1 | #include "llvm/Transforms/Utils/LoopConstrainer.h" |
2 | #include "llvm/Analysis/LoopInfo.h" |
3 | #include "llvm/Analysis/ScalarEvolution.h" |
4 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
5 | #include "llvm/IR/Dominators.h" |
6 | #include "llvm/Transforms/Utils/Cloning.h" |
7 | #include "llvm/Transforms/Utils/LoopSimplify.h" |
8 | #include "llvm/Transforms/Utils/LoopUtils.h" |
9 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
10 | |
11 | using namespace llvm; |
12 | |
13 | static const char *ClonedLoopTag = "loop_constrainer.loop.clone" ; |
14 | |
15 | #define DEBUG_TYPE "loop-constrainer" |
16 | |
17 | /// Given a loop with an deccreasing induction variable, is it possible to |
18 | /// safely calculate the bounds of a new loop using the given Predicate. |
19 | static bool isSafeDecreasingBound(const SCEV *Start, const SCEV *BoundSCEV, |
20 | const SCEV *Step, ICmpInst::Predicate Pred, |
21 | unsigned LatchBrExitIdx, Loop *L, |
22 | ScalarEvolution &SE) { |
23 | if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && |
24 | Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) |
25 | return false; |
26 | |
27 | if (!SE.isAvailableAtLoopEntry(S: BoundSCEV, L)) |
28 | return false; |
29 | |
30 | assert(SE.isKnownNegative(Step) && "expecting negative step" ); |
31 | |
32 | LLVM_DEBUG(dbgs() << "isSafeDecreasingBound with:\n" ); |
33 | LLVM_DEBUG(dbgs() << "Start: " << *Start << "\n" ); |
34 | LLVM_DEBUG(dbgs() << "Step: " << *Step << "\n" ); |
35 | LLVM_DEBUG(dbgs() << "BoundSCEV: " << *BoundSCEV << "\n" ); |
36 | LLVM_DEBUG(dbgs() << "Pred: " << Pred << "\n" ); |
37 | LLVM_DEBUG(dbgs() << "LatchExitBrIdx: " << LatchBrExitIdx << "\n" ); |
38 | |
39 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
40 | // The predicate that we need to check that the induction variable lies |
41 | // within bounds. |
42 | ICmpInst::Predicate BoundPred = |
43 | IsSigned ? CmpInst::ICMP_SGT : CmpInst::ICMP_UGT; |
44 | |
45 | auto StartLG = SE.applyLoopGuards(Expr: Start, L); |
46 | auto BoundLG = SE.applyLoopGuards(Expr: BoundSCEV, L); |
47 | |
48 | if (LatchBrExitIdx == 1) |
49 | return SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: StartLG, RHS: BoundLG); |
50 | |
51 | assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be either 0 or 1" ); |
52 | |
53 | const SCEV *StepPlusOne = SE.getAddExpr(LHS: Step, RHS: SE.getOne(Ty: Step->getType())); |
54 | unsigned BitWidth = cast<IntegerType>(Val: BoundSCEV->getType())->getBitWidth(); |
55 | APInt Min = IsSigned ? APInt::getSignedMinValue(numBits: BitWidth) |
56 | : APInt::getMinValue(numBits: BitWidth); |
57 | const SCEV *Limit = SE.getMinusSCEV(LHS: SE.getConstant(Val: Min), RHS: StepPlusOne); |
58 | |
59 | const SCEV *MinusOne = |
60 | SE.getMinusSCEV(LHS: BoundLG, RHS: SE.getOne(Ty: BoundLG->getType())); |
61 | |
62 | return SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: StartLG, RHS: MinusOne) && |
63 | SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: BoundLG, RHS: Limit); |
64 | } |
65 | |
66 | /// Given a loop with an increasing induction variable, is it possible to |
67 | /// safely calculate the bounds of a new loop using the given Predicate. |
68 | static bool isSafeIncreasingBound(const SCEV *Start, const SCEV *BoundSCEV, |
69 | const SCEV *Step, ICmpInst::Predicate Pred, |
70 | unsigned LatchBrExitIdx, Loop *L, |
71 | ScalarEvolution &SE) { |
72 | if (Pred != ICmpInst::ICMP_SLT && Pred != ICmpInst::ICMP_SGT && |
73 | Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_UGT) |
74 | return false; |
75 | |
76 | if (!SE.isAvailableAtLoopEntry(S: BoundSCEV, L)) |
77 | return false; |
78 | |
79 | LLVM_DEBUG(dbgs() << "isSafeIncreasingBound with:\n" ); |
80 | LLVM_DEBUG(dbgs() << "Start: " << *Start << "\n" ); |
81 | LLVM_DEBUG(dbgs() << "Step: " << *Step << "\n" ); |
82 | LLVM_DEBUG(dbgs() << "BoundSCEV: " << *BoundSCEV << "\n" ); |
83 | LLVM_DEBUG(dbgs() << "Pred: " << Pred << "\n" ); |
84 | LLVM_DEBUG(dbgs() << "LatchExitBrIdx: " << LatchBrExitIdx << "\n" ); |
85 | |
86 | bool IsSigned = ICmpInst::isSigned(predicate: Pred); |
87 | // The predicate that we need to check that the induction variable lies |
88 | // within bounds. |
89 | ICmpInst::Predicate BoundPred = |
90 | IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; |
91 | |
92 | auto StartLG = SE.applyLoopGuards(Expr: Start, L); |
93 | auto BoundLG = SE.applyLoopGuards(Expr: BoundSCEV, L); |
94 | |
95 | if (LatchBrExitIdx == 1) |
96 | return SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: StartLG, RHS: BoundLG); |
97 | |
98 | assert(LatchBrExitIdx == 0 && "LatchBrExitIdx should be 0 or 1" ); |
99 | |
100 | const SCEV *StepMinusOne = SE.getMinusSCEV(LHS: Step, RHS: SE.getOne(Ty: Step->getType())); |
101 | unsigned BitWidth = cast<IntegerType>(Val: BoundSCEV->getType())->getBitWidth(); |
102 | APInt Max = IsSigned ? APInt::getSignedMaxValue(numBits: BitWidth) |
