1 | //===----------------- LoopRotationUtils.cpp -----------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file provides utilities to convert a loop into a loop with bottom test. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Transforms/Utils/LoopRotationUtils.h" |
14 | #include "llvm/ADT/Statistic.h" |
15 | #include "llvm/Analysis/AssumptionCache.h" |
16 | #include "llvm/Analysis/CodeMetrics.h" |
17 | #include "llvm/Analysis/DomTreeUpdater.h" |
18 | #include "llvm/Analysis/InstructionSimplify.h" |
19 | #include "llvm/Analysis/LoopInfo.h" |
20 | #include "llvm/Analysis/MemorySSA.h" |
21 | #include "llvm/Analysis/MemorySSAUpdater.h" |
22 | #include "llvm/Analysis/ScalarEvolution.h" |
23 | #include "llvm/Analysis/ValueTracking.h" |
24 | #include "llvm/IR/CFG.h" |
25 | #include "llvm/IR/DebugInfo.h" |
26 | #include "llvm/IR/Dominators.h" |
27 | #include "llvm/IR/IntrinsicInst.h" |
28 | #include "llvm/IR/MDBuilder.h" |
29 | #include "llvm/IR/ProfDataUtils.h" |
30 | #include "llvm/Support/CommandLine.h" |
31 | #include "llvm/Support/Debug.h" |
32 | #include "llvm/Support/raw_ostream.h" |
33 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
34 | #include "llvm/Transforms/Utils/Cloning.h" |
35 | #include "llvm/Transforms/Utils/Local.h" |
36 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
37 | #include "llvm/Transforms/Utils/ValueMapper.h" |
38 | using namespace llvm; |
39 | |
40 | #define DEBUG_TYPE "loop-rotate" |
41 | |
42 | STATISTIC(, |
43 | "Number of loops not rotated due to the header size" ); |
44 | STATISTIC(NumInstrsHoisted, |
45 | "Number of instructions hoisted into loop preheader" ); |
46 | STATISTIC(NumInstrsDuplicated, |
47 | "Number of instructions cloned into loop preheader" ); |
48 | STATISTIC(NumRotated, "Number of loops rotated" ); |
49 | |
50 | static cl::opt<bool> |
51 | MultiRotate("loop-rotate-multi" , cl::init(Val: false), cl::Hidden, |
52 | cl::desc("Allow loop rotation multiple times in order to reach " |
53 | "a better latch exit" )); |
54 | |
55 | // Probability that a rotated loop has zero trip count / is never entered. |
56 | static constexpr uint32_t ZeroTripCountWeights[] = {1, 127}; |
57 | |
58 | namespace { |
59 | /// A simple loop rotation transformation. |
60 | class LoopRotate { |
61 | const unsigned ; |
62 | LoopInfo *LI; |
63 | const TargetTransformInfo *TTI; |
64 | AssumptionCache *AC; |
65 | DominatorTree *DT; |
66 | ScalarEvolution *SE; |
67 | MemorySSAUpdater *MSSAU; |
68 | const SimplifyQuery &SQ; |
69 | bool RotationOnly; |
70 | bool IsUtilMode; |
71 | bool PrepareForLTO; |
72 | |
73 | public: |
74 | LoopRotate(unsigned , LoopInfo *LI, |
75 | const TargetTransformInfo *TTI, AssumptionCache *AC, |
76 | DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
77 | const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode, |
78 | bool PrepareForLTO) |
79 | : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE), |
80 | MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly), |
81 | IsUtilMode(IsUtilMode), PrepareForLTO(PrepareForLTO) {} |
82 | bool processLoop(Loop *L); |
83 | |
84 | private: |
85 | bool rotateLoop(Loop *L, bool SimplifiedLatch); |
86 | bool simplifyLoopLatch(Loop *L); |
87 | }; |
88 | } // end anonymous namespace |
89 | |
90 | /// Insert (K, V) pair into the ValueToValueMap, and verify the key did not |
91 | /// previously exist in the map, and the value was inserted. |
92 | static void InsertNewValueIntoMap(ValueToValueMapTy &VM, Value *K, Value *V) { |
93 | bool Inserted = VM.insert(KV: {K, V}).second; |
94 | assert(Inserted); |
95 | (void)Inserted; |
96 | } |
97 | /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the |
98 | /// old header into the preheader. If there were uses of the values produced by |
99 | /// these instruction that were outside of the loop, we have to insert PHI nodes |
100 | /// to merge the two values. Do this now. |
101 | static void RewriteUsesOfClonedInstructions(BasicBlock *, |
102 | BasicBlock *, |
103 | ValueToValueMapTy &ValueMap, |
104 | ScalarEvolution *SE, |
105 | SmallVectorImpl<PHINode*> *InsertedPHIs) { |
106 | // Remove PHI node entries that are no longer live. |
107 | BasicBlock::iterator I, E = OrigHeader->end(); |
108 | for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(Val&: I); ++I) |
109 | PN->removeIncomingValue(Idx: PN->getBasicBlockIndex(BB: OrigPreheader)); |
110 | |
111 | // Now fix up users of the instructions in OrigHeader, inserting PHI nodes |
112 | // as necessary. |
113 | SSAUpdater SSA(InsertedPHIs); |
114 | for (I = OrigHeader->begin(); I != E; ++I) { |
115 | Value * = &*I; |
116 | |
117 | // If there are no uses of the value (e.g. because it returns void), there |
118 | // is nothing to rewrite. |
119 | if (OrigHeaderVal->use_empty()) |
120 | continue; |
121 | |
122 | Value * = ValueMap.lookup(Val: OrigHeaderVal); |
123 | |
124 | // The value now exits in two versions: the initial value in the preheader |
125 | // and the loop "next" value in the original header. |
126 | SSA.Initialize(Ty: OrigHeaderVal->getType(), Name: OrigHeaderVal->getName()); |
127 | // Force re-computation of OrigHeaderVal, as some users now need to use the |
128 | // new PHI node. |
129 | if (SE) |
130 | SE->forgetValue(V: OrigHeaderVal); |
131 | SSA.AddAvailableValue(BB: OrigHeader, V: OrigHeaderVal); |
