1 | //===- StructurizeCFG.cpp -------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/Transforms/Scalar/StructurizeCFG.h" |
10 | #include "llvm/ADT/DenseMap.h" |
11 | #include "llvm/ADT/MapVector.h" |
12 | #include "llvm/ADT/SCCIterator.h" |
13 | #include "llvm/ADT/STLExtras.h" |
14 | #include "llvm/ADT/SmallPtrSet.h" |
15 | #include "llvm/ADT/SmallSet.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/Analysis/InstructionSimplify.h" |
18 | #include "llvm/Analysis/RegionInfo.h" |
19 | #include "llvm/Analysis/RegionIterator.h" |
20 | #include "llvm/Analysis/RegionPass.h" |
21 | #include "llvm/Analysis/UniformityAnalysis.h" |
22 | #include "llvm/IR/BasicBlock.h" |
23 | #include "llvm/IR/CFG.h" |
24 | #include "llvm/IR/Constants.h" |
25 | #include "llvm/IR/Dominators.h" |
26 | #include "llvm/IR/Function.h" |
27 | #include "llvm/IR/InstrTypes.h" |
28 | #include "llvm/IR/Instruction.h" |
29 | #include "llvm/IR/Instructions.h" |
30 | #include "llvm/IR/Metadata.h" |
31 | #include "llvm/IR/PassManager.h" |
32 | #include "llvm/IR/PatternMatch.h" |
33 | #include "llvm/IR/Type.h" |
34 | #include "llvm/IR/Use.h" |
35 | #include "llvm/IR/Value.h" |
36 | #include "llvm/IR/ValueHandle.h" |
37 | #include "llvm/InitializePasses.h" |
38 | #include "llvm/Pass.h" |
39 | #include "llvm/Support/Casting.h" |
40 | #include "llvm/Support/CommandLine.h" |
41 | #include "llvm/Support/Debug.h" |
42 | #include "llvm/Support/raw_ostream.h" |
43 | #include "llvm/Transforms/Scalar.h" |
44 | #include "llvm/Transforms/Utils.h" |
45 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
46 | #include "llvm/Transforms/Utils/Local.h" |
47 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
48 | #include <algorithm> |
49 | #include <cassert> |
50 | #include <utility> |
51 | |
52 | using namespace llvm; |
53 | using namespace llvm::PatternMatch; |
54 | |
55 | #define DEBUG_TYPE "structurizecfg" |
56 | |
57 | // The name for newly created blocks. |
58 | const char FlowBlockName[] = "Flow" ; |
59 | |
60 | namespace { |
61 | |
62 | static cl::opt<bool> ForceSkipUniformRegions( |
63 | "structurizecfg-skip-uniform-regions" , |
64 | cl::Hidden, |
65 | cl::desc("Force whether the StructurizeCFG pass skips uniform regions" ), |
66 | cl::init(Val: false)); |
67 | |
68 | static cl::opt<bool> |
69 | RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions" , cl::Hidden, |
70 | cl::desc("Allow relaxed uniform region checks" ), |
71 | cl::init(Val: true)); |
72 | |
73 | // Definition of the complex types used in this pass. |
74 | |
75 | using BBValuePair = std::pair<BasicBlock *, Value *>; |
76 | |
77 | using RNVector = SmallVector<RegionNode *, 8>; |
78 | using BBVector = SmallVector<BasicBlock *, 8>; |
79 | using BranchVector = SmallVector<BranchInst *, 8>; |
80 | using BBValueVector = SmallVector<BBValuePair, 2>; |
81 | |
82 | using BBSet = SmallPtrSet<BasicBlock *, 8>; |
83 | |
84 | using PhiMap = MapVector<PHINode *, BBValueVector>; |
85 | using BB2BBVecMap = MapVector<BasicBlock *, BBVector>; |
86 | |
87 | using BBPhiMap = DenseMap<BasicBlock *, PhiMap>; |
88 | using BBPredicates = DenseMap<BasicBlock *, Value *>; |
89 | using PredMap = DenseMap<BasicBlock *, BBPredicates>; |
90 | using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>; |
91 | |
92 | using BranchDebugLocMap = DenseMap<BasicBlock *, DebugLoc>; |
93 | |
94 | // A traits type that is intended to be used in graph algorithms. The graph |
95 | // traits starts at an entry node, and traverses the RegionNodes that are in |
96 | // the Nodes set. |
97 | struct SubGraphTraits { |
98 | using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>; |
99 | using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType; |
100 | |
101 | // This wraps a set of Nodes into the iterator, so we know which edges to |
102 | // filter out. |
103 | class WrappedSuccIterator |
104 | : public iterator_adaptor_base< |
105 | WrappedSuccIterator, BaseSuccIterator, |
106 | typename std::iterator_traits<BaseSuccIterator>::iterator_category, |
107 | NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> { |
108 | SmallDenseSet<RegionNode *> *Nodes; |
109 | |
110 | public: |
111 | WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes) |
112 | : iterator_adaptor_base(It), Nodes(Nodes) {} |
113 | |
114 | NodeRef operator*() const { return {*I, Nodes}; } |
115 | }; |
116 | |
117 | static bool filterAll(const NodeRef &N) { return true; } |
118 | static bool filterSet(const NodeRef &N) { return N.second->count(V: N.first); } |
119 | |
120 | using ChildIteratorType = |
121 | filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>; |
122 | |
123 | static NodeRef getEntryNode(Region *R) { |
124 | return {GraphTraits<Region *>::getEntryNode(R), nullptr}; |
125 | } |
126 | |
127 | static NodeRef getEntryNode(NodeRef N) { return N; } |
128 | |
129 | static iterator_range<ChildIteratorType> children(const NodeRef &N) { |
130 | auto *filter = N.second ? &filterSet : &filterAll; |
131 | return make_filter_range( |
132 | Range: make_range<WrappedSuccIterator>( |
133 | x: {GraphTraits<RegionNode *>::child_begin(N: N.first), N.second}, |
134 | y: {GraphTraits<RegionNode *>::child_end(N: N.first), N.second}), |
135 | Pred: filter); |
136 | } |
137 | |
138 | static ChildIteratorType child_begin(const NodeRef &N) { |
139 | return children(N).begin(); |
140 | } |
141 | |
142 | static ChildIteratorType child_end(const NodeRef &N) { |
143 | return children(N).end(); |
144 | } |
145 | }; |
146 | |
147 | /// Finds the nearest common dominator of a set of BasicBlocks. |
148 | /// |
149 | /// For every BB you add to the set, you can specify whether we "remember" the |