103 | : APInt::getMaxValue(numBits: BitWidth); |
104 | const SCEV *Limit = SE.getMinusSCEV(LHS: SE.getConstant(Val: Max), RHS: StepMinusOne); |
105 | |
106 | return (SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: StartLG, |
107 | RHS: SE.getAddExpr(LHS: BoundLG, RHS: Step)) && |
108 | SE.isLoopEntryGuardedByCond(L, Pred: BoundPred, LHS: BoundLG, RHS: Limit)); |
109 | } |
110 | |
111 | /// Returns estimate for max latch taken count of the loop of the narrowest |
112 | /// available type. If the latch block has such estimate, it is returned. |
113 | /// Otherwise, we use max exit count of whole loop (that is potentially of wider |
114 | /// type than latch check itself), which is still better than no estimate. |
115 | static const SCEV *getNarrowestLatchMaxTakenCountEstimate(ScalarEvolution &SE, |
116 | const Loop &L) { |
117 | const SCEV *FromBlock = |
118 | SE.getExitCount(L: &L, ExitingBlock: L.getLoopLatch(), Kind: ScalarEvolution::SymbolicMaximum); |
119 | if (isa<SCEVCouldNotCompute>(Val: FromBlock)) |
120 | return SE.getSymbolicMaxBackedgeTakenCount(L: &L); |
121 | return FromBlock; |
122 | } |
123 | |
124 | std::optional<LoopStructure> |
125 | LoopStructure::parseLoopStructure(ScalarEvolution &SE, Loop &L, |
126 | bool AllowUnsignedLatchCond, |
127 | const char *&FailureReason) { |
128 | if (!L.isLoopSimplifyForm()) { |
129 | FailureReason = "loop not in LoopSimplify form" ; |
130 | return std::nullopt; |
131 | } |
132 | |
133 | BasicBlock *Latch = L.getLoopLatch(); |
134 | assert(Latch && "Simplified loops only have one latch!" ); |
135 | |
136 | if (Latch->getTerminator()->getMetadata(Kind: ClonedLoopTag)) { |
137 | FailureReason = "loop has already been cloned" ; |
138 | return std::nullopt; |
139 | } |
140 | |
141 | if (!L.isLoopExiting(BB: Latch)) { |
142 | FailureReason = "no loop latch" ; |
143 | return std::nullopt; |
144 | } |
145 | |
146 | BasicBlock * = L.getHeader(); |
147 | BasicBlock * = L.getLoopPreheader(); |
148 | if (!Preheader) { |
149 | FailureReason = "no preheader" ; |
150 | return std::nullopt; |
151 | } |
152 | |
153 | BranchInst *LatchBr = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
154 | if (!LatchBr || LatchBr->isUnconditional()) { |
155 | FailureReason = "latch terminator not conditional branch" ; |
156 | return std::nullopt; |
157 | } |
158 | |
159 | unsigned LatchBrExitIdx = LatchBr->getSuccessor(i: 0) == Header ? 1 : 0; |
160 | |
161 | ICmpInst *ICI = dyn_cast<ICmpInst>(Val: LatchBr->getCondition()); |
162 | if (!ICI || !isa<IntegerType>(Val: ICI->getOperand(i_nocapture: 0)->getType())) { |
163 | FailureReason = "latch terminator branch not conditional on integral icmp" ; |
164 | return std::nullopt; |
165 | } |
166 | |
167 | const SCEV *MaxBETakenCount = getNarrowestLatchMaxTakenCountEstimate(SE, L); |
168 | if (isa<SCEVCouldNotCompute>(Val: MaxBETakenCount)) { |
169 | FailureReason = "could not compute latch count" ; |
170 | return std::nullopt; |
171 | } |
172 | assert(SE.getLoopDisposition(MaxBETakenCount, &L) == |
173 | ScalarEvolution::LoopInvariant && |
174 | "loop variant exit count doesn't make sense!" ); |
175 | |
176 | ICmpInst::Predicate Pred = ICI->getPredicate(); |
177 | Value *LeftValue = ICI->getOperand(i_nocapture: 0); |
178 | const SCEV *LeftSCEV = SE.getSCEV(V: LeftValue); |
179 | IntegerType *IndVarTy = cast<IntegerType>(Val: LeftValue->getType()); |
180 | |
181 | Value *RightValue = ICI->getOperand(i_nocapture: 1); |
182 | const SCEV *RightSCEV = SE.getSCEV(V: RightValue); |
183 | |
184 | // We canonicalize `ICI` such that `LeftSCEV` is an add recurrence. |
185 | if (!isa<SCEVAddRecExpr>(Val: LeftSCEV)) { |
186 | if (isa<SCEVAddRecExpr>(Val: RightSCEV)) { |
187 | std::swap(a&: LeftSCEV, b&: RightSCEV); |
188 | std::swap(a&: LeftValue, b&: RightValue); |
189 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
190 | } else { |
191 | FailureReason = "no add recurrences in the icmp" ; |
192 | return std::nullopt; |
193 | } |
194 | } |
195 | |
196 | auto HasNoSignedWrap = [&](const SCEVAddRecExpr *AR) { |
197 | if (AR->getNoWrapFlags(Mask: SCEV::FlagNSW)) |
198 | return true; |
199 | |
200 | IntegerType *Ty = cast<IntegerType>(Val: AR->getType()); |
201 | IntegerType *WideTy = |
202 | IntegerType::get(C&: Ty->getContext(), NumBits: Ty->getBitWidth() * 2); |
203 | |
204 | const SCEVAddRecExpr *ExtendAfterOp = |
205 | dyn_cast<SCEVAddRecExpr>(Val: SE.getSignExtendExpr(Op: AR, Ty: WideTy)); |
206 | if (ExtendAfterOp) { |
207 | const SCEV *ExtendedStart = SE.getSignExtendExpr(Op: AR->getStart(), Ty: WideTy); |
208 | const SCEV *ExtendedStep = |
209 | SE.getSignExtendExpr(Op: AR->getStepRecurrence(SE), Ty: WideTy); |
210 | |
211 | bool NoSignedWrap = ExtendAfterOp->getStart() == ExtendedStart && |
212 | ExtendAfterOp->getStepRecurrence(SE) == ExtendedStep; |
213 | |
214 | if (NoSignedWrap) |