132 | SSA.AddAvailableValue(BB: OrigPreheader, V: OrigPreHeaderVal); |
133 | |
134 | // Visit each use of the OrigHeader instruction. |
135 | for (Use &U : llvm::make_early_inc_range(Range: OrigHeaderVal->uses())) { |
136 | // SSAUpdater can't handle a non-PHI use in the same block as an |
137 | // earlier def. We can easily handle those cases manually. |
138 | Instruction *UserInst = cast<Instruction>(Val: U.getUser()); |
139 | if (!isa<PHINode>(Val: UserInst)) { |
140 | BasicBlock *UserBB = UserInst->getParent(); |
141 | |
142 | // The original users in the OrigHeader are already using the |
143 | // original definitions. |
144 | if (UserBB == OrigHeader) |
145 | continue; |
146 | |
147 | // Users in the OrigPreHeader need to use the value to which the |
148 | // original definitions are mapped. |
149 | if (UserBB == OrigPreheader) { |
150 | U = OrigPreHeaderVal; |
151 | continue; |
152 | } |
153 | } |
154 | |
155 | // Anything else can be handled by SSAUpdater. |
156 | SSA.RewriteUse(U); |
157 | } |
158 | |
159 | // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug |
160 | // intrinsics. |
161 | SmallVector<DbgValueInst *, 1> DbgValues; |
162 | SmallVector<DbgVariableRecord *, 1> DbgVariableRecords; |
163 | llvm::findDbgValues(DbgValues, V: OrigHeaderVal, DbgVariableRecords: &DbgVariableRecords); |
164 | for (auto &DbgValue : DbgValues) { |
165 | // The original users in the OrigHeader are already using the original |
166 | // definitions. |
167 | BasicBlock *UserBB = DbgValue->getParent(); |
168 | if (UserBB == OrigHeader) |
169 | continue; |
170 | |
171 | // Users in the OrigPreHeader need to use the value to which the |
172 | // original definitions are mapped and anything else can be handled by |
173 | // the SSAUpdater. To avoid adding PHINodes, check if the value is |
174 | // available in UserBB, if not substitute undef. |
175 | Value *NewVal; |
176 | if (UserBB == OrigPreheader) |
177 | NewVal = OrigPreHeaderVal; |
178 | else if (SSA.HasValueForBlock(BB: UserBB)) |
179 | NewVal = SSA.GetValueInMiddleOfBlock(BB: UserBB); |
180 | else |
181 | NewVal = UndefValue::get(T: OrigHeaderVal->getType()); |
182 | DbgValue->replaceVariableLocationOp(OldValue: OrigHeaderVal, NewValue: NewVal); |
183 | } |
184 | |
185 | // RemoveDIs: duplicate implementation for non-instruction debug-info |
186 | // storage in DbgVariableRecords. |
187 | for (DbgVariableRecord *DVR : DbgVariableRecords) { |
188 | // The original users in the OrigHeader are already using the original |
189 | // definitions. |
190 | BasicBlock *UserBB = DVR->getMarker()->getParent(); |
191 | if (UserBB == OrigHeader) |
192 | continue; |
193 | |
194 | // Users in the OrigPreHeader need to use the value to which the |
195 | // original definitions are mapped and anything else can be handled by |
196 | // the SSAUpdater. To avoid adding PHINodes, check if the value is |
197 | // available in UserBB, if not substitute undef. |
198 | Value *NewVal; |
199 | if (UserBB == OrigPreheader) |
200 | NewVal = OrigPreHeaderVal; |
201 | else if (SSA.HasValueForBlock(BB: UserBB)) |
202 | NewVal = SSA.GetValueInMiddleOfBlock(BB: UserBB); |
203 | else |
204 | NewVal = UndefValue::get(T: OrigHeaderVal->getType()); |
205 | DVR->replaceVariableLocationOp(OldValue: OrigHeaderVal, NewValue: NewVal); |
206 | } |
207 | } |
208 | } |
209 | |
210 | // Assuming both header and latch are exiting, look for a phi which is only |
211 | // used outside the loop (via a LCSSA phi) in the exit from the header. |
212 | // This means that rotating the loop can remove the phi. |
213 | static bool profitableToRotateLoopExitingLatch(Loop *L) { |
214 | BasicBlock * = L->getHeader(); |
215 | BranchInst *BI = dyn_cast<BranchInst>(Val: Header->getTerminator()); |
216 | assert(BI && BI->isConditional() && "need header with conditional exit" ); |
217 | BasicBlock * = BI->getSuccessor(i: 0); |
218 | if (L->contains(BB: HeaderExit)) |
219 | HeaderExit = BI->getSuccessor(i: 1); |
220 | |
221 | for (auto &Phi : Header->phis()) { |
222 | // Look for uses of this phi in the loop/via exits other than the header. |
223 | if (llvm::any_of(Range: Phi.users(), P: [HeaderExit](const User *U) { |
224 | return cast<Instruction>(Val: U)->getParent() != HeaderExit; |
225 | })) |
226 | continue; |
227 | return true; |
228 | } |
229 | return false; |
230 | } |
231 | |
232 | // Check that latch exit is deoptimizing (which means - very unlikely to happen) |
233 | // and there is another exit from the loop which is non-deoptimizing. |
234 | // If we rotate latch to that exit our loop has a better chance of being fully |
235 | // canonical. |
236 | // |
237 | // It can give false positives in some rare cases. |
238 | static bool canRotateDeoptimizingLatchExit(Loop *L) { |
239 | BasicBlock *Latch = L->getLoopLatch(); |
240 | assert(Latch && "need latch" ); |
241 | BranchInst *BI = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
242 | // Need normal exiting latch. |
243 | if (!BI || !BI->isConditional()) |
244 | return false; |
245 | |
246 | BasicBlock *Exit = BI->getSuccessor(i: 1); |
247 | if (L->contains(BB: Exit)) |
248 | Exit = BI->getSuccessor(i: 0); |
249 | |
250 | // Latch exit is non-deoptimizing, no need to rotate. |
251 | if (!Exit->getPostdominatingDeoptimizeCall()) |
252 | return false; |
253 | |
254 | SmallVector<BasicBlock *, 4> Exits; |
