99 | continue; |
100 | if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth()) |
101 | Innermost = BBL; |
102 | } |
103 | return Innermost; |
104 | } |
105 | |
106 | namespace { |
107 | /// Helper class that can turn branches and switches with constant conditions |
108 | /// into unconditional branches. |
109 | class ConstantTerminatorFoldingImpl { |
110 | private: |
111 | Loop &L; |
112 | LoopInfo &LI; |
113 | DominatorTree &DT; |
114 | ScalarEvolution &SE; |
115 | MemorySSAUpdater *MSSAU; |
116 | LoopBlocksDFS DFS; |
117 | DomTreeUpdater DTU; |
118 | SmallVector<DominatorTree::UpdateType, 16> DTUpdates; |
119 | |
120 | // Whether or not the current loop has irreducible CFG. |
121 | bool HasIrreducibleCFG = false; |
122 | // Whether or not the current loop will still exist after terminator constant |
123 | // folding will be done. In theory, there are two ways how it can happen: |
124 | // 1. Loop's latch(es) become unreachable from loop header; |
125 | // 2. Loop's header becomes unreachable from method entry. |
126 | // In practice, the second situation is impossible because we only modify the |
127 | // current loop and its preheader and do not affect preheader's reachibility |
128 | // from any other block. So this variable set to true means that loop's latch |
129 | // has become unreachable from loop header. |
130 | bool DeleteCurrentLoop = false; |
131 | |
132 | // The blocks of the original loop that will still be reachable from entry |
133 | // after the constant folding. |
134 | SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks; |
135 | // The blocks of the original loop that will become unreachable from entry |
136 | // after the constant folding. |
137 | SmallVector<BasicBlock *, 8> DeadLoopBlocks; |
138 | // The exits of the original loop that will still be reachable from entry |
139 | // after the constant folding. |
140 | SmallPtrSet<BasicBlock *, 8> LiveExitBlocks; |
141 | // The exits of the original loop that will become unreachable from entry |
142 | // after the constant folding. |
143 | SmallVector<BasicBlock *, 8> DeadExitBlocks; |
144 | // The blocks that will still be a part of the current loop after folding. |
145 | SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding; |
146 | // The blocks that have terminators with constant condition that can be |
147 | // folded. Note: fold candidates should be in L but not in any of its |
148 | // subloops to avoid complex LI updates. |
149 | SmallVector<BasicBlock *, 8> FoldCandidates; |
150 | |
151 | void dump() const { |
152 | dbgs() << "Constant terminator folding for loop " << L << "\n" ; |
153 | dbgs() << "After terminator constant-folding, the loop will" ; |
154 | if (!DeleteCurrentLoop) |
155 | dbgs() << " not" ; |
156 | dbgs() << " be destroyed\n" ; |
157 | auto PrintOutVector = [&](const char *Message, |
158 | const SmallVectorImpl<BasicBlock *> &S) { |
159 | dbgs() << Message << "\n" ; |
160 | for (const BasicBlock *BB : S) |
161 | dbgs() << "\t" << BB->getName() << "\n" ; |
162 | }; |
163 | auto PrintOutSet = [&](const char *Message, |
164 | const SmallPtrSetImpl<BasicBlock *> &S) { |
165 | dbgs() << Message << "\n" ; |
166 | for (const BasicBlock *BB : S) |
167 | dbgs() << "\t" << BB->getName() << "\n" ; |
168 | }; |
169 | PrintOutVector("Blocks in which we can constant-fold terminator:" , |
170 | FoldCandidates); |
171 | PrintOutSet("Live blocks from the original loop:" , LiveLoopBlocks); |
172 | PrintOutVector("Dead blocks from the original loop:" , DeadLoopBlocks); |
173 | PrintOutSet("Live exit blocks:" , LiveExitBlocks); |
174 | PrintOutVector("Dead exit blocks:" , DeadExitBlocks); |
175 | if (!DeleteCurrentLoop) |
176 | PrintOutSet("The following blocks will still be part of the loop:" , |
177 | BlocksInLoopAfterFolding); |