215 | return true; |
216 | } |
217 | |
218 | // We may have proved this when computing the sign extension above. |
219 | return AR->getNoWrapFlags(Mask: SCEV::FlagNSW) != SCEV::FlagAnyWrap; |
220 | }; |
221 | |
222 | // `ICI` is interpreted as taking the backedge if the *next* value of the |
223 | // induction variable satisfies some constraint. |
224 | |
225 | const SCEVAddRecExpr *IndVarBase = cast<SCEVAddRecExpr>(Val: LeftSCEV); |
226 | if (IndVarBase->getLoop() != &L) { |
227 | FailureReason = "LHS in cmp is not an AddRec for this loop" ; |
228 | return std::nullopt; |
229 | } |
230 | if (!IndVarBase->isAffine()) { |
231 | FailureReason = "LHS in icmp not induction variable" ; |
232 | return std::nullopt; |
233 | } |
234 | const SCEV *StepRec = IndVarBase->getStepRecurrence(SE); |
235 | if (!isa<SCEVConstant>(Val: StepRec)) { |
236 | FailureReason = "LHS in icmp not induction variable" ; |
237 | return std::nullopt; |
238 | } |
239 | ConstantInt *StepCI = cast<SCEVConstant>(Val: StepRec)->getValue(); |
240 | |
241 | if (ICI->isEquality() && !HasNoSignedWrap(IndVarBase)) { |
242 | FailureReason = "LHS in icmp needs nsw for equality predicates" ; |
243 | return std::nullopt; |
244 | } |
245 | |
246 | assert(!StepCI->isZero() && "Zero step?" ); |
247 | bool IsIncreasing = !StepCI->isNegative(); |
248 | bool IsSignedPredicate; |
249 | const SCEV *StartNext = IndVarBase->getStart(); |
250 | const SCEV *Addend = SE.getNegativeSCEV(V: IndVarBase->getStepRecurrence(SE)); |
251 | const SCEV *IndVarStart = SE.getAddExpr(LHS: StartNext, RHS: Addend); |
252 | const SCEV *Step = SE.getSCEV(V: StepCI); |
253 | |
254 | const SCEV *FixedRightSCEV = nullptr; |
255 | |
256 | // If RightValue resides within loop (but still being loop invariant), |
257 | // regenerate it as preheader. |
258 | if (auto *I = dyn_cast<Instruction>(Val: RightValue)) |
259 | if (L.contains(BB: I->getParent())) |
260 | FixedRightSCEV = RightSCEV; |
261 | |
262 | if (IsIncreasing) { |
263 | bool DecreasedRightValueByOne = false; |
264 | if (StepCI->isOne()) { |
265 | // Try to turn eq/ne predicates to those we can work with. |
266 | if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) |
267 | // while (++i != len) { while (++i < len) { |
268 | // ... ---> ... |
269 | // } } |
270 | // If both parts are known non-negative, it is profitable to use |
271 | // unsigned comparison in increasing loop. This allows us to make the |
272 | // comparison check against "RightSCEV + 1" more optimistic. |
273 | if (isKnownNonNegativeInLoop(S: IndVarStart, L: &L, SE) && |
274 | isKnownNonNegativeInLoop(S: RightSCEV, L: &L, SE)) |
275 | Pred = ICmpInst::ICMP_ULT; |
276 | else |
277 | Pred = ICmpInst::ICMP_SLT; |
278 | else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { |
279 | // while (true) { while (true) { |
280 | // if (++i == len) ---> if (++i > len - 1) |
281 | // break; break; |
282 | // ... ... |
283 | // } } |
284 | if (IndVarBase->getNoWrapFlags(Mask: SCEV::FlagNUW) && |
285 | cannotBeMinInLoop(S: RightSCEV, L: &L, SE, /*Signed*/ false)) { |
286 | Pred = ICmpInst::ICMP_UGT; |
287 | RightSCEV = |
288 | SE.getMinusSCEV(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
289 | DecreasedRightValueByOne = true; |
290 | } else if (cannotBeMinInLoop(S: RightSCEV, L: &L, SE, /*Signed*/ true)) { |
291 | Pred = ICmpInst::ICMP_SGT; |
292 | RightSCEV = |
293 | SE.getMinusSCEV(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
294 | DecreasedRightValueByOne = true; |
295 | } |
296 | } |
297 | } |
298 | |
299 | bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); |
300 | bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); |
301 | bool FoundExpectedPred = |
302 | (LTPred && LatchBrExitIdx == 1) || (GTPred && LatchBrExitIdx == 0); |
303 | |
304 | if (!FoundExpectedPred) { |
305 | FailureReason = "expected icmp slt semantically, found something else" ; |
306 | return std::nullopt; |
307 | } |
308 | |
309 | IsSignedPredicate = ICmpInst::isSigned(predicate: Pred); |
310 | if (!IsSignedPredicate && !AllowUnsignedLatchCond) { |
311 | FailureReason = "unsigned latch conditions are explicitly prohibited" ; |
312 | return std::nullopt; |
313 | } |
314 | |
315 | if (!isSafeIncreasingBound(Start: IndVarStart, BoundSCEV: RightSCEV, Step, Pred, |
316 | LatchBrExitIdx, L: &L, SE)) { |
317 | FailureReason = "Unsafe loop bounds" ; |
318 | return std::nullopt; |
319 | } |
320 | if (LatchBrExitIdx == 0) { |
321 | // We need to increase the right value unless we have already decreased |
322 | // it virtually when we replaced EQ with SGT. |
323 | if (!DecreasedRightValueByOne) |
324 | FixedRightSCEV = |
325 | SE.getAddExpr(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
326 | } else { |
327 | assert(!DecreasedRightValueByOne && |
328 | "Right value can be decreased only for LatchBrExitIdx == 0!" ); |
329 | } |
330 | } else { |
