1 | //===- FixIrreducible.cpp - Convert irreducible control-flow into loops ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // An irreducible SCC is one which has multiple "header" blocks, i.e., blocks |
10 | // with control-flow edges incident from outside the SCC. This pass converts a |
11 | // irreducible SCC into a natural loop by applying the following transformation: |
12 | // |
13 | // 1. Collect the set of headers H of the SCC. |
14 | // 2. Collect the set of predecessors P of these headers. These may be inside as |
15 | // well as outside the SCC. |
16 | // 3. Create block N and redirect every edge from set P to set H through N. |
17 | // |
18 | // This converts the SCC into a natural loop with N as the header: N is the only |
19 | // block with edges incident from outside the SCC, and all backedges in the SCC |
20 | // are incident on N, i.e., for every backedge, the head now dominates the tail. |
21 | // |
22 | // INPUT CFG: The blocks A and B form an irreducible loop with two headers. |
23 | // |
24 | // Entry |
25 | // / \ |
26 | // v v |
27 | // A ----> B |
28 | // ^ /| |
29 | // `----' | |
30 | // v |
31 | // Exit |
32 | // |
33 | // OUTPUT CFG: Edges incident on A and B are now redirected through a |
34 | // new block N, forming a natural loop consisting of N, A and B. |
35 | // |
36 | // Entry |
37 | // | |
38 | // v |
39 | // .---> N <---. |
40 | // / / \ \ |
41 | // | / \ | |
42 | // \ v v / |
43 | // `-- A B --' |
44 | // | |
45 | // v |
46 | // Exit |
47 | // |
48 | // The transformation is applied to every maximal SCC that is not already |
49 | // recognized as a loop. The pass operates on all maximal SCCs found in the |
50 | // function body outside of any loop, as well as those found inside each loop, |
51 | // including inside any newly created loops. This ensures that any SCC hidden |
52 | // inside a maximal SCC is also transformed. |
53 | // |
54 | // The actual transformation is handled by function CreateControlFlowHub, which |
55 | // takes a set of incoming blocks (the predecessors) and outgoing blocks (the |
56 | // headers). The function also moves every PHINode in an outgoing block to the |
57 | // hub. Since the hub dominates all the outgoing blocks, each such PHINode |
58 | // continues to dominate its uses. Since every header in an SCC has at least two |
59 | // predecessors, every value used in the header (or later) but defined in a |
60 | // predecessor (or earlier) is represented by a PHINode in a header. Hence the |
61 | // above handling of PHINodes is sufficient and no further processing is |
62 | // required to restore SSA. |
63 | // |
64 | // Limitation: The pass cannot handle switch statements and indirect |
65 | // branches. Both must be lowered to plain branches first. |
66 | // |
67 | //===----------------------------------------------------------------------===// |
68 | |
69 | #include "llvm/Transforms/Utils/FixIrreducible.h" |
70 | #include "llvm/ADT/SCCIterator.h" |
71 | #include "llvm/Analysis/DomTreeUpdater.h" |
72 | #include "llvm/Analysis/LoopIterator.h" |
73 | #include "llvm/InitializePasses.h" |
74 | #include "llvm/Pass.h" |
75 | #include "llvm/Transforms/Utils.h" |
76 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
77 | |
78 | #define DEBUG_TYPE "fix-irreducible" |
79 | |
80 | using namespace llvm; |
81 | |
82 | namespace { |
83 | struct FixIrreducible : public FunctionPass { |
84 | static char ID; |
85 | FixIrreducible() : FunctionPass(ID) { |
86 | initializeFixIrreduciblePass(*PassRegistry::getPassRegistry()); |
87 | } |
88 | |
89 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
90 | AU.addRequired<DominatorTreeWrapperPass>(); |
