1 | //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This transformation implements the well known scalar replacement of |
10 | /// aggregates transformation. It tries to identify promotable elements of an |
11 | /// aggregate alloca, and promote them to registers. It will also try to |
12 | /// convert uses of an element (or set of elements) of an alloca into a vector |
13 | /// or bitfield-style integer scalar if appropriate. |
14 | /// |
15 | /// It works to do this with minimal slicing of the alloca so that regions |
16 | /// which are merely transferred in and out of external memory remain unchanged |
17 | /// and are not decomposed to scalar code. |
18 | /// |
19 | /// Because this also performs alloca promotion, it can be thought of as also |
20 | /// serving the purpose of SSA formation. The algorithm iterates on the |
21 | /// function until all opportunities for promotion have been realized. |
22 | /// |
23 | //===----------------------------------------------------------------------===// |
24 | |
25 | #include "llvm/Transforms/Scalar/SROA.h" |
26 | #include "llvm/ADT/APInt.h" |
27 | #include "llvm/ADT/ArrayRef.h" |
28 | #include "llvm/ADT/DenseMap.h" |
29 | #include "llvm/ADT/MapVector.h" |
30 | #include "llvm/ADT/PointerIntPair.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/SetVector.h" |
33 | #include "llvm/ADT/SmallBitVector.h" |
34 | #include "llvm/ADT/SmallPtrSet.h" |
35 | #include "llvm/ADT/SmallVector.h" |
36 | #include "llvm/ADT/Statistic.h" |
37 | #include "llvm/ADT/StringRef.h" |
38 | #include "llvm/ADT/Twine.h" |
39 | #include "llvm/ADT/iterator.h" |
40 | #include "llvm/ADT/iterator_range.h" |
41 | #include "llvm/Analysis/AssumptionCache.h" |
42 | #include "llvm/Analysis/DomTreeUpdater.h" |
43 | #include "llvm/Analysis/GlobalsModRef.h" |
44 | #include "llvm/Analysis/Loads.h" |
45 | #include "llvm/Analysis/PtrUseVisitor.h" |
46 | #include "llvm/Config/llvm-config.h" |
47 | #include "llvm/IR/BasicBlock.h" |
48 | #include "llvm/IR/Constant.h" |
49 | #include "llvm/IR/ConstantFolder.h" |
50 | #include "llvm/IR/Constants.h" |
51 | #include "llvm/IR/DIBuilder.h" |
52 | #include "llvm/IR/DataLayout.h" |
53 | #include "llvm/IR/DebugInfo.h" |
54 | #include "llvm/IR/DebugInfoMetadata.h" |
55 | #include "llvm/IR/DerivedTypes.h" |
56 | #include "llvm/IR/Dominators.h" |
57 | #include "llvm/IR/Function.h" |
58 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
59 | #include "llvm/IR/GlobalAlias.h" |
60 | #include "llvm/IR/IRBuilder.h" |
61 | #include "llvm/IR/InstVisitor.h" |
62 | #include "llvm/IR/Instruction.h" |
63 | #include "llvm/IR/Instructions.h" |
64 | #include "llvm/IR/IntrinsicInst.h" |
65 | #include "llvm/IR/LLVMContext.h" |
66 | #include "llvm/IR/Metadata.h" |
67 | #include "llvm/IR/Module.h" |
68 | #include "llvm/IR/Operator.h" |
69 | #include "llvm/IR/PassManager.h" |
70 | #include "llvm/IR/Type.h" |
71 | #include "llvm/IR/Use.h" |
72 | #include "llvm/IR/User.h" |
73 | #include "llvm/IR/Value.h" |
74 | #include "llvm/IR/ValueHandle.h" |
75 | #include "llvm/InitializePasses.h" |
76 | #include "llvm/Pass.h" |
77 | #include "llvm/Support/Casting.h" |
78 | #include "llvm/Support/CommandLine.h" |
79 | #include "llvm/Support/Compiler.h" |
80 | #include "llvm/Support/Debug.h" |
81 | #include "llvm/Support/ErrorHandling.h" |
82 | #include "llvm/Support/raw_ostream.h" |
83 | #include "llvm/Transforms/Scalar.h" |
84 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
85 | #include "llvm/Transforms/Utils/Local.h" |
86 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
87 | #include <algorithm> |
88 | #include <cassert> |
89 | #include <cstddef> |
90 | #include <cstdint> |
91 | #include <cstring> |
92 | #include <iterator> |
93 | #include <string> |
94 | #include <tuple> |
95 | #include <utility> |
96 | #include <variant> |
97 | #include <vector> |
98 | |
99 | using namespace llvm; |
100 | |
101 | #define DEBUG_TYPE "sroa" |
102 | |
103 | STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement" ); |
104 | STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed" ); |
105 | STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca" ); |
106 | STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten" ); |
107 | STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition" ); |
108 | STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced" ); |
109 | STATISTIC(NumPromoted, "Number of allocas promoted to SSA values" ); |
110 | STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion" ); |
111 | STATISTIC(NumLoadsPredicated, |
112 | "Number of loads rewritten into predicated loads to allow promotion" ); |
113 | STATISTIC( |
114 | NumStoresPredicated, |
115 | "Number of stores rewritten into predicated loads to allow promotion" ); |
116 | STATISTIC(NumDeleted, "Number of instructions deleted" ); |
117 | STATISTIC(NumVectorized, "Number of vectorized aggregates" ); |
118 | |
119 | /// Disable running mem2reg during SROA in order to test or debug SROA. |
120 | static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg" , cl::init(Val: false), |
121 | cl::Hidden); |
122 | namespace { |
123 | |
124 | class AllocaSliceRewriter; |
125 | class AllocaSlices; |
126 | class Partition; |
127 | |
128 | class SelectHandSpeculativity { |
129 | unsigned char Storage = 0; // None are speculatable by default. |
130 | using TrueVal = Bitfield::Element<bool, 0, 1>; // Low 0'th bit. |
131 | using FalseVal = Bitfield::Element<bool, 1, 1>; // Low 1'th bit. |
132 | public: |
133 | SelectHandSpeculativity() = default; |
134 | SelectHandSpeculativity &setAsSpeculatable(bool isTrueVal); |
135 | bool isSpeculatable(bool isTrueVal) const; |
136 | bool areAllSpeculatable() const; |
137 | bool areAnySpeculatable() const; |
138 | bool areNoneSpeculatable() const; |
139 | // For interop as int half of PointerIntPair. |
140 | explicit operator intptr_t() const { return static_cast<intptr_t>(Storage); } |
141 | explicit SelectHandSpeculativity(intptr_t Storage_) : Storage(Storage_) {} |
142 | }; |
143 | static_assert(sizeof(SelectHandSpeculativity) == sizeof(unsigned char)); |
144 | |
145 | using PossiblySpeculatableLoad = |
146 | PointerIntPair<LoadInst *, 2, SelectHandSpeculativity>; |
147 | using UnspeculatableStore = StoreInst *; |
148 | using RewriteableMemOp = |
149 | std::variant<PossiblySpeculatableLoad, UnspeculatableStore>; |
150 | using RewriteableMemOps = SmallVector<RewriteableMemOp, 2>; |
151 | |
152 | /// An optimization pass providing Scalar Replacement of Aggregates. |
153 | /// |
154 | /// This pass takes allocations which can be completely analyzed (that is, they |
155 | /// don't escape) and tries to turn them into scalar SSA values. There are |
156 | /// a few steps to this process. |
157 | /// |
158 | /// 1) It takes allocations of aggregates and analyzes the ways in which they |
159 | /// are used to try to split them into smaller allocations, ideally of |
160 | /// a single scalar data type. It will split up memcpy and memset accesses |
161 | /// as necessary and try to isolate individual scalar accesses. |
162 | /// 2) It will transform accesses into forms which are suitable for SSA value |
163 | /// promotion. This can be replacing a memset with a scalar store of an |
164 | /// integer value, or it can involve speculating operations on a PHI or |
165 | /// select to be a PHI or select of the results. |
166 | /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
167 | /// onto insert and extract operations on a vector value, and convert them to |
168 | /// this form. By doing so, it will enable promotion of vector aggregates to |
169 | /// SSA vector values. |
170 | class SROA { |
171 | LLVMContext *const C; |
172 | DomTreeUpdater *const DTU; |
173 | AssumptionCache *const AC; |
174 | const bool PreserveCFG; |
175 | |
176 | /// Worklist of alloca instructions to simplify. |
177 | /// |
178 | /// Each alloca in the function is added to this. Each new alloca formed gets |
179 | /// added to it as well to recursively simplify unless that alloca can be |
180 | /// directly promoted. Finally, each time we rewrite a use of an alloca other |
181 | /// the one being actively rewritten, we add it back onto the list if not |
182 | /// already present to ensure it is re-visited. |
183 | SmallSetVector<AllocaInst *, 16> Worklist; |
184 | |
185 | /// A collection of instructions to delete. |
186 | /// We try to batch deletions to simplify code and make things a bit more |
187 | /// efficient. We also make sure there is no dangling pointers. |
188 | SmallVector<WeakVH, 8> DeadInsts; |
189 | |
190 | /// Post-promotion worklist. |
191 | /// |
192 | /// Sometimes we discover an alloca which has a high probability of becoming |
193 | /// viable for SROA after a round of promotion takes place. In those cases, |
194 | /// the alloca is enqueued here for re-processing. |
195 | /// |
196 | /// Note that we have to be very careful to clear allocas out of this list in |
197 | /// the event they are deleted. |
198 | SmallSetVector<AllocaInst *, 16> PostPromotionWorklist; |
199 | |
200 | /// A collection of alloca instructions we can directly promote. |
201 | std::vector<AllocaInst *> PromotableAllocas; |
202 | |
203 | /// A worklist of PHIs to speculate prior to promoting allocas. |
204 | /// |
205 | /// All of these PHIs have been checked for the safety of speculation and by |
206 | /// being speculated will allow promoting allocas currently in the promotable |
207 | /// queue. |
208 | SmallSetVector<PHINode *, 8> SpeculatablePHIs; |
209 | |
210 | /// A worklist of select instructions to rewrite prior to promoting |
211 | /// allocas. |
212 | SmallMapVector<SelectInst *, RewriteableMemOps, 8> SelectsToRewrite; |
213 | |
214 | /// Select instructions that use an alloca and are subsequently loaded can be |
215 | /// rewritten to load both input pointers and then select between the result, |
216 | /// allowing the load of the alloca to be promoted. |
217 | /// From this: |
218 | /// %P2 = select i1 %cond, ptr %Alloca, ptr %Other |
219 | /// %V = load <type>, ptr %P2 |
220 | /// to: |
221 | /// %V1 = load <type>, ptr %Alloca -> will be mem2reg'd |
222 | /// %V2 = load <type>, ptr %Other |
223 | /// %V = select i1 %cond, <type> %V1, <type> %V2 |
224 | /// |
225 | /// We can do this to a select if its only uses are loads |
226 | /// and if either the operand to the select can be loaded unconditionally, |
227 | /// or if we are allowed to perform CFG modifications. |
228 | /// If found an intervening bitcast with a single use of the load, |
229 | /// allow the promotion. |
230 | static std::optional<RewriteableMemOps> |
231 | isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG); |
232 | |
233 | public: |
234 | SROA(LLVMContext *C, DomTreeUpdater *DTU, AssumptionCache *AC, |
235 | SROAOptions PreserveCFG_) |
236 | : C(C), DTU(DTU), AC(AC), |
237 | PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {} |
238 | |
239 | /// Main run method used by both the SROAPass and by the legacy pass. |
240 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> runSROA(Function &F); |
241 | |
242 | private: |
243 | friend class AllocaSliceRewriter; |
244 | |
245 | bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS); |
246 | AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P); |
247 | bool splitAlloca(AllocaInst &AI, AllocaSlices &AS); |
248 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> runOnAlloca(AllocaInst &AI); |
249 | void clobberUse(Use &U); |
250 | bool deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas); |
251 | bool promoteAllocas(Function &F); |
252 | }; |
253 | |
254 | } // end anonymous namespace |
255 | |
256 | /// Calculate the fragment of a variable to use when slicing a store |
257 | /// based on the slice dimensions, existing fragment, and base storage |
258 | /// fragment. |
259 | /// Results: |
260 | /// UseFrag - Use Target as the new fragment. |
261 | /// UseNoFrag - The new slice already covers the whole variable. |
262 | /// Skip - The new alloca slice doesn't include this variable. |
263 | /// FIXME: Can we use calculateFragmentIntersect instead? |
264 | namespace { |
265 | enum FragCalcResult { UseFrag, UseNoFrag, Skip }; |
266 | } |
267 | static FragCalcResult |
268 | calculateFragment(DILocalVariable *Variable, |
269 | uint64_t NewStorageSliceOffsetInBits, |
270 | uint64_t NewStorageSliceSizeInBits, |
271 | std::optional<DIExpression::FragmentInfo> StorageFragment, |
272 | std::optional<DIExpression::FragmentInfo> CurrentFragment, |
273 | DIExpression::FragmentInfo &Target) { |
274 | // If the base storage describes part of the variable apply the offset and |
275 | // the size constraint. |
276 | if (StorageFragment) { |
277 | Target.SizeInBits = |
278 | std::min(a: NewStorageSliceSizeInBits, b: StorageFragment->SizeInBits); |
279 | Target.OffsetInBits = |
280 | NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits; |
281 | } else { |
282 | Target.SizeInBits = NewStorageSliceSizeInBits; |
283 | Target.OffsetInBits = NewStorageSliceOffsetInBits; |
284 | } |
285 | |
286 | // If this slice extracts the entirety of an independent variable from a |
287 | // larger alloca, do not produce a fragment expression, as the variable is |
288 | // not fragmented. |
289 | if (!CurrentFragment) { |
290 | if (auto Size = Variable->getSizeInBits()) { |
291 | // Treat the current fragment as covering the whole variable. |
292 | CurrentFragment = DIExpression::FragmentInfo(*Size, 0); |
293 | if (Target == CurrentFragment) |
294 | return UseNoFrag; |
295 | } |
296 | } |
297 | |
298 | // No additional work to do if there isn't a fragment already, or there is |
299 | // but it already exactly describes the new assignment. |
300 | if (!CurrentFragment || *CurrentFragment == Target) |
301 | return UseFrag; |
302 | |
303 | // Reject the target fragment if it doesn't fit wholly within the current |
304 | // fragment. TODO: We could instead chop up the target to fit in the case of |
305 | // a partial overlap. |
306 | if (Target.startInBits() < CurrentFragment->startInBits() || |
307 | Target.endInBits() > CurrentFragment->endInBits()) |
308 | return Skip; |
309 | |
310 | // Target fits within the current fragment, return it. |
311 | return UseFrag; |
312 | } |
313 | |
314 | static DebugVariable getAggregateVariable(DbgVariableIntrinsic *DVI) { |
315 | return DebugVariable(DVI->getVariable(), std::nullopt, |
316 | DVI->getDebugLoc().getInlinedAt()); |
317 | } |
318 | static DebugVariable getAggregateVariable(DbgVariableRecord *DVR) { |
319 | return DebugVariable(DVR->getVariable(), std::nullopt, |
320 | DVR->getDebugLoc().getInlinedAt()); |
321 | } |
322 | |
323 | /// Helpers for handling new and old debug info modes in migrateDebugInfo. |
324 | /// These overloads unwrap a DbgInstPtr {Instruction* | DbgRecord*} union based |
325 | /// on the \p Unused parameter type. |
326 | DbgVariableRecord *UnwrapDbgInstPtr(DbgInstPtr P, DbgVariableRecord *Unused) { |
327 | (void)Unused; |
328 | return static_cast<DbgVariableRecord *>(cast<DbgRecord *>(Val&: P)); |
329 | } |
330 | DbgAssignIntrinsic *UnwrapDbgInstPtr(DbgInstPtr P, DbgAssignIntrinsic *Unused) { |
331 | (void)Unused; |
332 | return static_cast<DbgAssignIntrinsic *>(cast<Instruction *>(Val&: P)); |
333 | } |
334 | |
335 | /// Find linked dbg.assign and generate a new one with the correct |
336 | /// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the |
337 | /// value component is copied from the old dbg.assign to the new. |
338 | /// \param OldAlloca Alloca for the variable before splitting. |
339 | /// \param IsSplit True if the store (not necessarily alloca) |
340 | /// is being split. |
341 | /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca. |
342 | /// \param SliceSizeInBits New number of bits being written to. |
343 | /// \param OldInst Instruction that is being split. |
344 | /// \param Inst New instruction performing this part of the |
345 | /// split store. |
346 | /// \param Dest Store destination. |
347 | /// \param Value Stored value. |
348 | /// \param DL Datalayout. |
349 | static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit, |
350 | uint64_t OldAllocaOffsetInBits, |
351 | uint64_t SliceSizeInBits, Instruction *OldInst, |
352 | Instruction *Inst, Value *Dest, Value *Value, |
353 | const DataLayout &DL) { |
354 | auto MarkerRange = at::getAssignmentMarkers(Inst: OldInst); |
355 | auto DVRAssignMarkerRange = at::getDVRAssignmentMarkers(Inst: OldInst); |
356 | // Nothing to do if OldInst has no linked dbg.assign intrinsics. |
357 | if (MarkerRange.empty() && DVRAssignMarkerRange.empty()) |
358 | return; |
359 | |
360 | LLVM_DEBUG(dbgs() << " migrateDebugInfo\n" ); |
361 | LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n" ); |
362 | LLVM_DEBUG(dbgs() << " IsSplit: " << IsSplit << "\n" ); |
363 | LLVM_DEBUG(dbgs() << " OldAllocaOffsetInBits: " << OldAllocaOffsetInBits |
364 | << "\n" ); |
365 | LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n" ); |
366 | LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n" ); |
367 | LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n" ); |
368 | LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n" ); |
369 | if (Value) |
370 | LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n" ); |
371 | |
372 | /// Map of aggregate variables to their fragment associated with OldAlloca. |
373 | DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>> |
374 | BaseFragments; |
375 | for (auto *DAI : at::getAssignmentMarkers(Inst: OldAlloca)) |
376 | BaseFragments[getAggregateVariable(DVI: DAI)] = |
377 | DAI->getExpression()->getFragmentInfo(); |
378 | for (auto *DVR : at::getDVRAssignmentMarkers(Inst: OldAlloca)) |
379 | BaseFragments[getAggregateVariable(DVR)] = |
380 | DVR->getExpression()->getFragmentInfo(); |
381 | |
382 | // The new inst needs a DIAssignID unique metadata tag (if OldInst has |
383 | // one). It shouldn't already have one: assert this assumption. |
384 | assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID)); |
385 | DIAssignID *NewID = nullptr; |
386 | auto &Ctx = Inst->getContext(); |
387 | DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false); |
388 | assert(OldAlloca->isStaticAlloca()); |
389 | |
390 | auto MigrateDbgAssign = [&](auto *DbgAssign) { |
391 | LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign |
392 | << "\n" ); |
393 | auto *Expr = DbgAssign->getExpression(); |
394 | bool SetKillLocation = false; |
395 | |
396 | if (IsSplit) { |
397 | std::optional<DIExpression::FragmentInfo> BaseFragment; |
398 | { |
399 | auto R = BaseFragments.find(getAggregateVariable(DbgAssign)); |
400 | if (R == BaseFragments.end()) |
401 | return; |
402 | BaseFragment = R->second; |
403 | } |
404 | std::optional<DIExpression::FragmentInfo> CurrentFragment = |
405 | Expr->getFragmentInfo(); |
406 | DIExpression::FragmentInfo NewFragment; |
407 | FragCalcResult Result = calculateFragment( |
408 | DbgAssign->getVariable(), OldAllocaOffsetInBits, SliceSizeInBits, |
409 | BaseFragment, CurrentFragment, NewFragment); |
410 | |
411 | if (Result == Skip) |
412 | return; |
413 | if (Result == UseFrag && !(NewFragment == CurrentFragment)) { |
414 | if (CurrentFragment) { |
415 | // Rewrite NewFragment to be relative to the existing one (this is |
416 | // what createFragmentExpression wants). CalculateFragment has |
417 | // already resolved the size for us. FIXME: Should it return the |
418 | // relative fragment too? |
419 | NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits; |
420 | } |
421 | // Add the new fragment info to the existing expression if possible. |
422 | if (auto E = DIExpression::createFragmentExpression( |
423 | Expr, OffsetInBits: NewFragment.OffsetInBits, SizeInBits: NewFragment.SizeInBits)) { |
424 | Expr = *E; |
425 | } else { |
426 | // Otherwise, add the new fragment info to an empty expression and |
427 | // discard the value component of this dbg.assign as the value cannot |
428 | // be computed with the new fragment. |
429 | Expr = *DIExpression::createFragmentExpression( |
430 | Expr: DIExpression::get(Context&: Expr->getContext(), Elements: std::nullopt), |
431 | OffsetInBits: NewFragment.OffsetInBits, SizeInBits: NewFragment.SizeInBits); |
432 | SetKillLocation = true; |
433 | } |
434 | } |
435 | } |
436 | |
437 | // If we haven't created a DIAssignID ID do that now and attach it to Inst. |
438 | if (!NewID) { |
439 | NewID = DIAssignID::getDistinct(Context&: Ctx); |
440 | Inst->setMetadata(KindID: LLVMContext::MD_DIAssignID, Node: NewID); |
441 | } |
442 | |
443 | ::Value *NewValue = Value ? Value : DbgAssign->getValue(); |
444 | auto *NewAssign = UnwrapDbgInstPtr( |
445 | DIB.insertDbgAssign(LinkedInstr: Inst, Val: NewValue, SrcVar: DbgAssign->getVariable(), ValExpr: Expr, |
446 | Addr: Dest, |
447 | AddrExpr: DIExpression::get(Context&: Expr->getContext(), Elements: std::nullopt), |
448 | DL: DbgAssign->getDebugLoc()), |
449 | DbgAssign); |
450 | |
451 | // If we've updated the value but the original dbg.assign has an arglist |
452 | // then kill it now - we can't use the requested new value. |
453 | // We can't replace the DIArgList with the new value as it'd leave |
454 | // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without |
455 | // an arglist). And we can't keep the DIArgList in case the linked store |
456 | // is being split - in which case the DIArgList + expression may no longer |
457 | // be computing the correct value. |
458 | // This should be a very rare situation as it requires the value being |
459 | // stored to differ from the dbg.assign (i.e., the value has been |
460 | // represented differently in the debug intrinsic for some reason). |
461 | SetKillLocation |= |
462 | Value && (DbgAssign->hasArgList() || |
463 | !DbgAssign->getExpression()->isSingleLocationExpression()); |
464 | if (SetKillLocation) |
465 | NewAssign->setKillLocation(); |
466 | |
467 | // We could use more precision here at the cost of some additional (code) |
468 | // complexity - if the original dbg.assign was adjacent to its store, we |
469 | // could position this new dbg.assign adjacent to its store rather than the |
470 | // old dbg.assgn. That would result in interleaved dbg.assigns rather than |
471 | // what we get now: |
472 | // split store !1 |
473 | // split store !2 |
474 | // dbg.assign !1 |
475 | // dbg.assign !2 |
476 | // This (current behaviour) results results in debug assignments being |
477 | // noted as slightly offset (in code) from the store. In practice this |
478 | // should have little effect on the debugging experience due to the fact |
479 | // that all the split stores should get the same line number. |
480 | NewAssign->moveBefore(DbgAssign); |
481 | |
482 | NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); |
483 | LLVM_DEBUG(dbgs() << "Created new assign: " << *NewAssign << "\n" ); |
484 | }; |
485 | |
486 | for_each(Range&: MarkerRange, F: MigrateDbgAssign); |
487 | for_each(Range&: DVRAssignMarkerRange, F: MigrateDbgAssign); |
488 | } |
489 | |
490 | namespace { |
491 | |
492 | /// A custom IRBuilder inserter which prefixes all names, but only in |
493 | /// Assert builds. |
494 | class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { |
495 | std::string Prefix; |
496 | |
497 | Twine getNameWithPrefix(const Twine &Name) const { |
498 | return Name.isTriviallyEmpty() ? Name : Prefix + Name; |
499 | } |
500 | |
501 | public: |
502 | void SetNamePrefix(const Twine &P) { Prefix = P.str(); } |
503 | |
504 | void InsertHelper(Instruction *I, const Twine &Name, |
505 | BasicBlock::iterator InsertPt) const override { |
506 | IRBuilderDefaultInserter::InsertHelper(I, Name: getNameWithPrefix(Name), |
507 | InsertPt); |
508 | } |
509 | }; |
510 | |
511 | /// Provide a type for IRBuilder that drops names in release builds. |
512 | using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; |
513 | |
514 | /// A used slice of an alloca. |
515 | /// |
516 | /// This structure represents a slice of an alloca used by some instruction. It |
517 | /// stores both the begin and end offsets of this use, a pointer to the use |
518 | /// itself, and a flag indicating whether we can classify the use as splittable |
519 | /// or not when forming partitions of the alloca. |
520 | class Slice { |
521 | /// The beginning offset of the range. |
522 | uint64_t BeginOffset = 0; |
523 | |
524 | /// The ending offset, not included in the range. |
525 | uint64_t EndOffset = 0; |
526 | |
527 | /// Storage for both the use of this slice and whether it can be |
528 | /// split. |
529 | PointerIntPair<Use *, 1, bool> UseAndIsSplittable; |
530 | |
531 | public: |
532 | Slice() = default; |
533 | |
534 | Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) |
535 | : BeginOffset(BeginOffset), EndOffset(EndOffset), |
536 | UseAndIsSplittable(U, IsSplittable) {} |
537 | |
538 | uint64_t beginOffset() const { return BeginOffset; } |
539 | uint64_t endOffset() const { return EndOffset; } |
540 | |
541 | bool isSplittable() const { return UseAndIsSplittable.getInt(); } |
542 | void makeUnsplittable() { UseAndIsSplittable.setInt(false); } |
543 | |
544 | Use *getUse() const { return UseAndIsSplittable.getPointer(); } |
545 | |
546 | bool isDead() const { return getUse() == nullptr; } |
547 | void kill() { UseAndIsSplittable.setPointer(nullptr); } |
548 | |
549 | /// Support for ordering ranges. |
550 | /// |
551 | /// This provides an ordering over ranges such that start offsets are |
552 | /// always increasing, and within equal start offsets, the end offsets are |
553 | /// decreasing. Thus the spanning range comes first in a cluster with the |
554 | /// same start position. |
555 | bool operator<(const Slice &RHS) const { |
556 | if (beginOffset() < RHS.beginOffset()) |
557 | return true; |
558 | if (beginOffset() > RHS.beginOffset()) |
559 | return false; |
560 | if (isSplittable() != RHS.isSplittable()) |
561 | return !isSplittable(); |
562 | if (endOffset() > RHS.endOffset()) |
563 | return true; |
564 | return false; |
565 | } |
566 | |
567 | /// Support comparison with a single offset to allow binary searches. |
568 | friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, |
569 | uint64_t RHSOffset) { |
570 | return LHS.beginOffset() < RHSOffset; |
571 | } |
572 | friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
573 | const Slice &RHS) { |
574 | return LHSOffset < RHS.beginOffset(); |
575 | } |
576 | |
577 | bool operator==(const Slice &RHS) const { |
578 | return isSplittable() == RHS.isSplittable() && |
579 | beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); |
580 | } |
581 | bool operator!=(const Slice &RHS) const { return !operator==(RHS); } |
582 | }; |
583 | |
584 | /// Representation of the alloca slices. |
585 | /// |
586 | /// This class represents the slices of an alloca which are formed by its |
587 | /// various uses. If a pointer escapes, we can't fully build a representation |
588 | /// for the slices used and we reflect that in this structure. The uses are |
589 | /// stored, sorted by increasing beginning offset and with unsplittable slices |
590 | /// starting at a particular offset before splittable slices. |
591 | class AllocaSlices { |
592 | public: |
593 | /// Construct the slices of a particular alloca. |
594 | AllocaSlices(const DataLayout &DL, AllocaInst &AI); |
595 | |
596 | /// Test whether a pointer to the allocation escapes our analysis. |
597 | /// |
598 | /// If this is true, the slices are never fully built and should be |
599 | /// ignored. |
600 | bool isEscaped() const { return PointerEscapingInstr; } |
601 | |
602 | /// Support for iterating over the slices. |
603 | /// @{ |
604 | using iterator = SmallVectorImpl<Slice>::iterator; |
605 | using range = iterator_range<iterator>; |
606 | |
607 | iterator begin() { return Slices.begin(); } |
608 | iterator end() { return Slices.end(); } |
609 | |
610 | using const_iterator = SmallVectorImpl<Slice>::const_iterator; |
611 | using const_range = iterator_range<const_iterator>; |
612 | |
613 | const_iterator begin() const { return Slices.begin(); } |
614 | const_iterator end() const { return Slices.end(); } |
615 | /// @} |
616 | |
617 | /// Erase a range of slices. |
618 | void erase(iterator Start, iterator Stop) { Slices.erase(CS: Start, CE: Stop); } |
619 | |
620 | /// Insert new slices for this alloca. |
621 | /// |
622 | /// This moves the slices into the alloca's slices collection, and re-sorts |
623 | /// everything so that the usual ordering properties of the alloca's slices |
624 | /// hold. |
625 | void insert(ArrayRef<Slice> NewSlices) { |
626 | int OldSize = Slices.size(); |
627 | Slices.append(in_start: NewSlices.begin(), in_end: NewSlices.end()); |
628 | auto SliceI = Slices.begin() + OldSize; |
629 | std::stable_sort(first: SliceI, last: Slices.end()); |
630 | std::inplace_merge(first: Slices.begin(), middle: SliceI, last: Slices.end()); |
631 | } |
632 | |
633 | // Forward declare the iterator and range accessor for walking the |
634 | // partitions. |
635 | class partition_iterator; |
636 | iterator_range<partition_iterator> partitions(); |
637 | |
638 | /// Access the dead users for this alloca. |
639 | ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } |
640 | |
641 | /// Access Uses that should be dropped if the alloca is promotable. |
642 | ArrayRef<Use *> getDeadUsesIfPromotable() const { |
643 | return DeadUseIfPromotable; |
644 | } |
645 | |
646 | /// Access the dead operands referring to this alloca. |
647 | /// |
648 | /// These are operands which have cannot actually be used to refer to the |
649 | /// alloca as they are outside its range and the user doesn't correct for |
650 | /// that. These mostly consist of PHI node inputs and the like which we just |
651 | /// need to replace with undef. |
652 | ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } |
653 | |
654 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
655 | void print(raw_ostream &OS, const_iterator I, StringRef Indent = " " ) const; |
656 | void printSlice(raw_ostream &OS, const_iterator I, |
657 | StringRef Indent = " " ) const; |
658 | void printUse(raw_ostream &OS, const_iterator I, |
659 | StringRef Indent = " " ) const; |
660 | void print(raw_ostream &OS) const; |
661 | void dump(const_iterator I) const; |
662 | void dump() const; |
663 | #endif |
664 | |
665 | private: |
666 | template <typename DerivedT, typename RetT = void> class BuilderBase; |
667 | class SliceBuilder; |
668 | |
669 | friend class AllocaSlices::SliceBuilder; |
670 | |
671 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
672 | /// Handle to alloca instruction to simplify method interfaces. |
673 | AllocaInst &AI; |
674 | #endif |
675 | |
676 | /// The instruction responsible for this alloca not having a known set |
677 | /// of slices. |
678 | /// |
679 | /// When an instruction (potentially) escapes the pointer to the alloca, we |
680 | /// store a pointer to that here and abort trying to form slices of the |
681 | /// alloca. This will be null if the alloca slices are analyzed successfully. |
682 | Instruction *PointerEscapingInstr; |
683 | |
684 | /// The slices of the alloca. |
685 | /// |
686 | /// We store a vector of the slices formed by uses of the alloca here. This |
687 | /// vector is sorted by increasing begin offset, and then the unsplittable |
688 | /// slices before the splittable ones. See the Slice inner class for more |
689 | /// details. |
690 | SmallVector<Slice, 8> Slices; |
691 | |
692 | /// Instructions which will become dead if we rewrite the alloca. |
693 | /// |
694 | /// Note that these are not separated by slice. This is because we expect an |