331 | bool IncreasedRightValueByOne = false; |
332 | if (StepCI->isMinusOne()) { |
333 | // Try to turn eq/ne predicates to those we can work with. |
334 | if (Pred == ICmpInst::ICMP_NE && LatchBrExitIdx == 1) |
335 | // while (--i != len) { while (--i > len) { |
336 | // ... ---> ... |
337 | // } } |
338 | // We intentionally don't turn the predicate into UGT even if we know |
339 | // that both operands are non-negative, because it will only pessimize |
340 | // our check against "RightSCEV - 1". |
341 | Pred = ICmpInst::ICMP_SGT; |
342 | else if (Pred == ICmpInst::ICMP_EQ && LatchBrExitIdx == 0) { |
343 | // while (true) { while (true) { |
344 | // if (--i == len) ---> if (--i < len + 1) |
345 | // break; break; |
346 | // ... ... |
347 | // } } |
348 | if (IndVarBase->getNoWrapFlags(Mask: SCEV::FlagNUW) && |
349 | cannotBeMaxInLoop(S: RightSCEV, L: &L, SE, /* Signed */ false)) { |
350 | Pred = ICmpInst::ICMP_ULT; |
351 | RightSCEV = SE.getAddExpr(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
352 | IncreasedRightValueByOne = true; |
353 | } else if (cannotBeMaxInLoop(S: RightSCEV, L: &L, SE, /* Signed */ true)) { |
354 | Pred = ICmpInst::ICMP_SLT; |
355 | RightSCEV = SE.getAddExpr(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
356 | IncreasedRightValueByOne = true; |
357 | } |
358 | } |
359 | } |
360 | |
361 | bool LTPred = (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT); |
362 | bool GTPred = (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT); |
363 | |
364 | bool FoundExpectedPred = |
365 | (GTPred && LatchBrExitIdx == 1) || (LTPred && LatchBrExitIdx == 0); |
366 | |
367 | if (!FoundExpectedPred) { |
368 | FailureReason = "expected icmp sgt semantically, found something else" ; |
369 | return std::nullopt; |
370 | } |
371 | |
372 | IsSignedPredicate = |
373 | Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGT; |
374 | |
375 | if (!IsSignedPredicate && !AllowUnsignedLatchCond) { |
376 | FailureReason = "unsigned latch conditions are explicitly prohibited" ; |
377 | return std::nullopt; |
378 | } |
379 | |
380 | if (!isSafeDecreasingBound(Start: IndVarStart, BoundSCEV: RightSCEV, Step, Pred, |
381 | LatchBrExitIdx, L: &L, SE)) { |
382 | FailureReason = "Unsafe bounds" ; |
383 | return std::nullopt; |
384 | } |
385 | |
386 | if (LatchBrExitIdx == 0) { |
387 | // We need to decrease the right value unless we have already increased |
388 | // it virtually when we replaced EQ with SLT. |
389 | if (!IncreasedRightValueByOne) |
390 | FixedRightSCEV = |
391 | SE.getMinusSCEV(LHS: RightSCEV, RHS: SE.getOne(Ty: RightSCEV->getType())); |
392 | } else { |
393 | assert(!IncreasedRightValueByOne && |
394 | "Right value can be increased only for LatchBrExitIdx == 0!" ); |
395 | } |
396 | } |
397 | BasicBlock *LatchExit = LatchBr->getSuccessor(i: LatchBrExitIdx); |
398 | |
399 | assert(!L.contains(LatchExit) && "expected an exit block!" ); |
400 | const DataLayout &DL = Preheader->getDataLayout(); |
401 | SCEVExpander Expander(SE, DL, "loop-constrainer" ); |
402 | Instruction *Ins = Preheader->getTerminator(); |
403 | |
404 | if (FixedRightSCEV) |
405 | RightValue = |
406 | Expander.expandCodeFor(SH: FixedRightSCEV, Ty: FixedRightSCEV->getType(), I: Ins); |
407 | |
408 | Value *IndVarStartV = Expander.expandCodeFor(SH: IndVarStart, Ty: IndVarTy, I: Ins); |
409 | IndVarStartV->setName("indvar.start" ); |
410 | |
411 | LoopStructure Result; |
412 | |
413 | Result.Tag = "main" ; |
414 | Result.Header = Header; |
415 | Result.Latch = Latch; |
416 | Result.LatchBr = LatchBr; |
417 | Result.LatchExit = LatchExit; |
418 | Result.LatchBrExitIdx = LatchBrExitIdx; |
419 | Result.IndVarStart = IndVarStartV; |
420 | Result.IndVarStep = StepCI; |
421 | Result.IndVarBase = LeftValue; |
422 | Result.IndVarIncreasing = IsIncreasing; |
423 | Result.LoopExitAt = RightValue; |
424 | Result.IsSignedPredicate = IsSignedPredicate; |
425 | Result.ExitCountTy = cast<IntegerType>(Val: MaxBETakenCount->getType()); |
426 | |
427 | FailureReason = nullptr; |
428 | |
429 | return Result; |
430 | } |
431 | |
432 | // Add metadata to the loop L to disable loop optimizations. Callers need to |
433 | // confirm that optimizing loop L is not beneficial. |
434 | static void DisableAllLoopOptsOnLoop(Loop &L) { |
435 | // We do not care about any existing loopID related metadata for L, since we |
436 | // are setting all loop metadata to false. |
437 | LLVMContext &Context = L.getHeader()->getContext(); |
438 | // Reserve first location for self reference to the LoopID metadata node. |
439 | MDNode *Dummy = MDNode::get(Context, MDs: {}); |
440 | MDNode *DisableUnroll = MDNode::get( |
441 | Context, MDs: {MDString::get(Context, Str: "llvm.loop.unroll.disable" )}); |
442 | Metadata *FalseVal = |
443 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: Type::getInt1Ty(C&: Context), V: 0)); |