255 | L->getUniqueExitBlocks(ExitBlocks&: Exits); |
256 | if (!Exits.empty()) { |
257 | // There is at least one non-deoptimizing exit. |
258 | // |
259 | // Note, that BasicBlock::getPostdominatingDeoptimizeCall is not exact, |
260 | // as it can conservatively return false for deoptimizing exits with |
261 | // complex enough control flow down to deoptimize call. |
262 | // |
263 | // That means here we can report success for a case where |
264 | // all exits are deoptimizing but one of them has complex enough |
265 | // control flow (e.g. with loops). |
266 | // |
267 | // That should be a very rare case and false positives for this function |
268 | // have compile-time effect only. |
269 | return any_of(Range&: Exits, P: [](const BasicBlock *BB) { |
270 | return !BB->getPostdominatingDeoptimizeCall(); |
271 | }); |
272 | } |
273 | return false; |
274 | } |
275 | |
276 | static void updateBranchWeights(BranchInst &, BranchInst &LoopBI, |
277 | bool , |
278 | bool SuccsSwapped) { |
279 | MDNode *WeightMD = getBranchWeightMDNode(I: PreHeaderBI); |
280 | if (WeightMD == nullptr) |
281 | return; |
282 | |
283 | // LoopBI should currently be a clone of PreHeaderBI with the same |
284 | // metadata. But we double check to make sure we don't have a degenerate case |
285 | // where instsimplify changed the instructions. |
286 | if (WeightMD != getBranchWeightMDNode(I: LoopBI)) |
287 | return; |
288 | |
289 | SmallVector<uint32_t, 2> Weights; |
290 | extractFromBranchWeightMD32(ProfileData: WeightMD, Weights); |
291 | if (Weights.size() != 2) |
292 | return; |
293 | uint32_t OrigLoopExitWeight = Weights[0]; |
294 | uint32_t OrigLoopBackedgeWeight = Weights[1]; |
295 | |
296 | if (SuccsSwapped) |
297 | std::swap(a&: OrigLoopExitWeight, b&: OrigLoopBackedgeWeight); |
298 | |
299 | // Update branch weights. Consider the following edge-counts: |
300 | // |
301 | // | |-------- | |
302 | // V V | V |
303 | // Br i1 ... | Br i1 ... |
304 | // | | | | | |
305 | // x| y| | becomes: | y0| |----- |
306 | // V V | | V V | |
307 | // Exit Loop | | Loop | |
308 | // | | | Br i1 ... | |
309 | // ----- | | | | |
310 | // x0| x1| y1 | | |
311 | // V V ---- |
312 | // Exit |
313 | // |
314 | // The following must hold: |
315 | // - x == x0 + x1 # counts to "exit" must stay the same. |
316 | // - y0 == x - x0 == x1 # how often loop was entered at all. |
317 | // - y1 == y - y0 # How often loop was repeated (after first iter.). |
318 | // |
319 | // We cannot generally deduce how often we had a zero-trip count loop so we |
320 | // have to make a guess for how to distribute x among the new x0 and x1. |
321 | |
322 | uint32_t ExitWeight0; // aka x0 |
323 | uint32_t ExitWeight1; // aka x1 |
324 | uint32_t EnterWeight; // aka y0 |
325 | uint32_t LoopBackWeight; // aka y1 |
326 | if (OrigLoopExitWeight > 0 && OrigLoopBackedgeWeight > 0) { |
327 | ExitWeight0 = 0; |
328 | if (HasConditionalPreHeader) { |
329 | // Here we cannot know how many 0-trip count loops we have, so we guess: |
330 | if (OrigLoopBackedgeWeight >= OrigLoopExitWeight) { |
331 | // If the loop count is bigger than the exit count then we set |
332 | // probabilities as if 0-trip count nearly never happens. |
333 | ExitWeight0 = ZeroTripCountWeights[0]; |
334 | // Scale up counts if necessary so we can match `ZeroTripCountWeights` |
335 | // for the `ExitWeight0`:`ExitWeight1` (aka `x0`:`x1` ratio`) ratio. |
336 | while (OrigLoopExitWeight < ZeroTripCountWeights[1] + ExitWeight0) { |
337 | // ... but don't overflow. |
338 | uint32_t const HighBit = uint32_t{1} << (sizeof(uint32_t) * 8 - 1); |
339 | if ((OrigLoopBackedgeWeight & HighBit) != 0 || |
340 | (OrigLoopExitWeight & HighBit) != 0) |
341 | break; |
342 | OrigLoopBackedgeWeight <<= 1; |
343 | OrigLoopExitWeight <<= 1; |
344 | } |
345 | } else { |
346 | // If there's a higher exit-count than backedge-count then we set |
347 | // probabilities as if there are only 0-trip and 1-trip cases. |
348 | ExitWeight0 = OrigLoopExitWeight - OrigLoopBackedgeWeight; |
349 | } |
350 | } else { |
351 | // Theoretically, if the loop body must be executed at least once, the |
352 | // backedge count must be not less than exit count. However the branch |
353 | // weight collected by sampling-based PGO may be not very accurate due to |
354 | // sampling. Therefore this workaround is required here to avoid underflow |
355 | // of unsigned in following update of branch weight. |
356 | if (OrigLoopExitWeight > OrigLoopBackedgeWeight) |
357 | OrigLoopBackedgeWeight = OrigLoopExitWeight; |
358 | } |
359 | assert(OrigLoopExitWeight >= ExitWeight0 && "Bad branch weight" ); |
360 | ExitWeight1 = OrigLoopExitWeight - ExitWeight0; |
361 | EnterWeight = ExitWeight1; |
362 | assert(OrigLoopBackedgeWeight >= EnterWeight && "Bad branch weight" ); |
363 | LoopBackWeight = OrigLoopBackedgeWeight - EnterWeight; |
364 | } else if (OrigLoopExitWeight == 0) { |
365 | if (OrigLoopBackedgeWeight == 0) { |
366 | // degenerate case... keep everything zero... |
367 | ExitWeight0 = 0; |
368 | ExitWeight1 = 0; |
369 | EnterWeight = 0; |
370 | LoopBackWeight = 0; |
371 | } else { |
372 | // Special case "LoopExitWeight == 0" weights which behaves like an |
373 | // endless where we don't want loop-enttry (y0) to be the same as |
374 | // loop-exit (x1). |
375 | ExitWeight0 = 0; |
376 | ExitWeight1 = 0; |