695 | /// alloca to be completely rewritten or not rewritten at all. If rewritten, |
696 | /// all these instructions can simply be removed and replaced with poison as |
697 | /// they come from outside of the allocated space. |
698 | SmallVector<Instruction *, 8> DeadUsers; |
699 | |
700 | /// Uses which will become dead if can promote the alloca. |
701 | SmallVector<Use *, 8> DeadUseIfPromotable; |
702 | |
703 | /// Operands which will become dead if we rewrite the alloca. |
704 | /// |
705 | /// These are operands that in their particular use can be replaced with |
706 | /// poison when we rewrite the alloca. These show up in out-of-bounds inputs |
707 | /// to PHI nodes and the like. They aren't entirely dead (there might be |
708 | /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
709 | /// want to swap this particular input for poison to simplify the use lists of |
710 | /// the alloca. |
711 | SmallVector<Use *, 8> DeadOperands; |
712 | }; |
713 | |
714 | /// A partition of the slices. |
715 | /// |
716 | /// An ephemeral representation for a range of slices which can be viewed as |
717 | /// a partition of the alloca. This range represents a span of the alloca's |
718 | /// memory which cannot be split, and provides access to all of the slices |
719 | /// overlapping some part of the partition. |
720 | /// |
721 | /// Objects of this type are produced by traversing the alloca's slices, but |
722 | /// are only ephemeral and not persistent. |
723 | class Partition { |
724 | private: |
725 | friend class AllocaSlices; |
726 | friend class AllocaSlices::partition_iterator; |
727 | |
728 | using iterator = AllocaSlices::iterator; |
729 | |
730 | /// The beginning and ending offsets of the alloca for this |
731 | /// partition. |
732 | uint64_t BeginOffset = 0, EndOffset = 0; |
733 | |
734 | /// The start and end iterators of this partition. |
735 | iterator SI, SJ; |
736 | |
737 | /// A collection of split slice tails overlapping the partition. |
738 | SmallVector<Slice *, 4> SplitTails; |
739 | |
740 | /// Raw constructor builds an empty partition starting and ending at |
741 | /// the given iterator. |
742 | Partition(iterator SI) : SI(SI), SJ(SI) {} |
743 | |
744 | public: |
745 | /// The start offset of this partition. |
746 | /// |
747 | /// All of the contained slices start at or after this offset. |
748 | uint64_t beginOffset() const { return BeginOffset; } |
749 | |
750 | /// The end offset of this partition. |
751 | /// |
752 | /// All of the contained slices end at or before this offset. |
753 | uint64_t endOffset() const { return EndOffset; } |
754 | |
755 | /// The size of the partition. |
756 | /// |
757 | /// Note that this can never be zero. |
758 | uint64_t size() const { |
759 | assert(BeginOffset < EndOffset && "Partitions must span some bytes!" ); |
760 | return EndOffset - BeginOffset; |
761 | } |
762 | |
763 | /// Test whether this partition contains no slices, and merely spans |
764 | /// a region occupied by split slices. |
765 | bool empty() const { return SI == SJ; } |
766 | |
767 | /// \name Iterate slices that start within the partition. |
768 | /// These may be splittable or unsplittable. They have a begin offset >= the |
769 | /// partition begin offset. |
770 | /// @{ |
771 | // FIXME: We should probably define a "concat_iterator" helper and use that |
772 | // to stitch together pointee_iterators over the split tails and the |
773 | // contiguous iterators of the partition. That would give a much nicer |
774 | // interface here. We could then additionally expose filtered iterators for |
775 | // split, unsplit, and unsplittable splices based on the usage patterns. |
776 | iterator begin() const { return SI; } |
777 | iterator end() const { return SJ; } |
778 | /// @} |
779 | |
780 | /// Get the sequence of split slice tails. |
781 | /// |
782 | /// These tails are of slices which start before this partition but are |
783 | /// split and overlap into the partition. We accumulate these while forming |
784 | /// partitions. |
785 | ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } |
786 | }; |
787 | |
788 | } // end anonymous namespace |
789 | |
790 | /// An iterator over partitions of the alloca's slices. |
791 | /// |
792 | /// This iterator implements the core algorithm for partitioning the alloca's |
793 | /// slices. It is a forward iterator as we don't support backtracking for |
794 | /// efficiency reasons, and re-use a single storage area to maintain the |
795 | /// current set of split slices. |
796 | /// |
797 | /// It is templated on the slice iterator type to use so that it can operate |
798 | /// with either const or non-const slice iterators. |
799 | class AllocaSlices::partition_iterator |
800 | : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, |
801 | Partition> { |
802 | friend class AllocaSlices; |
803 | |
804 | /// Most of the state for walking the partitions is held in a class |
805 | /// with a nice interface for examining them. |
806 | Partition P; |
807 | |
808 | /// We need to keep the end of the slices to know when to stop. |
809 | AllocaSlices::iterator SE; |
810 | |
811 | /// We also need to keep track of the maximum split end offset seen. |
812 | /// FIXME: Do we really? |
813 | uint64_t MaxSplitSliceEndOffset = 0; |
814 | |
815 | /// Sets the partition to be empty at given iterator, and sets the |
816 | /// end iterator. |
817 | partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) |
818 | : P(SI), SE(SE) { |
819 | // If not already at the end, advance our state to form the initial |
820 | // partition. |
821 | if (SI != SE) |
822 | advance(); |
823 | } |
824 | |
825 | /// Advance the iterator to the next partition. |
826 | /// |
827 | /// Requires that the iterator not be at the end of the slices. |
828 | void advance() { |
829 | assert((P.SI != SE || !P.SplitTails.empty()) && |
830 | "Cannot advance past the end of the slices!" ); |
831 | |
832 | // Clear out any split uses which have ended. |
833 | if (!P.SplitTails.empty()) { |
834 | if (P.EndOffset >= MaxSplitSliceEndOffset) { |
835 | // If we've finished all splits, this is easy. |
836 | P.SplitTails.clear(); |
837 | MaxSplitSliceEndOffset = 0; |
838 | } else { |
839 | // Remove the uses which have ended in the prior partition. This |
840 | // cannot change the max split slice end because we just checked that |
841 | // the prior partition ended prior to that max. |
842 | llvm::erase_if(C&: P.SplitTails, |
843 | P: [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); |
844 | assert(llvm::any_of(P.SplitTails, |
845 | [&](Slice *S) { |
846 | return S->endOffset() == MaxSplitSliceEndOffset; |
847 | }) && |
848 | "Could not find the current max split slice offset!" ); |
849 | assert(llvm::all_of(P.SplitTails, |
850 | [&](Slice *S) { |
851 | return S->endOffset() <= MaxSplitSliceEndOffset; |
852 | }) && |
853 | "Max split slice end offset is not actually the max!" ); |
854 | } |
855 | } |
856 | |
857 | // If P.SI is already at the end, then we've cleared the split tail and |
858 | // now have an end iterator. |
859 | if (P.SI == SE) { |
860 | assert(P.SplitTails.empty() && "Failed to clear the split slices!" ); |
861 | return; |
862 | } |
863 | |
864 | // If we had a non-empty partition previously, set up the state for |
865 | // subsequent partitions. |
866 | if (P.SI != P.SJ) { |
867 | // Accumulate all the splittable slices which started in the old |
868 | // partition into the split list. |
869 | for (Slice &S : P) |
870 | if (S.isSplittable() && S.endOffset() > P.EndOffset) { |
871 | P.SplitTails.push_back(Elt: &S); |
872 | MaxSplitSliceEndOffset = |
873 | std::max(a: S.endOffset(), b: MaxSplitSliceEndOffset); |
874 | } |
875 | |
876 | // Start from the end of the previous partition. |
877 | P.SI = P.SJ; |
878 | |
879 | // If P.SI is now at the end, we at most have a tail of split slices. |
880 | if (P.SI == SE) { |
881 | P.BeginOffset = P.EndOffset; |
882 | P.EndOffset = MaxSplitSliceEndOffset; |
883 | return; |
884 | } |
885 | |
886 | // If the we have split slices and the next slice is after a gap and is |
887 | // not splittable immediately form an empty partition for the split |
888 | // slices up until the next slice begins. |
889 | if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && |
890 | !P.SI->isSplittable()) { |
891 | P.BeginOffset = P.EndOffset; |
892 | P.EndOffset = P.SI->beginOffset(); |
893 | return; |
894 | } |
895 | } |
896 | |
897 | // OK, we need to consume new slices. Set the end offset based on the |
898 | // current slice, and step SJ past it. The beginning offset of the |
899 | // partition is the beginning offset of the next slice unless we have |
900 | // pre-existing split slices that are continuing, in which case we begin |
901 | // at the prior end offset. |
902 | P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; |
903 | P.EndOffset = P.SI->endOffset(); |
904 | ++P.SJ; |
905 | |
906 | // There are two strategies to form a partition based on whether the |
907 | // partition starts with an unsplittable slice or a splittable slice. |
908 | if (!P.SI->isSplittable()) { |
909 | // When we're forming an unsplittable region, it must always start at |
910 | // the first slice and will extend through its end. |
911 | assert(P.BeginOffset == P.SI->beginOffset()); |
912 | |
913 | // Form a partition including all of the overlapping slices with this |
914 | // unsplittable slice. |
915 | while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
916 | if (!P.SJ->isSplittable()) |
917 | P.EndOffset = std::max(a: P.EndOffset, b: P.SJ->endOffset()); |
918 | ++P.SJ; |
919 | } |
920 | |
921 | // We have a partition across a set of overlapping unsplittable |
922 | // partitions. |
923 | return; |
924 | } |
925 | |
926 | // If we're starting with a splittable slice, then we need to form |
927 | // a synthetic partition spanning it and any other overlapping splittable |
928 | // splices. |
929 | assert(P.SI->isSplittable() && "Forming a splittable partition!" ); |
930 | |
931 | // Collect all of the overlapping splittable slices. |
932 | while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && |
933 | P.SJ->isSplittable()) { |
934 | P.EndOffset = std::max(a: P.EndOffset, b: P.SJ->endOffset()); |
935 | ++P.SJ; |
936 | } |
937 | |
938 | // Back upiP.EndOffset if we ended the span early when encountering an |
939 | // unsplittable slice. This synthesizes the early end offset of |
940 | // a partition spanning only splittable slices. |
941 | if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { |
942 | assert(!P.SJ->isSplittable()); |
943 | P.EndOffset = P.SJ->beginOffset(); |
944 | } |
945 | } |
946 | |
947 | public: |
948 | bool operator==(const partition_iterator &RHS) const { |
949 | assert(SE == RHS.SE && |
950 | "End iterators don't match between compared partition iterators!" ); |
951 | |
952 | // The observed positions of partitions is marked by the P.SI iterator and |
953 | // the emptiness of the split slices. The latter is only relevant when |
954 | // P.SI == SE, as the end iterator will additionally have an empty split |
955 | // slices list, but the prior may have the same P.SI and a tail of split |
956 | // slices. |
957 | if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { |
958 | assert(P.SJ == RHS.P.SJ && |
959 | "Same set of slices formed two different sized partitions!" ); |
960 | assert(P.SplitTails.size() == RHS.P.SplitTails.size() && |
961 | "Same slice position with differently sized non-empty split " |
962 | "slice tails!" ); |
963 | return true; |
964 | } |
965 | return false; |
966 | } |
967 | |
968 | partition_iterator &operator++() { |
969 | advance(); |
970 | return *this; |
971 | } |
972 | |
973 | Partition &operator*() { return P; } |
974 | }; |
975 | |
976 | /// A forward range over the partitions of the alloca's slices. |
977 | /// |
978 | /// This accesses an iterator range over the partitions of the alloca's |
979 | /// slices. It computes these partitions on the fly based on the overlapping |
980 | /// offsets of the slices and the ability to split them. It will visit "empty" |
981 | /// partitions to cover regions of the alloca only accessed via split |
982 | /// slices. |
983 | iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { |
984 | return make_range(x: partition_iterator(begin(), end()), |
985 | y: partition_iterator(end(), end())); |
986 | } |
987 | |
988 | static Value *foldSelectInst(SelectInst &SI) { |
989 | // If the condition being selected on is a constant or the same value is |
990 | // being selected between, fold the select. Yes this does (rarely) happen |
991 | // early on. |
992 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: SI.getCondition())) |
993 | return SI.getOperand(i_nocapture: 1 + CI->isZero()); |
994 | if (SI.getOperand(i_nocapture: 1) == SI.getOperand(i_nocapture: 2)) |
995 | return SI.getOperand(i_nocapture: 1); |
996 | |
997 | return nullptr; |
998 | } |
999 | |
1000 | /// A helper that folds a PHI node or a select. |
1001 | static Value *foldPHINodeOrSelectInst(Instruction &I) { |
1002 | if (PHINode *PN = dyn_cast<PHINode>(Val: &I)) { |
1003 | // If PN merges together the same value, return that value. |
1004 | return PN->hasConstantValue(); |
1005 | } |
1006 | return foldSelectInst(SI&: cast<SelectInst>(Val&: I)); |
1007 | } |
1008 | |
1009 | /// Builder for the alloca slices. |
1010 | /// |
1011 | /// This class builds a set of alloca slices by recursively visiting the uses |
1012 | /// of an alloca and making a slice for each load and store at each offset. |
1013 | class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { |
1014 | friend class PtrUseVisitor<SliceBuilder>; |
1015 | friend class InstVisitor<SliceBuilder>; |
1016 | |
1017 | using Base = PtrUseVisitor<SliceBuilder>; |
1018 | |
1019 | const uint64_t AllocSize; |
1020 | AllocaSlices &AS; |
1021 | |
1022 | SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; |
1023 | SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; |
1024 | |
1025 | /// Set to de-duplicate dead instructions found in the use walk. |
1026 | SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
1027 | |
1028 | public: |
1029 | SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) |
1030 | : PtrUseVisitor<SliceBuilder>(DL), |
1031 | AllocSize(DL.getTypeAllocSize(Ty: AI.getAllocatedType()).getFixedValue()), |
1032 | AS(AS) {} |
1033 | |
1034 | private: |
1035 | void markAsDead(Instruction &I) { |
1036 | if (VisitedDeadInsts.insert(Ptr: &I).second) |
1037 | AS.DeadUsers.push_back(Elt: &I); |
1038 | } |
1039 | |
1040 | void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, |
1041 | bool IsSplittable = false) { |
1042 | // Completely skip uses which have a zero size or start either before or |
1043 | // past the end of the allocation. |
1044 | if (Size == 0 || Offset.uge(RHS: AllocSize)) { |
1045 | LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" |
1046 | << Offset |
1047 | << " which has zero size or starts outside of the " |
1048 | << AllocSize << " byte alloca:\n" |
1049 | << " alloca: " << AS.AI << "\n" |
1050 | << " use: " << I << "\n" ); |
1051 | return markAsDead(I); |
1052 | } |
1053 | |
1054 | uint64_t BeginOffset = Offset.getZExtValue(); |
1055 | uint64_t EndOffset = BeginOffset + Size; |
1056 | |
1057 | // Clamp the end offset to the end of the allocation. Note that this is |
1058 | // formulated to handle even the case where "BeginOffset + Size" overflows. |
1059 | // This may appear superficially to be something we could ignore entirely, |
1060 | // but that is not so! There may be widened loads or PHI-node uses where |
1061 | // some instructions are dead but not others. We can't completely ignore |
1062 | // them, and so have to record at least the information here. |
1063 | assert(AllocSize >= BeginOffset); // Established above. |
1064 | if (Size > AllocSize - BeginOffset) { |
1065 | LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" |
1066 | << Offset << " to remain within the " << AllocSize |
1067 | << " byte alloca:\n" |
1068 | << " alloca: " << AS.AI << "\n" |
1069 | << " use: " << I << "\n" ); |
1070 | EndOffset = AllocSize; |
1071 | } |
1072 | |
1073 | AS.Slices.push_back(Elt: Slice(BeginOffset, EndOffset, U, IsSplittable)); |
1074 | } |
1075 | |
1076 | void visitBitCastInst(BitCastInst &BC) { |
1077 | if (BC.use_empty()) |
1078 | return markAsDead(I&: BC); |
1079 | |
1080 | return Base::visitBitCastInst(BC); |
1081 | } |
1082 | |
1083 | void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
1084 | if (ASC.use_empty()) |
1085 | return markAsDead(I&: ASC); |
1086 | |
1087 | return Base::visitAddrSpaceCastInst(ASC); |
1088 | } |
1089 | |
1090 | void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
1091 | if (GEPI.use_empty()) |
1092 | return markAsDead(I&: GEPI); |
1093 | |
1094 | return Base::visitGetElementPtrInst(GEPI); |
1095 | } |
1096 | |
1097 | void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, |
1098 | uint64_t Size, bool IsVolatile) { |
1099 | // We allow splitting of non-volatile loads and stores where the type is an |
1100 | // integer type. These may be used to implement 'memcpy' or other "transfer |
1101 | // of bits" patterns. |
1102 | bool IsSplittable = |
1103 | Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); |
1104 | |
1105 | insertUse(I, Offset, Size, IsSplittable); |
1106 | } |
1107 | |
1108 | void visitLoadInst(LoadInst &LI) { |
1109 | assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
1110 | "All simple FCA loads should have been pre-split" ); |
1111 | |
1112 | if (!IsOffsetKnown) |
1113 | return PI.setAborted(&LI); |
1114 | |
1115 | TypeSize Size = DL.getTypeStoreSize(Ty: LI.getType()); |
1116 | if (Size.isScalable()) |
1117 | return PI.setAborted(&LI); |
1118 | |
1119 | return handleLoadOrStore(Ty: LI.getType(), I&: LI, Offset, Size: Size.getFixedValue(), |
1120 | IsVolatile: LI.isVolatile()); |
1121 | } |
1122 | |
1123 | void visitStoreInst(StoreInst &SI) { |
1124 | Value *ValOp = SI.getValueOperand(); |
1125 | if (ValOp == *U) |
1126 | return PI.setEscapedAndAborted(&SI); |
1127 | if (!IsOffsetKnown) |
1128 | return PI.setAborted(&SI); |
1129 | |
1130 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: ValOp->getType()); |
1131 | if (StoreSize.isScalable()) |
1132 | return PI.setAborted(&SI); |
1133 | |
1134 | uint64_t Size = StoreSize.getFixedValue(); |
1135 | |
1136 | // If this memory access can be shown to *statically* extend outside the |
1137 | // bounds of the allocation, it's behavior is undefined, so simply |
1138 | // ignore it. Note that this is more strict than the generic clamping |
1139 | // behavior of insertUse. We also try to handle cases which might run the |
1140 | // risk of overflow. |
1141 | // FIXME: We should instead consider the pointer to have escaped if this |
1142 | // function is being instrumented for addressing bugs or race conditions. |
1143 | if (Size > AllocSize || Offset.ugt(RHS: AllocSize - Size)) { |
1144 | LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" |
1145 | << Offset << " which extends past the end of the " |
1146 | << AllocSize << " byte alloca:\n" |
1147 | << " alloca: " << AS.AI << "\n" |
1148 | << " use: " << SI << "\n" ); |
1149 | return markAsDead(I&: SI); |
1150 | } |
1151 | |
1152 | assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
1153 | "All simple FCA stores should have been pre-split" ); |
1154 | handleLoadOrStore(Ty: ValOp->getType(), I&: SI, Offset, Size, IsVolatile: SI.isVolatile()); |
1155 | } |
1156 | |
1157 | void visitMemSetInst(MemSetInst &II) { |
1158 | assert(II.getRawDest() == *U && "Pointer use is not the destination?" ); |
1159 | ConstantInt *Length = dyn_cast<ConstantInt>(Val: II.getLength()); |
1160 | if ((Length && Length->getValue() == 0) || |
1161 | (IsOffsetKnown && Offset.uge(RHS: AllocSize))) |
1162 | // Zero-length mem transfer intrinsics can be ignored entirely. |
1163 | return markAsDead(I&: II); |
1164 | |
1165 | if (!IsOffsetKnown) |
1166 | return PI.setAborted(&II); |
1167 | |
1168 | insertUse(I&: II, Offset, |
1169 | Size: Length ? Length->getLimitedValue() |
1170 | : AllocSize - Offset.getLimitedValue(), |
1171 | IsSplittable: (bool)Length); |
1172 | } |
1173 | |
1174 | void visitMemTransferInst(MemTransferInst &II) { |
1175 | ConstantInt *Length = dyn_cast<ConstantInt>(Val: II.getLength()); |
1176 | if (Length && Length->getValue() == 0) |
1177 | // Zero-length mem transfer intrinsics can be ignored entirely. |
1178 | return markAsDead(I&: II); |
1179 | |
1180 | // Because we can visit these intrinsics twice, also check to see if the |
1181 | // first time marked this instruction as dead. If so, skip it. |
1182 | if (VisitedDeadInsts.count(Ptr: &II)) |
1183 | return; |
1184 | |
1185 | if (!IsOffsetKnown) |
1186 | return PI.setAborted(&II); |
1187 | |
1188 | // This side of the transfer is completely out-of-bounds, and so we can |
1189 | // nuke the entire transfer. However, we also need to nuke the other side |
1190 | // if already added to our partitions. |
1191 | // FIXME: Yet another place we really should bypass this when |
1192 | // instrumenting for ASan. |
1193 | if (Offset.uge(RHS: AllocSize)) { |
1194 | SmallDenseMap<Instruction *, unsigned>::iterator MTPI = |
1195 | MemTransferSliceMap.find(Val: &II); |
1196 | if (MTPI != MemTransferSliceMap.end()) |
1197 | AS.Slices[MTPI->second].kill(); |
1198 | return markAsDead(I&: II); |
1199 | } |
1200 | |
1201 | uint64_t RawOffset = Offset.getLimitedValue(); |
1202 | uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; |
1203 | |
1204 | // Check for the special case where the same exact value is used for both |
1205 | // source and dest. |
1206 | if (*U == II.getRawDest() && *U == II.getRawSource()) { |
1207 | // For non-volatile transfers this is a no-op. |
1208 | if (!II.isVolatile()) |
1209 | return markAsDead(I&: II); |
1210 | |
1211 | return insertUse(I&: II, Offset, Size, /*IsSplittable=*/false); |
1212 | } |
1213 | |
1214 | // If we have seen both source and destination for a mem transfer, then |
1215 | // they both point to the same alloca. |
1216 | bool Inserted; |
1217 | SmallDenseMap<Instruction *, unsigned>::iterator MTPI; |
1218 | std::tie(args&: MTPI, args&: Inserted) = |
1219 | MemTransferSliceMap.insert(KV: std::make_pair(x: &II, y: AS.Slices.size())); |
1220 | unsigned PrevIdx = MTPI->second; |
1221 | if (!Inserted) { |
1222 | Slice &PrevP = AS.Slices[PrevIdx]; |
1223 | |
1224 | // Check if the begin offsets match and this is a non-volatile transfer. |
1225 | // In that case, we can completely elide the transfer. |
1226 | if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { |
1227 | PrevP.kill(); |
1228 | return markAsDead(I&: II); |
1229 | } |
1230 | |
1231 | // Otherwise we have an offset transfer within the same alloca. We can't |
1232 | // split those. |
1233 | PrevP.makeUnsplittable(); |
1234 | } |
1235 | |
1236 | // Insert the use now that we've fixed up the splittable nature. |
1237 | insertUse(I&: II, Offset, Size, /*IsSplittable=*/Inserted && Length); |
1238 | |
1239 | // Check that we ended up with a valid index in the map. |
1240 | assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && |
1241 | "Map index doesn't point back to a slice with this user." ); |
1242 | } |
1243 | |
1244 | // Disable SRoA for any intrinsics except for lifetime invariants and |
1245 | // invariant group. |
1246 | // FIXME: What about debug intrinsics? This matches old behavior, but |
1247 | // doesn't make sense. |
1248 | void visitIntrinsicInst(IntrinsicInst &II) { |
1249 | if (II.isDroppable()) { |
1250 | AS.DeadUseIfPromotable.push_back(Elt: U); |
1251 | return; |
1252 | } |
1253 | |
1254 | if (!IsOffsetKnown) |
1255 | return PI.setAborted(&II); |
1256 | |
1257 | if (II.isLifetimeStartOrEnd()) { |
1258 | ConstantInt *Length = cast<ConstantInt>(Val: II.getArgOperand(i: 0)); |
1259 | uint64_t Size = std::min(a: AllocSize - Offset.getLimitedValue(), |
1260 | b: Length->getLimitedValue()); |
1261 | insertUse(I&: II, Offset, Size, IsSplittable: true); |
1262 | return; |
1263 | } |
1264 | |
1265 | if (II.isLaunderOrStripInvariantGroup()) { |
1266 | insertUse(I&: II, Offset, Size: AllocSize, IsSplittable: true); |
1267 | enqueueUsers(I&: II); |
1268 | return; |
1269 | } |
1270 | |
1271 | Base::visitIntrinsicInst(II); |
1272 | } |
1273 | |
1274 | Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
1275 | // We consider any PHI or select that results in a direct load or store of |
1276 | // the same offset to be a viable use for slicing purposes. These uses |
1277 | // are considered unsplittable and the size is the maximum loaded or stored |
1278 | // size. |
1279 | SmallPtrSet<Instruction *, 4> Visited; |
1280 | SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
1281 | Visited.insert(Ptr: Root); |
1282 | Uses.push_back(Elt: std::make_pair(x: cast<Instruction>(Val&: *U), y&: Root)); |
1283 | const DataLayout &DL = Root->getDataLayout(); |
1284 | // If there are no loads or stores, the access is dead. We mark that as |
1285 | // a size zero access. |
1286 | Size = 0; |
1287 | do { |
1288 | Instruction *I, *UsedI; |
1289 | std::tie(args&: UsedI, args&: I) = Uses.pop_back_val(); |
1290 | |
1291 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
1292 | TypeSize LoadSize = DL.getTypeStoreSize(Ty: LI->getType()); |
1293 | if (LoadSize.isScalable()) { |
1294 | PI.setAborted(LI); |
1295 | return nullptr; |
1296 | } |
1297 | Size = std::max(a: Size, b: LoadSize.getFixedValue()); |
1298 | continue; |
1299 | } |
1300 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
1301 | Value *Op = SI->getOperand(i_nocapture: 0); |
1302 | if (Op == UsedI) |
1303 | return SI; |
1304 | TypeSize StoreSize = DL.getTypeStoreSize(Ty: Op->getType()); |
1305 | if (StoreSize.isScalable()) { |
1306 | PI.setAborted(SI); |
1307 | return nullptr; |
1308 | } |
1309 | Size = std::max(a: Size, b: StoreSize.getFixedValue()); |
1310 | continue; |
1311 | } |
1312 | |
1313 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: I)) { |
1314 | if (!GEP->hasAllZeroIndices()) |
1315 | return GEP; |
1316 | } else if (!isa<BitCastInst>(Val: I) && !isa<PHINode>(Val: I) && |
1317 | !isa<SelectInst>(Val: I) && !isa<AddrSpaceCastInst>(Val: I)) { |
1318 | return I; |
1319 | } |
1320 | |
1321 | for (User *U : I->users()) |
1322 | if (Visited.insert(Ptr: cast<Instruction>(Val: U)).second) |
1323 | Uses.push_back(Elt: std::make_pair(x&: I, y: cast<Instruction>(Val: U))); |
1324 | } while (!Uses.empty()); |
1325 | |
1326 | return nullptr; |
1327 | } |
1328 | |
1329 | void visitPHINodeOrSelectInst(Instruction &I) { |
1330 | assert(isa<PHINode>(I) || isa<SelectInst>(I)); |
1331 | if (I.use_empty()) |
1332 | return markAsDead(I); |
1333 | |
1334 | // If this is a PHI node before a catchswitch, we cannot insert any non-PHI |
1335 | // instructions in this BB, which may be required during rewriting. Bail out |
1336 | // on these cases. |
1337 | if (isa<PHINode>(Val: I) && |
1338 | I.getParent()->getFirstInsertionPt() == I.getParent()->end()) |
1339 | return PI.setAborted(&I); |
1340 | |
1341 | // TODO: We could use simplifyInstruction here to fold PHINodes and |
1342 | // SelectInsts. However, doing so requires to change the current |
1343 | // dead-operand-tracking mechanism. For instance, suppose neither loading |
1344 | // from %U nor %other traps. Then "load (select undef, %U, %other)" does not |
1345 | // trap either. However, if we simply replace %U with undef using the |
1346 | // current dead-operand-tracking mechanism, "load (select undef, undef, |
1347 | // %other)" may trap because the select may return the first operand |
1348 | // "undef". |
1349 | if (Value *Result = foldPHINodeOrSelectInst(I)) { |
1350 | if (Result == *U) |
1351 | // If the result of the constant fold will be the pointer, recurse |
1352 | // through the PHI/select as if we had RAUW'ed it. |
1353 | enqueueUsers(I); |
1354 | else |
1355 | // Otherwise the operand to the PHI/select is dead, and we can replace |
1356 | // it with poison. |
1357 | AS.DeadOperands.push_back(Elt: U); |
1358 | |
1359 | return; |
1360 | } |
1361 | |
1362 | if (!IsOffsetKnown) |
1363 | return PI.setAborted(&I); |
1364 | |
1365 | // See if we already have computed info on this node. |
1366 | uint64_t &Size = PHIOrSelectSizes[&I]; |
1367 | if (!Size) { |
1368 | // This is a new PHI/Select, check for an unsafe use of it. |
1369 | if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(Root: &I, Size)) |
1370 | return PI.setAborted(UnsafeI); |
1371 | } |
1372 | |
1373 | // For PHI and select operands outside the alloca, we can't nuke the entire |
1374 | // phi or select -- the other side might still be relevant, so we special |
1375 | // case them here and use a separate structure to track the operands |
1376 | // themselves which should be replaced with poison. |
1377 | // FIXME: This should instead be escaped in the event we're instrumenting |
1378 | // for address sanitization. |
1379 | if (Offset.uge(RHS: AllocSize)) { |
1380 | AS.DeadOperands.push_back(Elt: U); |
1381 | return; |
1382 | } |
1383 | |
1384 | insertUse(I, Offset, Size); |
1385 | } |
1386 | |
1387 | void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(I&: PN); } |
1388 | |
1389 | void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(I&: SI); } |
1390 | |
1391 | /// Disable SROA entirely if there are unhandled users of the alloca. |
1392 | void visitInstruction(Instruction &I) { PI.setAborted(&I); } |
1393 | }; |
1394 | |
1395 | AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) |
1396 | : |
1397 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1398 | AI(AI), |
1399 | #endif |
1400 | PointerEscapingInstr(nullptr) { |
1401 | SliceBuilder PB(DL, AI, *this); |
1402 | SliceBuilder::PtrInfo PtrI = PB.visitPtr(I&: AI); |
1403 | if (PtrI.isEscaped() || PtrI.isAborted()) { |
1404 | // FIXME: We should sink the escape vs. abort info into the caller nicely, |
1405 | // possibly by just storing the PtrInfo in the AllocaSlices. |
1406 | PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() |
1407 | : PtrI.getAbortingInst(); |
1408 | assert(PointerEscapingInstr && "Did not track a bad instruction" ); |
1409 | return; |
1410 | } |
1411 | |
1412 | llvm::erase_if(C&: Slices, P: [](const Slice &S) { return S.isDead(); }); |
1413 | |
1414 | // Sort the uses. This arranges for the offsets to be in ascending order, |
1415 | // and the sizes to be in descending order. |
1416 | llvm::stable_sort(Range&: Slices); |
1417 | } |
1418 | |
1419 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1420 | |
1421 | void AllocaSlices::print(raw_ostream &OS, const_iterator I, |
1422 | StringRef Indent) const { |
1423 | printSlice(OS, I, Indent); |
1424 | OS << "\n" ; |
1425 | printUse(OS, I, Indent); |
1426 | } |
1427 | |
1428 | void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, |
1429 | StringRef Indent) const { |
1430 | OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" |
1431 | << " slice #" << (I - begin()) |
1432 | << (I->isSplittable() ? " (splittable)" : "" ); |
1433 | } |
1434 | |
1435 | void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, |
1436 | StringRef Indent) const { |
1437 | OS << Indent << " used by: " << *I->getUse()->getUser() << "\n" ; |
1438 | } |
1439 | |
1440 | void AllocaSlices::print(raw_ostream &OS) const { |
1441 | if (PointerEscapingInstr) { |
1442 | OS << "Can't analyze slices for alloca: " << AI << "\n" |
1443 | << " A pointer to this alloca escaped by:\n" |
1444 | << " " << *PointerEscapingInstr << "\n" ; |
1445 | return; |
1446 | } |
1447 | |
1448 | OS << "Slices of alloca: " << AI << "\n" ; |