444 | MDNode *DisableVectorize = MDNode::get( |
445 | Context, |
446 | MDs: {MDString::get(Context, Str: "llvm.loop.vectorize.enable" ), FalseVal}); |
447 | MDNode *DisableLICMVersioning = MDNode::get( |
448 | Context, MDs: {MDString::get(Context, Str: "llvm.loop.licm_versioning.disable" )}); |
449 | MDNode *DisableDistribution = MDNode::get( |
450 | Context, |
451 | MDs: {MDString::get(Context, Str: "llvm.loop.distribute.enable" ), FalseVal}); |
452 | MDNode *NewLoopID = |
453 | MDNode::get(Context, MDs: {Dummy, DisableUnroll, DisableVectorize, |
454 | DisableLICMVersioning, DisableDistribution}); |
455 | // Set operand 0 to refer to the loop id itself. |
456 | NewLoopID->replaceOperandWith(I: 0, New: NewLoopID); |
457 | L.setLoopID(NewLoopID); |
458 | } |
459 | |
460 | LoopConstrainer::LoopConstrainer(Loop &L, LoopInfo &LI, |
461 | function_ref<void(Loop *, bool)> LPMAddNewLoop, |
462 | const LoopStructure &LS, ScalarEvolution &SE, |
463 | DominatorTree &DT, Type *T, SubRanges SR) |
464 | : F(*L.getHeader()->getParent()), Ctx(L.getHeader()->getContext()), SE(SE), |
465 | DT(DT), LI(LI), LPMAddNewLoop(LPMAddNewLoop), OriginalLoop(L), RangeTy(T), |
466 | MainLoopStructure(LS), SR(SR) {} |
467 | |
468 | void LoopConstrainer::cloneLoop(LoopConstrainer::ClonedLoop &Result, |
469 | const char *Tag) const { |
470 | for (BasicBlock *BB : OriginalLoop.getBlocks()) { |
471 | BasicBlock *Clone = CloneBasicBlock(BB, VMap&: Result.Map, NameSuffix: Twine("." ) + Tag, F: &F); |
472 | Result.Blocks.push_back(x: Clone); |
473 | Result.Map[BB] = Clone; |
474 | } |
475 | |
476 | auto GetClonedValue = [&Result](Value *V) { |
477 | assert(V && "null values not in domain!" ); |
478 | auto It = Result.Map.find(Val: V); |
479 | if (It == Result.Map.end()) |
480 | return V; |
481 | return static_cast<Value *>(It->second); |
482 | }; |
483 | |
484 | auto *ClonedLatch = |
485 | cast<BasicBlock>(Val: GetClonedValue(OriginalLoop.getLoopLatch())); |
486 | ClonedLatch->getTerminator()->setMetadata(Kind: ClonedLoopTag, |
487 | Node: MDNode::get(Context&: Ctx, MDs: {})); |
488 | |
489 | Result.Structure = MainLoopStructure.map(Map: GetClonedValue); |
490 | Result.Structure.Tag = Tag; |
491 | |
492 | for (unsigned i = 0, e = Result.Blocks.size(); i != e; ++i) { |
493 | BasicBlock *ClonedBB = Result.Blocks[i]; |
494 | BasicBlock *OriginalBB = OriginalLoop.getBlocks()[i]; |
495 | |
496 | assert(Result.Map[OriginalBB] == ClonedBB && "invariant!" ); |
497 | |
498 | for (Instruction &I : *ClonedBB) |
499 | RemapInstruction(I: &I, VM&: Result.Map, |
500 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
501 | |
502 | // Exit blocks will now have one more predecessor and their PHI nodes need |
503 | // to be edited to reflect that. No phi nodes need to be introduced because |
504 | // the loop is in LCSSA. |
505 | |
506 | for (auto *SBB : successors(BB: OriginalBB)) { |
507 | if (OriginalLoop.contains(BB: SBB)) |
508 | continue; // not an exit block |
509 | |
510 | for (PHINode &PN : SBB->phis()) { |
511 | Value *OldIncoming = PN.getIncomingValueForBlock(BB: OriginalBB); |
512 | PN.addIncoming(V: GetClonedValue(OldIncoming), BB: ClonedBB); |
513 | SE.forgetValue(V: &PN); |
514 | } |
515 | } |
516 | } |
517 | } |
518 | |
519 | LoopConstrainer::RewrittenRangeInfo LoopConstrainer::changeIterationSpaceEnd( |
520 | const LoopStructure &LS, BasicBlock *, Value *ExitSubloopAt, |
521 | BasicBlock *ContinuationBlock) const { |
522 | // We start with a loop with a single latch: |
523 | // |
524 | // +--------------------+ |
525 | // | | |
526 | // | preheader | |
527 | // | | |
528 | // +--------+-----------+ |
529 | // | ----------------\ |
530 | // | / | |
531 | // +--------v----v------+ | |
532 | // | | | |
533 | // | header | | |
534 | // | | | |
535 | // +--------------------+ | |
536 | // | |
537 | // ..... | |
538 | // | |
539 | // +--------------------+ | |
540 | // | | | |
541 | // | latch >----------/ |
542 | // | | |
543 | // +-------v------------+ |
544 | // | |
545 | // | |
546 | // | +--------------------+ |
547 | // | | | |
548 | // +---> original exit | |
549 | // | | |
550 | // +--------------------+ |
551 | // |
552 | // We change the control flow to look like |
553 | // |
554 | // |
555 | // +--------------------+ |
556 | // | | |
557 | // | preheader >-------------------------+ |
558 | // | | | |
559 | // +--------v-----------+ | |
560 | // | /-------------+ | |
561 | // | / | | |
562 | // +--------v--v--------+ | | |
563 | // | | | | |
564 | // | header | | +--------+ | |
565 | // | | | | | | |
566 | // +--------------------+ | | +-----v-----v-----------+ |
567 | // | | | | |
568 | // | | | .pseudo.exit | |
569 | // | | | | |
570 | // | | +-----------v-----------+ |
571 | // | | | |
572 | // ..... | | | |
573 | // | | +--------v-------------+ |
574 | // +--------------------+ | | | | |