178 | } |
179 | |
180 | /// Whether or not the current loop has irreducible CFG. |
181 | bool hasIrreducibleCFG(LoopBlocksDFS &DFS) { |
182 | assert(DFS.isComplete() && "DFS is expected to be finished" ); |
183 | // Index of a basic block in RPO traversal. |
184 | DenseMap<const BasicBlock *, unsigned> RPO; |
185 | unsigned Current = 0; |
186 | for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) |
187 | RPO[*I] = Current++; |
188 | |
189 | for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { |
190 | BasicBlock *BB = *I; |
191 | for (auto *Succ : successors(BB)) |
192 | if (L.contains(BB: Succ) && !LI.isLoopHeader(BB: Succ) && RPO[BB] > RPO[Succ]) |
193 | // If an edge goes from a block with greater order number into a block |
194 | // with lesses number, and it is not a loop backedge, then it can only |
195 | // be a part of irreducible non-loop cycle. |
196 | return true; |
197 | } |
198 | return false; |
199 | } |
200 | |
201 | /// Fill all information about status of blocks and exits of the current loop |
202 | /// if constant folding of all branches will be done. |
203 | void analyze() { |
204 | DFS.perform(LI: &LI); |
205 | assert(DFS.isComplete() && "DFS is expected to be finished" ); |
206 | |
207 | // TODO: The algorithm below relies on both RPO and Postorder traversals. |
208 | // When the loop has only reducible CFG inside, then the invariant "all |
209 | // predecessors of X are processed before X in RPO" is preserved. However |
210 | // an irreducible loop can break this invariant (e.g. latch does not have to |
211 | // be the last block in the traversal in this case, and the algorithm relies |
212 | // on this). We can later decide to support such cases by altering the |
213 | // algorithms, but so far we just give up analyzing them. |
214 | if (hasIrreducibleCFG(DFS)) { |
215 | HasIrreducibleCFG = true; |
216 | return; |
217 | } |
218 | |
219 | // Collect live and dead loop blocks and exits. |
220 | LiveLoopBlocks.insert(Ptr: L.getHeader()); |
221 | for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) { |
222 | BasicBlock *BB = *I; |
223 | |
224 | // If a loop block wasn't marked as live so far, then it's dead. |
225 | if (!LiveLoopBlocks.count(Ptr: BB)) { |
226 | DeadLoopBlocks.push_back(Elt: BB); |
227 | continue; |
228 | } |
229 | |
230 | BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); |
231 | |
232 | // If a block has only one live successor, it's a candidate on constant |
233 | // folding. Only handle blocks from current loop: branches in child loops |
234 | // are skipped because if they can be folded, they should be folded during |
235 | // the processing of child loops. |
236 | bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L; |
237 | if (TakeFoldCandidate) |
238 | FoldCandidates.push_back(Elt: BB); |
239 | |
240 | // Handle successors. |
241 | for (BasicBlock *Succ : successors(BB)) |
242 | if (!TakeFoldCandidate || TheOnlySucc == Succ) { |
243 | if (L.contains(BB: Succ)) |
244 | LiveLoopBlocks.insert(Ptr: Succ); |
245 | else |
246 | LiveExitBlocks.insert(Ptr: Succ); |
247 | } |
248 | } |
249 | |
250 | // Amount of dead and live loop blocks should match the total number of |
251 | // blocks in loop. |
252 | assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() && |
253 | "Malformed block sets?" ); |
254 | |
255 | // Now, all exit blocks that are not marked as live are dead, if all their |
256 | // predecessors are in the loop. This may not be the case, as the input loop |
257 | // may not by in loop-simplify/canonical form. |
258 | SmallVector<BasicBlock *, 8> ExitBlocks; |
259 | L.getExitBlocks(ExitBlocks); |
260 | SmallPtrSet<BasicBlock *, 8> UniqueDeadExits; |
261 | for (auto *ExitBlock : ExitBlocks) |
262 | if (!LiveExitBlocks.count(Ptr: ExitBlock) && |