1449 | for (const_iterator I = begin(), E = end(); I != E; ++I) |
1450 | print(OS, I); |
1451 | } |
1452 | |
1453 | LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { |
1454 | print(dbgs(), I); |
1455 | } |
1456 | LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } |
1457 | |
1458 | #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1459 | |
1460 | /// Walk the range of a partitioning looking for a common type to cover this |
1461 | /// sequence of slices. |
1462 | static std::pair<Type *, IntegerType *> |
1463 | findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, |
1464 | uint64_t EndOffset) { |
1465 | Type *Ty = nullptr; |
1466 | bool TyIsCommon = true; |
1467 | IntegerType *ITy = nullptr; |
1468 | |
1469 | // Note that we need to look at *every* alloca slice's Use to ensure we |
1470 | // always get consistent results regardless of the order of slices. |
1471 | for (AllocaSlices::const_iterator I = B; I != E; ++I) { |
1472 | Use *U = I->getUse(); |
1473 | if (isa<IntrinsicInst>(Val: *U->getUser())) |
1474 | continue; |
1475 | if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) |
1476 | continue; |
1477 | |
1478 | Type *UserTy = nullptr; |
1479 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
1480 | UserTy = LI->getType(); |
1481 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
1482 | UserTy = SI->getValueOperand()->getType(); |
1483 | } |
1484 | |
1485 | if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(Val: UserTy)) { |
1486 | // If the type is larger than the partition, skip it. We only encounter |
1487 | // this for split integer operations where we want to use the type of the |
1488 | // entity causing the split. Also skip if the type is not a byte width |
1489 | // multiple. |
1490 | if (UserITy->getBitWidth() % 8 != 0 || |
1491 | UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) |
1492 | continue; |
1493 | |
1494 | // Track the largest bitwidth integer type used in this way in case there |
1495 | // is no common type. |
1496 | if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) |
1497 | ITy = UserITy; |
1498 | } |
1499 | |
1500 | // To avoid depending on the order of slices, Ty and TyIsCommon must not |
1501 | // depend on types skipped above. |
1502 | if (!UserTy || (Ty && Ty != UserTy)) |
1503 | TyIsCommon = false; // Give up on anything but an iN type. |
1504 | else |
1505 | Ty = UserTy; |
1506 | } |
1507 | |
1508 | return {TyIsCommon ? Ty : nullptr, ITy}; |
1509 | } |
1510 | |
1511 | /// PHI instructions that use an alloca and are subsequently loaded can be |
1512 | /// rewritten to load both input pointers in the pred blocks and then PHI the |
1513 | /// results, allowing the load of the alloca to be promoted. |
1514 | /// From this: |
1515 | /// %P2 = phi [i32* %Alloca, i32* %Other] |
1516 | /// %V = load i32* %P2 |
1517 | /// to: |
1518 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
1519 | /// ... |
1520 | /// %V2 = load i32* %Other |
1521 | /// ... |
1522 | /// %V = phi [i32 %V1, i32 %V2] |
1523 | /// |
1524 | /// We can do this to a select if its only uses are loads and if the operands |
1525 | /// to the select can be loaded unconditionally. |
1526 | /// |
1527 | /// FIXME: This should be hoisted into a generic utility, likely in |
1528 | /// Transforms/Util/Local.h |
1529 | static bool isSafePHIToSpeculate(PHINode &PN) { |
1530 | const DataLayout &DL = PN.getDataLayout(); |
1531 | |
1532 | // For now, we can only do this promotion if the load is in the same block |
1533 | // as the PHI, and if there are no stores between the phi and load. |
1534 | // TODO: Allow recursive phi users. |
1535 | // TODO: Allow stores. |
1536 | BasicBlock *BB = PN.getParent(); |
1537 | Align MaxAlign; |
1538 | uint64_t APWidth = DL.getIndexTypeSizeInBits(Ty: PN.getType()); |
1539 | Type *LoadType = nullptr; |
1540 | for (User *U : PN.users()) { |
1541 | LoadInst *LI = dyn_cast<LoadInst>(Val: U); |
1542 | if (!LI || !LI->isSimple()) |
1543 | return false; |
1544 | |
1545 | // For now we only allow loads in the same block as the PHI. This is |
1546 | // a common case that happens when instcombine merges two loads through |
1547 | // a PHI. |
1548 | if (LI->getParent() != BB) |
1549 | return false; |
1550 | |
1551 | if (LoadType) { |
1552 | if (LoadType != LI->getType()) |
1553 | return false; |
1554 | } else { |
1555 | LoadType = LI->getType(); |
1556 | } |
1557 | |
1558 | // Ensure that there are no instructions between the PHI and the load that |
1559 | // could store. |
1560 | for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) |
1561 | if (BBI->mayWriteToMemory()) |
1562 | return false; |
1563 | |
1564 | MaxAlign = std::max(a: MaxAlign, b: LI->getAlign()); |
1565 | } |
1566 | |
1567 | if (!LoadType) |
1568 | return false; |
1569 | |
1570 | APInt LoadSize = |
1571 | APInt(APWidth, DL.getTypeStoreSize(Ty: LoadType).getFixedValue()); |
1572 | |
1573 | // We can only transform this if it is safe to push the loads into the |
1574 | // predecessor blocks. The only thing to watch out for is that we can't put |
1575 | // a possibly trapping load in the predecessor if it is a critical edge. |
1576 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
1577 | Instruction *TI = PN.getIncomingBlock(i: Idx)->getTerminator(); |
1578 | Value *InVal = PN.getIncomingValue(i: Idx); |
1579 | |
1580 | // If the value is produced by the terminator of the predecessor (an |
1581 | // invoke) or it has side-effects, there is no valid place to put a load |
1582 | // in the predecessor. |
1583 | if (TI == InVal || TI->mayHaveSideEffects()) |
1584 | return false; |
1585 | |
1586 | // If the predecessor has a single successor, then the edge isn't |
1587 | // critical. |
1588 | if (TI->getNumSuccessors() == 1) |
1589 | continue; |
1590 | |
1591 | // If this pointer is always safe to load, or if we can prove that there |
1592 | // is already a load in the block, then we can move the load to the pred |
1593 | // block. |
1594 | if (isSafeToLoadUnconditionally(V: InVal, Alignment: MaxAlign, Size: LoadSize, DL, ScanFrom: TI)) |
1595 | continue; |
1596 | |
1597 | return false; |
1598 | } |
1599 | |
1600 | return true; |
1601 | } |
1602 | |
1603 | static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { |
1604 | LLVM_DEBUG(dbgs() << " original: " << PN << "\n" ); |
1605 | |
1606 | LoadInst *SomeLoad = cast<LoadInst>(Val: PN.user_back()); |
1607 | Type *LoadTy = SomeLoad->getType(); |
1608 | IRB.SetInsertPoint(&PN); |
1609 | PHINode *NewPN = IRB.CreatePHI(Ty: LoadTy, NumReservedValues: PN.getNumIncomingValues(), |
1610 | Name: PN.getName() + ".sroa.speculated" ); |
1611 | |
1612 | // Get the AA tags and alignment to use from one of the loads. It does not |
1613 | // matter which one we get and if any differ. |
1614 | AAMDNodes AATags = SomeLoad->getAAMetadata(); |
1615 | Align Alignment = SomeLoad->getAlign(); |
1616 | |
1617 | // Rewrite all loads of the PN to use the new PHI. |
1618 | while (!PN.use_empty()) { |
1619 | LoadInst *LI = cast<LoadInst>(Val: PN.user_back()); |
1620 | LI->replaceAllUsesWith(V: NewPN); |
1621 | LI->eraseFromParent(); |
1622 | } |
1623 | |
1624 | // Inject loads into all of the pred blocks. |
1625 | DenseMap<BasicBlock *, Value *> InjectedLoads; |
1626 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
1627 | BasicBlock *Pred = PN.getIncomingBlock(i: Idx); |
1628 | Value *InVal = PN.getIncomingValue(i: Idx); |
1629 | |
1630 | // A PHI node is allowed to have multiple (duplicated) entries for the same |
1631 | // basic block, as long as the value is the same. So if we already injected |
1632 | // a load in the predecessor, then we should reuse the same load for all |
1633 | // duplicated entries. |
1634 | if (Value *V = InjectedLoads.lookup(Val: Pred)) { |
1635 | NewPN->addIncoming(V, BB: Pred); |
1636 | continue; |
1637 | } |
1638 | |
1639 | Instruction *TI = Pred->getTerminator(); |
1640 | IRB.SetInsertPoint(TI); |
1641 | |
1642 | LoadInst *Load = IRB.CreateAlignedLoad( |
1643 | Ty: LoadTy, Ptr: InVal, Align: Alignment, |
1644 | Name: (PN.getName() + ".sroa.speculate.load." + Pred->getName())); |
1645 | ++NumLoadsSpeculated; |
1646 | if (AATags) |
1647 | Load->setAAMetadata(AATags); |
1648 | NewPN->addIncoming(V: Load, BB: Pred); |
1649 | InjectedLoads[Pred] = Load; |
1650 | } |
1651 | |
1652 | LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n" ); |
1653 | PN.eraseFromParent(); |
1654 | } |
1655 | |
1656 | SelectHandSpeculativity & |
1657 | SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) { |
1658 | if (isTrueVal) |
1659 | Bitfield::set<SelectHandSpeculativity::TrueVal>(Packed&: Storage, Value: true); |
1660 | else |
1661 | Bitfield::set<SelectHandSpeculativity::FalseVal>(Packed&: Storage, Value: true); |
1662 | return *this; |
1663 | } |
1664 | |
1665 | bool SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const { |
1666 | return isTrueVal ? Bitfield::get<SelectHandSpeculativity::TrueVal>(Packed: Storage) |
1667 | : Bitfield::get<SelectHandSpeculativity::FalseVal>(Packed: Storage); |
1668 | } |
1669 | |
1670 | bool SelectHandSpeculativity::areAllSpeculatable() const { |
1671 | return isSpeculatable(/*isTrueVal=*/true) && |
1672 | isSpeculatable(/*isTrueVal=*/false); |
1673 | } |
1674 | |
1675 | bool SelectHandSpeculativity::areAnySpeculatable() const { |
1676 | return isSpeculatable(/*isTrueVal=*/true) || |
1677 | isSpeculatable(/*isTrueVal=*/false); |
1678 | } |
1679 | bool SelectHandSpeculativity::areNoneSpeculatable() const { |
1680 | return !areAnySpeculatable(); |
1681 | } |
1682 | |
1683 | static SelectHandSpeculativity |
1684 | isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) { |
1685 | assert(LI.isSimple() && "Only for simple loads" ); |
1686 | SelectHandSpeculativity Spec; |
1687 | |
1688 | const DataLayout &DL = SI.getDataLayout(); |
1689 | for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()}) |
1690 | if (isSafeToLoadUnconditionally(V: Value, Ty: LI.getType(), Alignment: LI.getAlign(), DL, |
1691 | ScanFrom: &LI)) |
1692 | Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue()); |
1693 | else if (PreserveCFG) |
1694 | return Spec; |
1695 | |
1696 | return Spec; |
1697 | } |
1698 | |
1699 | std::optional<RewriteableMemOps> |
1700 | SROA::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) { |
1701 | RewriteableMemOps Ops; |
1702 | |
1703 | for (User *U : SI.users()) { |
1704 | if (auto *BC = dyn_cast<BitCastInst>(Val: U); BC && BC->hasOneUse()) |
1705 | U = *BC->user_begin(); |
1706 | |
1707 | if (auto *Store = dyn_cast<StoreInst>(Val: U)) { |
1708 | // Note that atomic stores can be transformed; atomic semantics do not |
1709 | // have any meaning for a local alloca. Stores are not speculatable, |
1710 | // however, so if we can't turn it into a predicated store, we are done. |
1711 | if (Store->isVolatile() || PreserveCFG) |
1712 | return {}; // Give up on this `select`. |
1713 | Ops.emplace_back(Args&: Store); |
1714 | continue; |
1715 | } |
1716 | |
1717 | auto *LI = dyn_cast<LoadInst>(Val: U); |
1718 | |
1719 | // Note that atomic loads can be transformed; |
1720 | // atomic semantics do not have any meaning for a local alloca. |
1721 | if (!LI || LI->isVolatile()) |
1722 | return {}; // Give up on this `select`. |
1723 | |
1724 | PossiblySpeculatableLoad Load(LI); |
1725 | if (!LI->isSimple()) { |
1726 | // If the `load` is not simple, we can't speculatively execute it, |
1727 | // but we could handle this via a CFG modification. But can we? |
1728 | if (PreserveCFG) |
1729 | return {}; // Give up on this `select`. |
1730 | Ops.emplace_back(Args&: Load); |
1731 | continue; |
1732 | } |
1733 | |
1734 | SelectHandSpeculativity Spec = |
1735 | isSafeLoadOfSelectToSpeculate(LI&: *LI, SI, PreserveCFG); |
1736 | if (PreserveCFG && !Spec.areAllSpeculatable()) |
1737 | return {}; // Give up on this `select`. |
1738 | |
1739 | Load.setInt(Spec); |
1740 | Ops.emplace_back(Args&: Load); |
1741 | } |
1742 | |
1743 | return Ops; |
1744 | } |
1745 | |
1746 | static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI, |
1747 | IRBuilderTy &IRB) { |
1748 | LLVM_DEBUG(dbgs() << " original load: " << SI << "\n" ); |
1749 | |
1750 | Value *TV = SI.getTrueValue(); |
1751 | Value *FV = SI.getFalseValue(); |
1752 | // Replace the given load of the select with a select of two loads. |
1753 | |
1754 | assert(LI.isSimple() && "We only speculate simple loads" ); |
1755 | |
1756 | IRB.SetInsertPoint(&LI); |
1757 | |
1758 | LoadInst *TL = |
1759 | IRB.CreateAlignedLoad(Ty: LI.getType(), Ptr: TV, Align: LI.getAlign(), |
1760 | Name: LI.getName() + ".sroa.speculate.load.true" ); |
1761 | LoadInst *FL = |
1762 | IRB.CreateAlignedLoad(Ty: LI.getType(), Ptr: FV, Align: LI.getAlign(), |
1763 | Name: LI.getName() + ".sroa.speculate.load.false" ); |
1764 | NumLoadsSpeculated += 2; |
1765 | |
1766 | // Transfer alignment and AA info if present. |
1767 | TL->setAlignment(LI.getAlign()); |
1768 | FL->setAlignment(LI.getAlign()); |
1769 | |
1770 | AAMDNodes Tags = LI.getAAMetadata(); |
1771 | if (Tags) { |
1772 | TL->setAAMetadata(Tags); |
1773 | FL->setAAMetadata(Tags); |
1774 | } |
1775 | |
1776 | Value *V = IRB.CreateSelect(C: SI.getCondition(), True: TL, False: FL, |
1777 | Name: LI.getName() + ".sroa.speculated" ); |
1778 | |
1779 | LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n" ); |
1780 | LI.replaceAllUsesWith(V); |
1781 | } |
1782 | |
1783 | template <typename T> |
1784 | static void rewriteMemOpOfSelect(SelectInst &SI, T &I, |
1785 | SelectHandSpeculativity Spec, |
1786 | DomTreeUpdater &DTU) { |
1787 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!" ); |
1788 | LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n" ); |
1789 | BasicBlock *Head = I.getParent(); |
1790 | Instruction *ThenTerm = nullptr; |
1791 | Instruction *ElseTerm = nullptr; |
1792 | if (Spec.areNoneSpeculatable()) |
1793 | SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm, |
1794 | SI.getMetadata(KindID: LLVMContext::MD_prof), &DTU); |
1795 | else { |
1796 | SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false, |
1797 | SI.getMetadata(KindID: LLVMContext::MD_prof), &DTU, |
1798 | /*LI=*/nullptr, /*ThenBlock=*/nullptr); |
1799 | if (Spec.isSpeculatable(/*isTrueVal=*/true)) |
1800 | cast<BranchInst>(Val: Head->getTerminator())->swapSuccessors(); |
1801 | } |
1802 | auto *HeadBI = cast<BranchInst>(Val: Head->getTerminator()); |
1803 | Spec = {}; // Do not use `Spec` beyond this point. |
1804 | BasicBlock *Tail = I.getParent(); |
1805 | Tail->setName(Head->getName() + ".cont" ); |
1806 | PHINode *PN; |
1807 | if (isa<LoadInst>(I)) |
1808 | PN = PHINode::Create(Ty: I.getType(), NumReservedValues: 2, NameStr: "" , InsertBefore: I.getIterator()); |
1809 | for (BasicBlock *SuccBB : successors(BB: Head)) { |
1810 | bool IsThen = SuccBB == HeadBI->getSuccessor(i: 0); |
1811 | int SuccIdx = IsThen ? 0 : 1; |
1812 | auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB; |
1813 | auto &CondMemOp = cast<T>(*I.clone()); |
1814 | if (NewMemOpBB != Head) { |
1815 | NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else" )); |
1816 | if (isa<LoadInst>(I)) |
1817 | ++NumLoadsPredicated; |
1818 | else |
1819 | ++NumStoresPredicated; |
1820 | } else { |
1821 | CondMemOp.dropUBImplyingAttrsAndMetadata(); |
1822 | ++NumLoadsSpeculated; |
1823 | } |
1824 | CondMemOp.insertBefore(NewMemOpBB->getTerminator()); |
1825 | Value *Ptr = SI.getOperand(i_nocapture: 1 + SuccIdx); |
1826 | CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr); |
1827 | if (isa<LoadInst>(I)) { |
1828 | CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else" ) + ".val" ); |
1829 | PN->addIncoming(V: &CondMemOp, BB: NewMemOpBB); |
1830 | } else |
1831 | LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n" ); |
1832 | } |
1833 | if (isa<LoadInst>(I)) { |
1834 | PN->takeName(V: &I); |
1835 | LLVM_DEBUG(dbgs() << " to: " << *PN << "\n" ); |
1836 | I.replaceAllUsesWith(PN); |
1837 | } |
1838 | } |
1839 | |
1840 | static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I, |
1841 | SelectHandSpeculativity Spec, |
1842 | DomTreeUpdater &DTU) { |
1843 | if (auto *LI = dyn_cast<LoadInst>(Val: &I)) |
1844 | rewriteMemOpOfSelect(SI&: SelInst, I&: *LI, Spec, DTU); |
1845 | else if (auto *SI = dyn_cast<StoreInst>(Val: &I)) |
1846 | rewriteMemOpOfSelect(SI&: SelInst, I&: *SI, Spec, DTU); |
1847 | else |
1848 | llvm_unreachable_internal(msg: "Only for load and store." ); |
1849 | } |
1850 | |
1851 | static bool rewriteSelectInstMemOps(SelectInst &SI, |
1852 | const RewriteableMemOps &Ops, |
1853 | IRBuilderTy &IRB, DomTreeUpdater *DTU) { |
1854 | bool CFGChanged = false; |
1855 | LLVM_DEBUG(dbgs() << " original select: " << SI << "\n" ); |
1856 | |
1857 | for (const RewriteableMemOp &Op : Ops) { |
1858 | SelectHandSpeculativity Spec; |
1859 | Instruction *I; |
1860 | if (auto *const *US = std::get_if<UnspeculatableStore>(ptr: &Op)) { |
1861 | I = *US; |
1862 | } else { |
1863 | auto PSL = std::get<PossiblySpeculatableLoad>(v: Op); |
1864 | I = PSL.getPointer(); |
1865 | Spec = PSL.getInt(); |
1866 | } |
1867 | if (Spec.areAllSpeculatable()) { |
1868 | speculateSelectInstLoads(SI, LI&: cast<LoadInst>(Val&: *I), IRB); |
1869 | } else { |
1870 | assert(DTU && "Should not get here when not allowed to modify the CFG!" ); |
1871 | rewriteMemOpOfSelect(SelInst&: SI, I&: *I, Spec, DTU&: *DTU); |
1872 | CFGChanged = true; |
1873 | } |
1874 | I->eraseFromParent(); |
1875 | } |
1876 | |
1877 | for (User *U : make_early_inc_range(Range: SI.users())) |
1878 | cast<BitCastInst>(Val: U)->eraseFromParent(); |
1879 | SI.eraseFromParent(); |
1880 | return CFGChanged; |
1881 | } |
1882 | |
1883 | /// Compute an adjusted pointer from Ptr by Offset bytes where the |
1884 | /// resulting pointer has PointerTy. |
1885 | static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, |
1886 | APInt Offset, Type *PointerTy, |
1887 | const Twine &NamePrefix) { |
1888 | if (Offset != 0) |
1889 | Ptr = IRB.CreateInBoundsPtrAdd(Ptr, Offset: IRB.getInt(AI: Offset), |
1890 | Name: NamePrefix + "sroa_idx" ); |
1891 | return IRB.CreatePointerBitCastOrAddrSpaceCast(V: Ptr, DestTy: PointerTy, |
1892 | Name: NamePrefix + "sroa_cast" ); |
1893 | } |
1894 | |
1895 | /// Compute the adjusted alignment for a load or store from an offset. |
1896 | static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { |
1897 | return commonAlignment(A: getLoadStoreAlignment(I), Offset); |
1898 | } |
1899 | |
1900 | /// Test whether we can convert a value from the old to the new type. |
1901 | /// |
1902 | /// This predicate should be used to guard calls to convertValue in order to |
1903 | /// ensure that we only try to convert viable values. The strategy is that we |
1904 | /// will peel off single element struct and array wrappings to get to an |
1905 | /// underlying value, and convert that value. |
1906 | static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { |
1907 | if (OldTy == NewTy) |
1908 | return true; |
1909 | |
1910 | // For integer types, we can't handle any bit-width differences. This would |
1911 | // break both vector conversions with extension and introduce endianness |
1912 | // issues when in conjunction with loads and stores. |
1913 | if (isa<IntegerType>(Val: OldTy) && isa<IntegerType>(Val: NewTy)) { |
1914 | assert(cast<IntegerType>(OldTy)->getBitWidth() != |
1915 | cast<IntegerType>(NewTy)->getBitWidth() && |
1916 | "We can't have the same bitwidth for different int types" ); |
1917 | return false; |
1918 | } |
1919 | |
1920 | if (DL.getTypeSizeInBits(Ty: NewTy).getFixedValue() != |
1921 | DL.getTypeSizeInBits(Ty: OldTy).getFixedValue()) |
1922 | return false; |
1923 | if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) |
1924 | return false; |
1925 | |
1926 | // We can convert pointers to integers and vice-versa. Same for vectors |
1927 | // of pointers and integers. |
1928 | OldTy = OldTy->getScalarType(); |
1929 | NewTy = NewTy->getScalarType(); |
1930 | if (NewTy->isPointerTy() || OldTy->isPointerTy()) { |
1931 | if (NewTy->isPointerTy() && OldTy->isPointerTy()) { |
1932 | unsigned OldAS = OldTy->getPointerAddressSpace(); |
1933 | unsigned NewAS = NewTy->getPointerAddressSpace(); |
1934 | // Convert pointers if they are pointers from the same address space or |
1935 | // different integral (not non-integral) address spaces with the same |
1936 | // pointer size. |
1937 | return OldAS == NewAS || |
1938 | (!DL.isNonIntegralAddressSpace(AddrSpace: OldAS) && |
1939 | !DL.isNonIntegralAddressSpace(AddrSpace: NewAS) && |
1940 | DL.getPointerSize(AS: OldAS) == DL.getPointerSize(AS: NewAS)); |
1941 | } |
1942 | |
1943 | // We can convert integers to integral pointers, but not to non-integral |
1944 | // pointers. |
1945 | if (OldTy->isIntegerTy()) |
1946 | return !DL.isNonIntegralPointerType(Ty: NewTy); |
1947 | |
1948 | // We can convert integral pointers to integers, but non-integral pointers |
1949 | // need to remain pointers. |
1950 | if (!DL.isNonIntegralPointerType(Ty: OldTy)) |
1951 | return NewTy->isIntegerTy(); |
1952 | |
1953 | return false; |
1954 | } |
1955 | |
1956 | if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy()) |
1957 | return false; |
1958 | |
1959 | return true; |
1960 | } |
1961 | |
1962 | /// Generic routine to convert an SSA value to a value of a different |
1963 | /// type. |
1964 | /// |
1965 | /// This will try various different casting techniques, such as bitcasts, |
1966 | /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test |
1967 | /// two types for viability with this routine. |
1968 | static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
1969 | Type *NewTy) { |
1970 | Type *OldTy = V->getType(); |
1971 | assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type" ); |
1972 | |
1973 | if (OldTy == NewTy) |
1974 | return V; |
1975 | |
1976 | assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && |
1977 | "Integer types must be the exact same to convert." ); |
1978 | |
1979 | // See if we need inttoptr for this type pair. May require additional bitcast. |
1980 | if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { |
1981 | // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* |
1982 | // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> |
1983 | // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> |
1984 | // Directly handle i64 to i8* |
1985 | return IRB.CreateIntToPtr(V: IRB.CreateBitCast(V, DestTy: DL.getIntPtrType(NewTy)), |
1986 | DestTy: NewTy); |
1987 | } |
1988 | |
1989 | // See if we need ptrtoint for this type pair. May require additional bitcast. |
1990 | if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { |
1991 | // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 |
1992 | // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> |
1993 | // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> |
1994 | // Expand i8* to i64 --> i8* to i64 to i64 |
1995 | return IRB.CreateBitCast(V: IRB.CreatePtrToInt(V, DestTy: DL.getIntPtrType(OldTy)), |
1996 | DestTy: NewTy); |
1997 | } |
1998 | |
1999 | if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { |
2000 | unsigned OldAS = OldTy->getPointerAddressSpace(); |
2001 | unsigned NewAS = NewTy->getPointerAddressSpace(); |
2002 | // To convert pointers with different address spaces (they are already |
2003 | // checked convertible, i.e. they have the same pointer size), so far we |
2004 | // cannot use `bitcast` (which has restrict on the same address space) or |
2005 | // `addrspacecast` (which is not always no-op casting). Instead, use a pair |
2006 | // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit |
2007 | // size. |
2008 | if (OldAS != NewAS) { |
2009 | assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); |
2010 | return IRB.CreateIntToPtr(V: IRB.CreatePtrToInt(V, DestTy: DL.getIntPtrType(OldTy)), |
2011 | DestTy: NewTy); |
2012 | } |
2013 | } |
2014 | |
2015 | return IRB.CreateBitCast(V, DestTy: NewTy); |
2016 | } |
2017 | |
2018 | /// Test whether the given slice use can be promoted to a vector. |
2019 | /// |
2020 | /// This function is called to test each entry in a partition which is slated |
2021 | /// for a single slice. |
2022 | static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, |
2023 | VectorType *Ty, |
2024 | uint64_t ElementSize, |
2025 | const DataLayout &DL) { |
2026 | // First validate the slice offsets. |
2027 | uint64_t BeginOffset = |
2028 | std::max(a: S.beginOffset(), b: P.beginOffset()) - P.beginOffset(); |
2029 | uint64_t BeginIndex = BeginOffset / ElementSize; |
2030 | if (BeginIndex * ElementSize != BeginOffset || |
2031 | BeginIndex >= cast<FixedVectorType>(Val: Ty)->getNumElements()) |
2032 | return false; |
2033 | uint64_t EndOffset = std::min(a: S.endOffset(), b: P.endOffset()) - P.beginOffset(); |
2034 | uint64_t EndIndex = EndOffset / ElementSize; |
2035 | if (EndIndex * ElementSize != EndOffset || |
2036 | EndIndex > cast<FixedVectorType>(Val: Ty)->getNumElements()) |
2037 | return false; |
2038 | |
2039 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
2040 | uint64_t NumElements = EndIndex - BeginIndex; |
2041 | Type *SliceTy = (NumElements == 1) |
2042 | ? Ty->getElementType() |
2043 | : FixedVectorType::get(ElementType: Ty->getElementType(), NumElts: NumElements); |
2044 | |
2045 | Type *SplitIntTy = |
2046 | Type::getIntNTy(C&: Ty->getContext(), N: NumElements * ElementSize * 8); |
2047 | |
2048 | Use *U = S.getUse(); |
2049 | |
2050 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: U->getUser())) { |
2051 | if (MI->isVolatile()) |
2052 | return false; |
2053 | if (!S.isSplittable()) |
2054 | return false; // Skip any unsplittable intrinsics. |
2055 | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U->getUser())) { |
2056 | if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) |
2057 | return false; |
2058 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
2059 | if (LI->isVolatile()) |
2060 | return false; |
2061 | Type *LTy = LI->getType(); |
2062 | // Disable vector promotion when there are loads or stores of an FCA. |
2063 | if (LTy->isStructTy()) |
2064 | return false; |
2065 | if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
2066 | assert(LTy->isIntegerTy()); |
2067 | LTy = SplitIntTy; |
2068 | } |
2069 | if (!canConvertValue(DL, OldTy: SliceTy, NewTy: LTy)) |
2070 | return false; |
2071 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
2072 | if (SI->isVolatile()) |
2073 | return false; |
2074 | Type *STy = SI->getValueOperand()->getType(); |
2075 | // Disable vector promotion when there are loads or stores of an FCA. |
2076 | if (STy->isStructTy()) |
2077 | return false; |
2078 | if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { |
2079 | assert(STy->isIntegerTy()); |
2080 | STy = SplitIntTy; |
2081 | } |
2082 | if (!canConvertValue(DL, OldTy: STy, NewTy: SliceTy)) |
2083 | return false; |
2084 | } else { |
2085 | return false; |
2086 | } |
2087 | |
2088 | return true; |
2089 | } |
2090 | |
2091 | /// Test whether a vector type is viable for promotion. |
2092 | /// |
2093 | /// This implements the necessary checking for \c checkVectorTypesForPromotion |
2094 | /// (and thus isVectorPromotionViable) over all slices of the alloca for the |
2095 | /// given VectorType. |
2096 | static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy, |
2097 | const DataLayout &DL) { |
2098 | uint64_t ElementSize = |
2099 | DL.getTypeSizeInBits(Ty: VTy->getElementType()).getFixedValue(); |
2100 | |
2101 | // While the definition of LLVM vectors is bitpacked, we don't support sizes |
2102 | // that aren't byte sized. |
2103 | if (ElementSize % 8) |
2104 | return false; |
2105 | assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 && |
2106 | "vector size not a multiple of element size?" ); |
2107 | ElementSize /= 8; |
2108 | |
2109 | for (const Slice &S : P) |
2110 | if (!isVectorPromotionViableForSlice(P, S, Ty: VTy, ElementSize, DL)) |
2111 | return false; |
2112 | |
2113 | for (const Slice *S : P.splitSliceTails()) |
2114 | if (!isVectorPromotionViableForSlice(P, S: *S, Ty: VTy, ElementSize, DL)) |
2115 | return false; |
2116 | |
2117 | return true; |
2118 | } |
2119 | |
2120 | /// Test whether any vector type in \p CandidateTys is viable for promotion. |
2121 | /// |
2122 | /// This implements the necessary checking for \c isVectorPromotionViable over |
2123 | /// all slices of the alloca for the given VectorType. |
2124 | static VectorType * |
2125 | checkVectorTypesForPromotion(Partition &P, const DataLayout &DL, |
2126 | SmallVectorImpl<VectorType *> &CandidateTys, |
2127 | bool HaveCommonEltTy, Type *CommonEltTy, |
2128 | bool HaveVecPtrTy, bool HaveCommonVecPtrTy, |
2129 | VectorType *CommonVecPtrTy) { |
2130 | // If we didn't find a vector type, nothing to do here. |
2131 | if (CandidateTys.empty()) |
2132 | return nullptr; |
2133 | |
2134 | // Pointer-ness is sticky, if we had a vector-of-pointers candidate type, |
2135 | // then we should choose it, not some other alternative. |
2136 | // But, we can't perform a no-op pointer address space change via bitcast, |
2137 | // so if we didn't have a common pointer element type, bail. |
2138 | if (HaveVecPtrTy && !HaveCommonVecPtrTy) |
2139 | return nullptr; |
2140 | |
2141 | // Try to pick the "best" element type out of the choices. |
2142 | if (!HaveCommonEltTy && HaveVecPtrTy) { |
2143 | // If there was a pointer element type, there's really only one choice. |
2144 | CandidateTys.clear(); |
2145 | CandidateTys.push_back(Elt: CommonVecPtrTy); |
2146 | } else if (!HaveCommonEltTy && !HaveVecPtrTy) { |
2147 | // Integer-ify vector types. |
2148 | for (VectorType *&VTy : CandidateTys) { |
2149 | if (!VTy->getElementType()->isIntegerTy()) |
2150 | VTy = cast<VectorType>(Val: VTy->getWithNewType(EltTy: IntegerType::getIntNTy( |
2151 | C&: VTy->getContext(), N: VTy->getScalarSizeInBits()))); |
2152 | } |
2153 | |
2154 | // Rank the remaining candidate vector types. This is easy because we know |
2155 | // they're all integer vectors. We sort by ascending number of elements. |
2156 | auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) { |
2157 | (void)DL; |
2158 | assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == |
2159 | DL.getTypeSizeInBits(LHSTy).getFixedValue() && |
2160 | "Cannot have vector types of different sizes!" ); |
2161 | assert(RHSTy->getElementType()->isIntegerTy() && |
2162 | "All non-integer types eliminated!" ); |
2163 | assert(LHSTy->getElementType()->isIntegerTy() && |
2164 | "All non-integer types eliminated!" ); |
2165 | return cast<FixedVectorType>(Val: RHSTy)->getNumElements() < |
2166 | cast<FixedVectorType>(Val: LHSTy)->getNumElements(); |
2167 | }; |
2168 | auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) { |
2169 | (void)DL; |
2170 | assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == |
2171 | DL.getTypeSizeInBits(LHSTy).getFixedValue() && |
2172 | "Cannot have vector types of different sizes!" ); |
2173 | assert(RHSTy->getElementType()->isIntegerTy() && |
2174 | "All non-integer types eliminated!" ); |
2175 | assert(LHSTy->getElementType()->isIntegerTy() && |
2176 | "All non-integer types eliminated!" ); |
2177 | return cast<FixedVectorType>(Val: RHSTy)->getNumElements() == |
2178 | cast<FixedVectorType>(Val: LHSTy)->getNumElements(); |
2179 | }; |
2180 | llvm::sort(C&: CandidateTys, Comp: RankVectorTypesComp); |
2181 | CandidateTys.erase(CS: llvm::unique(R&: CandidateTys, P: RankVectorTypesEq), |
2182 | CE: CandidateTys.end()); |
2183 | } else { |
2184 | // The only way to have the same element type in every vector type is to |
2185 | // have the same vector type. Check that and remove all but one. |