575 | // | | | | | ContinuationBlock | |
576 | // | latch >------+ | | | |
577 | // | | | +----------------------+ |
578 | // +---------v----------+ | |
579 | // | | |
580 | // | | |
581 | // | +---------------^-----+ |
582 | // | | | |
583 | // +-----> .exit.selector | |
584 | // | | |
585 | // +----------v----------+ |
586 | // | |
587 | // +--------------------+ | |
588 | // | | | |
589 | // | original exit <----+ |
590 | // | | |
591 | // +--------------------+ |
592 | |
593 | RewrittenRangeInfo RRI; |
594 | |
595 | BasicBlock *BBInsertLocation = LS.Latch->getNextNode(); |
596 | RRI.ExitSelector = BasicBlock::Create(Context&: Ctx, Name: Twine(LS.Tag) + ".exit.selector" , |
597 | Parent: &F, InsertBefore: BBInsertLocation); |
598 | RRI.PseudoExit = BasicBlock::Create(Context&: Ctx, Name: Twine(LS.Tag) + ".pseudo.exit" , Parent: &F, |
599 | InsertBefore: BBInsertLocation); |
600 | |
601 | BranchInst * = cast<BranchInst>(Val: Preheader->getTerminator()); |
602 | bool Increasing = LS.IndVarIncreasing; |
603 | bool IsSignedPredicate = LS.IsSignedPredicate; |
604 | |
605 | IRBuilder<> B(PreheaderJump); |
606 | auto NoopOrExt = [&](Value *V) { |
607 | if (V->getType() == RangeTy) |
608 | return V; |
609 | return IsSignedPredicate ? B.CreateSExt(V, DestTy: RangeTy, Name: "wide." + V->getName()) |
610 | : B.CreateZExt(V, DestTy: RangeTy, Name: "wide." + V->getName()); |
611 | }; |
612 | |
613 | // EnterLoopCond - is it okay to start executing this `LS'? |
614 | Value *EnterLoopCond = nullptr; |
615 | auto Pred = |
616 | Increasing |
617 | ? (IsSignedPredicate ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT) |
618 | : (IsSignedPredicate ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT); |
619 | Value *IndVarStart = NoopOrExt(LS.IndVarStart); |
620 | EnterLoopCond = B.CreateICmp(P: Pred, LHS: IndVarStart, RHS: ExitSubloopAt); |
621 | |
622 | B.CreateCondBr(Cond: EnterLoopCond, True: LS.Header, False: RRI.PseudoExit); |
623 | PreheaderJump->eraseFromParent(); |
624 | |
625 | LS.LatchBr->setSuccessor(idx: LS.LatchBrExitIdx, NewSucc: RRI.ExitSelector); |
626 | B.SetInsertPoint(LS.LatchBr); |
627 | Value *IndVarBase = NoopOrExt(LS.IndVarBase); |
628 | Value *TakeBackedgeLoopCond = B.CreateICmp(P: Pred, LHS: IndVarBase, RHS: ExitSubloopAt); |
629 | |
630 | Value *CondForBranch = LS.LatchBrExitIdx == 1 |
631 | ? TakeBackedgeLoopCond |
632 | : B.CreateNot(V: TakeBackedgeLoopCond); |
633 | |
634 | LS.LatchBr->setCondition(CondForBranch); |
635 | |
636 | B.SetInsertPoint(RRI.ExitSelector); |
637 | |
638 | // IterationsLeft - are there any more iterations left, given the original |
639 | // upper bound on the induction variable? If not, we branch to the "real" |
640 | // exit. |
641 | Value *LoopExitAt = NoopOrExt(LS.LoopExitAt); |
642 | Value *IterationsLeft = B.CreateICmp(P: Pred, LHS: IndVarBase, RHS: LoopExitAt); |
643 | B.CreateCondBr(Cond: IterationsLeft, True: RRI.PseudoExit, False: LS.LatchExit); |
644 | |
645 | BranchInst *BranchToContinuation = |
646 | BranchInst::Create(IfTrue: ContinuationBlock, InsertBefore: RRI.PseudoExit); |
647 | |
648 | // We emit PHI nodes into `RRI.PseudoExit' that compute the "latest" value of |
649 | // each of the PHI nodes in the loop header. This feeds into the initial |
650 | // value of the same PHI nodes if/when we continue execution. |
651 | for (PHINode &PN : LS.Header->phis()) { |
652 | PHINode *NewPHI = PHINode::Create(Ty: PN.getType(), NumReservedValues: 2, NameStr: PN.getName() + ".copy" , |
653 | InsertBefore: BranchToContinuation->getIterator()); |
654 | |
655 | NewPHI->addIncoming(V: PN.getIncomingValueForBlock(BB: Preheader), BB: Preheader); |
656 | NewPHI->addIncoming(V: PN.getIncomingValueForBlock(BB: LS.Latch), |
657 | BB: RRI.ExitSelector); |
658 | RRI.PHIValuesAtPseudoExit.push_back(x: NewPHI); |
659 | } |
660 | |
661 | RRI.IndVarEnd = PHINode::Create(Ty: IndVarBase->getType(), NumReservedValues: 2, NameStr: "indvar.end" , |
662 | InsertBefore: BranchToContinuation->getIterator()); |
663 | RRI.IndVarEnd->addIncoming(V: IndVarStart, BB: Preheader); |
664 | RRI.IndVarEnd->addIncoming(V: IndVarBase, BB: RRI.ExitSelector); |
665 | |
666 | // The latch exit now has a branch from `RRI.ExitSelector' instead of |
667 | // `LS.Latch'. The PHI nodes need to be updated to reflect that. |
668 | LS.LatchExit->replacePhiUsesWith(Old: LS.Latch, New: RRI.ExitSelector); |
669 | |
670 | return RRI; |
671 | } |
672 | |
673 | void LoopConstrainer::rewriteIncomingValuesForPHIs( |
674 | LoopStructure &LS, BasicBlock *ContinuationBlock, |
675 | const LoopConstrainer::RewrittenRangeInfo &RRI) const { |
676 | unsigned PHIIndex = 0; |
677 | for (PHINode &PN : LS.Header->phis()) |
678 | PN.setIncomingValueForBlock(BB: ContinuationBlock, |
679 | V: RRI.PHIValuesAtPseudoExit[PHIIndex++]); |
680 | |
681 | LS.IndVarStart = RRI.IndVarEnd; |
682 | } |
683 | |