263 | UniqueDeadExits.insert(Ptr: ExitBlock).second && |
264 | all_of(Range: predecessors(BB: ExitBlock), |
265 | P: [this](BasicBlock *Pred) { return L.contains(BB: Pred); })) |
266 | DeadExitBlocks.push_back(Elt: ExitBlock); |
267 | |
268 | // Whether or not the edge From->To will still be present in graph after the |
269 | // folding. |
270 | auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) { |
271 | if (!LiveLoopBlocks.count(Ptr: From)) |
272 | return false; |
273 | BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB: From); |
274 | return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(BB: From) != &L; |
275 | }; |
276 | |
277 | // The loop will not be destroyed if its latch is live. |
278 | DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader()); |
279 | |
280 | // If we are going to delete the current loop completely, no extra analysis |
281 | // is needed. |
282 | if (DeleteCurrentLoop) |
283 | return; |
284 | |
285 | // Otherwise, we should check which blocks will still be a part of the |
286 | // current loop after the transform. |
287 | BlocksInLoopAfterFolding.insert(Ptr: L.getLoopLatch()); |
288 | // If the loop is live, then we should compute what blocks are still in |
289 | // loop after all branch folding has been done. A block is in loop if |
290 | // it has a live edge to another block that is in the loop; by definition, |
291 | // latch is in the loop. |
292 | auto BlockIsInLoop = [&](BasicBlock *BB) { |
293 | return any_of(Range: successors(BB), P: [&](BasicBlock *Succ) { |
294 | return BlocksInLoopAfterFolding.count(Ptr: Succ) && IsEdgeLive(BB, Succ); |
295 | }); |
296 | }; |
297 | for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) { |
298 | BasicBlock *BB = *I; |
299 | if (BlockIsInLoop(BB)) |
300 | BlocksInLoopAfterFolding.insert(Ptr: BB); |
301 | } |
302 | |
303 | assert(BlocksInLoopAfterFolding.count(L.getHeader()) && |
304 | "Header not in loop?" ); |
305 | assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() && |
306 | "All blocks that stay in loop should be live!" ); |
307 | } |
308 | |
309 | /// We need to preserve static reachibility of all loop exit blocks (this is) |
310 | /// required by loop pass manager. In order to do it, we make the following |
311 | /// trick: |
312 | /// |
313 | /// preheader: |
314 | /// <preheader code> |
315 | /// br label %loop_header |
316 | /// |
317 | /// loop_header: |
318 | /// ... |
319 | /// br i1 false, label %dead_exit, label %loop_block |
320 | /// ... |
321 | /// |
322 | /// We cannot simply remove edge from the loop to dead exit because in this |
323 | /// case dead_exit (and its successors) may become unreachable. To avoid that, |
324 | /// we insert the following fictive preheader: |
325 | /// |
326 | /// preheader: |
327 | /// <preheader code> |
328 | /// switch i32 0, label %preheader-split, |
329 | /// [i32 1, label %dead_exit_1], |
330 | /// [i32 2, label %dead_exit_2], |
331 | /// ... |
332 | /// [i32 N, label %dead_exit_N], |
333 | /// |
334 | /// preheader-split: |
335 | /// br label %loop_header |
336 | /// |
337 | /// loop_header: |
338 | /// ... |
339 | /// br i1 false, label %dead_exit_N, label %loop_block |
340 | /// ... |
341 | /// |
342 | /// Doing so, we preserve static reachibility of all dead exits and can later |
343 | /// remove edges from the loop to these blocks. |
344 | void handleDeadExits() { |
345 | // If no dead exits, nothing to do. |
346 | if (DeadExitBlocks.empty()) |
347 | return; |
348 | |
349 | // Construct split preheader and the dummy switch to thread edges from it to |
350 | // dead exits. |
351 | BasicBlock * = L.getLoopPreheader(); |
352 | BasicBlock * = llvm::SplitBlock( |
353 | Old: Preheader, SplitPt: Preheader->getTerminator(), DT: &DT, LI: &LI, MSSAU); |
354 | |