377 | EnterWeight = 1; |
378 | LoopBackWeight = OrigLoopBackedgeWeight; |
379 | } |
380 | } else { |
381 | // loop is never entered. |
382 | assert(OrigLoopBackedgeWeight == 0 && "remaining case is backedge zero" ); |
383 | ExitWeight0 = 1; |
384 | ExitWeight1 = 1; |
385 | EnterWeight = 0; |
386 | LoopBackWeight = 0; |
387 | } |
388 | |
389 | const uint32_t LoopBIWeights[] = { |
390 | SuccsSwapped ? LoopBackWeight : ExitWeight1, |
391 | SuccsSwapped ? ExitWeight1 : LoopBackWeight, |
392 | }; |
393 | setBranchWeights(I&: LoopBI, Weights: LoopBIWeights, /*IsExpected=*/false); |
394 | if (HasConditionalPreHeader) { |
395 | const uint32_t [] = { |
396 | SuccsSwapped ? EnterWeight : ExitWeight0, |
397 | SuccsSwapped ? ExitWeight0 : EnterWeight, |
398 | }; |
399 | setBranchWeights(I&: PreHeaderBI, Weights: PreHeaderBIWeights, /*IsExpected=*/false); |
400 | } |
401 | } |
402 | |
403 | /// Rotate loop LP. Return true if the loop is rotated. |
404 | /// |
405 | /// \param SimplifiedLatch is true if the latch was just folded into the final |
406 | /// loop exit. In this case we may want to rotate even though the new latch is |
407 | /// now an exiting branch. This rotation would have happened had the latch not |
408 | /// been simplified. However, if SimplifiedLatch is false, then we avoid |
409 | /// rotating loops in which the latch exits to avoid excessive or endless |
410 | /// rotation. LoopRotate should be repeatable and converge to a canonical |
411 | /// form. This property is satisfied because simplifying the loop latch can only |
412 | /// happen once across multiple invocations of the LoopRotate pass. |
413 | /// |
414 | /// If -loop-rotate-multi is enabled we can do multiple rotations in one go |
415 | /// so to reach a suitable (non-deoptimizing) exit. |
416 | bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) { |
417 | // If the loop has only one block then there is not much to rotate. |
418 | if (L->getBlocks().size() == 1) |
419 | return false; |
420 | |
421 | bool Rotated = false; |
422 | do { |
423 | BasicBlock * = L->getHeader(); |
424 | BasicBlock *OrigLatch = L->getLoopLatch(); |
425 | |
426 | BranchInst *BI = dyn_cast<BranchInst>(Val: OrigHeader->getTerminator()); |
427 | if (!BI || BI->isUnconditional()) |
428 | return Rotated; |
429 | |
430 | // If the loop header is not one of the loop exiting blocks then |
431 | // either this loop is already rotated or it is not |
432 | // suitable for loop rotation transformations. |
433 | if (!L->isLoopExiting(BB: OrigHeader)) |
434 | return Rotated; |
435 | |
436 | // If the loop latch already contains a branch that leaves the loop then the |
437 | // loop is already rotated. |
438 | if (!OrigLatch) |
439 | return Rotated; |
440 | |
441 | // Rotate if either the loop latch does *not* exit the loop, or if the loop |
442 | // latch was just simplified. Or if we think it will be profitable. |
443 | if (L->isLoopExiting(BB: OrigLatch) && !SimplifiedLatch && IsUtilMode == false && |
444 | !profitableToRotateLoopExitingLatch(L) && |
445 | !canRotateDeoptimizingLatchExit(L)) |
446 | return Rotated; |
447 | |
448 | // Check size of original header and reject loop if it is very big or we can't |
449 | // duplicate blocks inside it. |
450 | { |
451 | SmallPtrSet<const Value *, 32> EphValues; |
452 | CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
453 | |
454 | CodeMetrics Metrics; |
455 | Metrics.analyzeBasicBlock(BB: OrigHeader, TTI: *TTI, EphValues, PrepareForLTO); |
456 | if (Metrics.notDuplicatable) { |
457 | LLVM_DEBUG( |
458 | dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable" |
459 | << " instructions: " ; |
460 | L->dump()); |
461 | return Rotated; |
462 | } |
463 | if (Metrics.Convergence != ConvergenceKind::None) { |
464 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent " |
465 | "instructions: " ; |
466 | L->dump()); |
467 | return Rotated; |
468 | } |
469 | if (!Metrics.NumInsts.isValid()) { |
470 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains instructions" |
471 | " with invalid cost: " ; |
472 | L->dump()); |
473 | return Rotated; |
474 | } |
475 | if (Metrics.NumInsts > MaxHeaderSize) { |
476 | LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains " |
477 | << Metrics.NumInsts |
478 | << " instructions, which is more than the threshold (" |
479 | << MaxHeaderSize << " instructions): " ; |
480 | L->dump()); |
481 | ++NumNotRotatedDueToHeaderSize; |
482 | return Rotated; |
483 | } |
484 | |
485 | // When preparing for LTO, avoid rotating loops with calls that could be |
486 | // inlined during the LTO stage. |
487 | if (PrepareForLTO && Metrics.NumInlineCandidates > 0) |
488 | return Rotated; |
489 | } |
490 | |
491 | // Now, this loop is suitable for rotation. |
492 | BasicBlock * = L->getLoopPreheader(); |
493 | |
494 | // If the loop could not be converted to canonical form, it must have an |
495 | // indirectbr in it, just give up. |
496 | if (!OrigPreheader || !L->hasDedicatedExits()) |
497 | return Rotated; |
498 | |
499 | // Anything ScalarEvolution may know about this loop or the PHI nodes |
500 | // in its header will soon be invalidated. We should also invalidate |
501 | // all outer loops because insertion and deletion of blocks that happens |
502 | // during the rotation may violate invariants related to backedge taken |