684 | BasicBlock *LoopConstrainer::(const LoopStructure &LS, |
685 | BasicBlock *, |
686 | const char *Tag) const { |
687 | BasicBlock * = BasicBlock::Create(Context&: Ctx, Name: Tag, Parent: &F, InsertBefore: LS.Header); |
688 | BranchInst::Create(IfTrue: LS.Header, InsertBefore: Preheader); |
689 | |
690 | LS.Header->replacePhiUsesWith(Old: OldPreheader, New: Preheader); |
691 | |
692 | return Preheader; |
693 | } |
694 | |
695 | void LoopConstrainer::addToParentLoopIfNeeded(ArrayRef<BasicBlock *> BBs) { |
696 | Loop *ParentLoop = OriginalLoop.getParentLoop(); |
697 | if (!ParentLoop) |
698 | return; |
699 | |
700 | for (BasicBlock *BB : BBs) |
701 | ParentLoop->addBasicBlockToLoop(NewBB: BB, LI); |
702 | } |
703 | |
704 | Loop *LoopConstrainer::createClonedLoopStructure(Loop *Original, Loop *Parent, |
705 | ValueToValueMapTy &VM, |
706 | bool IsSubloop) { |
707 | Loop &New = *LI.AllocateLoop(); |
708 | if (Parent) |
709 | Parent->addChildLoop(NewChild: &New); |
710 | else |
711 | LI.addTopLevelLoop(New: &New); |
712 | LPMAddNewLoop(&New, IsSubloop); |
713 | |
714 | // Add all of the blocks in Original to the new loop. |
715 | for (auto *BB : Original->blocks()) |
716 | if (LI.getLoopFor(BB) == Original) |
717 | New.addBasicBlockToLoop(NewBB: cast<BasicBlock>(Val&: VM[BB]), LI); |
718 | |
719 | // Add all of the subloops to the new loop. |
720 | for (Loop *SubLoop : *Original) |
721 | createClonedLoopStructure(Original: SubLoop, Parent: &New, VM, /* IsSubloop */ true); |
722 | |
723 | return &New; |
724 | } |
725 | |
726 | bool LoopConstrainer::run() { |
727 | BasicBlock * = OriginalLoop.getLoopPreheader(); |
728 | assert(Preheader != nullptr && "precondition!" ); |
729 | |
730 | OriginalPreheader = Preheader; |
731 | MainLoopPreheader = Preheader; |
732 | bool IsSignedPredicate = MainLoopStructure.IsSignedPredicate; |
733 | bool Increasing = MainLoopStructure.IndVarIncreasing; |
734 | IntegerType *IVTy = cast<IntegerType>(Val: RangeTy); |
735 | |
736 | SCEVExpander Expander(SE, F.getDataLayout(), "loop-constrainer" ); |
737 | Instruction *InsertPt = OriginalPreheader->getTerminator(); |
738 | |
739 | // It would have been better to make `PreLoop' and `PostLoop' |
740 | // `std::optional<ClonedLoop>'s, but `ValueToValueMapTy' does not have a copy |
741 | // constructor. |
742 | ClonedLoop PreLoop, PostLoop; |
743 | bool NeedsPreLoop = |
744 | Increasing ? SR.LowLimit.has_value() : SR.HighLimit.has_value(); |
745 | bool NeedsPostLoop = |
746 | Increasing ? SR.HighLimit.has_value() : SR.LowLimit.has_value(); |
747 | |
748 | Value *ExitPreLoopAt = nullptr; |
749 | Value *ExitMainLoopAt = nullptr; |
750 | const SCEVConstant *MinusOneS = |
751 | cast<SCEVConstant>(Val: SE.getConstant(Ty: IVTy, V: -1, isSigned: true /* isSigned */)); |
752 | |
753 | if (NeedsPreLoop) { |
754 | const SCEV *ExitPreLoopAtSCEV = nullptr; |
755 | |
756 | if (Increasing) |
757 | ExitPreLoopAtSCEV = *SR.LowLimit; |
758 | else if (cannotBeMinInLoop(S: *SR.HighLimit, L: &OriginalLoop, SE, |
759 | Signed: IsSignedPredicate)) |
760 | ExitPreLoopAtSCEV = SE.getAddExpr(LHS: *SR.HighLimit, RHS: MinusOneS); |
761 | else { |
762 | LLVM_DEBUG(dbgs() << "could not prove no-overflow when computing " |
763 | << "preloop exit limit. HighLimit = " |
764 | << *(*SR.HighLimit) << "\n" ); |
765 | return false; |
766 | } |
767 | |
768 | if (!Expander.isSafeToExpandAt(S: ExitPreLoopAtSCEV, InsertionPoint: InsertPt)) { |
769 | LLVM_DEBUG(dbgs() << "could not prove that it is safe to expand the" |
770 | << " preloop exit limit " << *ExitPreLoopAtSCEV |
771 | << " at block " << InsertPt->getParent()->getName() |
772 | << "\n" ); |
773 | return false; |
774 | } |
775 | |
776 | ExitPreLoopAt = Expander.expandCodeFor(SH: ExitPreLoopAtSCEV, Ty: IVTy, I: InsertPt); |
777 | ExitPreLoopAt->setName("exit.preloop.at" ); |
778 | } |
779 | |
780 | if (NeedsPostLoop) { |
781 | const SCEV *ExitMainLoopAtSCEV = nullptr; |
782 | |
783 | if (Increasing) |
784 | ExitMainLoopAtSCEV = *SR.HighLimit; |
785 | else if (cannotBeMinInLoop(S: *SR.LowLimit, L: &OriginalLoop, SE, |
786 | Signed: IsSignedPredicate)) |
787 | ExitMainLoopAtSCEV = SE.getAddExpr(LHS: *SR.LowLimit, RHS: MinusOneS); |
788 | else { |
789 | LLVM_DEBUG(dbgs() << "could not prove no-overflow when computing " |
790 | << "mainloop exit limit. LowLimit = " |
791 | << *(*SR.LowLimit) << "\n" ); |
792 | return false; |
793 | } |
794 | |
795 | if (!Expander.isSafeToExpandAt(S: ExitMainLoopAtSCEV, InsertionPoint: InsertPt)) { |
796 | LLVM_DEBUG(dbgs() << "could not prove that it is safe to expand the" |
797 | << " main loop exit limit " << *ExitMainLoopAtSCEV |
798 | << " at block " << InsertPt->getParent()->getName() |
799 | << "\n" ); |
800 | return false; |
801 | } |
802 | |
803 | ExitMainLoopAt = Expander.expandCodeFor(SH: ExitMainLoopAtSCEV, Ty: IVTy, I: InsertPt); |
804 | ExitMainLoopAt->setName("exit.mainloop.at" ); |