150 | /// block. When you get the common dominator, you can also ask whether it's one |
151 | /// of the blocks we remembered. |
152 | class NearestCommonDominator { |
153 | DominatorTree *DT; |
154 | BasicBlock *Result = nullptr; |
155 | bool ResultIsRemembered = false; |
156 | |
157 | /// Add BB to the resulting dominator. |
158 | void addBlock(BasicBlock *BB, bool Remember) { |
159 | if (!Result) { |
160 | Result = BB; |
161 | ResultIsRemembered = Remember; |
162 | return; |
163 | } |
164 | |
165 | BasicBlock *NewResult = DT->findNearestCommonDominator(A: Result, B: BB); |
166 | if (NewResult != Result) |
167 | ResultIsRemembered = false; |
168 | if (NewResult == BB) |
169 | ResultIsRemembered |= Remember; |
170 | Result = NewResult; |
171 | } |
172 | |
173 | public: |
174 | explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {} |
175 | |
176 | void addBlock(BasicBlock *BB) { |
177 | addBlock(BB, /* Remember = */ false); |
178 | } |
179 | |
180 | void addAndRememberBlock(BasicBlock *BB) { |
181 | addBlock(BB, /* Remember = */ true); |
182 | } |
183 | |
184 | /// Get the nearest common dominator of all the BBs added via addBlock() and |
185 | /// addAndRememberBlock(). |
186 | BasicBlock *result() { return Result; } |
187 | |
188 | /// Is the BB returned by getResult() one of the blocks we added to the set |
189 | /// with addAndRememberBlock()? |
190 | bool resultIsRememberedBlock() { return ResultIsRemembered; } |
191 | }; |
192 | |
193 | /// Transforms the control flow graph on one single entry/exit region |
194 | /// at a time. |
195 | /// |
196 | /// After the transform all "If"/"Then"/"Else" style control flow looks like |
197 | /// this: |
198 | /// |
199 | /// \verbatim |
200 | /// 1 |
201 | /// || |
202 | /// | | |
203 | /// 2 | |
204 | /// | / |
205 | /// |/ |
206 | /// 3 |
207 | /// || Where: |
208 | /// | | 1 = "If" block, calculates the condition |
209 | /// 4 | 2 = "Then" subregion, runs if the condition is true |
210 | /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow |
211 | /// |/ 4 = "Else" optional subregion, runs if the condition is false |
212 | /// 5 5 = "End" block, also rejoins the control flow |
213 | /// \endverbatim |
214 | /// |
215 | /// Control flow is expressed as a branch where the true exit goes into the |
216 | /// "Then"/"Else" region, while the false exit skips the region |
217 | /// The condition for the optional "Else" region is expressed as a PHI node. |
218 | /// The incoming values of the PHI node are true for the "If" edge and false |
219 | /// for the "Then" edge. |
220 | /// |
221 | /// Additionally to that even complicated loops look like this: |
222 | /// |
223 | /// \verbatim |
224 | /// 1 |
225 | /// || |
226 | /// | | |
227 | /// 2 ^ Where: |
228 | /// | / 1 = "Entry" block |
229 | /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block |
230 | /// 3 3 = "Flow" block, with back edge to entry block |
231 | /// | |
232 | /// \endverbatim |
233 | /// |
234 | /// The back edge of the "Flow" block is always on the false side of the branch |
235 | /// while the true side continues the general flow. So the loop condition |
236 | /// consist of a network of PHI nodes where the true incoming values expresses |
237 | /// breaks and the false values expresses continue states. |
238 | |
239 | class StructurizeCFG { |
240 | Type *Boolean; |
241 | ConstantInt *BoolTrue; |
242 | ConstantInt *BoolFalse; |
243 | Value *BoolPoison; |
244 | |
245 | Function *Func; |
246 | Region *ParentRegion; |
247 | |
248 | UniformityInfo *UA = nullptr; |
249 | DominatorTree *DT; |
250 | |
251 | SmallVector<RegionNode *, 8> Order; |
252 | BBSet Visited; |
253 | BBSet FlowSet; |
254 | |
255 | SmallVector<WeakVH, 8> AffectedPhis; |
256 | BBPhiMap DeletedPhis; |
257 | BB2BBVecMap AddedPhis; |
258 | |
259 | PredMap Predicates; |
260 | BranchVector Conditions; |
261 | |
262 | BB2BBMap Loops; |
263 | PredMap LoopPreds; |
264 | BranchVector LoopConds; |
265 | |
266 | BranchDebugLocMap TermDL; |
267 | |
268 | RegionNode *PrevNode; |
269 | |
270 | void orderNodes(); |
271 | |
272 | void analyzeLoops(RegionNode *N); |
273 | |
274 | Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); |
275 | |
276 | void gatherPredicates(RegionNode *N); |
277 | |
278 | void collectInfos(); |
279 | |
280 | void insertConditions(bool Loops); |
281 | |
282 | void simplifyConditions(); |
283 | |
284 | void delPhiValues(BasicBlock *From, BasicBlock *To); |
285 | |
286 | void addPhiValues(BasicBlock *From, BasicBlock *To); |
287 | |
288 | void findUndefBlocks(BasicBlock *PHIBlock, |
289 | const SmallSet<BasicBlock *, 8> &Incomings, |
290 | SmallVector<BasicBlock *> &UndefBlks) const; |
291 | void setPhiValues(); |
292 | |
293 | void simplifyAffectedPhis(); |
294 | |
295 | void killTerminator(BasicBlock *BB); |
296 | |
297 | void changeExit(RegionNode *Node, BasicBlock *NewExit, |
298 | bool IncludeDominator); |
299 | |
300 | BasicBlock *getNextFlow(BasicBlock *Dominator); |
301 | |
302 | BasicBlock *needPrefix(bool NeedEmpty); |
303 | |
304 | BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); |
305 | |
306 | void setPrevNode(BasicBlock *BB); |
307 | |
308 | bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); |
309 | |
310 | bool isPredictableTrue(RegionNode *Node); |
311 | |
312 | void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); |
313 | |
314 | void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); |
315 | |
316 | void createFlow(); |
317 | |
318 | void rebuildSSA(); |
319 | |
320 | public: |
321 | void init(Region *R); |
322 | bool run(Region *R, DominatorTree *DT); |