503 | // infos in them. |
504 | if (SE) { |
505 | SE->forgetTopmostLoop(L); |
506 | // We may hoist some instructions out of loop. In case if they were cached |
507 | // as "loop variant" or "loop computable", these caches must be dropped. |
508 | // We also may fold basic blocks, so cached block dispositions also need |
509 | // to be dropped. |
510 | SE->forgetBlockAndLoopDispositions(); |
511 | } |
512 | |
513 | LLVM_DEBUG(dbgs() << "LoopRotation: rotating " ; L->dump()); |
514 | if (MSSAU && VerifyMemorySSA) |
515 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
516 | |
517 | // Find new Loop header. NewHeader is a Header's one and only successor |
518 | // that is inside loop. Header's other successor is outside the |
519 | // loop. Otherwise loop is not suitable for rotation. |
520 | BasicBlock *Exit = BI->getSuccessor(i: 0); |
521 | BasicBlock * = BI->getSuccessor(i: 1); |
522 | bool BISuccsSwapped = L->contains(BB: Exit); |
523 | if (BISuccsSwapped) |
524 | std::swap(a&: Exit, b&: NewHeader); |
525 | assert(NewHeader && "Unable to determine new loop header" ); |
526 | assert(L->contains(NewHeader) && !L->contains(Exit) && |
527 | "Unable to determine loop header and exit blocks" ); |
528 | |
529 | // This code assumes that the new header has exactly one predecessor. |
530 | // Remove any single-entry PHI nodes in it. |
531 | assert(NewHeader->getSinglePredecessor() && |
532 | "New header doesn't have one pred!" ); |
533 | FoldSingleEntryPHINodes(BB: NewHeader); |
534 | |
535 | // Begin by walking OrigHeader and populating ValueMap with an entry for |
536 | // each Instruction. |
537 | BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end(); |
538 | ValueToValueMapTy ValueMap, ValueMapMSSA; |
539 | |
540 | // For PHI nodes, the value available in OldPreHeader is just the |
541 | // incoming value from OldPreHeader. |
542 | for (; PHINode *PN = dyn_cast<PHINode>(Val&: I); ++I) |
543 | InsertNewValueIntoMap(VM&: ValueMap, K: PN, |
544 | V: PN->getIncomingValueForBlock(BB: OrigPreheader)); |
545 | |
546 | // For the rest of the instructions, either hoist to the OrigPreheader if |
547 | // possible or create a clone in the OldPreHeader if not. |
548 | Instruction *LoopEntryBranch = OrigPreheader->getTerminator(); |
549 | |
550 | // Record all debug intrinsics preceding LoopEntryBranch to avoid |
551 | // duplication. |
552 | using DbgIntrinsicHash = |
553 | std::pair<std::pair<hash_code, DILocalVariable *>, DIExpression *>; |
554 | auto makeHash = [](auto *D) -> DbgIntrinsicHash { |
555 | auto VarLocOps = D->location_ops(); |
556 | return {{hash_combine_range(VarLocOps.begin(), VarLocOps.end()), |
557 | D->getVariable()}, |
558 | D->getExpression()}; |
559 | }; |
560 | |
561 | SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics; |
562 | for (Instruction &I : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: *OrigPreheader))) { |
563 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(Val: &I)) { |
564 | DbgIntrinsics.insert(V: makeHash(DII)); |
565 | // Until RemoveDIs supports dbg.declares in DbgVariableRecord format, |
566 | // we'll need to collect DbgVariableRecords attached to any other debug |
567 | // intrinsics. |
568 | for (const DbgVariableRecord &DVR : |
569 | filterDbgVars(R: DII->getDbgRecordRange())) |
570 | DbgIntrinsics.insert(V: makeHash(&DVR)); |
571 | } else { |
572 | break; |
573 | } |
574 | } |
575 | |
576 | // Build DbgVariableRecord hashes for DbgVariableRecords attached to the |
577 | // terminator, which isn't considered in the loop above. |
578 | for (const DbgVariableRecord &DVR : |
579 | filterDbgVars(R: OrigPreheader->getTerminator()->getDbgRecordRange())) |
580 | DbgIntrinsics.insert(V: makeHash(&DVR)); |
581 | |
582 | // Remember the local noalias scope declarations in the header. After the |
583 | // rotation, they must be duplicated and the scope must be cloned. This |
584 | // avoids unwanted interaction across iterations. |
585 | SmallVector<NoAliasScopeDeclInst *, 6> NoAliasDeclInstructions; |
586 | for (Instruction &I : *OrigHeader) |
587 | if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(Val: &I)) |
588 | NoAliasDeclInstructions.push_back(Elt: Decl); |
589 | |
590 | Module *M = OrigHeader->getModule(); |
591 | |
592 | // Track the next DbgRecord to clone. If we have a sequence where an |
593 | // instruction is hoisted instead of being cloned: |
594 | // DbgRecord blah |
595 | // %foo = add i32 0, 0 |
596 | // DbgRecord xyzzy |
597 | // %bar = call i32 @foobar() |
598 | // where %foo is hoisted, then the DbgRecord "blah" will be seen twice, once |
599 | // attached to %foo, then when %foo his hoisted it will "fall down" onto the |
600 | // function call: |
601 | // DbgRecord blah |
602 | // DbgRecord xyzzy |
603 | // %bar = call i32 @foobar() |
604 | // causing it to appear attached to the call too. |
605 | // |
606 | // To avoid this, cloneDebugInfoFrom takes an optional "start cloning from |
607 | // here" position to account for this behaviour. We point it at any |
608 | // DbgRecords on the next instruction, here labelled xyzzy, before we hoist |
609 | // %foo. Later, we only only clone DbgRecords from that position (xyzzy) |
610 | // onwards, which avoids cloning DbgRecord "blah" multiple times. (Stored as |
611 | // a range because it gives us a natural way of testing whether |