805 | } |
806 | |
807 | // We clone these ahead of time so that we don't have to deal with changing |
808 | // and temporarily invalid IR as we transform the loops. |
809 | if (NeedsPreLoop) |
810 | cloneLoop(Result&: PreLoop, Tag: "preloop" ); |
811 | if (NeedsPostLoop) |
812 | cloneLoop(Result&: PostLoop, Tag: "postloop" ); |
813 | |
814 | RewrittenRangeInfo PreLoopRRI; |
815 | |
816 | if (NeedsPreLoop) { |
817 | Preheader->getTerminator()->replaceUsesOfWith(From: MainLoopStructure.Header, |
818 | To: PreLoop.Structure.Header); |
819 | |
820 | MainLoopPreheader = |
821 | createPreheader(LS: MainLoopStructure, OldPreheader: Preheader, Tag: "mainloop" ); |
822 | PreLoopRRI = changeIterationSpaceEnd(LS: PreLoop.Structure, Preheader, |
823 | ExitSubloopAt: ExitPreLoopAt, ContinuationBlock: MainLoopPreheader); |
824 | rewriteIncomingValuesForPHIs(LS&: MainLoopStructure, ContinuationBlock: MainLoopPreheader, |
825 | RRI: PreLoopRRI); |
826 | } |
827 | |
828 | BasicBlock * = nullptr; |
829 | RewrittenRangeInfo PostLoopRRI; |
830 | |
831 | if (NeedsPostLoop) { |
832 | PostLoopPreheader = |
833 | createPreheader(LS: PostLoop.Structure, OldPreheader: Preheader, Tag: "postloop" ); |
834 | PostLoopRRI = changeIterationSpaceEnd(LS: MainLoopStructure, Preheader: MainLoopPreheader, |
835 | ExitSubloopAt: ExitMainLoopAt, ContinuationBlock: PostLoopPreheader); |
836 | rewriteIncomingValuesForPHIs(LS&: PostLoop.Structure, ContinuationBlock: PostLoopPreheader, |
837 | RRI: PostLoopRRI); |
838 | } |
839 | |
840 | BasicBlock *NewMainLoopPreheader = |
841 | MainLoopPreheader != Preheader ? MainLoopPreheader : nullptr; |
842 | BasicBlock *NewBlocks[] = {PostLoopPreheader, PreLoopRRI.PseudoExit, |
843 | PreLoopRRI.ExitSelector, PostLoopRRI.PseudoExit, |
844 | PostLoopRRI.ExitSelector, NewMainLoopPreheader}; |
845 | |
846 | // Some of the above may be nullptr, filter them out before passing to |
847 | // addToParentLoopIfNeeded. |
848 | auto NewBlocksEnd = |
849 | std::remove(first: std::begin(arr&: NewBlocks), last: std::end(arr&: NewBlocks), value: nullptr); |
850 | |
851 | addToParentLoopIfNeeded(BBs: ArrayRef(std::begin(arr&: NewBlocks), NewBlocksEnd)); |
852 | |
853 | DT.recalculate(Func&: F); |
854 | |
855 | // We need to first add all the pre and post loop blocks into the loop |
856 | // structures (as part of createClonedLoopStructure), and then update the |
857 | // LCSSA form and LoopSimplifyForm. This is necessary for correctly updating |
858 | // LI when LoopSimplifyForm is generated. |
859 | Loop *PreL = nullptr, *PostL = nullptr; |
860 | if (!PreLoop.Blocks.empty()) { |
861 | PreL = createClonedLoopStructure(Original: &OriginalLoop, |
862 | Parent: OriginalLoop.getParentLoop(), VM&: PreLoop.Map, |
863 | /* IsSubLoop */ IsSubloop: false); |
864 | } |
865 | |
866 | if (!PostLoop.Blocks.empty()) { |
867 | PostL = |
868 | createClonedLoopStructure(Original: &OriginalLoop, Parent: OriginalLoop.getParentLoop(), |
869 | VM&: PostLoop.Map, /* IsSubLoop */ IsSubloop: false); |
870 | } |
871 | |
872 | // This function canonicalizes the loop into Loop-Simplify and LCSSA forms. |
873 | auto CanonicalizeLoop = [&](Loop *L, bool IsOriginalLoop) { |
874 | formLCSSARecursively(L&: *L, DT, LI: &LI, SE: &SE); |
875 | simplifyLoop(L, DT: &DT, LI: &LI, SE: &SE, AC: nullptr, MSSAU: nullptr, PreserveLCSSA: true); |
876 | // Pre/post loops are slow paths, we do not need to perform any loop |
877 | // optimizations on them. |
878 | if (!IsOriginalLoop) |
879 | DisableAllLoopOptsOnLoop(L&: *L); |
880 | }; |
881 | if (PreL) |
882 | CanonicalizeLoop(PreL, false); |
883 | if (PostL) |
884 | CanonicalizeLoop(PostL, false); |
885 | CanonicalizeLoop(&OriginalLoop, true); |
886 | |
887 | /// At this point: |
888 | /// - We've broken a "main loop" out of the loop in a way that the "main loop" |
889 | /// runs with the induction variable in a subset of [Begin, End). |
890 | /// - There is no overflow when computing "main loop" exit limit. |
891 | /// - Max latch taken count of the loop is limited. |
892 | /// It guarantees that induction variable will not overflow iterating in the |
893 | /// "main loop". |
894 | if (isa<OverflowingBinaryOperator>(Val: MainLoopStructure.IndVarBase)) |
895 | if (IsSignedPredicate) |
896 | cast<BinaryOperator>(Val: MainLoopStructure.IndVarBase) |
897 | ->setHasNoSignedWrap(true); |
898 | /// TODO: support unsigned predicate. |
899 | /// To add NUW flag we need to prove that both operands of BO are |
900 | /// non-negative. E.g: |
901 | /// ... |
902 | /// %iv.next = add nsw i32 %iv, -1 |
903 | /// %cmp = icmp ult i32 %iv.next, %n |
904 | /// br i1 %cmp, label %loopexit, label %loop |
905 | /// |
906 | /// -1 is MAX_UINT in terms of unsigned int. Adding anything but zero will |
907 | /// overflow, therefore NUW flag is not legal here. |
908 | |
909 | return true; |
910 | } |
911 | |