323 | bool makeUniformRegion(Region *R, UniformityInfo &UA); |
324 | }; |
325 | |
326 | class StructurizeCFGLegacyPass : public RegionPass { |
327 | bool SkipUniformRegions; |
328 | |
329 | public: |
330 | static char ID; |
331 | |
332 | explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false) |
333 | : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) { |
334 | if (ForceSkipUniformRegions.getNumOccurrences()) |
335 | SkipUniformRegions = ForceSkipUniformRegions.getValue(); |
336 | initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry()); |
337 | } |
338 | |
339 | bool runOnRegion(Region *R, RGPassManager &RGM) override { |
340 | StructurizeCFG SCFG; |
341 | SCFG.init(R); |
342 | if (SkipUniformRegions) { |
343 | UniformityInfo &UA = |
344 | getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo(); |
345 | if (SCFG.makeUniformRegion(R, UA)) |
346 | return false; |
347 | } |
348 | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
349 | return SCFG.run(R, DT); |
350 | } |
351 | |
352 | StringRef getPassName() const override { return "Structurize control flow" ; } |
353 | |
354 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
355 | if (SkipUniformRegions) |
356 | AU.addRequired<UniformityInfoWrapperPass>(); |
357 | AU.addRequired<DominatorTreeWrapperPass>(); |
358 | |
359 | AU.addPreserved<DominatorTreeWrapperPass>(); |
360 | RegionPass::getAnalysisUsage(AU); |
361 | } |
362 | }; |
363 | |
364 | } // end anonymous namespace |
365 | |
366 | char StructurizeCFGLegacyPass::ID = 0; |
367 | |
368 | INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg" , |
369 | "Structurize the CFG" , false, false) |
370 | INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass) |
371 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
372 | INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) |
373 | INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg" , |
374 | "Structurize the CFG" , false, false) |
375 | |
376 | /// Build up the general order of nodes, by performing a topological sort of the |
377 | /// parent region's nodes, while ensuring that there is no outer cycle node |
378 | /// between any two inner cycle nodes. |
379 | void StructurizeCFG::orderNodes() { |
380 | Order.resize(N: std::distance(first: GraphTraits<Region *>::nodes_begin(R: ParentRegion), |
381 | last: GraphTraits<Region *>::nodes_end(R: ParentRegion))); |
382 | if (Order.empty()) |
383 | return; |
384 | |
385 | SmallDenseSet<RegionNode *> Nodes; |
386 | auto EntryNode = SubGraphTraits::getEntryNode(R: ParentRegion); |
387 | |
388 | // A list of range indices of SCCs in Order, to be processed. |
389 | SmallVector<std::pair<unsigned, unsigned>, 8> WorkList; |
390 | unsigned I = 0, E = Order.size(); |
391 | while (true) { |
392 | // Run through all the SCCs in the subgraph starting with Entry. |
393 | for (auto SCCI = |
394 | scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin( |
395 | G: EntryNode); |
396 | !SCCI.isAtEnd(); ++SCCI) { |
397 | auto &SCC = *SCCI; |
398 | |
399 | // An SCC up to the size of 2, can be reduced to an entry (the last node), |
400 | // and a possible additional node. Therefore, it is already in order, and |
401 | // there is no need to add it to the work-list. |
402 | unsigned Size = SCC.size(); |
403 | if (Size > 2) |
404 | WorkList.emplace_back(Args&: I, Args: I + Size); |
405 | |
406 | // Add the SCC nodes to the Order array. |
407 | for (const auto &N : SCC) { |
408 | assert(I < E && "SCC size mismatch!" ); |
409 | Order[I++] = N.first; |
410 | } |
411 | } |
412 | assert(I == E && "SCC size mismatch!" ); |
413 | |
414 | // If there are no more SCCs to order, then we are done. |
415 | if (WorkList.empty()) |
416 | break; |
417 | |
418 | std::tie(args&: I, args&: E) = WorkList.pop_back_val(); |
419 | |
420 | // Collect the set of nodes in the SCC's subgraph. These are only the |
421 | // possible child nodes; we do not add the entry (last node) otherwise we |
422 | // will have the same exact SCC all over again. |
423 | Nodes.clear(); |
424 | Nodes.insert(I: Order.begin() + I, E: Order.begin() + E - 1); |
425 | |
426 | // Update the entry node. |
427 | EntryNode.first = Order[E - 1]; |
428 | EntryNode.second = &Nodes; |
429 | } |
430 | } |
431 | |
432 | /// Determine the end of the loops |
433 | void StructurizeCFG::analyzeLoops(RegionNode *N) { |
434 | if (N->isSubRegion()) { |
435 | // Test for exit as back edge |
436 | BasicBlock *Exit = N->getNodeAs<Region>()->getExit(); |
437 | if (Visited.count(Ptr: Exit)) |
438 | Loops[Exit] = N->getEntry(); |
439 | |
440 | } else { |
441 | // Test for successors as back edge |
442 | BasicBlock *BB = N->getNodeAs<BasicBlock>(); |
443 | BranchInst *Term = cast<BranchInst>(Val: BB->getTerminator()); |
444 | |
445 | for (BasicBlock *Succ : Term->successors()) |
446 | if (Visited.count(Ptr: Succ)) |
447 | Loops[Succ] = BB; |
448 | } |
449 | } |
450 | |
451 | /// Build the condition for one edge |
452 | Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, |
453 | bool Invert) { |
454 | Value *Cond = Invert ? BoolFalse : BoolTrue; |
455 | if (Term->isConditional()) { |
456 | Cond = Term->getCondition(); |
457 | |
458 | if (Idx != (unsigned)Invert) |
459 | Cond = invertCondition(Condition: Cond); |
460 | } |
461 | return Cond; |
462 | } |
463 | |
464 | /// Analyze the predecessors of each block and build up predicates |
465 | void StructurizeCFG::gatherPredicates(RegionNode *N) { |
466 | RegionInfo *RI = ParentRegion->getRegionInfo(); |
467 | BasicBlock *BB = N->getEntry(); |
468 | BBPredicates &Pred = Predicates[BB]; |
469 | BBPredicates &LPred = LoopPreds[BB]; |
470 | |
471 | for (BasicBlock *P : predecessors(BB)) { |