355 | IRBuilder<> Builder(Preheader->getTerminator()); |
356 | SwitchInst *DummySwitch = |
357 | Builder.CreateSwitch(V: Builder.getInt32(C: 0), Dest: NewPreheader); |
358 | Preheader->getTerminator()->eraseFromParent(); |
359 | |
360 | unsigned DummyIdx = 1; |
361 | for (BasicBlock *BB : DeadExitBlocks) { |
362 | // Eliminate all Phis and LandingPads from dead exits. |
363 | // TODO: Consider removing all instructions in this dead block. |
364 | SmallVector<Instruction *, 4> DeadInstructions; |
365 | for (auto &PN : BB->phis()) |
366 | DeadInstructions.push_back(Elt: &PN); |
367 | |
368 | if (auto *LandingPad = dyn_cast<LandingPadInst>(Val: BB->getFirstNonPHI())) |
369 | DeadInstructions.emplace_back(Args&: LandingPad); |
370 | |
371 | for (Instruction *I : DeadInstructions) { |
372 | SE.forgetBlockAndLoopDispositions(V: I); |
373 | I->replaceAllUsesWith(V: PoisonValue::get(T: I->getType())); |
374 | I->eraseFromParent(); |
375 | } |
376 | |
377 | assert(DummyIdx != 0 && "Too many dead exits!" ); |
378 | DummySwitch->addCase(OnVal: Builder.getInt32(C: DummyIdx++), Dest: BB); |
379 | DTUpdates.push_back(Elt: {DominatorTree::Insert, Preheader, BB}); |
380 | ++NumLoopExitsDeleted; |
381 | } |
382 | |
383 | assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?" ); |
384 | if (Loop *OuterLoop = LI.getLoopFor(BB: Preheader)) { |
385 | // When we break dead edges, the outer loop may become unreachable from |
386 | // the current loop. We need to fix loop info accordingly. For this, we |
387 | // find the most nested loop that still contains L and remove L from all |
388 | // loops that are inside of it. |
389 | Loop *StillReachable = getInnermostLoopFor(BBs&: LiveExitBlocks, L, LI); |
390 | |
391 | // Okay, our loop is no longer in the outer loop (and maybe not in some of |
392 | // its parents as well). Make the fixup. |
393 | if (StillReachable != OuterLoop) { |
394 | LI.changeLoopFor(BB: NewPreheader, L: StillReachable); |
395 | removeBlockFromLoops(BB: NewPreheader, FirstLoop: OuterLoop, LastLoop: StillReachable); |
396 | for (auto *BB : L.blocks()) |
397 | removeBlockFromLoops(BB, FirstLoop: OuterLoop, LastLoop: StillReachable); |
398 | OuterLoop->removeChildLoop(Child: &L); |
399 | if (StillReachable) |
400 | StillReachable->addChildLoop(NewChild: &L); |
401 | else |
402 | LI.addTopLevelLoop(New: &L); |
403 | |
404 | // Some values from loops in [OuterLoop, StillReachable) could be used |
405 | // in the current loop. Now it is not their child anymore, so such uses |
406 | // require LCSSA Phis. |
407 | Loop *FixLCSSALoop = OuterLoop; |
408 | while (FixLCSSALoop->getParentLoop() != StillReachable) |
409 | FixLCSSALoop = FixLCSSALoop->getParentLoop(); |
410 | assert(FixLCSSALoop && "Should be a loop!" ); |
411 | // We need all DT updates to be done before forming LCSSA. |
412 | if (MSSAU) |
413 | MSSAU->applyUpdates(Updates: DTUpdates, DT, /*UpdateDT=*/UpdateDTFirst: true); |
414 | else |
415 | DTU.applyUpdates(Updates: DTUpdates); |
416 | DTUpdates.clear(); |
417 | formLCSSARecursively(L&: *FixLCSSALoop, DT, LI: &LI, SE: &SE); |
418 | SE.forgetBlockAndLoopDispositions(); |
419 | } |
420 | } |
421 | |
422 | if (MSSAU) { |
423 | // Clear all updates now. Facilitates deletes that follow. |
424 | MSSAU->applyUpdates(Updates: DTUpdates, DT, /*UpdateDT=*/UpdateDTFirst: true); |
425 | DTUpdates.clear(); |
426 | if (VerifyMemorySSA) |
427 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
428 | } |
429 | } |
430 | |
431 | /// Delete loop blocks that have become unreachable after folding. Make all |
432 | /// relevant updates to DT and LI. |
433 | void deleteDeadLoopBlocks() { |
434 | if (MSSAU) { |
435 | SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(), |
436 | DeadLoopBlocks.end()); |
437 | MSSAU->removeBlocks(DeadBlocks: DeadLoopBlocksSet); |