612 | // there were DbgRecords on the next instruction before we hoisted things). |
613 | iterator_range<DbgRecord::self_iterator> NextDbgInsts = |
614 | (I != E) ? I->getDbgRecordRange() : DbgMarker::getEmptyDbgRecordRange(); |
615 | |
616 | while (I != E) { |
617 | Instruction *Inst = &*I++; |
618 | |
619 | // If the instruction's operands are invariant and it doesn't read or write |
620 | // memory, then it is safe to hoist. Doing this doesn't change the order of |
621 | // execution in the preheader, but does prevent the instruction from |
622 | // executing in each iteration of the loop. This means it is safe to hoist |
623 | // something that might trap, but isn't safe to hoist something that reads |
624 | // memory (without proving that the loop doesn't write). |
625 | if (L->hasLoopInvariantOperands(I: Inst) && !Inst->mayReadFromMemory() && |
626 | !Inst->mayWriteToMemory() && !Inst->isTerminator() && |
627 | !isa<DbgInfoIntrinsic>(Val: Inst) && !isa<AllocaInst>(Val: Inst) && |
628 | // It is not safe to hoist the value of these instructions in |
629 | // coroutines, as the addresses of otherwise eligible variables (e.g. |
630 | // thread-local variables and errno) may change if the coroutine is |
631 | // resumed in a different thread.Therefore, we disable this |
632 | // optimization for correctness. However, this may block other correct |
633 | // optimizations. |
634 | // FIXME: This should be reverted once we have a better model for |
635 | // memory access in coroutines. |
636 | !Inst->getFunction()->isPresplitCoroutine()) { |
637 | |
638 | if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat && |
639 | !NextDbgInsts.empty()) { |
640 | auto DbgValueRange = |
641 | LoopEntryBranch->cloneDebugInfoFrom(From: Inst, FromHere: NextDbgInsts.begin()); |
642 | RemapDbgRecordRange(M, Range: DbgValueRange, VM&: ValueMap, |
643 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
644 | // Erase anything we've seen before. |
645 | for (DbgVariableRecord &DVR : |
646 | make_early_inc_range(Range: filterDbgVars(R: DbgValueRange))) |
647 | if (DbgIntrinsics.count(V: makeHash(&DVR))) |
648 | DVR.eraseFromParent(); |
649 | } |
650 | |
651 | NextDbgInsts = I->getDbgRecordRange(); |
652 | |
653 | Inst->moveBefore(MovePos: LoopEntryBranch); |
654 | |
655 | ++NumInstrsHoisted; |
656 | continue; |
657 | } |
658 | |
659 | // Otherwise, create a duplicate of the instruction. |
660 | Instruction *C = Inst->clone(); |
661 | C->insertBefore(InsertPos: LoopEntryBranch); |
662 | |
663 | ++NumInstrsDuplicated; |
664 | |
665 | if (LoopEntryBranch->getParent()->IsNewDbgInfoFormat && |
666 | !NextDbgInsts.empty()) { |
667 | auto Range = C->cloneDebugInfoFrom(From: Inst, FromHere: NextDbgInsts.begin()); |
668 | RemapDbgRecordRange(M, Range, VM&: ValueMap, |
669 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
670 | NextDbgInsts = DbgMarker::getEmptyDbgRecordRange(); |
671 | // Erase anything we've seen before. |
672 | for (DbgVariableRecord &DVR : |
673 | make_early_inc_range(Range: filterDbgVars(R: Range))) |
674 | if (DbgIntrinsics.count(V: makeHash(&DVR))) |
675 | DVR.eraseFromParent(); |
676 | } |
677 | |
678 | // Eagerly remap the operands of the instruction. |
679 | RemapInstruction(I: C, VM&: ValueMap, |
680 | Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
681 | |
682 | // Avoid inserting the same intrinsic twice. |
683 | if (auto *DII = dyn_cast<DbgVariableIntrinsic>(Val: C)) |
684 | if (DbgIntrinsics.count(V: makeHash(DII))) { |
685 | C->eraseFromParent(); |
686 | continue; |
687 | } |
688 | |
689 | // With the operands remapped, see if the instruction constant folds or is |
690 | // otherwise simplifyable. This commonly occurs because the entry from PHI |
691 | // nodes allows icmps and other instructions to fold. |
692 | Value *V = simplifyInstruction(I: C, Q: SQ); |
693 | if (V && LI->replacementPreservesLCSSAForm(From: C, To: V)) { |
694 | // If so, then delete the temporary instruction and stick the folded value |
695 | // in the map. |
696 | InsertNewValueIntoMap(VM&: ValueMap, K: Inst, V); |
697 | if (!C->mayHaveSideEffects()) { |
698 | C->eraseFromParent(); |
699 | C = nullptr; |
700 | } |
701 | } else { |
702 | InsertNewValueIntoMap(VM&: ValueMap, K: Inst, V: C); |
703 | } |
704 | if (C) { |
705 | // Otherwise, stick the new instruction into the new block! |
706 | C->setName(Inst->getName()); |
707 | |
708 | if (auto *II = dyn_cast<AssumeInst>(Val: C)) |
709 | AC->registerAssumption(CI: II); |
710 | // MemorySSA cares whether the cloned instruction was inserted or not, and |
711 | // not whether it can be remapped to a simplified value. |
712 | if (MSSAU) |
713 | InsertNewValueIntoMap(VM&: ValueMapMSSA, K: Inst, V: C); |
714 | } |
715 | } |
716 | |
717 | if (!NoAliasDeclInstructions.empty()) { |
718 | // There are noalias scope declarations: |
719 | // (general): |
720 | // Original: OrigPre { OrigHeader NewHeader ... Latch } |
721 | // after: (OrigPre+OrigHeader') { NewHeader ... Latch OrigHeader } |
722 | // |
723 | // with D: llvm.experimental.noalias.scope.decl, |
724 | // U: !noalias or !alias.scope depending on D |
725 | // ... { D U1 U2 } can transform into: |
726 | // (0) : ... { D U1 U2 } // no relevant rotation for this part |
727 | // (1) : ... D' { U1 U2 D } // D is part of OrigHeader |