472 | // Ignore it if it's a branch from outside into our region entry |
473 | if (!ParentRegion->contains(BB: P)) |
474 | continue; |
475 | |
476 | Region *R = RI->getRegionFor(BB: P); |
477 | if (R == ParentRegion) { |
478 | // It's a top level block in our region |
479 | BranchInst *Term = cast<BranchInst>(Val: P->getTerminator()); |
480 | for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { |
481 | BasicBlock *Succ = Term->getSuccessor(i); |
482 | if (Succ != BB) |
483 | continue; |
484 | |
485 | if (Visited.count(Ptr: P)) { |
486 | // Normal forward edge |
487 | if (Term->isConditional()) { |
488 | // Try to treat it like an ELSE block |
489 | BasicBlock *Other = Term->getSuccessor(i: !i); |
490 | if (Visited.count(Ptr: Other) && !Loops.count(Val: Other) && |
491 | !Pred.count(Val: Other) && !Pred.count(Val: P)) { |
492 | |
493 | Pred[Other] = BoolFalse; |
494 | Pred[P] = BoolTrue; |
495 | continue; |
496 | } |
497 | } |
498 | Pred[P] = buildCondition(Term, Idx: i, Invert: false); |
499 | } else { |
500 | // Back edge |
501 | LPred[P] = buildCondition(Term, Idx: i, Invert: true); |
502 | } |
503 | } |
504 | } else { |
505 | // It's an exit from a sub region |
506 | while (R->getParent() != ParentRegion) |
507 | R = R->getParent(); |
508 | |
509 | // Edge from inside a subregion to its entry, ignore it |
510 | if (*R == *N) |
511 | continue; |
512 | |
513 | BasicBlock *Entry = R->getEntry(); |
514 | if (Visited.count(Ptr: Entry)) |
515 | Pred[Entry] = BoolTrue; |
516 | else |
517 | LPred[Entry] = BoolFalse; |
518 | } |
519 | } |
520 | } |
521 | |
522 | /// Collect various loop and predicate infos |
523 | void StructurizeCFG::collectInfos() { |
524 | // Reset predicate |
525 | Predicates.clear(); |
526 | |
527 | // and loop infos |
528 | Loops.clear(); |
529 | LoopPreds.clear(); |
530 | |
531 | // Reset the visited nodes |
532 | Visited.clear(); |
533 | |
534 | for (RegionNode *RN : reverse(C&: Order)) { |
535 | LLVM_DEBUG(dbgs() << "Visiting: " |
536 | << (RN->isSubRegion() ? "SubRegion with entry: " : "" ) |
537 | << RN->getEntry()->getName() << "\n" ); |
538 | |
539 | // Analyze all the conditions leading to a node |
540 | gatherPredicates(N: RN); |
541 | |
542 | // Remember that we've seen this node |
543 | Visited.insert(Ptr: RN->getEntry()); |
544 | |
545 | // Find the last back edges |
546 | analyzeLoops(N: RN); |
547 | } |
548 | |
549 | // Reset the collected term debug locations |
550 | TermDL.clear(); |
551 | |
552 | for (BasicBlock &BB : *Func) { |
553 | if (const DebugLoc &DL = BB.getTerminator()->getDebugLoc()) |
554 | TermDL[&BB] = DL; |
555 | } |
556 | } |
557 | |
558 | /// Insert the missing branch conditions |
559 | void StructurizeCFG::insertConditions(bool Loops) { |
560 | BranchVector &Conds = Loops ? LoopConds : Conditions; |
561 | Value *Default = Loops ? BoolTrue : BoolFalse; |
562 | SSAUpdater PhiInserter; |
563 | |
564 | for (BranchInst *Term : Conds) { |
565 | assert(Term->isConditional()); |
566 | |
567 | BasicBlock *Parent = Term->getParent(); |
568 | BasicBlock *SuccTrue = Term->getSuccessor(i: 0); |
569 | BasicBlock *SuccFalse = Term->getSuccessor(i: 1); |
570 | |
571 | PhiInserter.Initialize(Ty: Boolean, Name: "" ); |
572 | PhiInserter.AddAvailableValue(BB: &Func->getEntryBlock(), V: Default); |
573 | PhiInserter.AddAvailableValue(BB: Loops ? SuccFalse : Parent, V: Default); |
574 | |
575 | BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; |
576 | |
577 | NearestCommonDominator Dominator(DT); |
578 | Dominator.addBlock(BB: Parent); |
579 | |
580 | Value *ParentValue = nullptr; |
581 | for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) { |
582 | BasicBlock *BB = BBAndPred.first; |
583 | Value *Pred = BBAndPred.second; |
584 | |
585 | if (BB == Parent) { |
586 | ParentValue = Pred; |
587 | break; |
588 | } |
589 | PhiInserter.AddAvailableValue(BB, V: Pred); |
590 | Dominator.addAndRememberBlock(BB); |
591 | } |
592 | |
593 | if (ParentValue) { |
594 | Term->setCondition(ParentValue); |
595 | } else { |
596 | if (!Dominator.resultIsRememberedBlock()) |
597 | PhiInserter.AddAvailableValue(BB: Dominator.result(), V: Default); |
598 | |
599 | Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(BB: Parent)); |
600 | } |
601 | } |
602 | } |
603 | |
604 | /// Simplify any inverted conditions that were built by buildConditions. |
605 | void StructurizeCFG::simplifyConditions() { |
606 | SmallVector<Instruction *> InstToErase; |
607 | for (auto &I : concat<PredMap::value_type>(Ranges&: Predicates, Ranges&: LoopPreds)) { |
608 | auto &Preds = I.second; |
609 | for (auto &J : Preds) { |
610 | auto &Cond = J.second; |
611 | Instruction *Inverted; |
612 | if (match(V: Cond, P: m_Not(V: m_OneUse(SubPattern: m_Instruction(I&: Inverted)))) && |
613 | !Cond->use_empty()) { |
614 | if (auto *InvertedCmp = dyn_cast<CmpInst>(Val: Inverted)) { |
615 | InvertedCmp->setPredicate(InvertedCmp->getInversePredicate()); |
616 | Cond->replaceAllUsesWith(V: InvertedCmp); |
617 | InstToErase.push_back(Elt: cast<Instruction>(Val: Cond)); |
618 | } |
619 | } |
620 | } |
621 | } |
622 | for (auto *I : InstToErase) |
623 | I->eraseFromParent(); |
624 | } |
625 | |
626 | /// Remove all PHI values coming from "From" into "To" and remember |
627 | /// them in DeletedPhis |
628 | void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { |
629 | PhiMap &Map = DeletedPhis[To]; |
630 | for (PHINode &Phi : To->phis()) { |
631 | bool Recorded = false; |
632 | while (Phi.getBasicBlockIndex(BB: From) != -1) { |
633 | Value *Deleted = Phi.removeIncomingValue(BB: From, DeletePHIIfEmpty: false); |