438 | } |
439 | |
440 | // The function LI.erase has some invariants that need to be preserved when |
441 | // it tries to remove a loop which is not the top-level loop. In particular, |
442 | // it requires loop's preheader to be strictly in loop's parent. We cannot |
443 | // just remove blocks one by one, because after removal of preheader we may |
444 | // break this invariant for the dead loop. So we detatch and erase all dead |
445 | // loops beforehand. |
446 | for (auto *BB : DeadLoopBlocks) |
447 | if (LI.isLoopHeader(BB)) { |
448 | assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!" ); |
449 | Loop *DL = LI.getLoopFor(BB); |
450 | if (!DL->isOutermost()) { |
451 | for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop()) |
452 | for (auto *BB : DL->getBlocks()) |
453 | PL->removeBlockFromLoop(BB); |
454 | DL->getParentLoop()->removeChildLoop(Child: DL); |
455 | LI.addTopLevelLoop(New: DL); |
456 | } |
457 | LI.erase(L: DL); |
458 | } |
459 | |
460 | for (auto *BB : DeadLoopBlocks) { |
461 | assert(BB != L.getHeader() && |
462 | "Header of the current loop cannot be dead!" ); |
463 | LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName() |
464 | << "\n" ); |
465 | LI.removeBlock(BB); |
466 | } |
467 | |
468 | detachDeadBlocks(BBs: DeadLoopBlocks, Updates: &DTUpdates, /*KeepOneInputPHIs*/true); |
469 | DTU.applyUpdates(Updates: DTUpdates); |
470 | DTUpdates.clear(); |
471 | for (auto *BB : DeadLoopBlocks) |
472 | DTU.deleteBB(DelBB: BB); |
473 | |
474 | NumLoopBlocksDeleted += DeadLoopBlocks.size(); |
475 | } |
476 | |
477 | /// Constant-fold terminators of blocks accumulated in FoldCandidates into the |
478 | /// unconditional branches. |
479 | void foldTerminators() { |
480 | for (BasicBlock *BB : FoldCandidates) { |
481 | assert(LI.getLoopFor(BB) == &L && "Should be a loop block!" ); |
482 | BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB); |
483 | assert(TheOnlySucc && "Should have one live successor!" ); |
484 | |
485 | LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName() |
486 | << " with an unconditional branch to the block " |
487 | << TheOnlySucc->getName() << "\n" ); |
488 | |
489 | SmallPtrSet<BasicBlock *, 2> DeadSuccessors; |
490 | // Remove all BB's successors except for the live one. |
491 | unsigned TheOnlySuccDuplicates = 0; |
492 | for (auto *Succ : successors(BB)) |
493 | if (Succ != TheOnlySucc) { |
494 | DeadSuccessors.insert(Ptr: Succ); |
495 | // If our successor lies in a different loop, we don't want to remove |
496 | // the one-input Phi because it is a LCSSA Phi. |
497 | bool PreserveLCSSAPhi = !L.contains(BB: Succ); |
498 | Succ->removePredecessor(Pred: BB, KeepOneInputPHIs: PreserveLCSSAPhi); |
499 | if (MSSAU) |
500 | MSSAU->removeEdge(From: BB, To: Succ); |
501 | } else |
502 | ++TheOnlySuccDuplicates; |
503 | |
504 | assert(TheOnlySuccDuplicates > 0 && "Should be!" ); |
505 | // If TheOnlySucc was BB's successor more than once, after transform it |
506 | // will be its successor only once. Remove redundant inputs from |
507 | // TheOnlySucc's Phis. |
508 | bool PreserveLCSSAPhi = !L.contains(BB: TheOnlySucc); |
509 | for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup) |
510 | TheOnlySucc->removePredecessor(Pred: BB, KeepOneInputPHIs: PreserveLCSSAPhi); |
511 | if (MSSAU && TheOnlySuccDuplicates > 1) |
512 | MSSAU->removeDuplicatePhiEdgesBetween(From: BB, To: TheOnlySucc); |
513 | |
514 | IRBuilder<> Builder(BB->getContext()); |
515 | Instruction *Term = BB->getTerminator(); |
516 | Builder.SetInsertPoint(Term); |
517 | Builder.CreateBr(Dest: TheOnlySucc); |
518 | Term->eraseFromParent(); |
519 | |
520 | for (auto *DeadSucc : DeadSuccessors) |
521 | DTUpdates.push_back(Elt: {DominatorTree::Delete, BB, DeadSucc}); |
522 | |