91 | AU.addRequired<LoopInfoWrapperPass>(); |
92 | AU.addPreserved<DominatorTreeWrapperPass>(); |
93 | AU.addPreserved<LoopInfoWrapperPass>(); |
94 | } |
95 | |
96 | bool runOnFunction(Function &F) override; |
97 | }; |
98 | } // namespace |
99 | |
100 | char FixIrreducible::ID = 0; |
101 | |
102 | FunctionPass *llvm::createFixIrreduciblePass() { return new FixIrreducible(); } |
103 | |
104 | INITIALIZE_PASS_BEGIN(FixIrreducible, "fix-irreducible" , |
105 | "Convert irreducible control-flow into natural loops" , |
106 | false /* Only looks at CFG */, false /* Analysis Pass */) |
107 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
108 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
109 | INITIALIZE_PASS_END(FixIrreducible, "fix-irreducible" , |
110 | "Convert irreducible control-flow into natural loops" , |
111 | false /* Only looks at CFG */, false /* Analysis Pass */) |
112 | |
113 | // When a new loop is created, existing children of the parent loop may now be |
114 | // fully inside the new loop. Reconnect these as children of the new loop. |
115 | static void reconnectChildLoops(LoopInfo &LI, Loop *ParentLoop, Loop *NewLoop, |
116 | SetVector<BasicBlock *> &Blocks, |
117 | SetVector<BasicBlock *> &) { |
118 | auto &CandidateLoops = ParentLoop ? ParentLoop->getSubLoopsVector() |
119 | : LI.getTopLevelLoopsVector(); |
120 | // The new loop cannot be its own child, and any candidate is a |
121 | // child iff its header is owned by the new loop. Move all the |
122 | // children to a new vector. |
123 | auto FirstChild = std::partition( |
124 | first: CandidateLoops.begin(), last: CandidateLoops.end(), pred: [&](Loop *L) { |
125 | return L == NewLoop || !Blocks.contains(key: L->getHeader()); |
126 | }); |
127 | SmallVector<Loop *, 8> ChildLoops(FirstChild, CandidateLoops.end()); |
128 | CandidateLoops.erase(first: FirstChild, last: CandidateLoops.end()); |
129 | |
130 | for (Loop *Child : ChildLoops) { |
131 | LLVM_DEBUG(dbgs() << "child loop: " << Child->getHeader()->getName() |
132 | << "\n" ); |
133 | // TODO: A child loop whose header is also a header in the current |
134 | // SCC gets destroyed since its backedges are removed. That may |
135 | // not be necessary if we can retain such backedges. |
136 | if (Headers.count(key: Child->getHeader())) { |
137 | for (auto *BB : Child->blocks()) { |
138 | if (LI.getLoopFor(BB) != Child) |
139 | continue; |
140 | LI.changeLoopFor(BB, L: NewLoop); |
141 | LLVM_DEBUG(dbgs() << "moved block from child: " << BB->getName() |
142 | << "\n" ); |
143 | } |
144 | std::vector<Loop *> GrandChildLoops; |
145 | std::swap(x&: GrandChildLoops, y&: Child->getSubLoopsVector()); |
146 | for (auto *GrandChildLoop : GrandChildLoops) { |
147 | GrandChildLoop->setParentLoop(nullptr); |
148 | NewLoop->addChildLoop(NewChild: GrandChildLoop); |
149 | } |
150 | LI.destroy(L: Child); |
151 | LLVM_DEBUG(dbgs() << "subsumed child loop (common header)\n" ); |
152 | continue; |
153 | } |
154 | |
155 | Child->setParentLoop(nullptr); |
156 | NewLoop->addChildLoop(NewChild: Child); |
157 | LLVM_DEBUG(dbgs() << "added child loop to new loop\n" ); |
158 | } |
159 | } |
160 | |
161 | // Given a set of blocks and headers in an irreducible SCC, convert it into a |
162 | // natural loop. Also insert this new loop at its appropriate place in the |
163 | // hierarchy of loops. |
164 | static void createNaturalLoopInternal(LoopInfo &LI, DominatorTree &DT, |
165 | Loop *ParentLoop, |
166 | SetVector<BasicBlock *> &Blocks, |
167 | SetVector<BasicBlock *> &) { |
168 | #ifndef NDEBUG |
169 | // All headers are part of the SCC |
170 | for (auto *H : Headers) { |