2186 | #ifndef NDEBUG |
2187 | for (VectorType *VTy : CandidateTys) { |
2188 | assert(VTy->getElementType() == CommonEltTy && |
2189 | "Unaccounted for element type!" ); |
2190 | assert(VTy == CandidateTys[0] && |
2191 | "Different vector types with the same element type!" ); |
2192 | } |
2193 | #endif |
2194 | CandidateTys.resize(N: 1); |
2195 | } |
2196 | |
2197 | // FIXME: hack. Do we have a named constant for this? |
2198 | // SDAG SDNode can't have more than 65535 operands. |
2199 | llvm::erase_if(C&: CandidateTys, P: [](VectorType *VTy) { |
2200 | return cast<FixedVectorType>(Val: VTy)->getNumElements() > |
2201 | std::numeric_limits<unsigned short>::max(); |
2202 | }); |
2203 | |
2204 | for (VectorType *VTy : CandidateTys) |
2205 | if (checkVectorTypeForPromotion(P, VTy, DL)) |
2206 | return VTy; |
2207 | |
2208 | return nullptr; |
2209 | } |
2210 | |
2211 | static VectorType *createAndCheckVectorTypesForPromotion( |
2212 | SetVector<Type *> &OtherTys, ArrayRef<VectorType *> CandidateTysCopy, |
2213 | function_ref<void(Type *)> CheckCandidateType, Partition &P, |
2214 | const DataLayout &DL, SmallVectorImpl<VectorType *> &CandidateTys, |
2215 | bool &HaveCommonEltTy, Type *&CommonEltTy, bool &HaveVecPtrTy, |
2216 | bool &HaveCommonVecPtrTy, VectorType *&CommonVecPtrTy) { |
2217 | [[maybe_unused]] VectorType *OriginalElt = |
2218 | CandidateTysCopy.size() ? CandidateTysCopy[0] : nullptr; |
2219 | // Consider additional vector types where the element type size is a |
2220 | // multiple of load/store element size. |
2221 | for (Type *Ty : OtherTys) { |
2222 | if (!VectorType::isValidElementType(ElemTy: Ty)) |
2223 | continue; |
2224 | unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); |
2225 | // Make a copy of CandidateTys and iterate through it, because we |
2226 | // might append to CandidateTys in the loop. |
2227 | for (VectorType *const VTy : CandidateTysCopy) { |
2228 | // The elements in the copy should remain invariant throughout the loop |
2229 | assert(CandidateTysCopy[0] == OriginalElt && "Different Element" ); |
2230 | unsigned VectorSize = DL.getTypeSizeInBits(Ty: VTy).getFixedValue(); |
2231 | unsigned ElementSize = |
2232 | DL.getTypeSizeInBits(Ty: VTy->getElementType()).getFixedValue(); |
2233 | if (TypeSize != VectorSize && TypeSize != ElementSize && |
2234 | VectorSize % TypeSize == 0) { |
2235 | VectorType *NewVTy = VectorType::get(ElementType: Ty, NumElements: VectorSize / TypeSize, Scalable: false); |
2236 | CheckCandidateType(NewVTy); |
2237 | } |
2238 | } |
2239 | } |
2240 | |
2241 | return checkVectorTypesForPromotion(P, DL, CandidateTys, HaveCommonEltTy, |
2242 | CommonEltTy, HaveVecPtrTy, |
2243 | HaveCommonVecPtrTy, CommonVecPtrTy); |
2244 | } |
2245 | |
2246 | /// Test whether the given alloca partitioning and range of slices can be |
2247 | /// promoted to a vector. |
2248 | /// |
2249 | /// This is a quick test to check whether we can rewrite a particular alloca |
2250 | /// partition (and its newly formed alloca) into a vector alloca with only |
2251 | /// whole-vector loads and stores such that it could be promoted to a vector |
2252 | /// SSA value. We only can ensure this for a limited set of operations, and we |
2253 | /// don't want to do the rewrites unless we are confident that the result will |
2254 | /// be promotable, so we have an early test here. |
2255 | static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { |
2256 | // Collect the candidate types for vector-based promotion. Also track whether |
2257 | // we have different element types. |
2258 | SmallVector<VectorType *, 4> CandidateTys; |
2259 | SetVector<Type *> LoadStoreTys; |
2260 | SetVector<Type *> DeferredTys; |
2261 | Type *CommonEltTy = nullptr; |
2262 | VectorType *CommonVecPtrTy = nullptr; |
2263 | bool HaveVecPtrTy = false; |
2264 | bool HaveCommonEltTy = true; |
2265 | bool HaveCommonVecPtrTy = true; |
2266 | auto CheckCandidateType = [&](Type *Ty) { |
2267 | if (auto *VTy = dyn_cast<VectorType>(Val: Ty)) { |
2268 | // Return if bitcast to vectors is different for total size in bits. |
2269 | if (!CandidateTys.empty()) { |
2270 | VectorType *V = CandidateTys[0]; |
2271 | if (DL.getTypeSizeInBits(Ty: VTy).getFixedValue() != |
2272 | DL.getTypeSizeInBits(Ty: V).getFixedValue()) { |
2273 | CandidateTys.clear(); |
2274 | return; |
2275 | } |
2276 | } |
2277 | CandidateTys.push_back(Elt: VTy); |
2278 | Type *EltTy = VTy->getElementType(); |
2279 | |
2280 | if (!CommonEltTy) |
2281 | CommonEltTy = EltTy; |
2282 | else if (CommonEltTy != EltTy) |
2283 | HaveCommonEltTy = false; |
2284 | |
2285 | if (EltTy->isPointerTy()) { |
2286 | HaveVecPtrTy = true; |
2287 | if (!CommonVecPtrTy) |
2288 | CommonVecPtrTy = VTy; |
2289 | else if (CommonVecPtrTy != VTy) |
2290 | HaveCommonVecPtrTy = false; |
2291 | } |
2292 | } |
2293 | }; |
2294 | |
2295 | // Put load and store types into a set for de-duplication. |
2296 | for (const Slice &S : P) { |
2297 | Type *Ty; |
2298 | if (auto *LI = dyn_cast<LoadInst>(Val: S.getUse()->getUser())) |
2299 | Ty = LI->getType(); |
2300 | else if (auto *SI = dyn_cast<StoreInst>(Val: S.getUse()->getUser())) |
2301 | Ty = SI->getValueOperand()->getType(); |
2302 | else |
2303 | continue; |
2304 | |
2305 | auto CandTy = Ty->getScalarType(); |
2306 | if (CandTy->isPointerTy() && (S.beginOffset() != P.beginOffset() || |
2307 | S.endOffset() != P.endOffset())) { |
2308 | DeferredTys.insert(X: Ty); |
2309 | continue; |
2310 | } |
2311 | |
2312 | LoadStoreTys.insert(X: Ty); |
2313 | // Consider any loads or stores that are the exact size of the slice. |
2314 | if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset()) |
2315 | CheckCandidateType(Ty); |
2316 | } |
2317 | |
2318 | SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys; |
2319 | if (auto *VTy = createAndCheckVectorTypesForPromotion( |
2320 | OtherTys&: LoadStoreTys, CandidateTysCopy, CheckCandidateType, P, DL, |
2321 | CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, |
2322 | HaveCommonVecPtrTy, CommonVecPtrTy)) |
2323 | return VTy; |
2324 | |
2325 | CandidateTys.clear(); |
2326 | return createAndCheckVectorTypesForPromotion( |
2327 | OtherTys&: DeferredTys, CandidateTysCopy, CheckCandidateType, P, DL, CandidateTys, |
2328 | HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, HaveCommonVecPtrTy, |
2329 | CommonVecPtrTy); |
2330 | } |
2331 | |
2332 | /// Test whether a slice of an alloca is valid for integer widening. |
2333 | /// |
2334 | /// This implements the necessary checking for the \c isIntegerWideningViable |
2335 | /// test below on a single slice of the alloca. |
2336 | static bool isIntegerWideningViableForSlice(const Slice &S, |
2337 | uint64_t AllocBeginOffset, |
2338 | Type *AllocaTy, |
2339 | const DataLayout &DL, |
2340 | bool &WholeAllocaOp) { |
2341 | uint64_t Size = DL.getTypeStoreSize(Ty: AllocaTy).getFixedValue(); |
2342 | |
2343 | uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; |
2344 | uint64_t RelEnd = S.endOffset() - AllocBeginOffset; |
2345 | |
2346 | Use *U = S.getUse(); |
2347 | |
2348 | // Lifetime intrinsics operate over the whole alloca whose sizes are usually |
2349 | // larger than other load/store slices (RelEnd > Size). But lifetime are |
2350 | // always promotable and should not impact other slices' promotability of the |
2351 | // partition. |
2352 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U->getUser())) { |
2353 | if (II->isLifetimeStartOrEnd() || II->isDroppable()) |
2354 | return true; |
2355 | } |
2356 | |
2357 | // We can't reasonably handle cases where the load or store extends past |
2358 | // the end of the alloca's type and into its padding. |
2359 | if (RelEnd > Size) |
2360 | return false; |
2361 | |
2362 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: U->getUser())) { |
2363 | if (LI->isVolatile()) |
2364 | return false; |
2365 | // We can't handle loads that extend past the allocated memory. |
2366 | if (DL.getTypeStoreSize(Ty: LI->getType()).getFixedValue() > Size) |
2367 | return false; |
2368 | // So far, AllocaSliceRewriter does not support widening split slice tails |
2369 | // in rewriteIntegerLoad. |
2370 | if (S.beginOffset() < AllocBeginOffset) |
2371 | return false; |
2372 | // Note that we don't count vector loads or stores as whole-alloca |
2373 | // operations which enable integer widening because we would prefer to use |
2374 | // vector widening instead. |
2375 | if (!isa<VectorType>(Val: LI->getType()) && RelBegin == 0 && RelEnd == Size) |
2376 | WholeAllocaOp = true; |
2377 | if (IntegerType *ITy = dyn_cast<IntegerType>(Val: LI->getType())) { |
2378 | if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(Ty: ITy).getFixedValue()) |
2379 | return false; |
2380 | } else if (RelBegin != 0 || RelEnd != Size || |
2381 | !canConvertValue(DL, OldTy: AllocaTy, NewTy: LI->getType())) { |
2382 | // Non-integer loads need to be convertible from the alloca type so that |
2383 | // they are promotable. |
2384 | return false; |
2385 | } |
2386 | } else if (StoreInst *SI = dyn_cast<StoreInst>(Val: U->getUser())) { |
2387 | Type *ValueTy = SI->getValueOperand()->getType(); |
2388 | if (SI->isVolatile()) |
2389 | return false; |
2390 | // We can't handle stores that extend past the allocated memory. |
2391 | if (DL.getTypeStoreSize(Ty: ValueTy).getFixedValue() > Size) |
2392 | return false; |
2393 | // So far, AllocaSliceRewriter does not support widening split slice tails |
2394 | // in rewriteIntegerStore. |
2395 | if (S.beginOffset() < AllocBeginOffset) |
2396 | return false; |
2397 | // Note that we don't count vector loads or stores as whole-alloca |
2398 | // operations which enable integer widening because we would prefer to use |
2399 | // vector widening instead. |
2400 | if (!isa<VectorType>(Val: ValueTy) && RelBegin == 0 && RelEnd == Size) |
2401 | WholeAllocaOp = true; |
2402 | if (IntegerType *ITy = dyn_cast<IntegerType>(Val: ValueTy)) { |
2403 | if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(Ty: ITy).getFixedValue()) |
2404 | return false; |
2405 | } else if (RelBegin != 0 || RelEnd != Size || |
2406 | !canConvertValue(DL, OldTy: ValueTy, NewTy: AllocaTy)) { |
2407 | // Non-integer stores need to be convertible to the alloca type so that |
2408 | // they are promotable. |
2409 | return false; |
2410 | } |
2411 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Val: U->getUser())) { |
2412 | if (MI->isVolatile() || !isa<Constant>(Val: MI->getLength())) |
2413 | return false; |
2414 | if (!S.isSplittable()) |
2415 | return false; // Skip any unsplittable intrinsics. |
2416 | } else { |
2417 | return false; |
2418 | } |
2419 | |
2420 | return true; |
2421 | } |
2422 | |
2423 | /// Test whether the given alloca partition's integer operations can be |
2424 | /// widened to promotable ones. |
2425 | /// |
2426 | /// This is a quick test to check whether we can rewrite the integer loads and |
2427 | /// stores to a particular alloca into wider loads and stores and be able to |
2428 | /// promote the resulting alloca. |
2429 | static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, |
2430 | const DataLayout &DL) { |
2431 | uint64_t SizeInBits = DL.getTypeSizeInBits(Ty: AllocaTy).getFixedValue(); |
2432 | // Don't create integer types larger than the maximum bitwidth. |
2433 | if (SizeInBits > IntegerType::MAX_INT_BITS) |
2434 | return false; |
2435 | |
2436 | // Don't try to handle allocas with bit-padding. |
2437 | if (SizeInBits != DL.getTypeStoreSizeInBits(Ty: AllocaTy).getFixedValue()) |
2438 | return false; |
2439 | |
2440 | // We need to ensure that an integer type with the appropriate bitwidth can |
2441 | // be converted to the alloca type, whatever that is. We don't want to force |
2442 | // the alloca itself to have an integer type if there is a more suitable one. |
2443 | Type *IntTy = Type::getIntNTy(C&: AllocaTy->getContext(), N: SizeInBits); |
2444 | if (!canConvertValue(DL, OldTy: AllocaTy, NewTy: IntTy) || |
2445 | !canConvertValue(DL, OldTy: IntTy, NewTy: AllocaTy)) |
2446 | return false; |
2447 | |
2448 | // While examining uses, we ensure that the alloca has a covering load or |
2449 | // store. We don't want to widen the integer operations only to fail to |
2450 | // promote due to some other unsplittable entry (which we may make splittable |
2451 | // later). However, if there are only splittable uses, go ahead and assume |
2452 | // that we cover the alloca. |
2453 | // FIXME: We shouldn't consider split slices that happen to start in the |
2454 | // partition here... |
2455 | bool WholeAllocaOp = P.empty() && DL.isLegalInteger(Width: SizeInBits); |
2456 | |
2457 | for (const Slice &S : P) |
2458 | if (!isIntegerWideningViableForSlice(S, AllocBeginOffset: P.beginOffset(), AllocaTy, DL, |
2459 | WholeAllocaOp)) |
2460 | return false; |
2461 | |
2462 | for (const Slice *S : P.splitSliceTails()) |
2463 | if (!isIntegerWideningViableForSlice(S: *S, AllocBeginOffset: P.beginOffset(), AllocaTy, DL, |
2464 | WholeAllocaOp)) |
2465 | return false; |
2466 | |
2467 | return WholeAllocaOp; |
2468 | } |
2469 | |
2470 | static Value *(const DataLayout &DL, IRBuilderTy &IRB, Value *V, |
2471 | IntegerType *Ty, uint64_t Offset, |
2472 | const Twine &Name) { |
2473 | LLVM_DEBUG(dbgs() << " start: " << *V << "\n" ); |
2474 | IntegerType *IntTy = cast<IntegerType>(Val: V->getType()); |
2475 | assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= |
2476 | DL.getTypeStoreSize(IntTy).getFixedValue() && |
2477 | "Element extends past full value" ); |
2478 | uint64_t ShAmt = 8 * Offset; |
2479 | if (DL.isBigEndian()) |
2480 | ShAmt = 8 * (DL.getTypeStoreSize(Ty: IntTy).getFixedValue() - |
2481 | DL.getTypeStoreSize(Ty).getFixedValue() - Offset); |
2482 | if (ShAmt) { |
2483 | V = IRB.CreateLShr(LHS: V, RHS: ShAmt, Name: Name + ".shift" ); |
2484 | LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n" ); |
2485 | } |
2486 | assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
2487 | "Cannot extract to a larger integer!" ); |
2488 | if (Ty != IntTy) { |
2489 | V = IRB.CreateTrunc(V, DestTy: Ty, Name: Name + ".trunc" ); |
2490 | LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n" ); |
2491 | } |
2492 | return V; |
2493 | } |
2494 | |
2495 | static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, |
2496 | Value *V, uint64_t Offset, const Twine &Name) { |
2497 | IntegerType *IntTy = cast<IntegerType>(Val: Old->getType()); |
2498 | IntegerType *Ty = cast<IntegerType>(Val: V->getType()); |
2499 | assert(Ty->getBitWidth() <= IntTy->getBitWidth() && |
2500 | "Cannot insert a larger integer!" ); |
2501 | LLVM_DEBUG(dbgs() << " start: " << *V << "\n" ); |
2502 | if (Ty != IntTy) { |
2503 | V = IRB.CreateZExt(V, DestTy: IntTy, Name: Name + ".ext" ); |
2504 | LLVM_DEBUG(dbgs() << " extended: " << *V << "\n" ); |
2505 | } |
2506 | assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= |
2507 | DL.getTypeStoreSize(IntTy).getFixedValue() && |
2508 | "Element store outside of alloca store" ); |
2509 | uint64_t ShAmt = 8 * Offset; |
2510 | if (DL.isBigEndian()) |
2511 | ShAmt = 8 * (DL.getTypeStoreSize(Ty: IntTy).getFixedValue() - |
2512 | DL.getTypeStoreSize(Ty).getFixedValue() - Offset); |
2513 | if (ShAmt) { |
2514 | V = IRB.CreateShl(LHS: V, RHS: ShAmt, Name: Name + ".shift" ); |
2515 | LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n" ); |
2516 | } |
2517 | |
2518 | if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { |
2519 | APInt Mask = ~Ty->getMask().zext(width: IntTy->getBitWidth()).shl(shiftAmt: ShAmt); |
2520 | Old = IRB.CreateAnd(LHS: Old, RHS: Mask, Name: Name + ".mask" ); |
2521 | LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n" ); |
2522 | V = IRB.CreateOr(LHS: Old, RHS: V, Name: Name + ".insert" ); |
2523 | LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n" ); |
2524 | } |
2525 | return V; |
2526 | } |
2527 | |
2528 | static Value *(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, |
2529 | unsigned EndIndex, const Twine &Name) { |
2530 | auto *VecTy = cast<FixedVectorType>(Val: V->getType()); |
2531 | unsigned NumElements = EndIndex - BeginIndex; |
2532 | assert(NumElements <= VecTy->getNumElements() && "Too many elements!" ); |
2533 | |
2534 | if (NumElements == VecTy->getNumElements()) |
2535 | return V; |
2536 | |
2537 | if (NumElements == 1) { |
2538 | V = IRB.CreateExtractElement(Vec: V, Idx: IRB.getInt32(C: BeginIndex), |
2539 | Name: Name + ".extract" ); |
2540 | LLVM_DEBUG(dbgs() << " extract: " << *V << "\n" ); |
2541 | return V; |
2542 | } |
2543 | |
2544 | auto Mask = llvm::to_vector<8>(Range: llvm::seq<int>(Begin: BeginIndex, End: EndIndex)); |
2545 | V = IRB.CreateShuffleVector(V, Mask, Name: Name + ".extract" ); |
2546 | LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n" ); |
2547 | return V; |
2548 | } |
2549 | |
2550 | static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, |
2551 | unsigned BeginIndex, const Twine &Name) { |
2552 | VectorType *VecTy = cast<VectorType>(Val: Old->getType()); |
2553 | assert(VecTy && "Can only insert a vector into a vector" ); |
2554 | |
2555 | VectorType *Ty = dyn_cast<VectorType>(Val: V->getType()); |
2556 | if (!Ty) { |
2557 | // Single element to insert. |
2558 | V = IRB.CreateInsertElement(Vec: Old, NewElt: V, Idx: IRB.getInt32(C: BeginIndex), |
2559 | Name: Name + ".insert" ); |
2560 | LLVM_DEBUG(dbgs() << " insert: " << *V << "\n" ); |
2561 | return V; |
2562 | } |
2563 | |
2564 | assert(cast<FixedVectorType>(Ty)->getNumElements() <= |
2565 | cast<FixedVectorType>(VecTy)->getNumElements() && |
2566 | "Too many elements!" ); |
2567 | if (cast<FixedVectorType>(Val: Ty)->getNumElements() == |
2568 | cast<FixedVectorType>(Val: VecTy)->getNumElements()) { |
2569 | assert(V->getType() == VecTy && "Vector type mismatch" ); |
2570 | return V; |
2571 | } |
2572 | unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Val: Ty)->getNumElements(); |
2573 | |
2574 | // When inserting a smaller vector into the larger to store, we first |
2575 | // use a shuffle vector to widen it with undef elements, and then |
2576 | // a second shuffle vector to select between the loaded vector and the |
2577 | // incoming vector. |
2578 | SmallVector<int, 8> Mask; |
2579 | Mask.reserve(N: cast<FixedVectorType>(Val: VecTy)->getNumElements()); |
2580 | for (unsigned i = 0; i != cast<FixedVectorType>(Val: VecTy)->getNumElements(); ++i) |
2581 | if (i >= BeginIndex && i < EndIndex) |
2582 | Mask.push_back(Elt: i - BeginIndex); |
2583 | else |
2584 | Mask.push_back(Elt: -1); |
2585 | V = IRB.CreateShuffleVector(V, Mask, Name: Name + ".expand" ); |
2586 | LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n" ); |
2587 | |
2588 | SmallVector<Constant *, 8> Mask2; |
2589 | Mask2.reserve(N: cast<FixedVectorType>(Val: VecTy)->getNumElements()); |
2590 | for (unsigned i = 0; i != cast<FixedVectorType>(Val: VecTy)->getNumElements(); ++i) |
2591 | Mask2.push_back(Elt: IRB.getInt1(V: i >= BeginIndex && i < EndIndex)); |
2592 | |
2593 | V = IRB.CreateSelect(C: ConstantVector::get(V: Mask2), True: V, False: Old, Name: Name + "blend" ); |
2594 | |
2595 | LLVM_DEBUG(dbgs() << " blend: " << *V << "\n" ); |
2596 | return V; |
2597 | } |
2598 | |
2599 | namespace { |
2600 | |
2601 | /// Visitor to rewrite instructions using p particular slice of an alloca |
2602 | /// to use a new alloca. |
2603 | /// |
2604 | /// Also implements the rewriting to vector-based accesses when the partition |
2605 | /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
2606 | /// lives here. |
2607 | class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { |
2608 | // Befriend the base class so it can delegate to private visit methods. |
2609 | friend class InstVisitor<AllocaSliceRewriter, bool>; |
2610 | |
2611 | using Base = InstVisitor<AllocaSliceRewriter, bool>; |
2612 | |
2613 | const DataLayout &DL; |
2614 | AllocaSlices &AS; |
2615 | SROA &Pass; |
2616 | AllocaInst &OldAI, &NewAI; |
2617 | const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
2618 | Type *NewAllocaTy; |
2619 | |
2620 | // This is a convenience and flag variable that will be null unless the new |
2621 | // alloca's integer operations should be widened to this integer type due to |
2622 | // passing isIntegerWideningViable above. If it is non-null, the desired |
2623 | // integer type will be stored here for easy access during rewriting. |
2624 | IntegerType *IntTy; |
2625 | |
2626 | // If we are rewriting an alloca partition which can be written as pure |
2627 | // vector operations, we stash extra information here. When VecTy is |
2628 | // non-null, we have some strict guarantees about the rewritten alloca: |
2629 | // - The new alloca is exactly the size of the vector type here. |
2630 | // - The accesses all either map to the entire vector or to a single |
2631 | // element. |
2632 | // - The set of accessing instructions is only one of those handled above |
2633 | // in isVectorPromotionViable. Generally these are the same access kinds |
2634 | // which are promotable via mem2reg. |
2635 | VectorType *VecTy; |
2636 | Type *ElementTy; |
2637 | uint64_t ElementSize; |
2638 | |
2639 | // The original offset of the slice currently being rewritten relative to |
2640 | // the original alloca. |
2641 | uint64_t BeginOffset = 0; |
2642 | uint64_t EndOffset = 0; |
2643 | |
2644 | // The new offsets of the slice currently being rewritten relative to the |
2645 | // original alloca. |
2646 | uint64_t NewBeginOffset = 0, NewEndOffset = 0; |
2647 | |
2648 | uint64_t SliceSize = 0; |
2649 | bool IsSplittable = false; |
2650 | bool IsSplit = false; |
2651 | Use *OldUse = nullptr; |
2652 | Instruction *OldPtr = nullptr; |
2653 | |
2654 | // Track post-rewrite users which are PHI nodes and Selects. |
2655 | SmallSetVector<PHINode *, 8> &PHIUsers; |
2656 | SmallSetVector<SelectInst *, 8> &SelectUsers; |
2657 | |
2658 | // Utility IR builder, whose name prefix is setup for each visited use, and |
2659 | // the insertion point is set to point to the user. |
2660 | IRBuilderTy IRB; |
2661 | |
2662 | // Return the new alloca, addrspacecasted if required to avoid changing the |
2663 | // addrspace of a volatile access. |
2664 | Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) { |
2665 | if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace()) |
2666 | return &NewAI; |
2667 | |
2668 | Type *AccessTy = IRB.getPtrTy(AddrSpace); |
2669 | return IRB.CreateAddrSpaceCast(V: &NewAI, DestTy: AccessTy); |
2670 | } |
2671 | |
2672 | public: |
2673 | AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, |
2674 | AllocaInst &OldAI, AllocaInst &NewAI, |
2675 | uint64_t NewAllocaBeginOffset, |
2676 | uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, |
2677 | VectorType *PromotableVecTy, |
2678 | SmallSetVector<PHINode *, 8> &PHIUsers, |
2679 | SmallSetVector<SelectInst *, 8> &SelectUsers) |
2680 | : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), |
2681 | NewAllocaBeginOffset(NewAllocaBeginOffset), |
2682 | NewAllocaEndOffset(NewAllocaEndOffset), |
2683 | NewAllocaTy(NewAI.getAllocatedType()), |
2684 | IntTy( |
2685 | IsIntegerPromotable |
2686 | ? Type::getIntNTy(C&: NewAI.getContext(), |
2687 | N: DL.getTypeSizeInBits(Ty: NewAI.getAllocatedType()) |
2688 | .getFixedValue()) |
2689 | : nullptr), |
2690 | VecTy(PromotableVecTy), |
2691 | ElementTy(VecTy ? VecTy->getElementType() : nullptr), |
2692 | ElementSize(VecTy ? DL.getTypeSizeInBits(Ty: ElementTy).getFixedValue() / 8 |
2693 | : 0), |
2694 | PHIUsers(PHIUsers), SelectUsers(SelectUsers), |
2695 | IRB(NewAI.getContext(), ConstantFolder()) { |
2696 | if (VecTy) { |
2697 | assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 && |
2698 | "Only multiple-of-8 sized vector elements are viable" ); |
2699 | ++NumVectorized; |
2700 | } |
2701 | assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); |
2702 | } |
2703 | |
2704 | bool visit(AllocaSlices::const_iterator I) { |
2705 | bool CanSROA = true; |
2706 | BeginOffset = I->beginOffset(); |
2707 | EndOffset = I->endOffset(); |
2708 | IsSplittable = I->isSplittable(); |
2709 | IsSplit = |
2710 | BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; |
2711 | LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "" )); |
2712 | LLVM_DEBUG(AS.printSlice(dbgs(), I, "" )); |
2713 | LLVM_DEBUG(dbgs() << "\n" ); |
2714 | |
2715 | // Compute the intersecting offset range. |
2716 | assert(BeginOffset < NewAllocaEndOffset); |
2717 | assert(EndOffset > NewAllocaBeginOffset); |
2718 | NewBeginOffset = std::max(a: BeginOffset, b: NewAllocaBeginOffset); |
2719 | NewEndOffset = std::min(a: EndOffset, b: NewAllocaEndOffset); |
2720 | |
2721 | SliceSize = NewEndOffset - NewBeginOffset; |
2722 | LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset |
2723 | << ") NewBegin:(" << NewBeginOffset << ", " |
2724 | << NewEndOffset << ") NewAllocaBegin:(" |
2725 | << NewAllocaBeginOffset << ", " << NewAllocaEndOffset |
2726 | << ")\n" ); |
2727 | assert(IsSplit || NewBeginOffset == BeginOffset); |
2728 | OldUse = I->getUse(); |
2729 | OldPtr = cast<Instruction>(Val: OldUse->get()); |
2730 | |
2731 | Instruction *OldUserI = cast<Instruction>(Val: OldUse->getUser()); |
2732 | IRB.SetInsertPoint(OldUserI); |
2733 | IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); |
2734 | IRB.getInserter().SetNamePrefix(Twine(NewAI.getName()) + "." + |
2735 | Twine(BeginOffset) + "." ); |
2736 | |
2737 | CanSROA &= visit(I: cast<Instruction>(Val: OldUse->getUser())); |
2738 | if (VecTy || IntTy) |
2739 | assert(CanSROA); |
2740 | return CanSROA; |
2741 | } |
2742 | |
2743 | private: |
2744 | // Make sure the other visit overloads are visible. |
2745 | using Base::visit; |
2746 | |
2747 | // Every instruction which can end up as a user must have a rewrite rule. |
2748 | bool visitInstruction(Instruction &I) { |
2749 | LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n" ); |
2750 | llvm_unreachable("No rewrite rule for this instruction!" ); |
2751 | } |
2752 | |
2753 | Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { |
2754 | // Note that the offset computation can use BeginOffset or NewBeginOffset |
2755 | // interchangeably for unsplit slices. |
2756 | assert(IsSplit || BeginOffset == NewBeginOffset); |
2757 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
2758 | |
2759 | #ifndef NDEBUG |
2760 | StringRef OldName = OldPtr->getName(); |
2761 | // Skip through the last '.sroa.' component of the name. |
2762 | size_t LastSROAPrefix = OldName.rfind(".sroa." ); |
2763 | if (LastSROAPrefix != StringRef::npos) { |
2764 | OldName = OldName.substr(LastSROAPrefix + strlen(".sroa." )); |
2765 | // Look for an SROA slice index. |
2766 | size_t IndexEnd = OldName.find_first_not_of("0123456789" ); |
2767 | if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { |
2768 | // Strip the index and look for the offset. |
2769 | OldName = OldName.substr(IndexEnd + 1); |
2770 | size_t OffsetEnd = OldName.find_first_not_of("0123456789" ); |
2771 | if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') |
2772 | // Strip the offset. |
2773 | OldName = OldName.substr(OffsetEnd + 1); |
2774 | } |
2775 | } |
2776 | // Strip any SROA suffixes as well. |
2777 | OldName = OldName.substr(0, OldName.find(".sroa_" )); |
2778 | #endif |
2779 | |
2780 | return getAdjustedPtr(IRB, DL, Ptr: &NewAI, |
2781 | Offset: APInt(DL.getIndexTypeSizeInBits(Ty: PointerTy), Offset), |
2782 | PointerTy, |
2783 | #ifndef NDEBUG |
2784 | Twine(OldName) + "." |
2785 | #else |
2786 | NamePrefix: Twine() |
2787 | #endif |
2788 | ); |
2789 | } |
2790 | |
2791 | /// Compute suitable alignment to access this slice of the *new* |
2792 | /// alloca. |
2793 | /// |
2794 | /// You can optionally pass a type to this routine and if that type's ABI |
2795 | /// alignment is itself suitable, this will return zero. |
2796 | Align getSliceAlign() { |
2797 | return commonAlignment(A: NewAI.getAlign(), |
2798 | Offset: NewBeginOffset - NewAllocaBeginOffset); |
2799 | } |
2800 | |
2801 | unsigned getIndex(uint64_t Offset) { |
2802 | assert(VecTy && "Can only call getIndex when rewriting a vector" ); |
2803 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
2804 | assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds" ); |
2805 | uint32_t Index = RelOffset / ElementSize; |
2806 | assert(Index * ElementSize == RelOffset); |
2807 | return Index; |
2808 | } |
2809 | |
2810 | void deleteIfTriviallyDead(Value *V) { |
2811 | Instruction *I = cast<Instruction>(Val: V); |
2812 | if (isInstructionTriviallyDead(I)) |
2813 | Pass.DeadInsts.push_back(Elt: I); |
2814 | } |
2815 | |
2816 | Value *rewriteVectorizedLoadInst(LoadInst &LI) { |
2817 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
2818 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
2819 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
2820 | |
2821 | LoadInst *Load = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
2822 | Align: NewAI.getAlign(), Name: "load" ); |
2823 | |
2824 | Load->copyMetadata(SrcInst: LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
2825 | LLVMContext::MD_access_group}); |
2826 | return extractVector(IRB, V: Load, BeginIndex, EndIndex, Name: "vec" ); |
2827 | } |
2828 | |
2829 | Value *rewriteIntegerLoad(LoadInst &LI) { |
2830 | assert(IntTy && "We cannot insert an integer to the alloca" ); |
2831 | assert(!LI.isVolatile()); |
2832 | Value *V = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
2833 | Align: NewAI.getAlign(), Name: "load" ); |
2834 | V = convertValue(DL, IRB, V, NewTy: IntTy); |
2835 | assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset" ); |
2836 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
2837 | if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { |
2838 | IntegerType * = Type::getIntNTy(C&: LI.getContext(), N: SliceSize * 8); |
2839 | V = extractInteger(DL, IRB, V, Ty: ExtractTy, Offset, Name: "extract" ); |
2840 | } |
2841 | // It is possible that the extracted type is not the load type. This |
2842 | // happens if there is a load past the end of the alloca, and as |
2843 | // a consequence the slice is narrower but still a candidate for integer |
2844 | // lowering. To handle this case, we just zero extend the extracted |
2845 | // integer. |
2846 | assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && |
2847 | "Can only handle an extract for an overly wide load" ); |
2848 | if (cast<IntegerType>(Val: LI.getType())->getBitWidth() > SliceSize * 8) |
2849 | V = IRB.CreateZExt(V, DestTy: LI.getType()); |
2850 | return V; |
2851 | } |
2852 | |
2853 | bool visitLoadInst(LoadInst &LI) { |
2854 | LLVM_DEBUG(dbgs() << " original: " << LI << "\n" ); |
2855 | Value *OldOp = LI.getOperand(i_nocapture: 0); |
2856 | assert(OldOp == OldPtr); |
2857 | |
2858 | AAMDNodes AATags = LI.getAAMetadata(); |
2859 | |
2860 | unsigned AS = LI.getPointerAddressSpace(); |
2861 | |
2862 | Type *TargetTy = IsSplit ? Type::getIntNTy(C&: LI.getContext(), N: SliceSize * 8) |
2863 | : LI.getType(); |
2864 | const bool IsLoadPastEnd = |
2865 | DL.getTypeStoreSize(Ty: TargetTy).getFixedValue() > SliceSize; |
2866 | bool IsPtrAdjusted = false; |
2867 | Value *V; |
2868 | if (VecTy) { |
2869 | V = rewriteVectorizedLoadInst(LI); |
2870 | } else if (IntTy && LI.getType()->isIntegerTy()) { |
2871 | V = rewriteIntegerLoad(LI); |
2872 | } else if (NewBeginOffset == NewAllocaBeginOffset && |
2873 | NewEndOffset == NewAllocaEndOffset && |
2874 | (canConvertValue(DL, OldTy: NewAllocaTy, NewTy: TargetTy) || |
2875 | (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && |
2876 | TargetTy->isIntegerTy() && !LI.isVolatile()))) { |
2877 | Value *NewPtr = |