728 | // (2) : ... D' U1' { U2 D U1 } // D, U1 are part of OrigHeader |
729 | // |
730 | // We now want to transform: |
731 | // (1) -> : ... D' { D U1 U2 D'' } |
732 | // (2) -> : ... D' U1' { D U2 D'' U1'' } |
733 | // D: original llvm.experimental.noalias.scope.decl |
734 | // D', U1': duplicate with replaced scopes |
735 | // D'', U1'': different duplicate with replaced scopes |
736 | // This ensures a safe fallback to 'may_alias' introduced by the rotate, |
737 | // as U1'' and U1' scopes will not be compatible wrt to the local restrict |
738 | |
739 | // Clone the llvm.experimental.noalias.decl again for the NewHeader. |
740 | BasicBlock::iterator = |
741 | NewHeader->getFirstNonPHIIt(); |
742 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) { |
743 | LLVM_DEBUG(dbgs() << " Cloning llvm.experimental.noalias.scope.decl:" |
744 | << *NAD << "\n" ); |
745 | Instruction *NewNAD = NAD->clone(); |
746 | NewNAD->insertBefore(BB&: *NewHeader, InsertPos: NewHeaderInsertionPoint); |
747 | } |
748 | |
749 | // Scopes must now be duplicated, once for OrigHeader and once for |
750 | // OrigPreHeader'. |
751 | { |
752 | auto &Context = NewHeader->getContext(); |
753 | |
754 | SmallVector<MDNode *, 8> NoAliasDeclScopes; |
755 | for (NoAliasScopeDeclInst *NAD : NoAliasDeclInstructions) |
756 | NoAliasDeclScopes.push_back(Elt: NAD->getScopeList()); |
757 | |
758 | LLVM_DEBUG(dbgs() << " Updating OrigHeader scopes\n" ); |
759 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, NewBlocks: {OrigHeader}, Context, |
760 | Ext: "h.rot" ); |
761 | LLVM_DEBUG(OrigHeader->dump()); |
762 | |
763 | // Keep the compile time impact low by only adapting the inserted block |
764 | // of instructions in the OrigPreHeader. This might result in slightly |
765 | // more aliasing between these instructions and those that were already |
766 | // present, but it will be much faster when the original PreHeader is |
767 | // large. |
768 | LLVM_DEBUG(dbgs() << " Updating part of OrigPreheader scopes\n" ); |
769 | auto *FirstDecl = |
770 | cast<Instruction>(Val&: ValueMap[*NoAliasDeclInstructions.begin()]); |
771 | auto *LastInst = &OrigPreheader->back(); |
772 | cloneAndAdaptNoAliasScopes(NoAliasDeclScopes, IStart: FirstDecl, IEnd: LastInst, |
773 | Context, Ext: "pre.rot" ); |
774 | LLVM_DEBUG(OrigPreheader->dump()); |
775 | |
776 | LLVM_DEBUG(dbgs() << " Updated NewHeader:\n" ); |
777 | LLVM_DEBUG(NewHeader->dump()); |
778 | } |
779 | } |
780 | |
781 | // Along with all the other instructions, we just cloned OrigHeader's |
782 | // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's |
783 | // successors by duplicating their incoming values for OrigHeader. |
784 | for (BasicBlock *SuccBB : successors(BB: OrigHeader)) |
785 | for (BasicBlock::iterator BI = SuccBB->begin(); |
786 | PHINode *PN = dyn_cast<PHINode>(Val&: BI); ++BI) |
787 | PN->addIncoming(V: PN->getIncomingValueForBlock(BB: OrigHeader), BB: OrigPreheader); |
788 | |
789 | // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove |
790 | // OrigPreHeader's old terminator (the original branch into the loop), and |
791 | // remove the corresponding incoming values from the PHI nodes in OrigHeader. |
792 | LoopEntryBranch->eraseFromParent(); |
793 | OrigPreheader->flushTerminatorDbgRecords(); |
794 | |
795 | // Update MemorySSA before the rewrite call below changes the 1:1 |
796 | // instruction:cloned_instruction_or_value mapping. |
797 | if (MSSAU) { |
798 | InsertNewValueIntoMap(VM&: ValueMapMSSA, K: OrigHeader, V: OrigPreheader); |
799 | MSSAU->updateForClonedBlockIntoPred(BB: OrigHeader, P1: OrigPreheader, |
800 | VM: ValueMapMSSA); |
801 | } |
802 | |
803 | SmallVector<PHINode*, 2> InsertedPHIs; |
804 | // If there were any uses of instructions in the duplicated block outside the |
805 | // loop, update them, inserting PHI nodes as required |
806 | RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap, SE, |
807 | InsertedPHIs: &InsertedPHIs); |
808 | |
809 | // Attach dbg.value intrinsics to the new phis if that phi uses a value that |
810 | // previously had debug metadata attached. This keeps the debug info |
811 | // up-to-date in the loop body. |
812 | if (!InsertedPHIs.empty()) |
813 | insertDebugValuesForPHIs(BB: OrigHeader, InsertedPHIs); |
814 | |
815 | // NewHeader is now the header of the loop. |
816 | L->moveToHeader(BB: NewHeader); |
817 | assert(L->getHeader() == NewHeader && "Latch block is our new header" ); |
818 | |
819 | // Inform DT about changes to the CFG. |
820 | if (DT) { |
821 | // The OrigPreheader branches to the NewHeader and Exit now. Then, inform |
822 | // the DT about the removed edge to the OrigHeader (that got removed). |
823 | SmallVector<DominatorTree::UpdateType, 3> Updates; |
824 | Updates.push_back(Elt: {DominatorTree::Insert, OrigPreheader, Exit}); |
825 | Updates.push_back(Elt: {DominatorTree::Insert, OrigPreheader, NewHeader}); |
826 | Updates.push_back(Elt: {DominatorTree::Delete, OrigPreheader, OrigHeader}); |
827 | |
828 | if (MSSAU) { |
829 | MSSAU->applyUpdates(Updates, DT&: *DT, /*UpdateDT=*/UpdateDTFirst: true); |
830 | if (VerifyMemorySSA) |
831 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
832 | } else { |
833 | DT->applyUpdates(Updates); |
834 | } |
835 | } |
836 | |
837 | // At this point, we've finished our major CFG changes. As part of cloning |