171 | assert(Blocks.count(H)); |
172 | } |
173 | #endif |
174 | |
175 | SetVector<BasicBlock *> Predecessors; |
176 | for (auto *H : Headers) { |
177 | for (auto *P : predecessors(BB: H)) { |
178 | Predecessors.insert(X: P); |
179 | } |
180 | } |
181 | |
182 | LLVM_DEBUG( |
183 | dbgs() << "Found predecessors:" ; |
184 | for (auto P : Predecessors) { |
185 | dbgs() << " " << P->getName(); |
186 | } |
187 | dbgs() << "\n" ); |
188 | |
189 | // Redirect all the backedges through a "hub" consisting of a series |
190 | // of guard blocks that manage the flow of control from the |
191 | // predecessors to the headers. |
192 | SmallVector<BasicBlock *, 8> GuardBlocks; |
193 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
194 | CreateControlFlowHub(DTU: &DTU, GuardBlocks, Predecessors, Successors: Headers, Prefix: "irr" ); |
195 | #if defined(EXPENSIVE_CHECKS) |
196 | assert(DT.verify(DominatorTree::VerificationLevel::Full)); |
197 | #else |
198 | assert(DT.verify(DominatorTree::VerificationLevel::Fast)); |
199 | #endif |
200 | |
201 | // Create a new loop from the now-transformed cycle |
202 | auto NewLoop = LI.AllocateLoop(); |
203 | if (ParentLoop) { |
204 | ParentLoop->addChildLoop(NewChild: NewLoop); |
205 | } else { |
206 | LI.addTopLevelLoop(New: NewLoop); |
207 | } |
208 | |
209 | // Add the guard blocks to the new loop. The first guard block is |
210 | // the head of all the backedges, and it is the first to be inserted |
211 | // in the loop. This ensures that it is recognized as the |
212 | // header. Since the new loop is already in LoopInfo, the new blocks |
213 | // are also propagated up the chain of parent loops. |
214 | for (auto *G : GuardBlocks) { |
215 | LLVM_DEBUG(dbgs() << "added guard block: " << G->getName() << "\n" ); |
216 | NewLoop->addBasicBlockToLoop(NewBB: G, LI); |
217 | } |
218 | |
219 | // Add the SCC blocks to the new loop. |
220 | for (auto *BB : Blocks) { |
221 | NewLoop->addBlockEntry(BB); |
222 | if (LI.getLoopFor(BB) == ParentLoop) { |
223 | LLVM_DEBUG(dbgs() << "moved block from parent: " << BB->getName() |
224 | << "\n" ); |
225 | LI.changeLoopFor(BB, L: NewLoop); |
226 | } else { |
227 | LLVM_DEBUG(dbgs() << "added block from child: " << BB->getName() << "\n" ); |
228 | } |
229 | } |
230 | LLVM_DEBUG(dbgs() << "header for new loop: " |
231 | << NewLoop->getHeader()->getName() << "\n" ); |
232 | |
233 | reconnectChildLoops(LI, ParentLoop, NewLoop, Blocks, Headers); |
234 | |
235 | NewLoop->verifyLoop(); |
236 | if (ParentLoop) { |
237 | ParentLoop->verifyLoop(); |
238 | } |
239 | #if defined(EXPENSIVE_CHECKS) |
240 | LI.verify(DT); |
241 | #endif // EXPENSIVE_CHECKS |
242 | } |
243 | |
244 | namespace llvm { |
245 | // Enable the graph traits required for traversing a Loop body. |
246 | template <> struct GraphTraits<Loop> : LoopBodyTraits {}; |
247 | } // namespace llvm |
248 | |
249 | // Overloaded wrappers to go with the function template below. |
250 | static BasicBlock *unwrapBlock(BasicBlock *B) { return B; } |
251 | static BasicBlock *unwrapBlock(LoopBodyTraits::NodeRef &N) { return N.second; } |
252 | |
253 | static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Function *F, |
254 | SetVector<BasicBlock *> &Blocks, |
255 | SetVector<BasicBlock *> &) { |
256 | createNaturalLoopInternal(LI, DT, ParentLoop: nullptr, Blocks, Headers); |
257 | } |
258 | |
259 | static void createNaturalLoop(LoopInfo &LI, DominatorTree &DT, Loop &L, |
260 | SetVector<BasicBlock *> &Blocks, |
261 | SetVector<BasicBlock *> &) { |
262 | createNaturalLoopInternal(LI, DT, ParentLoop: &L, Blocks, Headers); |
263 | } |
264 | |