2878 | getPtrToNewAI(AddrSpace: LI.getPointerAddressSpace(), IsVolatile: LI.isVolatile()); |
2879 | LoadInst *NewLI = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: NewPtr, |
2880 | Align: NewAI.getAlign(), isVolatile: LI.isVolatile(), |
2881 | Name: LI.getName()); |
2882 | if (LI.isVolatile()) |
2883 | NewLI->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
2884 | if (NewLI->isAtomic()) |
2885 | NewLI->setAlignment(LI.getAlign()); |
2886 | |
2887 | // Copy any metadata that is valid for the new load. This may require |
2888 | // conversion to a different kind of metadata, e.g. !nonnull might change |
2889 | // to !range or vice versa. |
2890 | copyMetadataForLoad(Dest&: *NewLI, Source: LI); |
2891 | |
2892 | // Do this after copyMetadataForLoad() to preserve the TBAA shift. |
2893 | if (AATags) |
2894 | NewLI->setAAMetadata(AATags.adjustForAccess( |
2895 | Offset: NewBeginOffset - BeginOffset, AccessTy: NewLI->getType(), DL)); |
2896 | |
2897 | // Try to preserve nonnull metadata |
2898 | V = NewLI; |
2899 | |
2900 | // If this is an integer load past the end of the slice (which means the |
2901 | // bytes outside the slice are undef or this load is dead) just forcibly |
2902 | // fix the integer size with correct handling of endianness. |
2903 | if (auto *AITy = dyn_cast<IntegerType>(Val: NewAllocaTy)) |
2904 | if (auto *TITy = dyn_cast<IntegerType>(Val: TargetTy)) |
2905 | if (AITy->getBitWidth() < TITy->getBitWidth()) { |
2906 | V = IRB.CreateZExt(V, DestTy: TITy, Name: "load.ext" ); |
2907 | if (DL.isBigEndian()) |
2908 | V = IRB.CreateShl(LHS: V, RHS: TITy->getBitWidth() - AITy->getBitWidth(), |
2909 | Name: "endian_shift" ); |
2910 | } |
2911 | } else { |
2912 | Type *LTy = IRB.getPtrTy(AddrSpace: AS); |
2913 | LoadInst *NewLI = |
2914 | IRB.CreateAlignedLoad(Ty: TargetTy, Ptr: getNewAllocaSlicePtr(IRB, PointerTy: LTy), |
2915 | Align: getSliceAlign(), isVolatile: LI.isVolatile(), Name: LI.getName()); |
2916 | |
2917 | if (AATags) |
2918 | NewLI->setAAMetadata(AATags.adjustForAccess( |
2919 | Offset: NewBeginOffset - BeginOffset, AccessTy: NewLI->getType(), DL)); |
2920 | |
2921 | if (LI.isVolatile()) |
2922 | NewLI->setAtomic(Ordering: LI.getOrdering(), SSID: LI.getSyncScopeID()); |
2923 | NewLI->copyMetadata(SrcInst: LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
2924 | LLVMContext::MD_access_group}); |
2925 | |
2926 | V = NewLI; |
2927 | IsPtrAdjusted = true; |
2928 | } |
2929 | V = convertValue(DL, IRB, V, NewTy: TargetTy); |
2930 | |
2931 | if (IsSplit) { |
2932 | assert(!LI.isVolatile()); |
2933 | assert(LI.getType()->isIntegerTy() && |
2934 | "Only integer type loads and stores are split" ); |
2935 | assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() && |
2936 | "Split load isn't smaller than original load" ); |
2937 | assert(DL.typeSizeEqualsStoreSize(LI.getType()) && |
2938 | "Non-byte-multiple bit width" ); |
2939 | // Move the insertion point just past the load so that we can refer to it. |
2940 | BasicBlock::iterator LIIt = std::next(x: LI.getIterator()); |
2941 | // Ensure the insertion point comes before any debug-info immediately |
2942 | // after the load, so that variable values referring to the load are |
2943 | // dominated by it. |
2944 | LIIt.setHeadBit(true); |
2945 | IRB.SetInsertPoint(TheBB: LI.getParent(), IP: LIIt); |
2946 | // Create a placeholder value with the same type as LI to use as the |
2947 | // basis for the new value. This allows us to replace the uses of LI with |
2948 | // the computed value, and then replace the placeholder with LI, leaving |
2949 | // LI only used for this computation. |
2950 | Value *Placeholder = |
2951 | new LoadInst(LI.getType(), PoisonValue::get(T: IRB.getPtrTy(AddrSpace: AS)), "" , |
2952 | false, Align(1)); |
2953 | V = insertInteger(DL, IRB, Old: Placeholder, V, Offset: NewBeginOffset - BeginOffset, |
2954 | Name: "insert" ); |
2955 | LI.replaceAllUsesWith(V); |
2956 | Placeholder->replaceAllUsesWith(V: &LI); |
2957 | Placeholder->deleteValue(); |
2958 | } else { |
2959 | LI.replaceAllUsesWith(V); |
2960 | } |
2961 | |
2962 | Pass.DeadInsts.push_back(Elt: &LI); |
2963 | deleteIfTriviallyDead(V: OldOp); |
2964 | LLVM_DEBUG(dbgs() << " to: " << *V << "\n" ); |
2965 | return !LI.isVolatile() && !IsPtrAdjusted; |
2966 | } |
2967 | |
2968 | bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, |
2969 | AAMDNodes AATags) { |
2970 | // Capture V for the purpose of debug-info accounting once it's converted |
2971 | // to a vector store. |
2972 | Value *OrigV = V; |
2973 | if (V->getType() != VecTy) { |
2974 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
2975 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
2976 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
2977 | unsigned NumElements = EndIndex - BeginIndex; |
2978 | assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && |
2979 | "Too many elements!" ); |
2980 | Type *SliceTy = (NumElements == 1) |
2981 | ? ElementTy |
2982 | : FixedVectorType::get(ElementType: ElementTy, NumElts: NumElements); |
2983 | if (V->getType() != SliceTy) |
2984 | V = convertValue(DL, IRB, V, NewTy: SliceTy); |
2985 | |
2986 | // Mix in the existing elements. |
2987 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
2988 | Align: NewAI.getAlign(), Name: "load" ); |
2989 | V = insertVector(IRB, Old, V, BeginIndex, Name: "vec" ); |
2990 | } |
2991 | StoreInst *Store = IRB.CreateAlignedStore(Val: V, Ptr: &NewAI, Align: NewAI.getAlign()); |
2992 | Store->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
2993 | LLVMContext::MD_access_group}); |
2994 | if (AATags) |
2995 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
2996 | AccessTy: V->getType(), DL)); |
2997 | Pass.DeadInsts.push_back(Elt: &SI); |
2998 | |
2999 | // NOTE: Careful to use OrigV rather than V. |
3000 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
3001 | Inst: Store, Dest: Store->getPointerOperand(), Value: OrigV, DL); |
3002 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
3003 | return true; |
3004 | } |
3005 | |
3006 | bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { |
3007 | assert(IntTy && "We cannot extract an integer from the alloca" ); |
3008 | assert(!SI.isVolatile()); |
3009 | if (DL.getTypeSizeInBits(Ty: V->getType()).getFixedValue() != |
3010 | IntTy->getBitWidth()) { |
3011 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3012 | Align: NewAI.getAlign(), Name: "oldload" ); |
3013 | Old = convertValue(DL, IRB, V: Old, NewTy: IntTy); |
3014 | assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset" ); |
3015 | uint64_t Offset = BeginOffset - NewAllocaBeginOffset; |
3016 | V = insertInteger(DL, IRB, Old, V: SI.getValueOperand(), Offset, Name: "insert" ); |
3017 | } |
3018 | V = convertValue(DL, IRB, V, NewTy: NewAllocaTy); |
3019 | StoreInst *Store = IRB.CreateAlignedStore(Val: V, Ptr: &NewAI, Align: NewAI.getAlign()); |
3020 | Store->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
3021 | LLVMContext::MD_access_group}); |
3022 | if (AATags) |
3023 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
3024 | AccessTy: V->getType(), DL)); |
3025 | |
3026 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
3027 | Inst: Store, Dest: Store->getPointerOperand(), |
3028 | Value: Store->getValueOperand(), DL); |
3029 | |
3030 | Pass.DeadInsts.push_back(Elt: &SI); |
3031 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
3032 | return true; |
3033 | } |
3034 | |
3035 | bool visitStoreInst(StoreInst &SI) { |
3036 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
3037 | Value *OldOp = SI.getOperand(i_nocapture: 1); |
3038 | assert(OldOp == OldPtr); |
3039 | |
3040 | AAMDNodes AATags = SI.getAAMetadata(); |
3041 | Value *V = SI.getValueOperand(); |
3042 | |
3043 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
3044 | // alloca that should be re-examined after promoting this alloca. |
3045 | if (V->getType()->isPointerTy()) |
3046 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: V->stripInBoundsOffsets())) |
3047 | Pass.PostPromotionWorklist.insert(X: AI); |
3048 | |
3049 | if (SliceSize < DL.getTypeStoreSize(Ty: V->getType()).getFixedValue()) { |
3050 | assert(!SI.isVolatile()); |
3051 | assert(V->getType()->isIntegerTy() && |
3052 | "Only integer type loads and stores are split" ); |
3053 | assert(DL.typeSizeEqualsStoreSize(V->getType()) && |
3054 | "Non-byte-multiple bit width" ); |
3055 | IntegerType *NarrowTy = Type::getIntNTy(C&: SI.getContext(), N: SliceSize * 8); |
3056 | V = extractInteger(DL, IRB, V, Ty: NarrowTy, Offset: NewBeginOffset - BeginOffset, |
3057 | Name: "extract" ); |
3058 | } |
3059 | |
3060 | if (VecTy) |
3061 | return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); |
3062 | if (IntTy && V->getType()->isIntegerTy()) |
3063 | return rewriteIntegerStore(V, SI, AATags); |
3064 | |
3065 | StoreInst *NewSI; |
3066 | if (NewBeginOffset == NewAllocaBeginOffset && |
3067 | NewEndOffset == NewAllocaEndOffset && |
3068 | canConvertValue(DL, OldTy: V->getType(), NewTy: NewAllocaTy)) { |
3069 | V = convertValue(DL, IRB, V, NewTy: NewAllocaTy); |
3070 | Value *NewPtr = |
3071 | getPtrToNewAI(AddrSpace: SI.getPointerAddressSpace(), IsVolatile: SI.isVolatile()); |
3072 | |
3073 | NewSI = |
3074 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: NewAI.getAlign(), isVolatile: SI.isVolatile()); |
3075 | } else { |
3076 | unsigned AS = SI.getPointerAddressSpace(); |
3077 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: IRB.getPtrTy(AddrSpace: AS)); |
3078 | NewSI = |
3079 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: getSliceAlign(), isVolatile: SI.isVolatile()); |
3080 | } |
3081 | NewSI->copyMetadata(SrcInst: SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
3082 | LLVMContext::MD_access_group}); |
3083 | if (AATags) |
3084 | NewSI->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
3085 | AccessTy: V->getType(), DL)); |
3086 | if (SI.isVolatile()) |
3087 | NewSI->setAtomic(Ordering: SI.getOrdering(), SSID: SI.getSyncScopeID()); |
3088 | if (NewSI->isAtomic()) |
3089 | NewSI->setAlignment(SI.getAlign()); |
3090 | |
3091 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &SI, |
3092 | Inst: NewSI, Dest: NewSI->getPointerOperand(), |
3093 | Value: NewSI->getValueOperand(), DL); |
3094 | |
3095 | Pass.DeadInsts.push_back(Elt: &SI); |
3096 | deleteIfTriviallyDead(V: OldOp); |
3097 | |
3098 | LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n" ); |
3099 | return NewSI->getPointerOperand() == &NewAI && |
3100 | NewSI->getValueOperand()->getType() == NewAllocaTy && |
3101 | !SI.isVolatile(); |
3102 | } |
3103 | |
3104 | /// Compute an integer value from splatting an i8 across the given |
3105 | /// number of bytes. |
3106 | /// |
3107 | /// Note that this routine assumes an i8 is a byte. If that isn't true, don't |
3108 | /// call this routine. |
3109 | /// FIXME: Heed the advice above. |
3110 | /// |
3111 | /// \param V The i8 value to splat. |
3112 | /// \param Size The number of bytes in the output (assuming i8 is one byte) |
3113 | Value *getIntegerSplat(Value *V, unsigned Size) { |
3114 | assert(Size > 0 && "Expected a positive number of bytes." ); |
3115 | IntegerType *VTy = cast<IntegerType>(Val: V->getType()); |
3116 | assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte" ); |
3117 | if (Size == 1) |
3118 | return V; |
3119 | |
3120 | Type *SplatIntTy = Type::getIntNTy(C&: VTy->getContext(), N: Size * 8); |
3121 | V = IRB.CreateMul( |
3122 | LHS: IRB.CreateZExt(V, DestTy: SplatIntTy, Name: "zext" ), |
3123 | RHS: IRB.CreateUDiv(LHS: Constant::getAllOnesValue(Ty: SplatIntTy), |
3124 | RHS: IRB.CreateZExt(V: Constant::getAllOnesValue(Ty: V->getType()), |
3125 | DestTy: SplatIntTy)), |
3126 | Name: "isplat" ); |
3127 | return V; |
3128 | } |
3129 | |
3130 | /// Compute a vector splat for a given element value. |
3131 | Value *getVectorSplat(Value *V, unsigned NumElements) { |
3132 | V = IRB.CreateVectorSplat(NumElts: NumElements, V, Name: "vsplat" ); |
3133 | LLVM_DEBUG(dbgs() << " splat: " << *V << "\n" ); |
3134 | return V; |
3135 | } |
3136 | |
3137 | bool visitMemSetInst(MemSetInst &II) { |
3138 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
3139 | assert(II.getRawDest() == OldPtr); |
3140 | |
3141 | AAMDNodes AATags = II.getAAMetadata(); |
3142 | |
3143 | // If the memset has a variable size, it cannot be split, just adjust the |
3144 | // pointer to the new alloca. |
3145 | if (!isa<ConstantInt>(Val: II.getLength())) { |
3146 | assert(!IsSplit); |
3147 | assert(NewBeginOffset == BeginOffset); |
3148 | II.setDest(getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType())); |
3149 | II.setDestAlignment(getSliceAlign()); |
3150 | // In theory we should call migrateDebugInfo here. However, we do not |
3151 | // emit dbg.assign intrinsics for mem intrinsics storing through non- |
3152 | // constant geps, or storing a variable number of bytes. |
3153 | assert(at::getAssignmentMarkers(&II).empty() && |
3154 | at::getDVRAssignmentMarkers(&II).empty() && |
3155 | "AT: Unexpected link to non-const GEP" ); |
3156 | deleteIfTriviallyDead(V: OldPtr); |
3157 | return false; |
3158 | } |
3159 | |
3160 | // Record this instruction for deletion. |
3161 | Pass.DeadInsts.push_back(Elt: &II); |
3162 | |
3163 | Type *AllocaTy = NewAI.getAllocatedType(); |
3164 | Type *ScalarTy = AllocaTy->getScalarType(); |
3165 | |
3166 | const bool CanContinue = [&]() { |
3167 | if (VecTy || IntTy) |
3168 | return true; |
3169 | if (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) |
3170 | return false; |
3171 | // Length must be in range for FixedVectorType. |
3172 | auto *C = cast<ConstantInt>(Val: II.getLength()); |
3173 | const uint64_t Len = C->getLimitedValue(); |
3174 | if (Len > std::numeric_limits<unsigned>::max()) |
3175 | return false; |
3176 | auto *Int8Ty = IntegerType::getInt8Ty(C&: NewAI.getContext()); |
3177 | auto *SrcTy = FixedVectorType::get(ElementType: Int8Ty, NumElts: Len); |
3178 | return canConvertValue(DL, OldTy: SrcTy, NewTy: AllocaTy) && |
3179 | DL.isLegalInteger(Width: DL.getTypeSizeInBits(Ty: ScalarTy).getFixedValue()); |
3180 | }(); |
3181 | |
3182 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
3183 | // a single value type, just emit a memset. |
3184 | if (!CanContinue) { |
3185 | Type *SizeTy = II.getLength()->getType(); |
3186 | unsigned Sz = NewEndOffset - NewBeginOffset; |
3187 | Constant *Size = ConstantInt::get(Ty: SizeTy, V: Sz); |
3188 | MemIntrinsic *New = cast<MemIntrinsic>(Val: IRB.CreateMemSet( |
3189 | Ptr: getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()), Val: II.getValue(), Size, |
3190 | Align: MaybeAlign(getSliceAlign()), isVolatile: II.isVolatile())); |
3191 | if (AATags) |
3192 | New->setAAMetadata( |
3193 | AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, AccessSize: Sz)); |
3194 | |
3195 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
3196 | Inst: New, Dest: New->getRawDest(), Value: nullptr, DL); |
3197 | |
3198 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
3199 | return false; |
3200 | } |
3201 | |
3202 | // If we can represent this as a simple value, we have to build the actual |
3203 | // value to store, which requires expanding the byte present in memset to |
3204 | // a sensible representation for the alloca type. This is essentially |
3205 | // splatting the byte to a sufficiently wide integer, splatting it across |
3206 | // any desired vector width, and bitcasting to the final type. |
3207 | Value *V; |
3208 | |
3209 | if (VecTy) { |
3210 | // If this is a memset of a vectorized alloca, insert it. |
3211 | assert(ElementTy == ScalarTy); |
3212 | |
3213 | unsigned BeginIndex = getIndex(Offset: NewBeginOffset); |
3214 | unsigned EndIndex = getIndex(Offset: NewEndOffset); |
3215 | assert(EndIndex > BeginIndex && "Empty vector!" ); |
3216 | unsigned NumElements = EndIndex - BeginIndex; |
3217 | assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && |
3218 | "Too many elements!" ); |
3219 | |
3220 | Value *Splat = getIntegerSplat( |
3221 | V: II.getValue(), Size: DL.getTypeSizeInBits(Ty: ElementTy).getFixedValue() / 8); |
3222 | Splat = convertValue(DL, IRB, V: Splat, NewTy: ElementTy); |
3223 | if (NumElements > 1) |
3224 | Splat = getVectorSplat(V: Splat, NumElements); |
3225 | |
3226 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3227 | Align: NewAI.getAlign(), Name: "oldload" ); |
3228 | V = insertVector(IRB, Old, V: Splat, BeginIndex, Name: "vec" ); |
3229 | } else if (IntTy) { |
3230 | // If this is a memset on an alloca where we can widen stores, insert the |
3231 | // set integer. |
3232 | assert(!II.isVolatile()); |
3233 | |
3234 | uint64_t Size = NewEndOffset - NewBeginOffset; |
3235 | V = getIntegerSplat(V: II.getValue(), Size); |
3236 | |
3237 | if (IntTy && (BeginOffset != NewAllocaBeginOffset || |
3238 | EndOffset != NewAllocaBeginOffset)) { |
3239 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3240 | Align: NewAI.getAlign(), Name: "oldload" ); |
3241 | Old = convertValue(DL, IRB, V: Old, NewTy: IntTy); |
3242 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
3243 | V = insertInteger(DL, IRB, Old, V, Offset, Name: "insert" ); |
3244 | } else { |
3245 | assert(V->getType() == IntTy && |
3246 | "Wrong type for an alloca wide integer!" ); |
3247 | } |
3248 | V = convertValue(DL, IRB, V, NewTy: AllocaTy); |
3249 | } else { |
3250 | // Established these invariants above. |
3251 | assert(NewBeginOffset == NewAllocaBeginOffset); |
3252 | assert(NewEndOffset == NewAllocaEndOffset); |
3253 | |
3254 | V = getIntegerSplat(V: II.getValue(), |
3255 | Size: DL.getTypeSizeInBits(Ty: ScalarTy).getFixedValue() / 8); |
3256 | if (VectorType *AllocaVecTy = dyn_cast<VectorType>(Val: AllocaTy)) |
3257 | V = getVectorSplat( |
3258 | V, NumElements: cast<FixedVectorType>(Val: AllocaVecTy)->getNumElements()); |
3259 | |
3260 | V = convertValue(DL, IRB, V, NewTy: AllocaTy); |
3261 | } |
3262 | |
3263 | Value *NewPtr = getPtrToNewAI(AddrSpace: II.getDestAddressSpace(), IsVolatile: II.isVolatile()); |
3264 | StoreInst *New = |
3265 | IRB.CreateAlignedStore(Val: V, Ptr: NewPtr, Align: NewAI.getAlign(), isVolatile: II.isVolatile()); |
3266 | New->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
3267 | LLVMContext::MD_access_group}); |
3268 | if (AATags) |
3269 | New->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
3270 | AccessTy: V->getType(), DL)); |
3271 | |
3272 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
3273 | Inst: New, Dest: New->getPointerOperand(), Value: V, DL); |
3274 | |
3275 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
3276 | return !II.isVolatile(); |
3277 | } |
3278 | |
3279 | bool visitMemTransferInst(MemTransferInst &II) { |
3280 | // Rewriting of memory transfer instructions can be a bit tricky. We break |
3281 | // them into two categories: split intrinsics and unsplit intrinsics. |
3282 | |
3283 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
3284 | |
3285 | AAMDNodes AATags = II.getAAMetadata(); |
3286 | |
3287 | bool IsDest = &II.getRawDestUse() == OldUse; |
3288 | assert((IsDest && II.getRawDest() == OldPtr) || |
3289 | (!IsDest && II.getRawSource() == OldPtr)); |
3290 | |
3291 | Align SliceAlign = getSliceAlign(); |
3292 | // For unsplit intrinsics, we simply modify the source and destination |
3293 | // pointers in place. This isn't just an optimization, it is a matter of |
3294 | // correctness. With unsplit intrinsics we may be dealing with transfers |
3295 | // within a single alloca before SROA ran, or with transfers that have |
3296 | // a variable length. We may also be dealing with memmove instead of |
3297 | // memcpy, and so simply updating the pointers is the necessary for us to |
3298 | // update both source and dest of a single call. |
3299 | if (!IsSplittable) { |
3300 | Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
3301 | if (IsDest) { |
3302 | // Update the address component of linked dbg.assigns. |
3303 | auto UpdateAssignAddress = [&](auto *DbgAssign) { |
3304 | if (llvm::is_contained(DbgAssign->location_ops(), II.getDest()) || |
3305 | DbgAssign->getAddress() == II.getDest()) |
3306 | DbgAssign->replaceVariableLocationOp(II.getDest(), AdjustedPtr); |
3307 | }; |
3308 | for_each(Range: at::getAssignmentMarkers(Inst: &II), F: UpdateAssignAddress); |
3309 | for_each(Range: at::getDVRAssignmentMarkers(Inst: &II), F: UpdateAssignAddress); |
3310 | II.setDest(AdjustedPtr); |
3311 | II.setDestAlignment(SliceAlign); |
3312 | } else { |
3313 | II.setSource(AdjustedPtr); |
3314 | II.setSourceAlignment(SliceAlign); |
3315 | } |
3316 | |
3317 | LLVM_DEBUG(dbgs() << " to: " << II << "\n" ); |
3318 | deleteIfTriviallyDead(V: OldPtr); |
3319 | return false; |
3320 | } |
3321 | // For split transfer intrinsics we have an incredibly useful assurance: |
3322 | // the source and destination do not reside within the same alloca, and at |
3323 | // least one of them does not escape. This means that we can replace |
3324 | // memmove with memcpy, and we don't need to worry about all manner of |
3325 | // downsides to splitting and transforming the operations. |
3326 | |
3327 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
3328 | // a single value type, just emit a memcpy. |
3329 | bool EmitMemCpy = |
3330 | !VecTy && !IntTy && |
3331 | (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || |
3332 | SliceSize != |
3333 | DL.getTypeStoreSize(Ty: NewAI.getAllocatedType()).getFixedValue() || |
3334 | !DL.typeSizeEqualsStoreSize(Ty: NewAI.getAllocatedType()) || |
3335 | !NewAI.getAllocatedType()->isSingleValueType()); |
3336 | |
3337 | // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
3338 | // size hasn't been shrunk based on analysis of the viable range, this is |
3339 | // a no-op. |
3340 | if (EmitMemCpy && &OldAI == &NewAI) { |
3341 | // Ensure the start lines up. |
3342 | assert(NewBeginOffset == BeginOffset); |
3343 | |
3344 | // Rewrite the size as needed. |
3345 | if (NewEndOffset != EndOffset) |
3346 | II.setLength(ConstantInt::get(Ty: II.getLength()->getType(), |
3347 | V: NewEndOffset - NewBeginOffset)); |
3348 | return false; |
3349 | } |
3350 | // Record this instruction for deletion. |
3351 | Pass.DeadInsts.push_back(Elt: &II); |
3352 | |
3353 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
3354 | // alloca that should be re-examined after rewriting this instruction. |
3355 | Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
3356 | if (AllocaInst *AI = |
3357 | dyn_cast<AllocaInst>(Val: OtherPtr->stripInBoundsOffsets())) { |
3358 | assert(AI != &OldAI && AI != &NewAI && |
3359 | "Splittable transfers cannot reach the same alloca on both ends." ); |
3360 | Pass.Worklist.insert(X: AI); |
3361 | } |
3362 | |
3363 | Type *OtherPtrTy = OtherPtr->getType(); |
3364 | unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); |
3365 | |
3366 | // Compute the relative offset for the other pointer within the transfer. |
3367 | unsigned OffsetWidth = DL.getIndexSizeInBits(AS: OtherAS); |
3368 | APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); |
3369 | Align OtherAlign = |
3370 | (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); |
3371 | OtherAlign = |
3372 | commonAlignment(A: OtherAlign, Offset: OtherOffset.zextOrTrunc(width: 64).getZExtValue()); |
3373 | |
3374 | if (EmitMemCpy) { |
3375 | // Compute the other pointer, folding as much as possible to produce |
3376 | // a single, simple GEP in most cases. |
3377 | OtherPtr = getAdjustedPtr(IRB, DL, Ptr: OtherPtr, Offset: OtherOffset, PointerTy: OtherPtrTy, |
3378 | NamePrefix: OtherPtr->getName() + "." ); |
3379 | |
3380 | Value *OurPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
3381 | Type *SizeTy = II.getLength()->getType(); |
3382 | Constant *Size = ConstantInt::get(Ty: SizeTy, V: NewEndOffset - NewBeginOffset); |
3383 | |
3384 | Value *DestPtr, *SrcPtr; |
3385 | MaybeAlign DestAlign, SrcAlign; |
3386 | // Note: IsDest is true iff we're copying into the new alloca slice |
3387 | if (IsDest) { |
3388 | DestPtr = OurPtr; |
3389 | DestAlign = SliceAlign; |
3390 | SrcPtr = OtherPtr; |
3391 | SrcAlign = OtherAlign; |
3392 | } else { |
3393 | DestPtr = OtherPtr; |
3394 | DestAlign = OtherAlign; |
3395 | SrcPtr = OurPtr; |
3396 | SrcAlign = SliceAlign; |
3397 | } |
3398 | CallInst *New = IRB.CreateMemCpy(Dst: DestPtr, DstAlign: DestAlign, Src: SrcPtr, SrcAlign, |
3399 | Size, isVolatile: II.isVolatile()); |
3400 | if (AATags) |
3401 | New->setAAMetadata(AATags.shift(Offset: NewBeginOffset - BeginOffset)); |
3402 | |
3403 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: DestPtr->getType()), 0); |
3404 | if (IsDest) { |
3405 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, |
3406 | OldInst: &II, Inst: New, Dest: DestPtr, Value: nullptr, DL); |
3407 | } else if (AllocaInst *Base = dyn_cast<AllocaInst>( |
3408 | Val: DestPtr->stripAndAccumulateConstantOffsets( |
3409 | DL, Offset, /*AllowNonInbounds*/ true))) { |
3410 | migrateDebugInfo(OldAlloca: Base, IsSplit, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, |
3411 | SliceSizeInBits: SliceSize * 8, OldInst: &II, Inst: New, Dest: DestPtr, Value: nullptr, DL); |
3412 | } |
3413 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
3414 | return false; |
3415 | } |
3416 | |
3417 | bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && |
3418 | NewEndOffset == NewAllocaEndOffset; |
3419 | uint64_t Size = NewEndOffset - NewBeginOffset; |
3420 | unsigned BeginIndex = VecTy ? getIndex(Offset: NewBeginOffset) : 0; |
3421 | unsigned EndIndex = VecTy ? getIndex(Offset: NewEndOffset) : 0; |
3422 | unsigned NumElements = EndIndex - BeginIndex; |
3423 | IntegerType *SubIntTy = |
3424 | IntTy ? Type::getIntNTy(C&: IntTy->getContext(), N: Size * 8) : nullptr; |
3425 | |
3426 | // Reset the other pointer type to match the register type we're going to |
3427 | // use, but using the address space of the original other pointer. |
3428 | Type *OtherTy; |
3429 | if (VecTy && !IsWholeAlloca) { |
3430 | if (NumElements == 1) |
3431 | OtherTy = VecTy->getElementType(); |
3432 | else |
3433 | OtherTy = FixedVectorType::get(ElementType: VecTy->getElementType(), NumElts: NumElements); |
3434 | } else if (IntTy && !IsWholeAlloca) { |
3435 | OtherTy = SubIntTy; |
3436 | } else { |
3437 | OtherTy = NewAllocaTy; |
3438 | } |
3439 | |
3440 | Value *AdjPtr = getAdjustedPtr(IRB, DL, Ptr: OtherPtr, Offset: OtherOffset, PointerTy: OtherPtrTy, |
3441 | NamePrefix: OtherPtr->getName() + "." ); |
3442 | MaybeAlign SrcAlign = OtherAlign; |
3443 | MaybeAlign DstAlign = SliceAlign; |
3444 | if (!IsDest) |
3445 | std::swap(a&: SrcAlign, b&: DstAlign); |
3446 | |
3447 | Value *SrcPtr; |
3448 | Value *DstPtr; |
3449 | |
3450 | if (IsDest) { |
3451 | DstPtr = getPtrToNewAI(AddrSpace: II.getDestAddressSpace(), IsVolatile: II.isVolatile()); |
3452 | SrcPtr = AdjPtr; |
3453 | } else { |
3454 | DstPtr = AdjPtr; |
3455 | SrcPtr = getPtrToNewAI(AddrSpace: II.getSourceAddressSpace(), IsVolatile: II.isVolatile()); |
3456 | } |
3457 | |
3458 | Value *Src; |
3459 | if (VecTy && !IsWholeAlloca && !IsDest) { |
3460 | Src = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3461 | Align: NewAI.getAlign(), Name: "load" ); |
3462 | Src = extractVector(IRB, V: Src, BeginIndex, EndIndex, Name: "vec" ); |
3463 | } else if (IntTy && !IsWholeAlloca && !IsDest) { |
3464 | Src = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3465 | Align: NewAI.getAlign(), Name: "load" ); |
3466 | Src = convertValue(DL, IRB, V: Src, NewTy: IntTy); |
3467 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
3468 | Src = extractInteger(DL, IRB, V: Src, Ty: SubIntTy, Offset, Name: "extract" ); |
3469 | } else { |
3470 | LoadInst *Load = IRB.CreateAlignedLoad(Ty: OtherTy, Ptr: SrcPtr, Align: SrcAlign, |
3471 | isVolatile: II.isVolatile(), Name: "copyload" ); |
3472 | Load->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
3473 | LLVMContext::MD_access_group}); |
3474 | if (AATags) |
3475 | Load->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
3476 | AccessTy: Load->getType(), DL)); |
3477 | Src = Load; |
3478 | } |
3479 | |
3480 | if (VecTy && !IsWholeAlloca && IsDest) { |
3481 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3482 | Align: NewAI.getAlign(), Name: "oldload" ); |
3483 | Src = insertVector(IRB, Old, V: Src, BeginIndex, Name: "vec" ); |
3484 | } else if (IntTy && !IsWholeAlloca && IsDest) { |
3485 | Value *Old = IRB.CreateAlignedLoad(Ty: NewAI.getAllocatedType(), Ptr: &NewAI, |
3486 | Align: NewAI.getAlign(), Name: "oldload" ); |
3487 | Old = convertValue(DL, IRB, V: Old, NewTy: IntTy); |
3488 | uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; |
3489 | Src = insertInteger(DL, IRB, Old, V: Src, Offset, Name: "insert" ); |
3490 | Src = convertValue(DL, IRB, V: Src, NewTy: NewAllocaTy); |
3491 | } |
3492 | |
3493 | StoreInst *Store = cast<StoreInst>( |
3494 | Val: IRB.CreateAlignedStore(Val: Src, Ptr: DstPtr, Align: DstAlign, isVolatile: II.isVolatile())); |
3495 | Store->copyMetadata(SrcInst: II, WL: {LLVMContext::MD_mem_parallel_loop_access, |
3496 | LLVMContext::MD_access_group}); |
3497 | if (AATags) |
3498 | Store->setAAMetadata(AATags.adjustForAccess(Offset: NewBeginOffset - BeginOffset, |
3499 | AccessTy: Src->getType(), DL)); |
3500 | |
3501 | APInt Offset(DL.getIndexTypeSizeInBits(Ty: DstPtr->getType()), 0); |
3502 | if (IsDest) { |
3503 | |
3504 | migrateDebugInfo(OldAlloca: &OldAI, IsSplit, OldAllocaOffsetInBits: NewBeginOffset * 8, SliceSizeInBits: SliceSize * 8, OldInst: &II, |
3505 | Inst: Store, Dest: DstPtr, Value: Src, DL); |
3506 | } else if (AllocaInst *Base = dyn_cast<AllocaInst>( |
3507 | Val: DstPtr->stripAndAccumulateConstantOffsets( |
3508 | DL, Offset, /*AllowNonInbounds*/ true))) { |
3509 | migrateDebugInfo(OldAlloca: Base, IsSplit, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, SliceSizeInBits: SliceSize * 8, |
3510 | OldInst: &II, Inst: Store, Dest: DstPtr, Value: Src, DL); |
3511 | } |
3512 | |
3513 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
3514 | return !II.isVolatile(); |
3515 | } |
3516 | |
3517 | bool visitIntrinsicInst(IntrinsicInst &II) { |
3518 | assert((II.isLifetimeStartOrEnd() || II.isLaunderOrStripInvariantGroup() || |
3519 | II.isDroppable()) && |
3520 | "Unexpected intrinsic!" ); |
3521 | LLVM_DEBUG(dbgs() << " original: " << II << "\n" ); |
3522 | |
3523 | // Record this instruction for deletion. |
3524 | Pass.DeadInsts.push_back(Elt: &II); |
3525 | |
3526 | if (II.isDroppable()) { |
3527 | assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume" ); |
3528 | // TODO For now we forget assumed information, this can be improved. |
3529 | OldPtr->dropDroppableUsesIn(Usr&: II); |
3530 | return true; |
3531 | } |
3532 | |
3533 | if (II.isLaunderOrStripInvariantGroup()) |
3534 | return true; |
3535 | |
3536 | assert(II.getArgOperand(1) == OldPtr); |
3537 | // Lifetime intrinsics are only promotable if they cover the whole alloca. |
3538 | // Therefore, we drop lifetime intrinsics which don't cover the whole |
3539 | // alloca. |
3540 | // (In theory, intrinsics which partially cover an alloca could be |
3541 | // promoted, but PromoteMemToReg doesn't handle that case.) |
3542 | // FIXME: Check whether the alloca is promotable before dropping the |
3543 | // lifetime intrinsics? |
3544 | if (NewBeginOffset != NewAllocaBeginOffset || |
3545 | NewEndOffset != NewAllocaEndOffset) |
3546 | return true; |
3547 | |
3548 | ConstantInt *Size = |
3549 | ConstantInt::get(Ty: cast<IntegerType>(Val: II.getArgOperand(i: 0)->getType()), |
3550 | V: NewEndOffset - NewBeginOffset); |
3551 | // Lifetime intrinsics always expect an i8* so directly get such a pointer |