634 | Map[&Phi].push_back(Elt: std::make_pair(x&: From, y&: Deleted)); |
635 | if (!Recorded) { |
636 | AffectedPhis.push_back(Elt: &Phi); |
637 | Recorded = true; |
638 | } |
639 | } |
640 | } |
641 | } |
642 | |
643 | /// Add a dummy PHI value as soon as we knew the new predecessor |
644 | void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { |
645 | for (PHINode &Phi : To->phis()) { |
646 | Value *Undef = UndefValue::get(T: Phi.getType()); |
647 | Phi.addIncoming(V: Undef, BB: From); |
648 | } |
649 | AddedPhis[To].push_back(Elt: From); |
650 | } |
651 | |
652 | /// When we are reconstructing a PHI inside \p PHIBlock with incoming values |
653 | /// from predecessors \p Incomings, we have a chance to mark the available value |
654 | /// from some blocks as undefined. The function will find out all such blocks |
655 | /// and return in \p UndefBlks. |
656 | void StructurizeCFG::findUndefBlocks( |
657 | BasicBlock *PHIBlock, const SmallSet<BasicBlock *, 8> &Incomings, |
658 | SmallVector<BasicBlock *> &UndefBlks) const { |
659 | // We may get a post-structured CFG like below: |
660 | // |
661 | // | P1 |
662 | // |/ |
663 | // F1 |
664 | // |\ |
665 | // | N |
666 | // |/ |
667 | // F2 |
668 | // |\ |
669 | // | P2 |
670 | // |/ |
671 | // F3 |
672 | // |\ |
673 | // B |
674 | // |
675 | // B is the block that has a PHI being reconstructed. P1/P2 are predecessors |
676 | // of B before structurization. F1/F2/F3 are flow blocks inserted during |
677 | // structurization process. Block N is not a predecessor of B before |
678 | // structurization, but are placed between the predecessors(P1/P2) of B after |
679 | // structurization. This usually means that threads went to N never take the |
680 | // path N->F2->F3->B. For example, the threads take the branch F1->N may |
681 | // always take the branch F2->P2. So, when we are reconstructing a PHI |
682 | // originally in B, we can safely say the incoming value from N is undefined. |
683 | SmallSet<BasicBlock *, 8> VisitedBlock; |
684 | SmallVector<BasicBlock *, 8> Stack; |
685 | if (PHIBlock == ParentRegion->getExit()) { |
686 | for (auto P : predecessors(BB: PHIBlock)) { |
687 | if (ParentRegion->contains(BB: P)) |
688 | Stack.push_back(Elt: P); |
689 | } |
690 | } else { |
691 | append_range(C&: Stack, R: predecessors(BB: PHIBlock)); |
692 | } |
693 | |
694 | // Do a backward traversal over the CFG, and stop further searching if |
695 | // the block is not a Flow. If a block is neither flow block nor the |
696 | // incoming predecessor, then the incoming value from the block is |
697 | // undefined value for the PHI being reconstructed. |
698 | while (!Stack.empty()) { |
699 | BasicBlock *Current = Stack.pop_back_val(); |
700 | if (VisitedBlock.contains(Ptr: Current)) |
701 | continue; |
702 | |
703 | VisitedBlock.insert(Ptr: Current); |
704 | if (FlowSet.contains(Ptr: Current)) { |
705 | for (auto P : predecessors(BB: Current)) |
706 | Stack.push_back(Elt: P); |
707 | } else if (!Incomings.contains(Ptr: Current)) { |
708 | UndefBlks.push_back(Elt: Current); |
709 | } |
710 | } |
711 | } |
712 | |
713 | /// Add the real PHI value as soon as everything is set up |
714 | void StructurizeCFG::setPhiValues() { |
715 | SmallVector<PHINode *, 8> InsertedPhis; |
716 | SSAUpdater Updater(&InsertedPhis); |
717 | for (const auto &AddedPhi : AddedPhis) { |
718 | BasicBlock *To = AddedPhi.first; |
719 | const BBVector &From = AddedPhi.second; |
720 | |
721 | if (!DeletedPhis.count(Val: To)) |
722 | continue; |
723 | |
724 | SmallVector<BasicBlock *> UndefBlks; |
725 | bool CachedUndefs = false; |
726 | PhiMap &Map = DeletedPhis[To]; |
727 | for (const auto &PI : Map) { |
728 | PHINode *Phi = PI.first; |
729 | Value *Undef = UndefValue::get(T: Phi->getType()); |
730 | Updater.Initialize(Ty: Phi->getType(), Name: "" ); |
731 | Updater.AddAvailableValue(BB: &Func->getEntryBlock(), V: Undef); |
732 | Updater.AddAvailableValue(BB: To, V: Undef); |
733 | |
734 | SmallSet<BasicBlock *, 8> Incomings; |
735 | SmallVector<BasicBlock *> ConstantPreds; |
736 | for (const auto &VI : PI.second) { |
737 | Incomings.insert(Ptr: VI.first); |
738 | Updater.AddAvailableValue(BB: VI.first, V: VI.second); |
739 | if (isa<Constant>(Val: VI.second)) |
740 | ConstantPreds.push_back(Elt: VI.first); |
741 | } |
742 | |
743 | if (!CachedUndefs) { |
744 | findUndefBlocks(PHIBlock: To, Incomings, UndefBlks); |
745 | CachedUndefs = true; |
746 | } |
747 | |
748 | for (auto UB : UndefBlks) { |
749 | // If this undef block is dominated by any predecessor(before |
750 | // structurization) of reconstructed PHI with constant incoming value, |
751 | // don't mark the available value as undefined. Setting undef to such |
752 | // block will stop us from getting optimal phi insertion. |
753 | if (any_of(Range&: ConstantPreds, |
754 | P: [&](BasicBlock *CP) { return DT->dominates(A: CP, B: UB); })) |
755 | continue; |
756 | Updater.AddAvailableValue(BB: UB, V: Undef); |
757 | } |
758 | |
759 | for (BasicBlock *FI : From) |
760 | Phi->setIncomingValueForBlock(BB: FI, V: Updater.GetValueAtEndOfBlock(BB: FI)); |
761 | AffectedPhis.push_back(Elt: Phi); |
762 | } |
763 | |
764 | DeletedPhis.erase(Val: To); |
765 | } |
766 | assert(DeletedPhis.empty()); |
767 | |
768 | AffectedPhis.append(in_start: InsertedPhis.begin(), in_end: InsertedPhis.end()); |
769 | } |
770 | |
771 | void StructurizeCFG::simplifyAffectedPhis() { |
772 | bool Changed; |
773 | do { |
774 | Changed = false; |
775 | SimplifyQuery Q(Func->getDataLayout()); |
776 | Q.DT = DT; |
777 | // Setting CanUseUndef to true might extend value liveness, set it to false |
778 | // to achieve better register pressure. |