523 | ++NumTerminatorsFolded; |
524 | } |
525 | } |
526 | |
527 | public: |
528 | ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT, |
529 | ScalarEvolution &SE, |
530 | MemorySSAUpdater *MSSAU) |
531 | : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L), |
532 | DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {} |
533 | bool run() { |
534 | assert(L.getLoopLatch() && "Should be single latch!" ); |
535 | |
536 | // Collect all available information about status of blocks after constant |
537 | // folding. |
538 | analyze(); |
539 | BasicBlock * = L.getHeader(); |
540 | (void)Header; |
541 | |
542 | LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName() |
543 | << ": " ); |
544 | |
545 | if (HasIrreducibleCFG) { |
546 | LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n" ); |
547 | return false; |
548 | } |
549 | |
550 | // Nothing to constant-fold. |
551 | if (FoldCandidates.empty()) { |
552 | LLVM_DEBUG( |
553 | dbgs() << "No constant terminator folding candidates found in loop " |
554 | << Header->getName() << "\n" ); |
555 | return false; |
556 | } |
557 | |
558 | // TODO: Support deletion of the current loop. |
559 | if (DeleteCurrentLoop) { |
560 | LLVM_DEBUG( |
561 | dbgs() |
562 | << "Give up constant terminator folding in loop " << Header->getName() |
563 | << ": we don't currently support deletion of the current loop.\n" ); |
564 | return false; |
565 | } |
566 | |
567 | // TODO: Support blocks that are not dead, but also not in loop after the |
568 | // folding. |
569 | if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() != |
570 | L.getNumBlocks()) { |
571 | LLVM_DEBUG( |
572 | dbgs() << "Give up constant terminator folding in loop " |
573 | << Header->getName() << ": we don't currently" |
574 | " support blocks that are not dead, but will stop " |
575 | "being a part of the loop after constant-folding.\n" ); |
576 | return false; |
577 | } |
578 | |
579 | // TODO: Tokens may breach LCSSA form by default. However, the transform for |
580 | // dead exit blocks requires LCSSA form to be maintained for all values, |
581 | // tokens included, otherwise it may break use-def dominance (see PR56243). |
582 | if (!DeadExitBlocks.empty() && !L.isLCSSAForm(DT, /*IgnoreTokens*/ false)) { |
583 | assert(L.isLCSSAForm(DT, /*IgnoreTokens*/ true) && |
584 | "LCSSA broken not by tokens?" ); |
585 | LLVM_DEBUG(dbgs() << "Give up constant terminator folding in loop " |
586 | << Header->getName() |
587 | << ": tokens uses potentially break LCSSA form.\n" ); |
588 | return false; |
589 | } |
590 | |
591 | SE.forgetTopmostLoop(L: &L); |
592 | // Dump analysis results. |
593 | LLVM_DEBUG(dump()); |
594 | |
595 | LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size() |
596 | << " terminators in loop " << Header->getName() << "\n" ); |
597 | |
598 | if (!DeadLoopBlocks.empty()) |
599 | SE.forgetBlockAndLoopDispositions(); |
600 | |
601 | // Make the actual transforms. |
602 | handleDeadExits(); |
603 | foldTerminators(); |
604 | |
605 | if (!DeadLoopBlocks.empty()) { |
606 | LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size() |
607 | << " dead blocks in loop " << Header->getName() << "\n" ); |
608 | deleteDeadLoopBlocks(); |
609 | } else { |
610 | // If we didn't do updates inside deleteDeadLoopBlocks, do them here. |
611 | DTU.applyUpdates(Updates: DTUpdates); |
612 | DTUpdates.clear(); |
613 | } |
614 | |
615 | if (MSSAU && VerifyMemorySSA) |
616 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
617 | |
618 | #ifndef NDEBUG |
619 | // Make sure that we have preserved all data structures after the transform. |
620 | #if defined(EXPENSIVE_CHECKS) |
621 | assert(DT.verify(DominatorTree::VerificationLevel::Full) && |
622 | "DT broken after transform!" ); |
623 | #else |