3552 | // for the new alloca slice. |
3553 | Type *PointerTy = IRB.getPtrTy(AddrSpace: OldPtr->getType()->getPointerAddressSpace()); |
3554 | Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); |
3555 | Value *New; |
3556 | if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
3557 | New = IRB.CreateLifetimeStart(Ptr, Size); |
3558 | else |
3559 | New = IRB.CreateLifetimeEnd(Ptr, Size); |
3560 | |
3561 | (void)New; |
3562 | LLVM_DEBUG(dbgs() << " to: " << *New << "\n" ); |
3563 | |
3564 | return true; |
3565 | } |
3566 | |
3567 | void fixLoadStoreAlign(Instruction &Root) { |
3568 | // This algorithm implements the same visitor loop as |
3569 | // hasUnsafePHIOrSelectUse, and fixes the alignment of each load |
3570 | // or store found. |
3571 | SmallPtrSet<Instruction *, 4> Visited; |
3572 | SmallVector<Instruction *, 4> Uses; |
3573 | Visited.insert(Ptr: &Root); |
3574 | Uses.push_back(Elt: &Root); |
3575 | do { |
3576 | Instruction *I = Uses.pop_back_val(); |
3577 | |
3578 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
3579 | LI->setAlignment(std::min(a: LI->getAlign(), b: getSliceAlign())); |
3580 | continue; |
3581 | } |
3582 | if (StoreInst *SI = dyn_cast<StoreInst>(Val: I)) { |
3583 | SI->setAlignment(std::min(a: SI->getAlign(), b: getSliceAlign())); |
3584 | continue; |
3585 | } |
3586 | |
3587 | assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || |
3588 | isa<PHINode>(I) || isa<SelectInst>(I) || |
3589 | isa<GetElementPtrInst>(I)); |
3590 | for (User *U : I->users()) |
3591 | if (Visited.insert(Ptr: cast<Instruction>(Val: U)).second) |
3592 | Uses.push_back(Elt: cast<Instruction>(Val: U)); |
3593 | } while (!Uses.empty()); |
3594 | } |
3595 | |
3596 | bool visitPHINode(PHINode &PN) { |
3597 | LLVM_DEBUG(dbgs() << " original: " << PN << "\n" ); |
3598 | assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable" ); |
3599 | assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable" ); |
3600 | |
3601 | // We would like to compute a new pointer in only one place, but have it be |
3602 | // as local as possible to the PHI. To do that, we re-use the location of |
3603 | // the old pointer, which necessarily must be in the right position to |
3604 | // dominate the PHI. |
3605 | IRBuilderBase::InsertPointGuard Guard(IRB); |
3606 | if (isa<PHINode>(Val: OldPtr)) |
3607 | IRB.SetInsertPoint(TheBB: OldPtr->getParent(), |
3608 | IP: OldPtr->getParent()->getFirstInsertionPt()); |
3609 | else |
3610 | IRB.SetInsertPoint(OldPtr); |
3611 | IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); |
3612 | |
3613 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
3614 | // Replace the operands which were using the old pointer. |
3615 | std::replace(first: PN.op_begin(), last: PN.op_end(), old_value: cast<Value>(Val: OldPtr), new_value: NewPtr); |
3616 | |
3617 | LLVM_DEBUG(dbgs() << " to: " << PN << "\n" ); |
3618 | deleteIfTriviallyDead(V: OldPtr); |
3619 | |
3620 | // Fix the alignment of any loads or stores using this PHI node. |
3621 | fixLoadStoreAlign(Root&: PN); |
3622 | |
3623 | // PHIs can't be promoted on their own, but often can be speculated. We |
3624 | // check the speculation outside of the rewriter so that we see the |
3625 | // fully-rewritten alloca. |
3626 | PHIUsers.insert(X: &PN); |
3627 | return true; |
3628 | } |
3629 | |
3630 | bool visitSelectInst(SelectInst &SI) { |
3631 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
3632 | assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && |
3633 | "Pointer isn't an operand!" ); |
3634 | assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable" ); |
3635 | assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable" ); |
3636 | |
3637 | Value *NewPtr = getNewAllocaSlicePtr(IRB, PointerTy: OldPtr->getType()); |
3638 | // Replace the operands which were using the old pointer. |
3639 | if (SI.getOperand(i_nocapture: 1) == OldPtr) |
3640 | SI.setOperand(i_nocapture: 1, Val_nocapture: NewPtr); |
3641 | if (SI.getOperand(i_nocapture: 2) == OldPtr) |
3642 | SI.setOperand(i_nocapture: 2, Val_nocapture: NewPtr); |
3643 | |
3644 | LLVM_DEBUG(dbgs() << " to: " << SI << "\n" ); |
3645 | deleteIfTriviallyDead(V: OldPtr); |
3646 | |
3647 | // Fix the alignment of any loads or stores using this select. |
3648 | fixLoadStoreAlign(Root&: SI); |
3649 | |
3650 | // Selects can't be promoted on their own, but often can be speculated. We |
3651 | // check the speculation outside of the rewriter so that we see the |
3652 | // fully-rewritten alloca. |
3653 | SelectUsers.insert(X: &SI); |
3654 | return true; |
3655 | } |
3656 | }; |
3657 | |
3658 | /// Visitor to rewrite aggregate loads and stores as scalar. |
3659 | /// |
3660 | /// This pass aggressively rewrites all aggregate loads and stores on |
3661 | /// a particular pointer (or any pointer derived from it which we can identify) |
3662 | /// with scalar loads and stores. |
3663 | class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
3664 | // Befriend the base class so it can delegate to private visit methods. |
3665 | friend class InstVisitor<AggLoadStoreRewriter, bool>; |
3666 | |
3667 | /// Queue of pointer uses to analyze and potentially rewrite. |
3668 | SmallVector<Use *, 8> Queue; |
3669 | |
3670 | /// Set to prevent us from cycling with phi nodes and loops. |
3671 | SmallPtrSet<User *, 8> Visited; |
3672 | |
3673 | /// The current pointer use being rewritten. This is used to dig up the used |
3674 | /// value (as opposed to the user). |
3675 | Use *U = nullptr; |
3676 | |
3677 | /// Used to calculate offsets, and hence alignment, of subobjects. |
3678 | const DataLayout &DL; |
3679 | |
3680 | IRBuilderTy &IRB; |
3681 | |
3682 | public: |
3683 | AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) |
3684 | : DL(DL), IRB(IRB) {} |
3685 | |
3686 | /// Rewrite loads and stores through a pointer and all pointers derived from |
3687 | /// it. |
3688 | bool rewrite(Instruction &I) { |
3689 | LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n" ); |
3690 | enqueueUsers(I); |
3691 | bool Changed = false; |
3692 | while (!Queue.empty()) { |
3693 | U = Queue.pop_back_val(); |
3694 | Changed |= visit(I: cast<Instruction>(Val: U->getUser())); |
3695 | } |
3696 | return Changed; |
3697 | } |
3698 | |
3699 | private: |
3700 | /// Enqueue all the users of the given instruction for further processing. |
3701 | /// This uses a set to de-duplicate users. |
3702 | void enqueueUsers(Instruction &I) { |
3703 | for (Use &U : I.uses()) |
3704 | if (Visited.insert(Ptr: U.getUser()).second) |
3705 | Queue.push_back(Elt: &U); |
3706 | } |
3707 | |
3708 | // Conservative default is to not rewrite anything. |
3709 | bool visitInstruction(Instruction &I) { return false; } |
3710 | |
3711 | /// Generic recursive split emission class. |
3712 | template <typename Derived> class OpSplitter { |
3713 | protected: |
3714 | /// The builder used to form new instructions. |
3715 | IRBuilderTy &IRB; |
3716 | |
3717 | /// The indices which to be used with insert- or extractvalue to select the |
3718 | /// appropriate value within the aggregate. |
3719 | SmallVector<unsigned, 4> Indices; |
3720 | |
3721 | /// The indices to a GEP instruction which will move Ptr to the correct slot |
3722 | /// within the aggregate. |
3723 | SmallVector<Value *, 4> GEPIndices; |
3724 | |
3725 | /// The base pointer of the original op, used as a base for GEPing the |
3726 | /// split operations. |
3727 | Value *Ptr; |
3728 | |
3729 | /// The base pointee type being GEPed into. |
3730 | Type *BaseTy; |
3731 | |
3732 | /// Known alignment of the base pointer. |
3733 | Align BaseAlign; |
3734 | |
3735 | /// To calculate offset of each component so we can correctly deduce |
3736 | /// alignments. |
3737 | const DataLayout &DL; |
3738 | |
3739 | /// Initialize the splitter with an insertion point, Ptr and start with a |
3740 | /// single zero GEP index. |
3741 | OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
3742 | Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) |
3743 | : IRB(IRB), GEPIndices(1, IRB.getInt32(C: 0)), Ptr(Ptr), BaseTy(BaseTy), |
3744 | BaseAlign(BaseAlign), DL(DL) { |
3745 | IRB.SetInsertPoint(InsertionPoint); |
3746 | } |
3747 | |
3748 | public: |
3749 | /// Generic recursive split emission routine. |
3750 | /// |
3751 | /// This method recursively splits an aggregate op (load or store) into |
3752 | /// scalar or vector ops. It splits recursively until it hits a single value |
3753 | /// and emits that single value operation via the template argument. |
3754 | /// |
3755 | /// The logic of this routine relies on GEPs and insertvalue and |
3756 | /// extractvalue all operating with the same fundamental index list, merely |
3757 | /// formatted differently (GEPs need actual values). |
3758 | /// |
3759 | /// \param Ty The type being split recursively into smaller ops. |
3760 | /// \param Agg The aggregate value being built up or stored, depending on |
3761 | /// whether this is splitting a load or a store respectively. |
3762 | void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
3763 | if (Ty->isSingleValueType()) { |
3764 | unsigned Offset = DL.getIndexedOffsetInType(ElemTy: BaseTy, Indices: GEPIndices); |
3765 | return static_cast<Derived *>(this)->emitFunc( |
3766 | Ty, Agg, commonAlignment(A: BaseAlign, Offset), Name); |
3767 | } |
3768 | |
3769 | if (ArrayType *ATy = dyn_cast<ArrayType>(Val: Ty)) { |
3770 | unsigned OldSize = Indices.size(); |
3771 | (void)OldSize; |
3772 | for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
3773 | ++Idx) { |
3774 | assert(Indices.size() == OldSize && "Did not return to the old size" ); |
3775 | Indices.push_back(Elt: Idx); |
3776 | GEPIndices.push_back(Elt: IRB.getInt32(C: Idx)); |
3777 | emitSplitOps(Ty: ATy->getElementType(), Agg, Name: Name + "." + Twine(Idx)); |
3778 | GEPIndices.pop_back(); |
3779 | Indices.pop_back(); |
3780 | } |
3781 | return; |
3782 | } |
3783 | |
3784 | if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
3785 | unsigned OldSize = Indices.size(); |
3786 | (void)OldSize; |
3787 | for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
3788 | ++Idx) { |
3789 | assert(Indices.size() == OldSize && "Did not return to the old size" ); |
3790 | Indices.push_back(Elt: Idx); |
3791 | GEPIndices.push_back(Elt: IRB.getInt32(C: Idx)); |
3792 | emitSplitOps(Ty: STy->getElementType(N: Idx), Agg, Name: Name + "." + Twine(Idx)); |
3793 | GEPIndices.pop_back(); |
3794 | Indices.pop_back(); |
3795 | } |
3796 | return; |
3797 | } |
3798 | |
3799 | llvm_unreachable("Only arrays and structs are aggregate loadable types" ); |
3800 | } |
3801 | }; |
3802 | |
3803 | struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
3804 | AAMDNodes AATags; |
3805 | |
3806 | LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
3807 | AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, |
3808 | IRBuilderTy &IRB) |
3809 | : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, |
3810 | IRB), |
3811 | AATags(AATags) {} |
3812 | |
3813 | /// Emit a leaf load of a single value. This is called at the leaves of the |
3814 | /// recursive emission to actually load values. |
3815 | void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
3816 | assert(Ty->isSingleValueType()); |
3817 | // Load the single value and insert it using the indices. |
3818 | Value *GEP = |
3819 | IRB.CreateInBoundsGEP(Ty: BaseTy, Ptr, IdxList: GEPIndices, Name: Name + ".gep" ); |
3820 | LoadInst *Load = |
3821 | IRB.CreateAlignedLoad(Ty, Ptr: GEP, Align: Alignment, Name: Name + ".load" ); |
3822 | |
3823 | APInt Offset( |
3824 | DL.getIndexSizeInBits(AS: Ptr->getType()->getPointerAddressSpace()), 0); |
3825 | if (AATags && |
3826 | GEPOperator::accumulateConstantOffset(SourceType: BaseTy, Index: GEPIndices, DL, Offset)) |
3827 | Load->setAAMetadata( |
3828 | AATags.adjustForAccess(Offset: Offset.getZExtValue(), AccessTy: Load->getType(), DL)); |
3829 | |
3830 | Agg = IRB.CreateInsertValue(Agg, Val: Load, Idxs: Indices, Name: Name + ".insert" ); |
3831 | LLVM_DEBUG(dbgs() << " to: " << *Load << "\n" ); |
3832 | } |
3833 | }; |
3834 | |
3835 | bool visitLoadInst(LoadInst &LI) { |
3836 | assert(LI.getPointerOperand() == *U); |
3837 | if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
3838 | return false; |
3839 | |
3840 | // We have an aggregate being loaded, split it apart. |
3841 | LLVM_DEBUG(dbgs() << " original: " << LI << "\n" ); |
3842 | LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), |
3843 | getAdjustedAlignment(I: &LI, Offset: 0), DL, IRB); |
3844 | Value *V = PoisonValue::get(T: LI.getType()); |
3845 | Splitter.emitSplitOps(Ty: LI.getType(), Agg&: V, Name: LI.getName() + ".fca" ); |
3846 | Visited.erase(Ptr: &LI); |
3847 | LI.replaceAllUsesWith(V); |
3848 | LI.eraseFromParent(); |
3849 | return true; |
3850 | } |
3851 | |
3852 | struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
3853 | StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, |
3854 | AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign, |
3855 | const DataLayout &DL, IRBuilderTy &IRB) |
3856 | : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, |
3857 | DL, IRB), |
3858 | AATags(AATags), AggStore(AggStore) {} |
3859 | AAMDNodes AATags; |
3860 | StoreInst *AggStore; |
3861 | /// Emit a leaf store of a single value. This is called at the leaves of the |
3862 | /// recursive emission to actually produce stores. |
3863 | void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { |
3864 | assert(Ty->isSingleValueType()); |
3865 | // Extract the single value and store it using the indices. |
3866 | // |
3867 | // The gep and extractvalue values are factored out of the CreateStore |
3868 | // call to make the output independent of the argument evaluation order. |
3869 | Value * = |
3870 | IRB.CreateExtractValue(Agg, Idxs: Indices, Name: Name + ".extract" ); |
3871 | Value *InBoundsGEP = |
3872 | IRB.CreateInBoundsGEP(Ty: BaseTy, Ptr, IdxList: GEPIndices, Name: Name + ".gep" ); |
3873 | StoreInst *Store = |
3874 | IRB.CreateAlignedStore(Val: ExtractValue, Ptr: InBoundsGEP, Align: Alignment); |
3875 | |
3876 | APInt Offset( |
3877 | DL.getIndexSizeInBits(AS: Ptr->getType()->getPointerAddressSpace()), 0); |
3878 | GEPOperator::accumulateConstantOffset(SourceType: BaseTy, Index: GEPIndices, DL, Offset); |
3879 | if (AATags) { |
3880 | Store->setAAMetadata(AATags.adjustForAccess( |
3881 | Offset: Offset.getZExtValue(), AccessTy: ExtractValue->getType(), DL)); |
3882 | } |
3883 | |
3884 | // migrateDebugInfo requires the base Alloca. Walk to it from this gep. |
3885 | // If we cannot (because there's an intervening non-const or unbounded |
3886 | // gep) then we wouldn't expect to see dbg.assign intrinsics linked to |
3887 | // this instruction. |
3888 | Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets(); |
3889 | if (auto *OldAI = dyn_cast<AllocaInst>(Val: Base)) { |
3890 | uint64_t SizeInBits = |
3891 | DL.getTypeSizeInBits(Ty: Store->getValueOperand()->getType()); |
3892 | migrateDebugInfo(OldAlloca: OldAI, /*IsSplit*/ true, OldAllocaOffsetInBits: Offset.getZExtValue() * 8, |
3893 | SliceSizeInBits: SizeInBits, OldInst: AggStore, Inst: Store, |
3894 | Dest: Store->getPointerOperand(), Value: Store->getValueOperand(), |
3895 | DL); |
3896 | } else { |
3897 | assert(at::getAssignmentMarkers(Store).empty() && |
3898 | at::getDVRAssignmentMarkers(Store).empty() && |
3899 | "AT: unexpected debug.assign linked to store through " |
3900 | "unbounded GEP" ); |
3901 | } |
3902 | LLVM_DEBUG(dbgs() << " to: " << *Store << "\n" ); |
3903 | } |
3904 | }; |
3905 | |
3906 | bool visitStoreInst(StoreInst &SI) { |
3907 | if (!SI.isSimple() || SI.getPointerOperand() != *U) |
3908 | return false; |
3909 | Value *V = SI.getValueOperand(); |
3910 | if (V->getType()->isSingleValueType()) |
3911 | return false; |
3912 | |
3913 | // We have an aggregate being stored, split it apart. |
3914 | LLVM_DEBUG(dbgs() << " original: " << SI << "\n" ); |
3915 | StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI, |
3916 | getAdjustedAlignment(I: &SI, Offset: 0), DL, IRB); |
3917 | Splitter.emitSplitOps(Ty: V->getType(), Agg&: V, Name: V->getName() + ".fca" ); |
3918 | Visited.erase(Ptr: &SI); |
3919 | // The stores replacing SI each have markers describing fragments of the |
3920 | // assignment so delete the assignment markers linked to SI. |
3921 | at::deleteAssignmentMarkers(Inst: &SI); |
3922 | SI.eraseFromParent(); |
3923 | return true; |
3924 | } |
3925 | |
3926 | bool visitBitCastInst(BitCastInst &BC) { |
3927 | enqueueUsers(I&: BC); |
3928 | return false; |
3929 | } |
3930 | |
3931 | bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { |
3932 | enqueueUsers(I&: ASC); |
3933 | return false; |
3934 | } |
3935 | |
3936 | // Unfold gep (select cond, ptr1, ptr2), idx |
3937 | // => select cond, gep(ptr1, idx), gep(ptr2, idx) |
3938 | // and gep ptr, (select cond, idx1, idx2) |
3939 | // => select cond, gep(ptr, idx1), gep(ptr, idx2) |
3940 | bool unfoldGEPSelect(GetElementPtrInst &GEPI) { |
3941 | // Check whether the GEP has exactly one select operand and all indices |
3942 | // will become constant after the transform. |
3943 | SelectInst *Sel = dyn_cast<SelectInst>(Val: GEPI.getPointerOperand()); |
3944 | for (Value *Op : GEPI.indices()) { |
3945 | if (auto *SI = dyn_cast<SelectInst>(Val: Op)) { |
3946 | if (Sel) |
3947 | return false; |
3948 | |
3949 | Sel = SI; |
3950 | if (!isa<ConstantInt>(Val: Sel->getTrueValue()) || |
3951 | !isa<ConstantInt>(Val: Sel->getFalseValue())) |
3952 | return false; |
3953 | continue; |
3954 | } |
3955 | |
3956 | if (!isa<ConstantInt>(Val: Op)) |
3957 | return false; |
3958 | } |
3959 | |
3960 | if (!Sel) |
3961 | return false; |
3962 | |
3963 | LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):\n" ; |
3964 | dbgs() << " original: " << *Sel << "\n" ; |
3965 | dbgs() << " " << GEPI << "\n" ;); |
3966 | |
3967 | auto GetNewOps = [&](Value *SelOp) { |
3968 | SmallVector<Value *> NewOps; |
3969 | for (Value *Op : GEPI.operands()) |
3970 | if (Op == Sel) |
3971 | NewOps.push_back(Elt: SelOp); |
3972 | else |
3973 | NewOps.push_back(Elt: Op); |
3974 | return NewOps; |
3975 | }; |
3976 | |
3977 | Value *True = Sel->getTrueValue(); |
3978 | Value *False = Sel->getFalseValue(); |
3979 | SmallVector<Value *> TrueOps = GetNewOps(True); |
3980 | SmallVector<Value *> FalseOps = GetNewOps(False); |
3981 | |
3982 | IRB.SetInsertPoint(&GEPI); |
3983 | GEPNoWrapFlags NW = GEPI.getNoWrapFlags(); |
3984 | |
3985 | Type *Ty = GEPI.getSourceElementType(); |
3986 | Value *NTrue = IRB.CreateGEP(Ty, Ptr: TrueOps[0], IdxList: ArrayRef(TrueOps).drop_front(), |
3987 | Name: True->getName() + ".sroa.gep" , NW); |
3988 | |
3989 | Value *NFalse = |
3990 | IRB.CreateGEP(Ty, Ptr: FalseOps[0], IdxList: ArrayRef(FalseOps).drop_front(), |
3991 | Name: False->getName() + ".sroa.gep" , NW); |
3992 | |
3993 | Value *NSel = IRB.CreateSelect(C: Sel->getCondition(), True: NTrue, False: NFalse, |
3994 | Name: Sel->getName() + ".sroa.sel" ); |
3995 | Visited.erase(Ptr: &GEPI); |
3996 | GEPI.replaceAllUsesWith(V: NSel); |
3997 | GEPI.eraseFromParent(); |
3998 | Instruction *NSelI = cast<Instruction>(Val: NSel); |
3999 | Visited.insert(Ptr: NSelI); |
4000 | enqueueUsers(I&: *NSelI); |
4001 | |
4002 | LLVM_DEBUG(dbgs() << " to: " << *NTrue << "\n" ; |
4003 | dbgs() << " " << *NFalse << "\n" ; |
4004 | dbgs() << " " << *NSel << "\n" ;); |
4005 | |
4006 | return true; |
4007 | } |
4008 | |
4009 | // Unfold gep (phi ptr1, ptr2), idx |
4010 | // => phi ((gep ptr1, idx), (gep ptr2, idx)) |
4011 | // and gep ptr, (phi idx1, idx2) |
4012 | // => phi ((gep ptr, idx1), (gep ptr, idx2)) |
4013 | bool unfoldGEPPhi(GetElementPtrInst &GEPI) { |
4014 | // To prevent infinitely expanding recursive phis, bail if the GEP pointer |
4015 | // operand (looking through the phi if it is the phi we want to unfold) is |
4016 | // an instruction besides a static alloca. |
4017 | PHINode *Phi = dyn_cast<PHINode>(Val: GEPI.getPointerOperand()); |
4018 | auto IsInvalidPointerOperand = [](Value *V) { |
4019 | if (!isa<Instruction>(Val: V)) |
4020 | return false; |
4021 | if (auto *AI = dyn_cast<AllocaInst>(Val: V)) |
4022 | return !AI->isStaticAlloca(); |
4023 | return true; |
4024 | }; |
4025 | if (Phi) { |
4026 | if (any_of(Range: Phi->operands(), P: IsInvalidPointerOperand)) |
4027 | return false; |
4028 | } else { |
4029 | if (IsInvalidPointerOperand(GEPI.getPointerOperand())) |
4030 | return false; |
4031 | } |
4032 | // Check whether the GEP has exactly one phi operand (including the pointer |
4033 | // operand) and all indices will become constant after the transform. |
4034 | for (Value *Op : GEPI.indices()) { |
4035 | if (auto *SI = dyn_cast<PHINode>(Val: Op)) { |
4036 | if (Phi) |
4037 | return false; |
4038 | |
4039 | Phi = SI; |
4040 | if (!all_of(Range: Phi->incoming_values(), |
4041 | P: [](Value *V) { return isa<ConstantInt>(Val: V); })) |
4042 | return false; |
4043 | continue; |
4044 | } |
4045 | |
4046 | if (!isa<ConstantInt>(Val: Op)) |
4047 | return false; |
4048 | } |
4049 | |
4050 | if (!Phi) |
4051 | return false; |
4052 | |
4053 | LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):\n" ; |
4054 | dbgs() << " original: " << *Phi << "\n" ; |
4055 | dbgs() << " " << GEPI << "\n" ;); |
4056 | |
4057 | auto GetNewOps = [&](Value *PhiOp) { |
4058 | SmallVector<Value *> NewOps; |
4059 | for (Value *Op : GEPI.operands()) |
4060 | if (Op == Phi) |
4061 | NewOps.push_back(Elt: PhiOp); |
4062 | else |
4063 | NewOps.push_back(Elt: Op); |
4064 | return NewOps; |
4065 | }; |
4066 | |
4067 | IRB.SetInsertPoint(Phi); |
4068 | PHINode *NewPhi = IRB.CreatePHI(Ty: GEPI.getType(), NumReservedValues: Phi->getNumIncomingValues(), |
4069 | Name: Phi->getName() + ".sroa.phi" ); |
4070 | |
4071 | Type *SourceTy = GEPI.getSourceElementType(); |
4072 | // We only handle arguments, constants, and static allocas here, so we can |
4073 | // insert GEPs at the end of the entry block. |
4074 | IRB.SetInsertPoint(GEPI.getFunction()->getEntryBlock().getTerminator()); |
4075 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { |
4076 | Value *Op = Phi->getIncomingValue(i: I); |
4077 | BasicBlock *BB = Phi->getIncomingBlock(i: I); |
4078 | Value *NewGEP; |
4079 | if (int NI = NewPhi->getBasicBlockIndex(BB); NI >= 0) { |
4080 | NewGEP = NewPhi->getIncomingValue(i: NI); |
4081 | } else { |
4082 | SmallVector<Value *> NewOps = GetNewOps(Op); |
4083 | NewGEP = |
4084 | IRB.CreateGEP(Ty: SourceTy, Ptr: NewOps[0], IdxList: ArrayRef(NewOps).drop_front(), |
4085 | Name: Phi->getName() + ".sroa.gep" , NW: GEPI.getNoWrapFlags()); |
4086 | } |
4087 | NewPhi->addIncoming(V: NewGEP, BB); |
4088 | } |
4089 | |
4090 | Visited.erase(Ptr: &GEPI); |
4091 | GEPI.replaceAllUsesWith(V: NewPhi); |
4092 | GEPI.eraseFromParent(); |
4093 | Visited.insert(Ptr: NewPhi); |
4094 | enqueueUsers(I&: *NewPhi); |
4095 | |
4096 | LLVM_DEBUG(dbgs() << " to: " ; |
4097 | for (Value *In |
4098 | : NewPhi->incoming_values()) dbgs() |
4099 | << "\n " << *In; |
4100 | dbgs() << "\n " << *NewPhi << '\n'); |
4101 | |
4102 | return true; |
4103 | } |
4104 | |
4105 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
4106 | if (unfoldGEPSelect(GEPI)) |
4107 | return true; |
4108 | |
4109 | if (unfoldGEPPhi(GEPI)) |
4110 | return true; |
4111 | |
4112 | enqueueUsers(I&: GEPI); |
4113 | return false; |
4114 | } |
4115 | |
4116 | bool visitPHINode(PHINode &PN) { |
4117 | enqueueUsers(I&: PN); |
4118 | return false; |
4119 | } |
4120 | |
4121 | bool visitSelectInst(SelectInst &SI) { |
4122 | enqueueUsers(I&: SI); |
4123 | return false; |
4124 | } |
4125 | }; |
4126 | |
4127 | } // end anonymous namespace |
4128 | |
4129 | /// Strip aggregate type wrapping. |
4130 | /// |
4131 | /// This removes no-op aggregate types wrapping an underlying type. It will |
4132 | /// strip as many layers of types as it can without changing either the type |
4133 | /// size or the allocated size. |
4134 | static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { |
4135 | if (Ty->isSingleValueType()) |
4136 | return Ty; |
4137 | |
4138 | uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue(); |
4139 | uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); |
4140 | |
4141 | Type *InnerTy; |
4142 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(Val: Ty)) { |
4143 | InnerTy = ArrTy->getElementType(); |
4144 | } else if (StructType *STy = dyn_cast<StructType>(Val: Ty)) { |
4145 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
4146 | unsigned Index = SL->getElementContainingOffset(FixedOffset: 0); |
4147 | InnerTy = STy->getElementType(N: Index); |
4148 | } else { |
4149 | return Ty; |
4150 | } |
4151 | |
4152 | if (AllocSize > DL.getTypeAllocSize(Ty: InnerTy).getFixedValue() || |
4153 | TypeSize > DL.getTypeSizeInBits(Ty: InnerTy).getFixedValue()) |
4154 | return Ty; |
4155 | |
4156 | return stripAggregateTypeWrapping(DL, Ty: InnerTy); |
4157 | } |
4158 | |
4159 | /// Try to find a partition of the aggregate type passed in for a given |
4160 | /// offset and size. |
4161 | /// |
4162 | /// This recurses through the aggregate type and tries to compute a subtype |
4163 | /// based on the offset and size. When the offset and size span a sub-section |
4164 | /// of an array, it will even compute a new array type for that sub-section, |
4165 | /// and the same for structs. |
4166 | /// |
4167 | /// Note that this routine is very strict and tries to find a partition of the |
4168 | /// type which produces the *exact* right offset and size. It is not forgiving |
4169 | /// when the size or offset cause either end of type-based partition to be off. |
4170 | /// Also, this is a best-effort routine. It is reasonable to give up and not |
4171 | /// return a type if necessary. |
4172 | static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, |
4173 | uint64_t Size) { |
4174 | if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size) |
4175 | return stripAggregateTypeWrapping(DL, Ty); |
4176 | if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() || |
4177 | (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size) |
4178 | return nullptr; |
4179 | |
4180 | if (isa<ArrayType>(Val: Ty) || isa<VectorType>(Val: Ty)) { |
4181 | Type *ElementTy; |
4182 | uint64_t TyNumElements; |
4183 | if (auto *AT = dyn_cast<ArrayType>(Val: Ty)) { |
4184 | ElementTy = AT->getElementType(); |
4185 | TyNumElements = AT->getNumElements(); |
4186 | } else { |
4187 | // FIXME: This isn't right for vectors with non-byte-sized or |
4188 | // non-power-of-two sized elements. |
4189 | auto *VT = cast<FixedVectorType>(Val: Ty); |
4190 | ElementTy = VT->getElementType(); |
4191 | TyNumElements = VT->getNumElements(); |
4192 | } |
4193 | uint64_t ElementSize = DL.getTypeAllocSize(Ty: ElementTy).getFixedValue(); |
4194 | uint64_t NumSkippedElements = Offset / ElementSize; |
4195 | if (NumSkippedElements >= TyNumElements) |
4196 | return nullptr; |
4197 | Offset -= NumSkippedElements * ElementSize; |
4198 | |
4199 | // First check if we need to recurse. |
4200 | if (Offset > 0 || Size < ElementSize) { |
4201 | // Bail if the partition ends in a different array element. |
4202 | if ((Offset + Size) > ElementSize) |
4203 | return nullptr; |
4204 | // Recurse through the element type trying to peel off offset bytes. |
4205 | return getTypePartition(DL, Ty: ElementTy, Offset, Size); |
4206 | } |
4207 | assert(Offset == 0); |
4208 | |
4209 | if (Size == ElementSize) |
4210 | return stripAggregateTypeWrapping(DL, Ty: ElementTy); |
4211 | assert(Size > ElementSize); |
4212 | uint64_t NumElements = Size / ElementSize; |
4213 | if (NumElements * ElementSize != Size) |
4214 | return nullptr; |
4215 | return ArrayType::get(ElementType: ElementTy, NumElements); |
4216 | } |
4217 | |
4218 | StructType *STy = dyn_cast<StructType>(Val: Ty); |
4219 | if (!STy) |
4220 | return nullptr; |
4221 | |
4222 | const StructLayout *SL = DL.getStructLayout(Ty: STy); |
4223 | |
4224 | if (SL->getSizeInBits().isScalable()) |
4225 | return nullptr; |
4226 | |
4227 | if (Offset >= SL->getSizeInBytes()) |
4228 | return nullptr; |
4229 | uint64_t EndOffset = Offset + Size; |
4230 | if (EndOffset > SL->getSizeInBytes()) |
4231 | return nullptr; |
4232 | |
4233 | unsigned Index = SL->getElementContainingOffset(FixedOffset: Offset); |
4234 | Offset -= SL->getElementOffset(Idx: Index); |
4235 | |
4236 | Type *ElementTy = STy->getElementType(N: Index); |
4237 | uint64_t ElementSize = DL.getTypeAllocSize(Ty: ElementTy).getFixedValue(); |
4238 | if (Offset >= ElementSize) |
4239 | return nullptr; // The offset points into alignment padding. |
4240 | |
4241 | // See if any partition must be contained by the element. |
4242 | if (Offset > 0 || Size < ElementSize) { |
4243 | if ((Offset + Size) > ElementSize) |
4244 | return nullptr; |
4245 | return getTypePartition(DL, Ty: ElementTy, Offset, Size); |
4246 | } |
4247 | assert(Offset == 0); |
4248 | |
4249 | if (Size == ElementSize) |
4250 | return stripAggregateTypeWrapping(DL, Ty: ElementTy); |
4251 | |
4252 | StructType::element_iterator EI = STy->element_begin() + Index, |
4253 | EE = STy->element_end(); |
4254 | if (EndOffset < SL->getSizeInBytes()) { |
4255 | unsigned EndIndex = SL->getElementContainingOffset(FixedOffset: EndOffset); |
4256 | if (Index == EndIndex) |
4257 | return nullptr; // Within a single element and its padding. |
4258 | |
4259 | // Don't try to form "natural" types if the elements don't line up with the |
4260 | // expected size. |
4261 | // FIXME: We could potentially recurse down through the last element in the |
4262 | // sub-struct to find a natural end point. |
4263 | if (SL->getElementOffset(Idx: EndIndex) != EndOffset) |
4264 | return nullptr; |
4265 | |
4266 | assert(Index < EndIndex); |
4267 | EE = STy->element_begin() + EndIndex; |
4268 | } |
4269 | |
4270 | // Try to build up a sub-structure. |
4271 | StructType *SubTy = |
4272 | StructType::get(Context&: STy->getContext(), Elements: ArrayRef(EI, EE), isPacked: STy->isPacked()); |
4273 | const StructLayout *SubSL = DL.getStructLayout(Ty: SubTy); |
4274 | if (Size != SubSL->getSizeInBytes()) |
4275 | return nullptr; // The sub-struct doesn't have quite the size needed. |
4276 | |
4277 | return SubTy; |
4278 | } |
4279 | |
4280 | /// Pre-split loads and stores to simplify rewriting. |
4281 | /// |
4282 | /// We want to break up the splittable load+store pairs as much as |
4283 | /// possible. This is important to do as a preprocessing step, as once we |
4284 | /// start rewriting the accesses to partitions of the alloca we lose the |
4285 | /// necessary information to correctly split apart paired loads and stores |
4286 | /// which both point into this alloca. The case to consider is something like |
4287 | /// the following: |
4288 | /// |
4289 | /// %a = alloca [12 x i8] |
4290 | /// %gep1 = getelementptr i8, ptr %a, i32 0 |
4291 | /// %gep2 = getelementptr i8, ptr %a, i32 4 |
4292 | /// %gep3 = getelementptr i8, ptr %a, i32 8 |
4293 | /// store float 0.0, ptr %gep1 |
4294 | /// store float 1.0, ptr %gep2 |
4295 | /// %v = load i64, ptr %gep1 |
4296 | /// store i64 %v, ptr %gep2 |
4297 | /// %f1 = load float, ptr %gep2 |
4298 | /// %f2 = load float, ptr %gep3 |
4299 | /// |
4300 | /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and |
4301 | /// promote everything so we recover the 2 SSA values that should have been |
4302 | /// there all along. |
4303 | /// |
4304 | /// \returns true if any changes are made. |
4305 | bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { |
4306 | LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n" ); |