779 | Q.CanUseUndef = false; |
780 | for (WeakVH VH : AffectedPhis) { |
781 | if (auto Phi = dyn_cast_or_null<PHINode>(Val&: VH)) { |
782 | if (auto NewValue = simplifyInstruction(I: Phi, Q)) { |
783 | Phi->replaceAllUsesWith(V: NewValue); |
784 | Phi->eraseFromParent(); |
785 | Changed = true; |
786 | } |
787 | } |
788 | } |
789 | } while (Changed); |
790 | } |
791 | |
792 | /// Remove phi values from all successors and then remove the terminator. |
793 | void StructurizeCFG::killTerminator(BasicBlock *BB) { |
794 | Instruction *Term = BB->getTerminator(); |
795 | if (!Term) |
796 | return; |
797 | |
798 | for (BasicBlock *Succ : successors(BB)) |
799 | delPhiValues(From: BB, To: Succ); |
800 | |
801 | Term->eraseFromParent(); |
802 | } |
803 | |
804 | /// Let node exit(s) point to NewExit |
805 | void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, |
806 | bool IncludeDominator) { |
807 | if (Node->isSubRegion()) { |
808 | Region *SubRegion = Node->getNodeAs<Region>(); |
809 | BasicBlock *OldExit = SubRegion->getExit(); |
810 | BasicBlock *Dominator = nullptr; |
811 | |
812 | // Find all the edges from the sub region to the exit. |
813 | // We use make_early_inc_range here because we modify BB's terminator. |
814 | for (BasicBlock *BB : llvm::make_early_inc_range(Range: predecessors(BB: OldExit))) { |
815 | if (!SubRegion->contains(BB)) |
816 | continue; |
817 | |
818 | // Modify the edges to point to the new exit |
819 | delPhiValues(From: BB, To: OldExit); |
820 | BB->getTerminator()->replaceUsesOfWith(From: OldExit, To: NewExit); |
821 | addPhiValues(From: BB, To: NewExit); |
822 | |
823 | // Find the new dominator (if requested) |
824 | if (IncludeDominator) { |
825 | if (!Dominator) |
826 | Dominator = BB; |
827 | else |
828 | Dominator = DT->findNearestCommonDominator(A: Dominator, B: BB); |
829 | } |
830 | } |
831 | |
832 | // Change the dominator (if requested) |
833 | if (Dominator) |
834 | DT->changeImmediateDominator(BB: NewExit, NewBB: Dominator); |
835 | |
836 | // Update the region info |
837 | SubRegion->replaceExit(BB: NewExit); |
838 | } else { |
839 | BasicBlock *BB = Node->getNodeAs<BasicBlock>(); |
840 | killTerminator(BB); |
841 | BranchInst *Br = BranchInst::Create(IfTrue: NewExit, InsertBefore: BB); |
842 | Br->setDebugLoc(TermDL[BB]); |
843 | addPhiValues(From: BB, To: NewExit); |
844 | if (IncludeDominator) |
845 | DT->changeImmediateDominator(BB: NewExit, NewBB: BB); |
846 | } |
847 | } |
848 | |
849 | /// Create a new flow node and update dominator tree and region info |
850 | BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) { |
851 | LLVMContext &Context = Func->getContext(); |
852 | BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : |
853 | Order.back()->getEntry(); |
854 | BasicBlock *Flow = BasicBlock::Create(Context, Name: FlowBlockName, |
855 | Parent: Func, InsertBefore: Insert); |
856 | FlowSet.insert(Ptr: Flow); |
857 | |
858 | // use a temporary variable to avoid a use-after-free if the map's storage is |
859 | // reallocated |
860 | DebugLoc DL = TermDL[Dominator]; |
861 | TermDL[Flow] = std::move(DL); |
862 | |
863 | DT->addNewBlock(BB: Flow, DomBB: Dominator); |
864 | ParentRegion->getRegionInfo()->setRegionFor(BB: Flow, R: ParentRegion); |
865 | return Flow; |
866 | } |
867 | |
868 | /// Create a new or reuse the previous node as flow node |
869 | BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) { |
870 | BasicBlock *Entry = PrevNode->getEntry(); |
871 | |
872 | if (!PrevNode->isSubRegion()) { |
873 | killTerminator(BB: Entry); |
874 | if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) |
875 | return Entry; |
876 | } |
877 | |
878 | // create a new flow node |
879 | BasicBlock *Flow = getNextFlow(Dominator: Entry); |
880 | |
881 | // and wire it up |
882 | changeExit(Node: PrevNode, NewExit: Flow, IncludeDominator: true); |
883 | PrevNode = ParentRegion->getBBNode(BB: Flow); |
884 | return Flow; |
885 | } |
886 | |
887 | /// Returns the region exit if possible, otherwise just a new flow node |
888 | BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow, |
889 | bool ExitUseAllowed) { |
890 | if (!Order.empty() || !ExitUseAllowed) |
891 | return getNextFlow(Dominator: Flow); |
892 | |
893 | BasicBlock *Exit = ParentRegion->getExit(); |
894 | DT->changeImmediateDominator(BB: Exit, NewBB: Flow); |
895 | addPhiValues(From: Flow, To: Exit); |
896 | return Exit; |
897 | } |
898 | |
899 | /// Set the previous node |
900 | void StructurizeCFG::setPrevNode(BasicBlock *BB) { |
901 | PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) |
902 | : nullptr; |
903 | } |
904 | |
905 | /// Does BB dominate all the predicates of Node? |
906 | bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { |
907 | BBPredicates &Preds = Predicates[Node->getEntry()]; |
908 | return llvm::all_of(Range&: Preds, P: [&](std::pair<BasicBlock *, Value *> Pred) { |
909 | return DT->dominates(A: BB, B: Pred.first); |
910 | }); |
911 | } |
912 | |
913 | /// Can we predict that this node will always be called? |
914 | bool StructurizeCFG::isPredictableTrue(RegionNode *Node) { |
915 | BBPredicates &Preds = Predicates[Node->getEntry()]; |
916 | bool Dominated = false; |
917 | |
918 | // Regionentry is always true |
919 | if (!PrevNode) |
920 | return true; |
921 | |
922 | for (std::pair<BasicBlock*, Value*> Pred : Preds) { |
923 | BasicBlock *BB = Pred.first; |
924 | Value *V = Pred.second; |
925 | |
926 | if (V != BoolTrue) |
927 | return false; |
928 | |
929 | if (!Dominated && DT->dominates(A: BB, B: PrevNode->getEntry())) |
930 | Dominated = true; |
931 | } |
932 | |