624 | assert(DT.verify(DominatorTree::VerificationLevel::Fast) && |
625 | "DT broken after transform!" ); |
626 | #endif |
627 | assert(DT.isReachableFromEntry(Header)); |
628 | LI.verify(DT); |
629 | #endif |
630 | |
631 | return true; |
632 | } |
633 | |
634 | bool foldingBreaksCurrentLoop() const { |
635 | return DeleteCurrentLoop; |
636 | } |
637 | }; |
638 | } // namespace |
639 | |
640 | /// Turn branches and switches with known constant conditions into unconditional |
641 | /// branches. |
642 | static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI, |
643 | ScalarEvolution &SE, |
644 | MemorySSAUpdater *MSSAU, |
645 | bool &IsLoopDeleted) { |
646 | if (!EnableTermFolding) |
647 | return false; |
648 | |
649 | // To keep things simple, only process loops with single latch. We |
650 | // canonicalize most loops to this form. We can support multi-latch if needed. |
651 | if (!L.getLoopLatch()) |
652 | return false; |
653 | |
654 | ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU); |
655 | bool Changed = BranchFolder.run(); |
656 | IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop(); |
657 | return Changed; |
658 | } |
659 | |
660 | static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT, |
661 | LoopInfo &LI, MemorySSAUpdater *MSSAU, |
662 | ScalarEvolution &SE) { |
663 | bool Changed = false; |
664 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
665 | // Copy blocks into a temporary array to avoid iterator invalidation issues |
666 | // as we remove them. |
667 | SmallVector<WeakTrackingVH, 16> Blocks(L.blocks()); |
668 | |
669 | for (auto &Block : Blocks) { |
670 | // Attempt to merge blocks in the trivial case. Don't modify blocks which |
671 | // belong to other loops. |
672 | BasicBlock *Succ = cast_or_null<BasicBlock>(Val&: Block); |
673 | if (!Succ) |
674 | continue; |
675 | |
676 | BasicBlock *Pred = Succ->getSinglePredecessor(); |
677 | if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(BB: Pred) != &L) |
678 | continue; |
679 | |
680 | // Merge Succ into Pred and delete it. |
681 | MergeBlockIntoPredecessor(BB: Succ, DTU: &DTU, LI: &LI, MSSAU); |
682 | |
683 | if (MSSAU && VerifyMemorySSA) |
684 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
685 | |
686 | Changed = true; |
687 | } |
688 | |
689 | if (Changed) |
690 | SE.forgetBlockAndLoopDispositions(); |
691 | |
692 | return Changed; |
693 | } |
694 | |
695 | static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI, |
696 | ScalarEvolution &SE, MemorySSAUpdater *MSSAU, |
697 | bool &IsLoopDeleted) { |
698 | bool Changed = false; |
699 | |
700 | // Constant-fold terminators with known constant conditions. |
701 | Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, IsLoopDeleted); |
702 | |
703 | if (IsLoopDeleted) |
704 | return true; |
705 | |
706 | // Eliminate unconditional branches by merging blocks into their predecessors. |
707 | Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU, SE); |
708 | |
709 | if (Changed) |
710 | SE.forgetTopmostLoop(L: &L); |
711 | |
712 | return Changed; |
713 | } |
714 | |
715 | PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM, |
716 | LoopStandardAnalysisResults &AR, |
717 | LPMUpdater &LPMU) { |
718 | std::optional<MemorySSAUpdater> MSSAU; |
719 | if (AR.MSSA) |
720 | MSSAU = MemorySSAUpdater(AR.MSSA); |
721 | bool DeleteCurrentLoop = false; |
722 | if (!simplifyLoopCFG(L, DT&: AR.DT, LI&: AR.LI, SE&: AR.SE, MSSAU: MSSAU ? &*MSSAU : nullptr, |
723 | IsLoopDeleted&: DeleteCurrentLoop)) |
724 | return PreservedAnalyses::all(); |
725 | |
726 | if (DeleteCurrentLoop) |
727 | LPMU.markLoopAsDeleted(L, Name: "loop-simplifycfg" ); |
728 | |
729 | auto PA = getLoopPassPreservedAnalyses(); |
730 | if (AR.MSSA) |
731 | PA.preserve<MemorySSAAnalysis>(); |
732 | return PA; |
733 | } |
734 | |