4307 | |
4308 | // Track the loads and stores which are candidates for pre-splitting here, in |
4309 | // the order they first appear during the partition scan. These give stable |
4310 | // iteration order and a basis for tracking which loads and stores we |
4311 | // actually split. |
4312 | SmallVector<LoadInst *, 4> Loads; |
4313 | SmallVector<StoreInst *, 4> Stores; |
4314 | |
4315 | // We need to accumulate the splits required of each load or store where we |
4316 | // can find them via a direct lookup. This is important to cross-check loads |
4317 | // and stores against each other. We also track the slice so that we can kill |
4318 | // all the slices that end up split. |
4319 | struct SplitOffsets { |
4320 | Slice *S; |
4321 | std::vector<uint64_t> Splits; |
4322 | }; |
4323 | SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; |
4324 | |
4325 | // Track loads out of this alloca which cannot, for any reason, be pre-split. |
4326 | // This is important as we also cannot pre-split stores of those loads! |
4327 | // FIXME: This is all pretty gross. It means that we can be more aggressive |
4328 | // in pre-splitting when the load feeding the store happens to come from |
4329 | // a separate alloca. Put another way, the effectiveness of SROA would be |
4330 | // decreased by a frontend which just concatenated all of its local allocas |
4331 | // into one big flat alloca. But defeating such patterns is exactly the job |
4332 | // SROA is tasked with! Sadly, to not have this discrepancy we would have |
4333 | // change store pre-splitting to actually force pre-splitting of the load |
4334 | // that feeds it *and all stores*. That makes pre-splitting much harder, but |
4335 | // maybe it would make it more principled? |
4336 | SmallPtrSet<LoadInst *, 8> UnsplittableLoads; |
4337 | |
4338 | LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n" ); |
4339 | for (auto &P : AS.partitions()) { |
4340 | for (Slice &S : P) { |
4341 | Instruction *I = cast<Instruction>(Val: S.getUse()->getUser()); |
4342 | if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { |
4343 | // If this is a load we have to track that it can't participate in any |
4344 | // pre-splitting. If this is a store of a load we have to track that |
4345 | // that load also can't participate in any pre-splitting. |
4346 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) |
4347 | UnsplittableLoads.insert(Ptr: LI); |
4348 | else if (auto *SI = dyn_cast<StoreInst>(Val: I)) |
4349 | if (auto *LI = dyn_cast<LoadInst>(Val: SI->getValueOperand())) |
4350 | UnsplittableLoads.insert(Ptr: LI); |
4351 | continue; |
4352 | } |
4353 | assert(P.endOffset() > S.beginOffset() && |
4354 | "Empty or backwards partition!" ); |
4355 | |
4356 | // Determine if this is a pre-splittable slice. |
4357 | if (auto *LI = dyn_cast<LoadInst>(Val: I)) { |
4358 | assert(!LI->isVolatile() && "Cannot split volatile loads!" ); |
4359 | |
4360 | // The load must be used exclusively to store into other pointers for |
4361 | // us to be able to arbitrarily pre-split it. The stores must also be |
4362 | // simple to avoid changing semantics. |
4363 | auto IsLoadSimplyStored = [](LoadInst *LI) { |
4364 | for (User *LU : LI->users()) { |
4365 | auto *SI = dyn_cast<StoreInst>(Val: LU); |
4366 | if (!SI || !SI->isSimple()) |
4367 | return false; |
4368 | } |
4369 | return true; |
4370 | }; |
4371 | if (!IsLoadSimplyStored(LI)) { |
4372 | UnsplittableLoads.insert(Ptr: LI); |
4373 | continue; |
4374 | } |
4375 | |
4376 | Loads.push_back(Elt: LI); |
4377 | } else if (auto *SI = dyn_cast<StoreInst>(Val: I)) { |
4378 | if (S.getUse() != &SI->getOperandUse(i: SI->getPointerOperandIndex())) |
4379 | // Skip stores *of* pointers. FIXME: This shouldn't even be possible! |
4380 | continue; |
4381 | auto *StoredLoad = dyn_cast<LoadInst>(Val: SI->getValueOperand()); |
4382 | if (!StoredLoad || !StoredLoad->isSimple()) |
4383 | continue; |
4384 | assert(!SI->isVolatile() && "Cannot split volatile stores!" ); |
4385 | |
4386 | Stores.push_back(Elt: SI); |
4387 | } else { |
4388 | // Other uses cannot be pre-split. |
4389 | continue; |
4390 | } |
4391 | |
4392 | // Record the initial split. |
4393 | LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n" ); |
4394 | auto &Offsets = SplitOffsetsMap[I]; |
4395 | assert(Offsets.Splits.empty() && |
4396 | "Should not have splits the first time we see an instruction!" ); |
4397 | Offsets.S = &S; |
4398 | Offsets.Splits.push_back(x: P.endOffset() - S.beginOffset()); |
4399 | } |
4400 | |
4401 | // Now scan the already split slices, and add a split for any of them which |
4402 | // we're going to pre-split. |
4403 | for (Slice *S : P.splitSliceTails()) { |
4404 | auto SplitOffsetsMapI = |
4405 | SplitOffsetsMap.find(Val: cast<Instruction>(Val: S->getUse()->getUser())); |
4406 | if (SplitOffsetsMapI == SplitOffsetsMap.end()) |
4407 | continue; |
4408 | auto &Offsets = SplitOffsetsMapI->second; |
4409 | |
4410 | assert(Offsets.S == S && "Found a mismatched slice!" ); |
4411 | assert(!Offsets.Splits.empty() && |
4412 | "Cannot have an empty set of splits on the second partition!" ); |
4413 | assert(Offsets.Splits.back() == |
4414 | P.beginOffset() - Offsets.S->beginOffset() && |
4415 | "Previous split does not end where this one begins!" ); |
4416 | |
4417 | // Record each split. The last partition's end isn't needed as the size |
4418 | // of the slice dictates that. |
4419 | if (S->endOffset() > P.endOffset()) |
4420 | Offsets.Splits.push_back(x: P.endOffset() - Offsets.S->beginOffset()); |
4421 | } |
4422 | } |
4423 | |
4424 | // We may have split loads where some of their stores are split stores. For |
4425 | // such loads and stores, we can only pre-split them if their splits exactly |
4426 | // match relative to their starting offset. We have to verify this prior to |
4427 | // any rewriting. |
4428 | llvm::erase_if(C&: Stores, P: [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { |
4429 | // Lookup the load we are storing in our map of split |
4430 | // offsets. |
4431 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
4432 | // If it was completely unsplittable, then we're done, |
4433 | // and this store can't be pre-split. |
4434 | if (UnsplittableLoads.count(Ptr: LI)) |
4435 | return true; |
4436 | |
4437 | auto LoadOffsetsI = SplitOffsetsMap.find(Val: LI); |
4438 | if (LoadOffsetsI == SplitOffsetsMap.end()) |
4439 | return false; // Unrelated loads are definitely safe. |
4440 | auto &LoadOffsets = LoadOffsetsI->second; |
4441 | |
4442 | // Now lookup the store's offsets. |
4443 | auto &StoreOffsets = SplitOffsetsMap[SI]; |
4444 | |
4445 | // If the relative offsets of each split in the load and |
4446 | // store match exactly, then we can split them and we |
4447 | // don't need to remove them here. |
4448 | if (LoadOffsets.Splits == StoreOffsets.Splits) |
4449 | return false; |
4450 | |
4451 | LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" |
4452 | << " " << *LI << "\n" |
4453 | << " " << *SI << "\n" ); |
4454 | |
4455 | // We've found a store and load that we need to split |
4456 | // with mismatched relative splits. Just give up on them |
4457 | // and remove both instructions from our list of |
4458 | // candidates. |
4459 | UnsplittableLoads.insert(Ptr: LI); |
4460 | return true; |
4461 | }); |
4462 | // Now we have to go *back* through all the stores, because a later store may |
4463 | // have caused an earlier store's load to become unsplittable and if it is |
4464 | // unsplittable for the later store, then we can't rely on it being split in |
4465 | // the earlier store either. |
4466 | llvm::erase_if(C&: Stores, P: [&UnsplittableLoads](StoreInst *SI) { |
4467 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
4468 | return UnsplittableLoads.count(Ptr: LI); |
4469 | }); |
4470 | // Once we've established all the loads that can't be split for some reason, |
4471 | // filter any that made it into our list out. |
4472 | llvm::erase_if(C&: Loads, P: [&UnsplittableLoads](LoadInst *LI) { |
4473 | return UnsplittableLoads.count(Ptr: LI); |
4474 | }); |
4475 | |
4476 | // If no loads or stores are left, there is no pre-splitting to be done for |
4477 | // this alloca. |
4478 | if (Loads.empty() && Stores.empty()) |
4479 | return false; |
4480 | |
4481 | // From here on, we can't fail and will be building new accesses, so rig up |
4482 | // an IR builder. |
4483 | IRBuilderTy IRB(&AI); |
4484 | |
4485 | // Collect the new slices which we will merge into the alloca slices. |
4486 | SmallVector<Slice, 4> NewSlices; |
4487 | |
4488 | // Track any allocas we end up splitting loads and stores for so we iterate |
4489 | // on them. |
4490 | SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; |
4491 | |
4492 | // At this point, we have collected all of the loads and stores we can |
4493 | // pre-split, and the specific splits needed for them. We actually do the |
4494 | // splitting in a specific order in order to handle when one of the loads in |
4495 | // the value operand to one of the stores. |
4496 | // |
4497 | // First, we rewrite all of the split loads, and just accumulate each split |
4498 | // load in a parallel structure. We also build the slices for them and append |
4499 | // them to the alloca slices. |
4500 | SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; |
4501 | std::vector<LoadInst *> SplitLoads; |
4502 | const DataLayout &DL = AI.getDataLayout(); |
4503 | for (LoadInst *LI : Loads) { |
4504 | SplitLoads.clear(); |
4505 | |
4506 | auto &Offsets = SplitOffsetsMap[LI]; |
4507 | unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); |
4508 | assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && |
4509 | "Load must have type size equal to store size" ); |
4510 | assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && |
4511 | "Load must be >= slice size" ); |
4512 | |
4513 | uint64_t BaseOffset = Offsets.S->beginOffset(); |
4514 | assert(BaseOffset + SliceSize > BaseOffset && |
4515 | "Cannot represent alloca access size using 64-bit integers!" ); |
4516 | |
4517 | Instruction *BasePtr = cast<Instruction>(Val: LI->getPointerOperand()); |
4518 | IRB.SetInsertPoint(LI); |
4519 | |
4520 | LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n" ); |
4521 | |
4522 | uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
4523 | int Idx = 0, Size = Offsets.Splits.size(); |
4524 | for (;;) { |
4525 | auto *PartTy = Type::getIntNTy(C&: LI->getContext(), N: PartSize * 8); |
4526 | auto AS = LI->getPointerAddressSpace(); |
4527 | auto *PartPtrTy = LI->getPointerOperandType(); |
4528 | LoadInst *PLoad = IRB.CreateAlignedLoad( |
4529 | Ty: PartTy, |
4530 | Ptr: getAdjustedPtr(IRB, DL, Ptr: BasePtr, |
4531 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
4532 | PointerTy: PartPtrTy, NamePrefix: BasePtr->getName() + "." ), |
4533 | Align: getAdjustedAlignment(I: LI, Offset: PartOffset), |
4534 | /*IsVolatile*/ isVolatile: false, Name: LI->getName()); |
4535 | PLoad->copyMetadata(SrcInst: *LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
4536 | LLVMContext::MD_access_group}); |
4537 | |
4538 | // Append this load onto the list of split loads so we can find it later |
4539 | // to rewrite the stores. |
4540 | SplitLoads.push_back(x: PLoad); |
4541 | |
4542 | // Now build a new slice for the alloca. |
4543 | NewSlices.push_back( |
4544 | Elt: Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
4545 | &PLoad->getOperandUse(i: PLoad->getPointerOperandIndex()), |
4546 | /*IsSplittable*/ false)); |
4547 | LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
4548 | << ", " << NewSlices.back().endOffset() |
4549 | << "): " << *PLoad << "\n" ); |
4550 | |
4551 | // See if we've handled all the splits. |
4552 | if (Idx >= Size) |
4553 | break; |
4554 | |
4555 | // Setup the next partition. |
4556 | PartOffset = Offsets.Splits[Idx]; |
4557 | ++Idx; |
4558 | PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; |
4559 | } |
4560 | |
4561 | // Now that we have the split loads, do the slow walk over all uses of the |
4562 | // load and rewrite them as split stores, or save the split loads to use |
4563 | // below if the store is going to be split there anyways. |
4564 | bool DeferredStores = false; |
4565 | for (User *LU : LI->users()) { |
4566 | StoreInst *SI = cast<StoreInst>(Val: LU); |
4567 | if (!Stores.empty() && SplitOffsetsMap.count(Val: SI)) { |
4568 | DeferredStores = true; |
4569 | LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI |
4570 | << "\n" ); |
4571 | continue; |
4572 | } |
4573 | |
4574 | Value *StoreBasePtr = SI->getPointerOperand(); |
4575 | IRB.SetInsertPoint(SI); |
4576 | AAMDNodes AATags = SI->getAAMetadata(); |
4577 | |
4578 | LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n" ); |
4579 | |
4580 | for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { |
4581 | LoadInst *PLoad = SplitLoads[Idx]; |
4582 | uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; |
4583 | auto *PartPtrTy = SI->getPointerOperandType(); |
4584 | |
4585 | auto AS = SI->getPointerAddressSpace(); |
4586 | StoreInst *PStore = IRB.CreateAlignedStore( |
4587 | Val: PLoad, |
4588 | Ptr: getAdjustedPtr(IRB, DL, Ptr: StoreBasePtr, |
4589 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
4590 | PointerTy: PartPtrTy, NamePrefix: StoreBasePtr->getName() + "." ), |
4591 | Align: getAdjustedAlignment(I: SI, Offset: PartOffset), |
4592 | /*IsVolatile*/ isVolatile: false); |
4593 | PStore->copyMetadata(SrcInst: *SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
4594 | LLVMContext::MD_access_group, |
4595 | LLVMContext::MD_DIAssignID}); |
4596 | |
4597 | if (AATags) |
4598 | PStore->setAAMetadata( |
4599 | AATags.adjustForAccess(Offset: PartOffset, AccessTy: PLoad->getType(), DL)); |
4600 | LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n" ); |
4601 | } |
4602 | |
4603 | // We want to immediately iterate on any allocas impacted by splitting |
4604 | // this store, and we have to track any promotable alloca (indicated by |
4605 | // a direct store) as needing to be resplit because it is no longer |
4606 | // promotable. |
4607 | if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(Val: StoreBasePtr)) { |
4608 | ResplitPromotableAllocas.insert(Ptr: OtherAI); |
4609 | Worklist.insert(X: OtherAI); |
4610 | } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
4611 | Val: StoreBasePtr->stripInBoundsOffsets())) { |
4612 | Worklist.insert(X: OtherAI); |
4613 | } |
4614 | |
4615 | // Mark the original store as dead. |
4616 | DeadInsts.push_back(Elt: SI); |
4617 | } |
4618 | |
4619 | // Save the split loads if there are deferred stores among the users. |
4620 | if (DeferredStores) |
4621 | SplitLoadsMap.insert(KV: std::make_pair(x&: LI, y: std::move(SplitLoads))); |
4622 | |
4623 | // Mark the original load as dead and kill the original slice. |
4624 | DeadInsts.push_back(Elt: LI); |
4625 | Offsets.S->kill(); |
4626 | } |
4627 | |
4628 | // Second, we rewrite all of the split stores. At this point, we know that |
4629 | // all loads from this alloca have been split already. For stores of such |
4630 | // loads, we can simply look up the pre-existing split loads. For stores of |
4631 | // other loads, we split those loads first and then write split stores of |
4632 | // them. |
4633 | for (StoreInst *SI : Stores) { |
4634 | auto *LI = cast<LoadInst>(Val: SI->getValueOperand()); |
4635 | IntegerType *Ty = cast<IntegerType>(Val: LI->getType()); |
4636 | assert(Ty->getBitWidth() % 8 == 0); |
4637 | uint64_t StoreSize = Ty->getBitWidth() / 8; |
4638 | assert(StoreSize > 0 && "Cannot have a zero-sized integer store!" ); |
4639 | |
4640 | auto &Offsets = SplitOffsetsMap[SI]; |
4641 | assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && |
4642 | "Slice size should always match load size exactly!" ); |
4643 | uint64_t BaseOffset = Offsets.S->beginOffset(); |
4644 | assert(BaseOffset + StoreSize > BaseOffset && |
4645 | "Cannot represent alloca access size using 64-bit integers!" ); |
4646 | |
4647 | Value *LoadBasePtr = LI->getPointerOperand(); |
4648 | Instruction *StoreBasePtr = cast<Instruction>(Val: SI->getPointerOperand()); |
4649 | |
4650 | LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n" ); |
4651 | |
4652 | // Check whether we have an already split load. |
4653 | auto SplitLoadsMapI = SplitLoadsMap.find(Val: LI); |
4654 | std::vector<LoadInst *> *SplitLoads = nullptr; |
4655 | if (SplitLoadsMapI != SplitLoadsMap.end()) { |
4656 | SplitLoads = &SplitLoadsMapI->second; |
4657 | assert(SplitLoads->size() == Offsets.Splits.size() + 1 && |
4658 | "Too few split loads for the number of splits in the store!" ); |
4659 | } else { |
4660 | LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n" ); |
4661 | } |
4662 | |
4663 | uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); |
4664 | int Idx = 0, Size = Offsets.Splits.size(); |
4665 | for (;;) { |
4666 | auto *PartTy = Type::getIntNTy(C&: Ty->getContext(), N: PartSize * 8); |
4667 | auto *LoadPartPtrTy = LI->getPointerOperandType(); |
4668 | auto *StorePartPtrTy = SI->getPointerOperandType(); |
4669 | |
4670 | // Either lookup a split load or create one. |
4671 | LoadInst *PLoad; |
4672 | if (SplitLoads) { |
4673 | PLoad = (*SplitLoads)[Idx]; |
4674 | } else { |
4675 | IRB.SetInsertPoint(LI); |
4676 | auto AS = LI->getPointerAddressSpace(); |
4677 | PLoad = IRB.CreateAlignedLoad( |
4678 | Ty: PartTy, |
4679 | Ptr: getAdjustedPtr(IRB, DL, Ptr: LoadBasePtr, |
4680 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
4681 | PointerTy: LoadPartPtrTy, NamePrefix: LoadBasePtr->getName() + "." ), |
4682 | Align: getAdjustedAlignment(I: LI, Offset: PartOffset), |
4683 | /*IsVolatile*/ isVolatile: false, Name: LI->getName()); |
4684 | PLoad->copyMetadata(SrcInst: *LI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
4685 | LLVMContext::MD_access_group}); |
4686 | } |
4687 | |
4688 | // And store this partition. |
4689 | IRB.SetInsertPoint(SI); |
4690 | auto AS = SI->getPointerAddressSpace(); |
4691 | StoreInst *PStore = IRB.CreateAlignedStore( |
4692 | Val: PLoad, |
4693 | Ptr: getAdjustedPtr(IRB, DL, Ptr: StoreBasePtr, |
4694 | Offset: APInt(DL.getIndexSizeInBits(AS), PartOffset), |
4695 | PointerTy: StorePartPtrTy, NamePrefix: StoreBasePtr->getName() + "." ), |
4696 | Align: getAdjustedAlignment(I: SI, Offset: PartOffset), |
4697 | /*IsVolatile*/ isVolatile: false); |
4698 | PStore->copyMetadata(SrcInst: *SI, WL: {LLVMContext::MD_mem_parallel_loop_access, |
4699 | LLVMContext::MD_access_group}); |
4700 | |
4701 | // Now build a new slice for the alloca. |
4702 | NewSlices.push_back( |
4703 | Elt: Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, |
4704 | &PStore->getOperandUse(i: PStore->getPointerOperandIndex()), |
4705 | /*IsSplittable*/ false)); |
4706 | LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() |
4707 | << ", " << NewSlices.back().endOffset() |
4708 | << "): " << *PStore << "\n" ); |
4709 | if (!SplitLoads) { |
4710 | LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n" ); |
4711 | } |
4712 | |
4713 | // See if we've finished all the splits. |
4714 | if (Idx >= Size) |
4715 | break; |
4716 | |
4717 | // Setup the next partition. |
4718 | PartOffset = Offsets.Splits[Idx]; |
4719 | ++Idx; |
4720 | PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; |
4721 | } |
4722 | |
4723 | // We want to immediately iterate on any allocas impacted by splitting |
4724 | // this load, which is only relevant if it isn't a load of this alloca and |
4725 | // thus we didn't already split the loads above. We also have to keep track |
4726 | // of any promotable allocas we split loads on as they can no longer be |
4727 | // promoted. |
4728 | if (!SplitLoads) { |
4729 | if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(Val: LoadBasePtr)) { |
4730 | assert(OtherAI != &AI && "We can't re-split our own alloca!" ); |
4731 | ResplitPromotableAllocas.insert(Ptr: OtherAI); |
4732 | Worklist.insert(X: OtherAI); |
4733 | } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( |
4734 | Val: LoadBasePtr->stripInBoundsOffsets())) { |
4735 | assert(OtherAI != &AI && "We can't re-split our own alloca!" ); |
4736 | Worklist.insert(X: OtherAI); |
4737 | } |
4738 | } |
4739 | |
4740 | // Mark the original store as dead now that we've split it up and kill its |
4741 | // slice. Note that we leave the original load in place unless this store |
4742 | // was its only use. It may in turn be split up if it is an alloca load |
4743 | // for some other alloca, but it may be a normal load. This may introduce |
4744 | // redundant loads, but where those can be merged the rest of the optimizer |
4745 | // should handle the merging, and this uncovers SSA splits which is more |
4746 | // important. In practice, the original loads will almost always be fully |
4747 | // split and removed eventually, and the splits will be merged by any |
4748 | // trivial CSE, including instcombine. |
4749 | if (LI->hasOneUse()) { |
4750 | assert(*LI->user_begin() == SI && "Single use isn't this store!" ); |
4751 | DeadInsts.push_back(Elt: LI); |
4752 | } |
4753 | DeadInsts.push_back(Elt: SI); |
4754 | Offsets.S->kill(); |
4755 | } |
4756 | |
4757 | // Remove the killed slices that have ben pre-split. |
4758 | llvm::erase_if(C&: AS, P: [](const Slice &S) { return S.isDead(); }); |
4759 | |
4760 | // Insert our new slices. This will sort and merge them into the sorted |
4761 | // sequence. |
4762 | AS.insert(NewSlices); |
4763 | |
4764 | LLVM_DEBUG(dbgs() << " Pre-split slices:\n" ); |
4765 | #ifndef NDEBUG |
4766 | for (auto I = AS.begin(), E = AS.end(); I != E; ++I) |
4767 | LLVM_DEBUG(AS.print(dbgs(), I, " " )); |
4768 | #endif |
4769 | |
4770 | // Finally, don't try to promote any allocas that new require re-splitting. |
4771 | // They have already been added to the worklist above. |
4772 | llvm::erase_if(C&: PromotableAllocas, P: [&](AllocaInst *AI) { |
4773 | return ResplitPromotableAllocas.count(Ptr: AI); |
4774 | }); |
4775 | |
4776 | return true; |
4777 | } |
4778 | |
4779 | /// Rewrite an alloca partition's users. |
4780 | /// |
4781 | /// This routine drives both of the rewriting goals of the SROA pass. It tries |
4782 | /// to rewrite uses of an alloca partition to be conducive for SSA value |
4783 | /// promotion. If the partition needs a new, more refined alloca, this will |
4784 | /// build that new alloca, preserving as much type information as possible, and |
4785 | /// rewrite the uses of the old alloca to point at the new one and have the |
4786 | /// appropriate new offsets. It also evaluates how successful the rewrite was |
4787 | /// at enabling promotion and if it was successful queues the alloca to be |
4788 | /// promoted. |
4789 | AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, |
4790 | Partition &P) { |
4791 | // Try to compute a friendly type for this partition of the alloca. This |
4792 | // won't always succeed, in which case we fall back to a legal integer type |
4793 | // or an i8 array of an appropriate size. |
4794 | Type *SliceTy = nullptr; |
4795 | VectorType *SliceVecTy = nullptr; |
4796 | const DataLayout &DL = AI.getDataLayout(); |
4797 | std::pair<Type *, IntegerType *> CommonUseTy = |
4798 | findCommonType(B: P.begin(), E: P.end(), EndOffset: P.endOffset()); |
4799 | // Do all uses operate on the same type? |
4800 | if (CommonUseTy.first) |
4801 | if (DL.getTypeAllocSize(Ty: CommonUseTy.first).getFixedValue() >= P.size()) { |
4802 | SliceTy = CommonUseTy.first; |
4803 | SliceVecTy = dyn_cast<VectorType>(Val: SliceTy); |
4804 | } |
4805 | // If not, can we find an appropriate subtype in the original allocated type? |
4806 | if (!SliceTy) |
4807 | if (Type *TypePartitionTy = getTypePartition(DL, Ty: AI.getAllocatedType(), |
4808 | Offset: P.beginOffset(), Size: P.size())) |
4809 | SliceTy = TypePartitionTy; |
4810 | |
4811 | // If still not, can we use the largest bitwidth integer type used? |
4812 | if (!SliceTy && CommonUseTy.second) |
4813 | if (DL.getTypeAllocSize(Ty: CommonUseTy.second).getFixedValue() >= P.size()) { |
4814 | SliceTy = CommonUseTy.second; |
4815 | SliceVecTy = dyn_cast<VectorType>(Val: SliceTy); |
4816 | } |
4817 | if ((!SliceTy || (SliceTy->isArrayTy() && |
4818 | SliceTy->getArrayElementType()->isIntegerTy())) && |
4819 | DL.isLegalInteger(Width: P.size() * 8)) { |
4820 | SliceTy = Type::getIntNTy(C&: *C, N: P.size() * 8); |
4821 | } |
4822 | |
4823 | // If the common use types are not viable for promotion then attempt to find |
4824 | // another type that is viable. |
4825 | if (SliceVecTy && !checkVectorTypeForPromotion(P, VTy: SliceVecTy, DL)) |
4826 | if (Type *TypePartitionTy = getTypePartition(DL, Ty: AI.getAllocatedType(), |
4827 | Offset: P.beginOffset(), Size: P.size())) { |
4828 | VectorType *TypePartitionVecTy = dyn_cast<VectorType>(Val: TypePartitionTy); |
4829 | if (TypePartitionVecTy && |
4830 | checkVectorTypeForPromotion(P, VTy: TypePartitionVecTy, DL)) |
4831 | SliceTy = TypePartitionTy; |
4832 | } |
4833 | |
4834 | if (!SliceTy) |
4835 | SliceTy = ArrayType::get(ElementType: Type::getInt8Ty(C&: *C), NumElements: P.size()); |
4836 | assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size()); |
4837 | |
4838 | bool IsIntegerPromotable = isIntegerWideningViable(P, AllocaTy: SliceTy, DL); |
4839 | |
4840 | VectorType *VecTy = |
4841 | IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); |
4842 | if (VecTy) |
4843 | SliceTy = VecTy; |
4844 | |
4845 | // Check for the case where we're going to rewrite to a new alloca of the |
4846 | // exact same type as the original, and with the same access offsets. In that |
4847 | // case, re-use the existing alloca, but still run through the rewriter to |
4848 | // perform phi and select speculation. |
4849 | // P.beginOffset() can be non-zero even with the same type in a case with |
4850 | // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). |
4851 | AllocaInst *NewAI; |
4852 | if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { |
4853 | NewAI = &AI; |
4854 | // FIXME: We should be able to bail at this point with "nothing changed". |
4855 | // FIXME: We might want to defer PHI speculation until after here. |
4856 | // FIXME: return nullptr; |
4857 | } else { |
4858 | // Make sure the alignment is compatible with P.beginOffset(). |
4859 | const Align Alignment = commonAlignment(A: AI.getAlign(), Offset: P.beginOffset()); |
4860 | // If we will get at least this much alignment from the type alone, leave |
4861 | // the alloca's alignment unconstrained. |
4862 | const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(Ty: SliceTy); |
4863 | NewAI = new AllocaInst( |
4864 | SliceTy, AI.getAddressSpace(), nullptr, |
4865 | IsUnconstrained ? DL.getPrefTypeAlign(Ty: SliceTy) : Alignment, |
4866 | AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), |
4867 | AI.getIterator()); |
4868 | // Copy the old AI debug location over to the new one. |
4869 | NewAI->setDebugLoc(AI.getDebugLoc()); |
4870 | ++NumNewAllocas; |
4871 | } |
4872 | |
4873 | LLVM_DEBUG(dbgs() << "Rewriting alloca partition " << "[" << P.beginOffset() |
4874 | << "," << P.endOffset() << ") to: " << *NewAI << "\n" ); |
4875 | |
4876 | // Track the high watermark on the worklist as it is only relevant for |
4877 | // promoted allocas. We will reset it to this point if the alloca is not in |
4878 | // fact scheduled for promotion. |
4879 | unsigned PPWOldSize = PostPromotionWorklist.size(); |
4880 | unsigned NumUses = 0; |
4881 | SmallSetVector<PHINode *, 8> PHIUsers; |
4882 | SmallSetVector<SelectInst *, 8> SelectUsers; |
4883 | |
4884 | AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), |
4885 | P.endOffset(), IsIntegerPromotable, VecTy, |
4886 | PHIUsers, SelectUsers); |
4887 | bool Promotable = true; |
4888 | for (Slice *S : P.splitSliceTails()) { |
4889 | Promotable &= Rewriter.visit(I: S); |
4890 | ++NumUses; |
4891 | } |
4892 | for (Slice &S : P) { |
4893 | Promotable &= Rewriter.visit(I: &S); |
4894 | ++NumUses; |
4895 | } |
4896 | |
4897 | NumAllocaPartitionUses += NumUses; |
4898 | MaxUsesPerAllocaPartition.updateMax(V: NumUses); |
4899 | |
4900 | // Now that we've processed all the slices in the new partition, check if any |
4901 | // PHIs or Selects would block promotion. |
4902 | for (PHINode *PHI : PHIUsers) |
4903 | if (!isSafePHIToSpeculate(PN&: *PHI)) { |
4904 | Promotable = false; |
4905 | PHIUsers.clear(); |
4906 | SelectUsers.clear(); |
4907 | break; |
4908 | } |
4909 | |
4910 | SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2> |
4911 | NewSelectsToRewrite; |
4912 | NewSelectsToRewrite.reserve(N: SelectUsers.size()); |
4913 | for (SelectInst *Sel : SelectUsers) { |
4914 | std::optional<RewriteableMemOps> Ops = |
4915 | isSafeSelectToSpeculate(SI&: *Sel, PreserveCFG); |
4916 | if (!Ops) { |
4917 | Promotable = false; |
4918 | PHIUsers.clear(); |
4919 | SelectUsers.clear(); |
4920 | NewSelectsToRewrite.clear(); |
4921 | break; |
4922 | } |
4923 | NewSelectsToRewrite.emplace_back(Args: std::make_pair(x&: Sel, y&: *Ops)); |
4924 | } |
4925 | |
4926 | if (Promotable) { |
4927 | for (Use *U : AS.getDeadUsesIfPromotable()) { |
4928 | auto *OldInst = dyn_cast<Instruction>(Val: U->get()); |
4929 | Value::dropDroppableUse(U&: *U); |
4930 | if (OldInst) |
4931 | if (isInstructionTriviallyDead(I: OldInst)) |
4932 | DeadInsts.push_back(Elt: OldInst); |
4933 | } |
4934 | if (PHIUsers.empty() && SelectUsers.empty()) { |
4935 | // Promote the alloca. |
4936 | PromotableAllocas.push_back(x: NewAI); |
4937 | } else { |
4938 | // If we have either PHIs or Selects to speculate, add them to those |
4939 | // worklists and re-queue the new alloca so that we promote in on the |
4940 | // next iteration. |
4941 | for (PHINode *PHIUser : PHIUsers) |
4942 | SpeculatablePHIs.insert(X: PHIUser); |
4943 | SelectsToRewrite.reserve(NumEntries: SelectsToRewrite.size() + |
4944 | NewSelectsToRewrite.size()); |
4945 | for (auto &&KV : llvm::make_range( |
4946 | x: std::make_move_iterator(i: NewSelectsToRewrite.begin()), |
4947 | y: std::make_move_iterator(i: NewSelectsToRewrite.end()))) |
4948 | SelectsToRewrite.insert(KV: std::move(KV)); |
4949 | Worklist.insert(X: NewAI); |
4950 | } |
4951 | } else { |
4952 | // Drop any post-promotion work items if promotion didn't happen. |
4953 | while (PostPromotionWorklist.size() > PPWOldSize) |
4954 | PostPromotionWorklist.pop_back(); |
4955 | |
4956 | // We couldn't promote and we didn't create a new partition, nothing |
4957 | // happened. |
4958 | if (NewAI == &AI) |
4959 | return nullptr; |
4960 | |
4961 | // If we can't promote the alloca, iterate on it to check for new |
4962 | // refinements exposed by splitting the current alloca. Don't iterate on an |
4963 | // alloca which didn't actually change and didn't get promoted. |
4964 | Worklist.insert(X: NewAI); |
4965 | } |
4966 | |
4967 | return NewAI; |
4968 | } |
4969 | |
4970 | // There isn't a shared interface to get the "address" parts out of a |
4971 | // dbg.declare and dbg.assign, so provide some wrappers now for |
4972 | // both debug intrinsics and records. |
4973 | const Value *getAddress(const DbgVariableIntrinsic *DVI) { |
4974 | if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DVI)) |
4975 | return DAI->getAddress(); |
4976 | return cast<DbgDeclareInst>(Val: DVI)->getAddress(); |
4977 | } |
4978 | |
4979 | const Value *getAddress(const DbgVariableRecord *DVR) { |
4980 | assert(DVR->getType() == DbgVariableRecord::LocationType::Declare || |
4981 | DVR->getType() == DbgVariableRecord::LocationType::Assign); |
4982 | return DVR->getAddress(); |
4983 | } |
4984 | |