933 | // TODO: The dominator check is too strict |
934 | return Dominated; |
935 | } |
936 | |
937 | /// Take one node from the order vector and wire it up |
938 | void StructurizeCFG::wireFlow(bool ExitUseAllowed, |
939 | BasicBlock *LoopEnd) { |
940 | RegionNode *Node = Order.pop_back_val(); |
941 | Visited.insert(Ptr: Node->getEntry()); |
942 | |
943 | if (isPredictableTrue(Node)) { |
944 | // Just a linear flow |
945 | if (PrevNode) { |
946 | changeExit(Node: PrevNode, NewExit: Node->getEntry(), IncludeDominator: true); |
947 | } |
948 | PrevNode = Node; |
949 | } else { |
950 | // Insert extra prefix node (or reuse last one) |
951 | BasicBlock *Flow = needPrefix(NeedEmpty: false); |
952 | |
953 | // Insert extra postfix node (or use exit instead) |
954 | BasicBlock *Entry = Node->getEntry(); |
955 | BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); |
956 | |
957 | // let it point to entry and next block |
958 | BranchInst *Br = BranchInst::Create(IfTrue: Entry, IfFalse: Next, Cond: BoolPoison, InsertBefore: Flow); |
959 | Br->setDebugLoc(TermDL[Flow]); |
960 | Conditions.push_back(Elt: Br); |
961 | addPhiValues(From: Flow, To: Entry); |
962 | DT->changeImmediateDominator(BB: Entry, NewBB: Flow); |
963 | |
964 | PrevNode = Node; |
965 | while (!Order.empty() && !Visited.count(Ptr: LoopEnd) && |
966 | dominatesPredicates(BB: Entry, Node: Order.back())) { |
967 | handleLoops(ExitUseAllowed: false, LoopEnd); |
968 | } |
969 | |
970 | changeExit(Node: PrevNode, NewExit: Next, IncludeDominator: false); |
971 | setPrevNode(Next); |
972 | } |
973 | } |
974 | |
975 | void StructurizeCFG::handleLoops(bool ExitUseAllowed, |
976 | BasicBlock *LoopEnd) { |
977 | RegionNode *Node = Order.back(); |
978 | BasicBlock *LoopStart = Node->getEntry(); |
979 | |
980 | if (!Loops.count(Val: LoopStart)) { |
981 | wireFlow(ExitUseAllowed, LoopEnd); |
982 | return; |
983 | } |
984 | |
985 | if (!isPredictableTrue(Node)) |
986 | LoopStart = needPrefix(NeedEmpty: true); |
987 | |
988 | LoopEnd = Loops[Node->getEntry()]; |
989 | wireFlow(ExitUseAllowed: false, LoopEnd); |
990 | while (!Visited.count(Ptr: LoopEnd)) { |
991 | handleLoops(ExitUseAllowed: false, LoopEnd); |
992 | } |
993 | |
994 | assert(LoopStart != &LoopStart->getParent()->getEntryBlock()); |
995 | |
996 | // Create an extra loop end node |
997 | LoopEnd = needPrefix(NeedEmpty: false); |
998 | BasicBlock *Next = needPostfix(Flow: LoopEnd, ExitUseAllowed); |
999 | BranchInst *Br = BranchInst::Create(IfTrue: Next, IfFalse: LoopStart, Cond: BoolPoison, InsertBefore: LoopEnd); |
1000 | Br->setDebugLoc(TermDL[LoopEnd]); |
1001 | LoopConds.push_back(Elt: Br); |
1002 | addPhiValues(From: LoopEnd, To: LoopStart); |
1003 | setPrevNode(Next); |
1004 | } |
1005 | |
1006 | /// After this function control flow looks like it should be, but |
1007 | /// branches and PHI nodes only have undefined conditions. |
1008 | void StructurizeCFG::createFlow() { |
1009 | BasicBlock *Exit = ParentRegion->getExit(); |
1010 | bool EntryDominatesExit = DT->dominates(A: ParentRegion->getEntry(), B: Exit); |
1011 | |
1012 | AffectedPhis.clear(); |
1013 | DeletedPhis.clear(); |
1014 | AddedPhis.clear(); |
1015 | Conditions.clear(); |
1016 | LoopConds.clear(); |
1017 | |
1018 | PrevNode = nullptr; |
1019 | Visited.clear(); |
1020 | |
1021 | while (!Order.empty()) { |
1022 | handleLoops(ExitUseAllowed: EntryDominatesExit, LoopEnd: nullptr); |
1023 | } |
1024 | |
1025 | if (PrevNode) |
1026 | changeExit(Node: PrevNode, NewExit: Exit, IncludeDominator: EntryDominatesExit); |
1027 | else |
1028 | assert(EntryDominatesExit); |
1029 | } |
1030 | |
1031 | /// Handle a rare case where the disintegrated nodes instructions |
1032 | /// no longer dominate all their uses. Not sure if this is really necessary |
1033 | void StructurizeCFG::rebuildSSA() { |
1034 | SSAUpdater Updater; |
1035 | for (BasicBlock *BB : ParentRegion->blocks()) |
1036 | for (Instruction &I : *BB) { |
1037 | bool Initialized = false; |
1038 | // We may modify the use list as we iterate over it, so we use |
1039 | // make_early_inc_range. |
1040 | for (Use &U : llvm::make_early_inc_range(Range: I.uses())) { |
1041 | Instruction *User = cast<Instruction>(Val: U.getUser()); |
1042 | if (User->getParent() == BB) { |
1043 | continue; |
1044 | } else if (PHINode *UserPN = dyn_cast<PHINode>(Val: User)) { |
1045 | if (UserPN->getIncomingBlock(U) == BB) |
1046 | continue; |
1047 | } |
1048 | |
1049 | if (DT->dominates(Def: &I, User)) |
1050 | continue; |
1051 | |
1052 | if (!Initialized) { |
1053 | Value *Undef = UndefValue::get(T: I.getType()); |
1054 | Updater.Initialize(Ty: I.getType(), Name: "" ); |
1055 | Updater.AddAvailableValue(BB: &Func->getEntryBlock(), V: Undef); |
1056 | Updater.AddAvailableValue(BB, V: &I); |
1057 | Initialized = true; |
1058 | } |
1059 | Updater.RewriteUseAfterInsertions(U); |
1060 | } |
1061 | } |
1062 | } |
1063 | |
1064 | static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID, |
1065 | const UniformityInfo &UA) { |
1066 | // Bool for if all sub-regions are uniform. |
1067 | bool SubRegionsAreUniform = true; |
1068 | // Count of how many direct children are conditional. |
1069 | unsigned ConditionalDirectChildren = 0; |
1070 | |
1071 | for (auto *E : R->elements()) { |
1072 | if (!E->isSubRegion()) { |
1073 | auto Br = dyn_cast<BranchInst>(Val: E->getEntry()->getTerminator()); |
1074 | if (!Br || !Br->isConditional()) |
1075 | continue; |
1076 | |
1077 | if (!UA.isUniform(I: Br)) |
1078 | return false; |
1079 | |
1080 | // One of our direct children is conditional. |
1081 | ConditionalDirectChildren++; |
1082 | |