265 | // Convert irreducible SCCs; Graph G may be a Function* or a Loop&. |
266 | template <class Graph> |
267 | static bool makeReducible(LoopInfo &LI, DominatorTree &DT, Graph &&G) { |
268 | bool Changed = false; |
269 | for (auto Scc = scc_begin(G); !Scc.isAtEnd(); ++Scc) { |
270 | if (Scc->size() < 2) |
271 | continue; |
272 | SetVector<BasicBlock *> Blocks; |
273 | LLVM_DEBUG(dbgs() << "Found SCC:" ); |
274 | for (auto N : *Scc) { |
275 | auto BB = unwrapBlock(N); |
276 | LLVM_DEBUG(dbgs() << " " << BB->getName()); |
277 | Blocks.insert(BB); |
278 | } |
279 | LLVM_DEBUG(dbgs() << "\n" ); |
280 | |
281 | // Minor optimization: The SCC blocks are usually discovered in an order |
282 | // that is the opposite of the order in which these blocks appear as branch |
283 | // targets. This results in a lot of condition inversions in the control |
284 | // flow out of the new ControlFlowHub, which can be mitigated if the orders |
285 | // match. So we discover the headers using the reverse of the block order. |
286 | SetVector<BasicBlock *> ; |
287 | LLVM_DEBUG(dbgs() << "Found headers:" ); |
288 | for (auto *BB : reverse(C&: Blocks)) { |
289 | for (const auto P : predecessors(BB)) { |
290 | // Skip unreachable predecessors. |
291 | if (!DT.isReachableFromEntry(A: P)) |
292 | continue; |
293 | if (!Blocks.count(key: P)) { |
294 | LLVM_DEBUG(dbgs() << " " << BB->getName()); |
295 | Headers.insert(X: BB); |
296 | break; |
297 | } |
298 | } |
299 | } |
300 | LLVM_DEBUG(dbgs() << "\n" ); |
301 | |
302 | if (Headers.size() == 1) { |
303 | assert(LI.isLoopHeader(Headers.front())); |
304 | LLVM_DEBUG(dbgs() << "Natural loop with a single header: skipped\n" ); |
305 | continue; |
306 | } |
307 | createNaturalLoop(LI, DT, G, Blocks, Headers); |
308 | Changed = true; |
309 | } |
310 | return Changed; |
311 | } |
312 | |
313 | static bool FixIrreducibleImpl(Function &F, LoopInfo &LI, DominatorTree &DT) { |
314 | LLVM_DEBUG(dbgs() << "===== Fix irreducible control-flow in function: " |
315 | << F.getName() << "\n" ); |
316 | |
317 | assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator." ); |
318 | |
319 | bool Changed = false; |
320 | SmallVector<Loop *, 8> WorkList; |
321 | |
322 | LLVM_DEBUG(dbgs() << "visiting top-level\n" ); |
323 | Changed |= makeReducible(LI, DT, G: &F); |
324 | |
325 | // Any SCCs reduced are now already in the list of top-level loops, so simply |
326 | // add them all to the worklist. |
327 | append_range(C&: WorkList, R&: LI); |
328 | |
329 | while (!WorkList.empty()) { |
330 | auto L = WorkList.pop_back_val(); |
331 | LLVM_DEBUG(dbgs() << "visiting loop with header " |
332 | << L->getHeader()->getName() << "\n" ); |
333 | Changed |= makeReducible(LI, DT, G&: *L); |
334 | // Any SCCs reduced are now already in the list of child loops, so simply |
335 | // add them all to the worklist. |
336 | WorkList.append(in_start: L->begin(), in_end: L->end()); |
337 | } |
338 | |
339 | return Changed; |
340 | } |
341 | |
342 | bool FixIrreducible::runOnFunction(Function &F) { |
343 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
344 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
345 | return FixIrreducibleImpl(F, LI, DT); |
346 | } |
347 | |
348 | PreservedAnalyses FixIrreduciblePass::run(Function &F, |
349 | FunctionAnalysisManager &AM) { |
350 | auto &LI = AM.getResult<LoopAnalysis>(IR&: F); |
351 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
352 | if (!FixIrreducibleImpl(F, LI, DT)) |
353 | return PreservedAnalyses::all(); |
354 | PreservedAnalyses PA; |
355 | PA.preserve<LoopAnalysis>(); |
356 | PA.preserve<DominatorTreeAnalysis>(); |
357 | return PA; |
358 | } |
359 | |