4985 | bool isKillAddress(const DbgVariableIntrinsic *DVI) { |
4986 | if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DVI)) |
4987 | return DAI->isKillAddress(); |
4988 | return cast<DbgDeclareInst>(Val: DVI)->isKillLocation(); |
4989 | } |
4990 | |
4991 | bool isKillAddress(const DbgVariableRecord *DVR) { |
4992 | assert(DVR->getType() == DbgVariableRecord::LocationType::Declare || |
4993 | DVR->getType() == DbgVariableRecord::LocationType::Assign); |
4994 | if (DVR->getType() == DbgVariableRecord::LocationType::Assign) |
4995 | return DVR->isKillAddress(); |
4996 | return DVR->isKillLocation(); |
4997 | } |
4998 | |
4999 | const DIExpression *getAddressExpression(const DbgVariableIntrinsic *DVI) { |
5000 | if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: DVI)) |
5001 | return DAI->getAddressExpression(); |
5002 | return cast<DbgDeclareInst>(Val: DVI)->getExpression(); |
5003 | } |
5004 | |
5005 | const DIExpression *getAddressExpression(const DbgVariableRecord *DVR) { |
5006 | assert(DVR->getType() == DbgVariableRecord::LocationType::Declare || |
5007 | DVR->getType() == DbgVariableRecord::LocationType::Assign); |
5008 | if (DVR->getType() == DbgVariableRecord::LocationType::Assign) |
5009 | return DVR->getAddressExpression(); |
5010 | return DVR->getExpression(); |
5011 | } |
5012 | |
5013 | /// Create or replace an existing fragment in a DIExpression with \p Frag. |
5014 | /// If the expression already contains a DW_OP_LLVM_extract_bits_[sz]ext |
5015 | /// operation, add \p BitExtractOffset to the offset part. |
5016 | /// |
5017 | /// Returns the new expression, or nullptr if this fails (see details below). |
5018 | /// |
5019 | /// This function is similar to DIExpression::createFragmentExpression except |
5020 | /// for 3 important distinctions: |
5021 | /// 1. The new fragment isn't relative to an existing fragment. |
5022 | /// 2. It assumes the computed location is a memory location. This means we |
5023 | /// don't need to perform checks that creating the fragment preserves the |
5024 | /// expression semantics. |
5025 | /// 3. Existing extract_bits are modified independently of fragment changes |
5026 | /// using \p BitExtractOffset. A change to the fragment offset or size |
5027 | /// may affect a bit extract. But a bit extract offset can change |
5028 | /// independently of the fragment dimensions. |
5029 | /// |
5030 | /// Returns the new expression, or nullptr if one couldn't be created. |
5031 | /// Ideally this is only used to signal that a bit-extract has become |
5032 | /// zero-sized (and thus the new debug record has no size and can be |
5033 | /// dropped), however, it fails for other reasons too - see the FIXME below. |
5034 | /// |
5035 | /// FIXME: To keep the change that introduces this function NFC it bails |
5036 | /// in some situations unecessarily, e.g. when fragment and bit extract |
5037 | /// sizes differ. |
5038 | static DIExpression *createOrReplaceFragment(const DIExpression *Expr, |
5039 | DIExpression::FragmentInfo Frag, |
5040 | int64_t ) { |
5041 | SmallVector<uint64_t, 8> Ops; |
5042 | bool HasFragment = false; |
5043 | bool = false; |
5044 | |
5045 | for (auto &Op : Expr->expr_ops()) { |
5046 | if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { |
5047 | HasFragment = true; |
5048 | continue; |
5049 | } |
5050 | if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || |
5051 | Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { |
5052 | HasBitExtract = true; |
5053 | int64_t = Op.getArg(I: 0); |
5054 | int64_t = Op.getArg(I: 1); |
5055 | |
5056 | // DIExpression::createFragmentExpression doesn't know how to handle |
5057 | // a fragment that is smaller than the extract. Copy the behaviour |
5058 | // (bail) to avoid non-NFC changes. |
5059 | // FIXME: Don't do this. |
5060 | if (Frag.SizeInBits < uint64_t(ExtractSizeInBits)) |
5061 | return nullptr; |
5062 | |
5063 | assert(BitExtractOffset <= 0); |
5064 | int64_t AdjustedOffset = ExtractOffsetInBits + BitExtractOffset; |
5065 | |
5066 | // DIExpression::createFragmentExpression doesn't know what to do |
5067 | // if the new extract starts "outside" the existing one. Copy the |
5068 | // behaviour (bail) to avoid non-NFC changes. |
5069 | // FIXME: Don't do this. |
5070 | if (AdjustedOffset < 0) |
5071 | return nullptr; |
5072 | |
5073 | Ops.push_back(Elt: Op.getOp()); |
5074 | Ops.push_back(Elt: std::max<int64_t>(a: 0, b: AdjustedOffset)); |
5075 | Ops.push_back(Elt: ExtractSizeInBits); |
5076 | continue; |
5077 | } |
5078 | Op.appendToVector(V&: Ops); |
5079 | } |
5080 | |
5081 | // Unsupported by createFragmentExpression, so don't support it here yet to |
5082 | // preserve NFC-ness. |
5083 | if (HasFragment && HasBitExtract) |
5084 | return nullptr; |
5085 | |
5086 | if (!HasBitExtract) { |
5087 | Ops.push_back(Elt: dwarf::DW_OP_LLVM_fragment); |
5088 | Ops.push_back(Elt: Frag.OffsetInBits); |
5089 | Ops.push_back(Elt: Frag.SizeInBits); |
5090 | } |
5091 | return DIExpression::get(Context&: Expr->getContext(), Elements: Ops); |
5092 | } |
5093 | |
5094 | /// Insert a new dbg.declare. |
5095 | /// \p Orig Original to copy debug loc and variable from. |
5096 | /// \p NewAddr Location's new base address. |
5097 | /// \p NewAddrExpr New expression to apply to address. |
5098 | /// \p BeforeInst Insert position. |
5099 | /// \p NewFragment New fragment (absolute, non-relative). |
5100 | /// \p BitExtractAdjustment Offset to apply to any extract_bits op. |
5101 | static void |
5102 | insertNewDbgInst(DIBuilder &DIB, DbgDeclareInst *Orig, AllocaInst *NewAddr, |
5103 | DIExpression *NewAddrExpr, Instruction *BeforeInst, |
5104 | std::optional<DIExpression::FragmentInfo> NewFragment, |
5105 | int64_t ) { |
5106 | if (NewFragment) |
5107 | NewAddrExpr = createOrReplaceFragment(Expr: NewAddrExpr, Frag: *NewFragment, |
5108 | BitExtractOffset: BitExtractAdjustment); |
5109 | if (!NewAddrExpr) |
5110 | return; |
5111 | |
5112 | DIB.insertDeclare(Storage: NewAddr, VarInfo: Orig->getVariable(), Expr: NewAddrExpr, |
5113 | DL: Orig->getDebugLoc(), InsertBefore: BeforeInst); |
5114 | } |
5115 | |
5116 | /// Insert a new dbg.assign. |
5117 | /// \p Orig Original to copy debug loc, variable, value and value expression |
5118 | /// from. |
5119 | /// \p NewAddr Location's new base address. |
5120 | /// \p NewAddrExpr New expression to apply to address. |
5121 | /// \p BeforeInst Insert position. |
5122 | /// \p NewFragment New fragment (absolute, non-relative). |
5123 | /// \p BitExtractAdjustment Offset to apply to any extract_bits op. |
5124 | static void |
5125 | insertNewDbgInst(DIBuilder &DIB, DbgAssignIntrinsic *Orig, AllocaInst *NewAddr, |
5126 | DIExpression *NewAddrExpr, Instruction *BeforeInst, |
5127 | std::optional<DIExpression::FragmentInfo> NewFragment, |
5128 | int64_t ) { |
5129 | // DIBuilder::insertDbgAssign will insert the #dbg_assign after NewAddr. |
5130 | (void)BeforeInst; |
5131 | |
5132 | // A dbg.assign puts fragment info in the value expression only. The address |
5133 | // expression has already been built: NewAddrExpr. |
5134 | DIExpression *NewFragmentExpr = Orig->getExpression(); |
5135 | if (NewFragment) |
5136 | NewFragmentExpr = createOrReplaceFragment(Expr: NewFragmentExpr, Frag: *NewFragment, |
5137 | BitExtractOffset: BitExtractAdjustment); |
5138 | if (!NewFragmentExpr) |
5139 | return; |
5140 | |
5141 | // Apply a DIAssignID to the store if it doesn't already have it. |
5142 | if (!NewAddr->hasMetadata(KindID: LLVMContext::MD_DIAssignID)) { |
5143 | NewAddr->setMetadata(KindID: LLVMContext::MD_DIAssignID, |
5144 | Node: DIAssignID::getDistinct(Context&: NewAddr->getContext())); |
5145 | } |
5146 | |
5147 | Instruction *NewAssign = |
5148 | DIB.insertDbgAssign(LinkedInstr: NewAddr, Val: Orig->getValue(), SrcVar: Orig->getVariable(), |
5149 | ValExpr: NewFragmentExpr, Addr: NewAddr, AddrExpr: NewAddrExpr, |
5150 | DL: Orig->getDebugLoc()) |
5151 | .get<Instruction *>(); |
5152 | LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign << "\n" ); |
5153 | (void)NewAssign; |
5154 | } |
5155 | |
5156 | /// Insert a new DbgRecord. |
5157 | /// \p Orig Original to copy record type, debug loc and variable from, and |
5158 | /// additionally value and value expression for dbg_assign records. |
5159 | /// \p NewAddr Location's new base address. |
5160 | /// \p NewAddrExpr New expression to apply to address. |
5161 | /// \p BeforeInst Insert position. |
5162 | /// \p NewFragment New fragment (absolute, non-relative). |
5163 | /// \p BitExtractAdjustment Offset to apply to any extract_bits op. |
5164 | static void |
5165 | insertNewDbgInst(DIBuilder &DIB, DbgVariableRecord *Orig, AllocaInst *NewAddr, |
5166 | DIExpression *NewAddrExpr, Instruction *BeforeInst, |
5167 | std::optional<DIExpression::FragmentInfo> NewFragment, |
5168 | int64_t ) { |
5169 | (void)DIB; |
5170 | |
5171 | // A dbg_assign puts fragment info in the value expression only. The address |
5172 | // expression has already been built: NewAddrExpr. A dbg_declare puts the |
5173 | // new fragment info into NewAddrExpr (as it only has one expression). |
5174 | DIExpression *NewFragmentExpr = |
5175 | Orig->isDbgAssign() ? Orig->getExpression() : NewAddrExpr; |
5176 | if (NewFragment) |
5177 | NewFragmentExpr = createOrReplaceFragment(Expr: NewFragmentExpr, Frag: *NewFragment, |
5178 | BitExtractOffset: BitExtractAdjustment); |
5179 | if (!NewFragmentExpr) |
5180 | return; |
5181 | |
5182 | if (Orig->isDbgDeclare()) { |
5183 | DbgVariableRecord *DVR = DbgVariableRecord::createDVRDeclare( |
5184 | Address: NewAddr, DV: Orig->getVariable(), Expr: NewFragmentExpr, DI: Orig->getDebugLoc()); |
5185 | BeforeInst->getParent()->insertDbgRecordBefore(DR: DVR, |
5186 | Here: BeforeInst->getIterator()); |
5187 | return; |
5188 | } |
5189 | |
5190 | // Apply a DIAssignID to the store if it doesn't already have it. |
5191 | if (!NewAddr->hasMetadata(KindID: LLVMContext::MD_DIAssignID)) { |
5192 | NewAddr->setMetadata(KindID: LLVMContext::MD_DIAssignID, |
5193 | Node: DIAssignID::getDistinct(Context&: NewAddr->getContext())); |
5194 | } |
5195 | |
5196 | DbgVariableRecord *NewAssign = DbgVariableRecord::createLinkedDVRAssign( |
5197 | LinkedInstr: NewAddr, Val: Orig->getValue(), Variable: Orig->getVariable(), Expression: NewFragmentExpr, Address: NewAddr, |
5198 | AddressExpression: NewAddrExpr, DI: Orig->getDebugLoc()); |
5199 | LLVM_DEBUG(dbgs() << "Created new DVRAssign: " << *NewAssign << "\n" ); |
5200 | (void)NewAssign; |
5201 | } |
5202 | |
5203 | /// Walks the slices of an alloca and form partitions based on them, |
5204 | /// rewriting each of their uses. |
5205 | bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { |
5206 | if (AS.begin() == AS.end()) |
5207 | return false; |
5208 | |
5209 | unsigned NumPartitions = 0; |
5210 | bool Changed = false; |
5211 | const DataLayout &DL = AI.getModule()->getDataLayout(); |
5212 | |
5213 | // First try to pre-split loads and stores. |
5214 | Changed |= presplitLoadsAndStores(AI, AS); |
5215 | |
5216 | // Now that we have identified any pre-splitting opportunities, |
5217 | // mark loads and stores unsplittable except for the following case. |
5218 | // We leave a slice splittable if all other slices are disjoint or fully |
5219 | // included in the slice, such as whole-alloca loads and stores. |
5220 | // If we fail to split these during pre-splitting, we want to force them |
5221 | // to be rewritten into a partition. |
5222 | bool IsSorted = true; |
5223 | |
5224 | uint64_t AllocaSize = |
5225 | DL.getTypeAllocSize(Ty: AI.getAllocatedType()).getFixedValue(); |
5226 | const uint64_t MaxBitVectorSize = 1024; |
5227 | if (AllocaSize <= MaxBitVectorSize) { |
5228 | // If a byte boundary is included in any load or store, a slice starting or |
5229 | // ending at the boundary is not splittable. |
5230 | SmallBitVector SplittableOffset(AllocaSize + 1, true); |
5231 | for (Slice &S : AS) |
5232 | for (unsigned O = S.beginOffset() + 1; |
5233 | O < S.endOffset() && O < AllocaSize; O++) |
5234 | SplittableOffset.reset(Idx: O); |
5235 | |
5236 | for (Slice &S : AS) { |
5237 | if (!S.isSplittable()) |
5238 | continue; |
5239 | |
5240 | if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && |
5241 | (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) |
5242 | continue; |
5243 | |
5244 | if (isa<LoadInst>(Val: S.getUse()->getUser()) || |
5245 | isa<StoreInst>(Val: S.getUse()->getUser())) { |
5246 | S.makeUnsplittable(); |
5247 | IsSorted = false; |
5248 | } |
5249 | } |
5250 | } else { |
5251 | // We only allow whole-alloca splittable loads and stores |
5252 | // for a large alloca to avoid creating too large BitVector. |
5253 | for (Slice &S : AS) { |
5254 | if (!S.isSplittable()) |
5255 | continue; |
5256 | |
5257 | if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) |
5258 | continue; |
5259 | |
5260 | if (isa<LoadInst>(Val: S.getUse()->getUser()) || |
5261 | isa<StoreInst>(Val: S.getUse()->getUser())) { |
5262 | S.makeUnsplittable(); |
5263 | IsSorted = false; |
5264 | } |
5265 | } |
5266 | } |
5267 | |
5268 | if (!IsSorted) |
5269 | llvm::stable_sort(Range&: AS); |
5270 | |
5271 | /// Describes the allocas introduced by rewritePartition in order to migrate |
5272 | /// the debug info. |
5273 | struct Fragment { |
5274 | AllocaInst *Alloca; |
5275 | uint64_t Offset; |
5276 | uint64_t Size; |
5277 | Fragment(AllocaInst *AI, uint64_t O, uint64_t S) |
5278 | : Alloca(AI), Offset(O), Size(S) {} |
5279 | }; |
5280 | SmallVector<Fragment, 4> Fragments; |
5281 | |
5282 | // Rewrite each partition. |
5283 | for (auto &P : AS.partitions()) { |
5284 | if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { |
5285 | Changed = true; |
5286 | if (NewAI != &AI) { |
5287 | uint64_t SizeOfByte = 8; |
5288 | uint64_t AllocaSize = |
5289 | DL.getTypeSizeInBits(Ty: NewAI->getAllocatedType()).getFixedValue(); |
5290 | // Don't include any padding. |
5291 | uint64_t Size = std::min(a: AllocaSize, b: P.size() * SizeOfByte); |
5292 | Fragments.push_back( |
5293 | Elt: Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); |
5294 | } |
5295 | } |
5296 | ++NumPartitions; |
5297 | } |
5298 | |
5299 | NumAllocaPartitions += NumPartitions; |
5300 | MaxPartitionsPerAlloca.updateMax(V: NumPartitions); |
5301 | |
5302 | // Migrate debug information from the old alloca to the new alloca(s) |
5303 | // and the individual partitions. |
5304 | auto MigrateOne = [&](auto *DbgVariable) { |
5305 | // Can't overlap with undef memory. |
5306 | if (isKillAddress(DbgVariable)) |
5307 | return; |
5308 | |
5309 | const Value *DbgPtr = getAddress(DbgVariable); |
5310 | DIExpression::FragmentInfo VarFrag = |
5311 | DbgVariable->getFragmentOrEntireVariable(); |
5312 | // Get the address expression constant offset if one exists and the ops |
5313 | // that come after it. |
5314 | int64_t CurrentExprOffsetInBytes = 0; |
5315 | SmallVector<uint64_t> PostOffsetOps; |
5316 | if (!getAddressExpression(DbgVariable) |
5317 | ->extractLeadingOffset(CurrentExprOffsetInBytes, PostOffsetOps)) |
5318 | return; // Couldn't interpret this DIExpression - drop the var. |
5319 | |
5320 | // Offset defined by a DW_OP_LLVM_extract_bits_[sz]ext. |
5321 | int64_t = 0; |
5322 | for (auto Op : getAddressExpression(DbgVariable)->expr_ops()) { |
5323 | if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || |
5324 | Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { |
5325 | ExtractOffsetInBits = Op.getArg(0); |
5326 | break; |
5327 | } |
5328 | } |
5329 | |
5330 | DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); |
5331 | for (auto Fragment : Fragments) { |
5332 | int64_t OffsetFromLocationInBits; |
5333 | std::optional<DIExpression::FragmentInfo> NewDbgFragment; |
5334 | // Find the variable fragment that the new alloca slice covers. |
5335 | // Drop debug info for this variable fragment if we can't compute an |
5336 | // intersect between it and the alloca slice. |
5337 | if (!DIExpression::calculateFragmentIntersect( |
5338 | DL, SliceStart: &AI, SliceOffsetInBits: Fragment.Offset, SliceSizeInBits: Fragment.Size, DbgPtr, |
5339 | DbgPtrOffsetInBits: CurrentExprOffsetInBytes * 8, DbgExtractOffsetInBits: ExtractOffsetInBits, VarFrag, |
5340 | Result&: NewDbgFragment, OffsetFromLocationInBits)) |
5341 | continue; // Do not migrate this fragment to this slice. |
5342 | |
5343 | // Zero sized fragment indicates there's no intersect between the variable |
5344 | // fragment and the alloca slice. Skip this slice for this variable |
5345 | // fragment. |
5346 | if (NewDbgFragment && !NewDbgFragment->SizeInBits) |
5347 | continue; // Do not migrate this fragment to this slice. |
5348 | |
5349 | // No fragment indicates DbgVariable's variable or fragment exactly |
5350 | // overlaps the slice; copy its fragment (or nullopt if there isn't one). |
5351 | if (!NewDbgFragment) |
5352 | NewDbgFragment = DbgVariable->getFragment(); |
5353 | |
5354 | // Reduce the new expression offset by the bit-extract offset since |
5355 | // we'll be keeping that. |
5356 | int64_t OffestFromNewAllocaInBits = |
5357 | OffsetFromLocationInBits - ExtractOffsetInBits; |
5358 | // We need to adjust an existing bit extract if the offset expression |
5359 | // can't eat the slack (i.e., if the new offset would be negative). |
5360 | int64_t = |
5361 | std::min<int64_t>(a: 0, b: OffestFromNewAllocaInBits); |
5362 | // The magnitude of a negative value indicates the number of bits into |
5363 | // the existing variable fragment that the memory region begins. The new |
5364 | // variable fragment already excludes those bits - the new DbgPtr offset |
5365 | // only needs to be applied if it's positive. |
5366 | OffestFromNewAllocaInBits = |
5367 | std::max(a: int64_t(0), b: OffestFromNewAllocaInBits); |
5368 | |
5369 | // Rebuild the expression: |
5370 | // {Offset(OffestFromNewAllocaInBits), PostOffsetOps, NewDbgFragment} |
5371 | // Add NewDbgFragment later, because dbg.assigns don't want it in the |
5372 | // address expression but the value expression instead. |
5373 | DIExpression *NewExpr = DIExpression::get(Context&: AI.getContext(), Elements: PostOffsetOps); |
5374 | if (OffestFromNewAllocaInBits > 0) { |
5375 | int64_t OffsetInBytes = (OffestFromNewAllocaInBits + 7) / 8; |
5376 | NewExpr = DIExpression::prepend(Expr: NewExpr, /*flags=*/Flags: 0, Offset: OffsetInBytes); |
5377 | } |
5378 | |
5379 | // Remove any existing intrinsics on the new alloca describing |
5380 | // the variable fragment. |
5381 | auto RemoveOne = [DbgVariable](auto *OldDII) { |
5382 | auto SameVariableFragment = [](const auto *LHS, const auto *RHS) { |
5383 | return LHS->getVariable() == RHS->getVariable() && |
5384 | LHS->getDebugLoc()->getInlinedAt() == |
5385 | RHS->getDebugLoc()->getInlinedAt(); |
5386 | }; |
5387 | if (SameVariableFragment(OldDII, DbgVariable)) |
5388 | OldDII->eraseFromParent(); |
5389 | }; |
5390 | for_each(findDbgDeclares(V: Fragment.Alloca), RemoveOne); |
5391 | for_each(findDVRDeclares(V: Fragment.Alloca), RemoveOne); |
5392 | |
5393 | insertNewDbgInst(DIB, DbgVariable, Fragment.Alloca, NewExpr, &AI, |
5394 | NewDbgFragment, BitExtractOffset); |
5395 | } |
5396 | }; |
5397 | |
5398 | // Migrate debug information from the old alloca to the new alloca(s) |
5399 | // and the individual partitions. |
5400 | for_each(Range: findDbgDeclares(V: &AI), F: MigrateOne); |
5401 | for_each(Range: findDVRDeclares(V: &AI), F: MigrateOne); |
5402 | for_each(Range: at::getAssignmentMarkers(Inst: &AI), F: MigrateOne); |
5403 | for_each(Range: at::getDVRAssignmentMarkers(Inst: &AI), F: MigrateOne); |
5404 | |
5405 | return Changed; |
5406 | } |
5407 | |
5408 | /// Clobber a use with poison, deleting the used value if it becomes dead. |
5409 | void SROA::clobberUse(Use &U) { |
5410 | Value *OldV = U; |
5411 | // Replace the use with an poison value. |
5412 | U = PoisonValue::get(T: OldV->getType()); |
5413 | |
5414 | // Check for this making an instruction dead. We have to garbage collect |
5415 | // all the dead instructions to ensure the uses of any alloca end up being |
5416 | // minimal. |
5417 | if (Instruction *OldI = dyn_cast<Instruction>(Val: OldV)) |
5418 | if (isInstructionTriviallyDead(I: OldI)) { |
5419 | DeadInsts.push_back(Elt: OldI); |
5420 | } |
5421 | } |
5422 | |
5423 | /// Analyze an alloca for SROA. |
5424 | /// |
5425 | /// This analyzes the alloca to ensure we can reason about it, builds |
5426 | /// the slices of the alloca, and then hands it off to be split and |
5427 | /// rewritten as needed. |
5428 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> |
5429 | SROA::runOnAlloca(AllocaInst &AI) { |
5430 | bool Changed = false; |
5431 | bool CFGChanged = false; |
5432 | |
5433 | LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n" ); |
5434 | ++NumAllocasAnalyzed; |
5435 | |
5436 | // Special case dead allocas, as they're trivial. |
5437 | if (AI.use_empty()) { |
5438 | AI.eraseFromParent(); |
5439 | Changed = true; |
5440 | return {Changed, CFGChanged}; |
5441 | } |
5442 | const DataLayout &DL = AI.getDataLayout(); |
5443 | |
5444 | // Skip alloca forms that this analysis can't handle. |
5445 | auto *AT = AI.getAllocatedType(); |
5446 | TypeSize Size = DL.getTypeAllocSize(Ty: AT); |
5447 | if (AI.isArrayAllocation() || !AT->isSized() || Size.isScalable() || |
5448 | Size.getFixedValue() == 0) |
5449 | return {Changed, CFGChanged}; |
5450 | |
5451 | // First, split any FCA loads and stores touching this alloca to promote |
5452 | // better splitting and promotion opportunities. |
5453 | IRBuilderTy IRB(&AI); |
5454 | AggLoadStoreRewriter AggRewriter(DL, IRB); |
5455 | Changed |= AggRewriter.rewrite(I&: AI); |
5456 | |
5457 | // Build the slices using a recursive instruction-visiting builder. |
5458 | AllocaSlices AS(DL, AI); |
5459 | LLVM_DEBUG(AS.print(dbgs())); |
5460 | if (AS.isEscaped()) |
5461 | return {Changed, CFGChanged}; |
5462 | |
5463 | // Delete all the dead users of this alloca before splitting and rewriting it. |
5464 | for (Instruction *DeadUser : AS.getDeadUsers()) { |
5465 | // Free up everything used by this instruction. |
5466 | for (Use &DeadOp : DeadUser->operands()) |
5467 | clobberUse(U&: DeadOp); |
5468 | |
5469 | // Now replace the uses of this instruction. |
5470 | DeadUser->replaceAllUsesWith(V: PoisonValue::get(T: DeadUser->getType())); |
5471 | |
5472 | // And mark it for deletion. |
5473 | DeadInsts.push_back(Elt: DeadUser); |
5474 | Changed = true; |
5475 | } |
5476 | for (Use *DeadOp : AS.getDeadOperands()) { |
5477 | clobberUse(U&: *DeadOp); |
5478 | Changed = true; |
5479 | } |
5480 | |
5481 | // No slices to split. Leave the dead alloca for a later pass to clean up. |
5482 | if (AS.begin() == AS.end()) |
5483 | return {Changed, CFGChanged}; |
5484 | |
5485 | Changed |= splitAlloca(AI, AS); |
5486 | |
5487 | LLVM_DEBUG(dbgs() << " Speculating PHIs\n" ); |
5488 | while (!SpeculatablePHIs.empty()) |
5489 | speculatePHINodeLoads(IRB, PN&: *SpeculatablePHIs.pop_back_val()); |
5490 | |
5491 | LLVM_DEBUG(dbgs() << " Rewriting Selects\n" ); |
5492 | auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector(); |
5493 | while (!RemainingSelectsToRewrite.empty()) { |
5494 | const auto [K, V] = RemainingSelectsToRewrite.pop_back_val(); |
5495 | CFGChanged |= |
5496 | rewriteSelectInstMemOps(SI&: *K, Ops: V, IRB, DTU: PreserveCFG ? nullptr : DTU); |
5497 | } |
5498 | |
5499 | return {Changed, CFGChanged}; |
5500 | } |
5501 | |
5502 | /// Delete the dead instructions accumulated in this run. |
5503 | /// |
5504 | /// Recursively deletes the dead instructions we've accumulated. This is done |
5505 | /// at the very end to maximize locality of the recursive delete and to |
5506 | /// minimize the problems of invalidated instruction pointers as such pointers |
5507 | /// are used heavily in the intermediate stages of the algorithm. |
5508 | /// |
5509 | /// We also record the alloca instructions deleted here so that they aren't |
5510 | /// subsequently handed to mem2reg to promote. |
5511 | bool SROA::deleteDeadInstructions( |
5512 | SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { |
5513 | bool Changed = false; |
5514 | while (!DeadInsts.empty()) { |
5515 | Instruction *I = dyn_cast_or_null<Instruction>(Val: DeadInsts.pop_back_val()); |
5516 | if (!I) |
5517 | continue; |
5518 | LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n" ); |
5519 | |
5520 | // If the instruction is an alloca, find the possible dbg.declare connected |
5521 | // to it, and remove it too. We must do this before calling RAUW or we will |
5522 | // not be able to find it. |
5523 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val: I)) { |
5524 | DeletedAllocas.insert(Ptr: AI); |
5525 | for (DbgDeclareInst *OldDII : findDbgDeclares(V: AI)) |
5526 | OldDII->eraseFromParent(); |
5527 | for (DbgVariableRecord *OldDII : findDVRDeclares(V: AI)) |
5528 | OldDII->eraseFromParent(); |
5529 | } |
5530 | |
5531 | at::deleteAssignmentMarkers(Inst: I); |
5532 | I->replaceAllUsesWith(V: UndefValue::get(T: I->getType())); |
5533 | |
5534 | for (Use &Operand : I->operands()) |
5535 | if (Instruction *U = dyn_cast<Instruction>(Val&: Operand)) { |
5536 | // Zero out the operand and see if it becomes trivially dead. |
5537 | Operand = nullptr; |
5538 | if (isInstructionTriviallyDead(I: U)) |
5539 | DeadInsts.push_back(Elt: U); |
5540 | } |
5541 | |
5542 | ++NumDeleted; |
5543 | I->eraseFromParent(); |
5544 | Changed = true; |
5545 | } |
5546 | return Changed; |
5547 | } |
5548 | |
5549 | /// Promote the allocas, using the best available technique. |
5550 | /// |
5551 | /// This attempts to promote whatever allocas have been identified as viable in |
5552 | /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
5553 | /// This function returns whether any promotion occurred. |
5554 | bool SROA::promoteAllocas(Function &F) { |
5555 | if (PromotableAllocas.empty()) |
5556 | return false; |
5557 | |
5558 | NumPromoted += PromotableAllocas.size(); |
5559 | |
5560 | if (SROASkipMem2Reg) { |
5561 | LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n" ); |
5562 | } else { |
5563 | LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n" ); |
5564 | PromoteMemToReg(Allocas: PromotableAllocas, DT&: DTU->getDomTree(), AC); |
5565 | } |
5566 | |
5567 | PromotableAllocas.clear(); |
5568 | return true; |
5569 | } |
5570 | |
5571 | std::pair<bool /*Changed*/, bool /*CFGChanged*/> SROA::runSROA(Function &F) { |
5572 | LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n" ); |
5573 | |
5574 | const DataLayout &DL = F.getDataLayout(); |
5575 | BasicBlock &EntryBB = F.getEntryBlock(); |
5576 | for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(x: EntryBB.end()); |
5577 | I != E; ++I) { |
5578 | if (AllocaInst *AI = dyn_cast<AllocaInst>(Val&: I)) { |
5579 | if (DL.getTypeAllocSize(Ty: AI->getAllocatedType()).isScalable() && |
5580 | isAllocaPromotable(AI)) |
5581 | PromotableAllocas.push_back(x: AI); |
5582 | else |
5583 | Worklist.insert(X: AI); |
5584 | } |
5585 | } |
5586 | |
5587 | bool Changed = false; |
5588 | bool CFGChanged = false; |
5589 | // A set of deleted alloca instruction pointers which should be removed from |
5590 | // the list of promotable allocas. |
5591 | SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
5592 | |
5593 | do { |
5594 | while (!Worklist.empty()) { |
5595 | auto [IterationChanged, IterationCFGChanged] = |
5596 | runOnAlloca(AI&: *Worklist.pop_back_val()); |
5597 | Changed |= IterationChanged; |
5598 | CFGChanged |= IterationCFGChanged; |
5599 | |
5600 | Changed |= deleteDeadInstructions(DeletedAllocas); |
5601 | |
5602 | // Remove the deleted allocas from various lists so that we don't try to |
5603 | // continue processing them. |
5604 | if (!DeletedAllocas.empty()) { |
5605 | auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(Ptr: AI); }; |
5606 | Worklist.remove_if(P: IsInSet); |
5607 | PostPromotionWorklist.remove_if(P: IsInSet); |
5608 | llvm::erase_if(C&: PromotableAllocas, P: IsInSet); |
5609 | DeletedAllocas.clear(); |
5610 | } |
5611 | } |
5612 | |
5613 | Changed |= promoteAllocas(F); |
5614 | |
5615 | Worklist = PostPromotionWorklist; |
5616 | PostPromotionWorklist.clear(); |
5617 | } while (!Worklist.empty()); |
5618 | |
5619 | assert((!CFGChanged || Changed) && "Can not only modify the CFG." ); |
5620 | assert((!CFGChanged || !PreserveCFG) && |
5621 | "Should not have modified the CFG when told to preserve it." ); |
5622 | |
5623 | if (Changed && isAssignmentTrackingEnabled(M: *F.getParent())) { |
5624 | for (auto &BB : F) { |
5625 | RemoveRedundantDbgInstrs(BB: &BB); |
5626 | } |
5627 | } |
5628 | |
5629 | return {Changed, CFGChanged}; |
5630 | } |
5631 | |
5632 | PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { |
5633 | DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
5634 | AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
5635 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
5636 | auto [Changed, CFGChanged] = |
5637 | SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); |
5638 | if (!Changed) |
5639 | return PreservedAnalyses::all(); |
5640 | PreservedAnalyses PA; |
5641 | if (!CFGChanged) |
5642 | PA.preserveSet<CFGAnalyses>(); |
5643 | PA.preserve<DominatorTreeAnalysis>(); |
5644 | return PA; |
5645 | } |
5646 | |
5647 | void SROAPass::printPipeline( |
5648 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
5649 | static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline( |
5650 | OS, MapClassName2PassName); |
5651 | OS << (PreserveCFG == SROAOptions::PreserveCFG ? "<preserve-cfg>" |
5652 | : "<modify-cfg>" ); |
5653 | } |
5654 | |
5655 | SROAPass::SROAPass(SROAOptions PreserveCFG) : PreserveCFG(PreserveCFG) {} |
5656 | |
5657 | namespace { |
5658 | |
5659 | /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. |
5660 | class SROALegacyPass : public FunctionPass { |
5661 | SROAOptions PreserveCFG; |
5662 | |
5663 | public: |
5664 | static char ID; |
5665 | |
5666 | SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG) |
5667 | : FunctionPass(ID), PreserveCFG(PreserveCFG) { |
5668 | initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); |
5669 | } |
5670 | |
5671 | bool runOnFunction(Function &F) override { |
5672 | if (skipFunction(F)) |
5673 | return false; |
5674 | |
5675 | DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
5676 | AssumptionCache &AC = |
5677 | getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
5678 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
5679 | auto [Changed, _] = |
5680 | SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); |
5681 | return Changed; |
5682 | } |
5683 | |
5684 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
5685 | AU.addRequired<AssumptionCacheTracker>(); |
5686 | AU.addRequired<DominatorTreeWrapperPass>(); |
5687 | AU.addPreserved<GlobalsAAWrapperPass>(); |
5688 | AU.addPreserved<DominatorTreeWrapperPass>(); |
5689 | } |
5690 | |
5691 | StringRef getPassName() const override { return "SROA" ; } |
5692 | }; |
5693 | |
5694 | } // end anonymous namespace |
5695 | |
5696 | char SROALegacyPass::ID = 0; |
5697 | |
5698 | FunctionPass *llvm::createSROAPass(bool PreserveCFG) { |
5699 | return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG |
5700 | : SROAOptions::ModifyCFG); |
5701 | } |
5702 | |
5703 | INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa" , |
5704 | "Scalar Replacement Of Aggregates" , false, false) |
5705 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
5706 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
5707 | INITIALIZE_PASS_END(SROALegacyPass, "sroa" , "Scalar Replacement Of Aggregates" , |
5708 | false, false) |
5709 | |