1083 | LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName() |
1084 | << " has uniform terminator\n" ); |
1085 | } else { |
1086 | // Explicitly refuse to treat regions as uniform if they have non-uniform |
1087 | // subregions. We cannot rely on UniformityAnalysis for branches in |
1088 | // subregions because those branches may have been removed and re-created, |
1089 | // so we look for our metadata instead. |
1090 | // |
1091 | // Warning: It would be nice to treat regions as uniform based only on |
1092 | // their direct child basic blocks' terminators, regardless of whether |
1093 | // subregions are uniform or not. However, this requires a very careful |
1094 | // look at SIAnnotateControlFlow to make sure nothing breaks there. |
1095 | for (auto *BB : E->getNodeAs<Region>()->blocks()) { |
1096 | auto Br = dyn_cast<BranchInst>(Val: BB->getTerminator()); |
1097 | if (!Br || !Br->isConditional()) |
1098 | continue; |
1099 | |
1100 | if (!Br->getMetadata(KindID: UniformMDKindID)) { |
1101 | // Early exit if we cannot have relaxed uniform regions. |
1102 | if (!RelaxedUniformRegions) |
1103 | return false; |
1104 | |
1105 | SubRegionsAreUniform = false; |
1106 | break; |
1107 | } |
1108 | } |
1109 | } |
1110 | } |
1111 | |
1112 | // Our region is uniform if: |
1113 | // 1. All conditional branches that are direct children are uniform (checked |
1114 | // above). |
1115 | // 2. And either: |
1116 | // a. All sub-regions are uniform. |
1117 | // b. There is one or less conditional branches among the direct children. |
1118 | return SubRegionsAreUniform || (ConditionalDirectChildren <= 1); |
1119 | } |
1120 | |
1121 | void StructurizeCFG::init(Region *R) { |
1122 | LLVMContext &Context = R->getEntry()->getContext(); |
1123 | |
1124 | Boolean = Type::getInt1Ty(C&: Context); |
1125 | BoolTrue = ConstantInt::getTrue(Context); |
1126 | BoolFalse = ConstantInt::getFalse(Context); |
1127 | BoolPoison = PoisonValue::get(T: Boolean); |
1128 | |
1129 | this->UA = nullptr; |
1130 | } |
1131 | |
1132 | bool StructurizeCFG::makeUniformRegion(Region *R, UniformityInfo &UA) { |
1133 | if (R->isTopLevelRegion()) |
1134 | return false; |
1135 | |
1136 | this->UA = &UA; |
1137 | |
1138 | // TODO: We could probably be smarter here with how we handle sub-regions. |
1139 | // We currently rely on the fact that metadata is set by earlier invocations |
1140 | // of the pass on sub-regions, and that this metadata doesn't get lost -- |
1141 | // but we shouldn't rely on metadata for correctness! |
1142 | unsigned UniformMDKindID = |
1143 | R->getEntry()->getContext().getMDKindID(Name: "structurizecfg.uniform" ); |
1144 | |
1145 | if (hasOnlyUniformBranches(R, UniformMDKindID, UA)) { |
1146 | LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R |
1147 | << '\n'); |
1148 | |
1149 | // Mark all direct child block terminators as having been treated as |
1150 | // uniform. To account for a possible future in which non-uniform |
1151 | // sub-regions are treated more cleverly, indirect children are not |
1152 | // marked as uniform. |
1153 | MDNode *MD = MDNode::get(Context&: R->getEntry()->getParent()->getContext(), MDs: {}); |
1154 | for (RegionNode *E : R->elements()) { |
1155 | if (E->isSubRegion()) |
1156 | continue; |
1157 | |
1158 | if (Instruction *Term = E->getEntry()->getTerminator()) |
1159 | Term->setMetadata(KindID: UniformMDKindID, Node: MD); |
1160 | } |
1161 | |
1162 | return true; |
1163 | } |
1164 | return false; |
1165 | } |
1166 | |
1167 | /// Run the transformation for each region found |
1168 | bool StructurizeCFG::run(Region *R, DominatorTree *DT) { |
1169 | if (R->isTopLevelRegion()) |
1170 | return false; |
1171 | |
1172 | this->DT = DT; |
1173 | |
1174 | Func = R->getEntry()->getParent(); |
1175 | assert(hasOnlySimpleTerminator(*Func) && "Unsupported block terminator." ); |
1176 | |
1177 | ParentRegion = R; |
1178 | |
1179 | orderNodes(); |
1180 | collectInfos(); |
1181 | createFlow(); |
1182 | insertConditions(Loops: false); |
1183 | insertConditions(Loops: true); |
1184 | setPhiValues(); |
1185 | simplifyConditions(); |
1186 | simplifyAffectedPhis(); |
1187 | rebuildSSA(); |
1188 | |
1189 | // Cleanup |
1190 | Order.clear(); |
1191 | Visited.clear(); |
1192 | DeletedPhis.clear(); |
1193 | AddedPhis.clear(); |
1194 | Predicates.clear(); |
1195 | Conditions.clear(); |
1196 | Loops.clear(); |
1197 | LoopPreds.clear(); |
1198 | LoopConds.clear(); |
1199 | FlowSet.clear(); |
1200 | TermDL.clear(); |
1201 | |
1202 | return true; |
1203 | } |
1204 | |
1205 | Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) { |
1206 | return new StructurizeCFGLegacyPass(SkipUniformRegions); |
1207 | } |
1208 | |
1209 | static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) { |
1210 | Regions.push_back(x: &R); |
1211 | for (const auto &E : R) |
1212 | addRegionIntoQueue(R&: *E, Regions); |
1213 | } |
1214 | |
1215 | PreservedAnalyses StructurizeCFGPass::run(Function &F, |
1216 | FunctionAnalysisManager &AM) { |
1217 | |
1218 | bool Changed = false; |
1219 | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(IR&: F); |
1220 | auto &RI = AM.getResult<RegionInfoAnalysis>(IR&: F); |
1221 | std::vector<Region *> Regions; |
1222 | addRegionIntoQueue(R&: *RI.getTopLevelRegion(), Regions); |
1223 | while (!Regions.empty()) { |
1224 | Region *R = Regions.back(); |
1225 | StructurizeCFG SCFG; |
1226 | SCFG.init(R); |
1227 | Changed |= SCFG.run(R, DT); |
1228 | Regions.pop_back(); |
1229 | } |
1230 | if (!Changed) |
1231 | return PreservedAnalyses::all(); |
1232 | PreservedAnalyses PA; |
1233 | PA.preserve<DominatorTreeAnalysis>(); |
1234 | return PA; |
1235 | } |
1236 | |