838 | // the loop into the preheader we've simplified instructions and the |
839 | // duplicated conditional branch may now be branching on a constant. If it is |
840 | // branching on a constant and if that constant means that we enter the loop, |
841 | // then we fold away the cond branch to an uncond branch. This simplifies the |
842 | // loop in cases important for nested loops, and it also means we don't have |
843 | // to split as many edges. |
844 | BranchInst *PHBI = cast<BranchInst>(Val: OrigPreheader->getTerminator()); |
845 | assert(PHBI->isConditional() && "Should be clone of BI condbr!" ); |
846 | const Value *Cond = PHBI->getCondition(); |
847 | const bool = |
848 | !isa<ConstantInt>(Val: Cond) || |
849 | PHBI->getSuccessor(i: cast<ConstantInt>(Val: Cond)->isZero()) != NewHeader; |
850 | |
851 | updateBranchWeights(PreHeaderBI&: *PHBI, LoopBI&: *BI, HasConditionalPreHeader, SuccsSwapped: BISuccsSwapped); |
852 | |
853 | if (HasConditionalPreHeader) { |
854 | // The conditional branch can't be folded, handle the general case. |
855 | // Split edges as necessary to preserve LoopSimplify form. |
856 | |
857 | // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and |
858 | // thus is not a preheader anymore. |
859 | // Split the edge to form a real preheader. |
860 | BasicBlock *NewPH = SplitCriticalEdge( |
861 | Src: OrigPreheader, Dst: NewHeader, |
862 | Options: CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); |
863 | NewPH->setName(NewHeader->getName() + ".lr.ph" ); |
864 | |
865 | // Preserve canonical loop form, which means that 'Exit' should have only |
866 | // one predecessor. Note that Exit could be an exit block for multiple |
867 | // nested loops, causing both of the edges to now be critical and need to |
868 | // be split. |
869 | SmallVector<BasicBlock *, 4> ExitPreds(predecessors(BB: Exit)); |
870 | bool SplitLatchEdge = false; |
871 | for (BasicBlock *ExitPred : ExitPreds) { |
872 | // We only need to split loop exit edges. |
873 | Loop *PredLoop = LI->getLoopFor(BB: ExitPred); |
874 | if (!PredLoop || PredLoop->contains(BB: Exit) || |
875 | isa<IndirectBrInst>(Val: ExitPred->getTerminator())) |
876 | continue; |
877 | SplitLatchEdge |= L->getLoopLatch() == ExitPred; |
878 | BasicBlock *ExitSplit = SplitCriticalEdge( |
879 | Src: ExitPred, Dst: Exit, |
880 | Options: CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()); |
881 | ExitSplit->moveBefore(MovePos: Exit); |
882 | } |
883 | assert(SplitLatchEdge && |
884 | "Despite splitting all preds, failed to split latch exit?" ); |
885 | (void)SplitLatchEdge; |
886 | } else { |
887 | // We can fold the conditional branch in the preheader, this makes things |
888 | // simpler. The first step is to remove the extra edge to the Exit block. |
889 | Exit->removePredecessor(Pred: OrigPreheader, KeepOneInputPHIs: true /*preserve LCSSA*/); |
890 | BranchInst *NewBI = BranchInst::Create(IfTrue: NewHeader, InsertBefore: PHBI->getIterator()); |
891 | NewBI->setDebugLoc(PHBI->getDebugLoc()); |
892 | PHBI->eraseFromParent(); |
893 | |
894 | // With our CFG finalized, update DomTree if it is available. |
895 | if (DT) DT->deleteEdge(From: OrigPreheader, To: Exit); |
896 | |
897 | // Update MSSA too, if available. |
898 | if (MSSAU) |
899 | MSSAU->removeEdge(From: OrigPreheader, To: Exit); |
900 | } |
901 | |
902 | assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation" ); |
903 | assert(L->getLoopLatch() && "Invalid loop latch after loop rotation" ); |
904 | |
905 | if (MSSAU && VerifyMemorySSA) |
906 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
907 | |
908 | // Now that the CFG and DomTree are in a consistent state again, try to merge |
909 | // the OrigHeader block into OrigLatch. This will succeed if they are |
910 | // connected by an unconditional branch. This is just a cleanup so the |
911 | // emitted code isn't too gross in this common case. |
912 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
913 | BasicBlock *PredBB = OrigHeader->getUniquePredecessor(); |
914 | bool DidMerge = MergeBlockIntoPredecessor(BB: OrigHeader, DTU: &DTU, LI, MSSAU); |
915 | if (DidMerge) |
916 | RemoveRedundantDbgInstrs(BB: PredBB); |
917 | |
918 | if (MSSAU && VerifyMemorySSA) |
919 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
920 | |
921 | LLVM_DEBUG(dbgs() << "LoopRotation: into " ; L->dump()); |
922 | |
923 | ++NumRotated; |
924 | |
925 | Rotated = true; |
926 | SimplifiedLatch = false; |
927 | |
928 | // Check that new latch is a deoptimizing exit and then repeat rotation if possible. |
929 | // Deoptimizing latch exit is not a generally typical case, so we just loop over. |
930 | // TODO: if it becomes a performance bottleneck extend rotation algorithm |
931 | // to handle multiple rotations in one go. |
932 | } while (MultiRotate && canRotateDeoptimizingLatchExit(L)); |
933 | |
934 | |
935 | return true; |
936 | } |
937 | |
938 | /// Determine whether the instructions in this range may be safely and cheaply |
939 | /// speculated. This is not an important enough situation to develop complex |
940 | /// heuristics. We handle a single arithmetic instruction along with any type |
941 | /// conversions. |
942 | static bool shouldSpeculateInstrs(BasicBlock::iterator Begin, |
943 | BasicBlock::iterator End, Loop *L) { |
944 | bool seenIncrement = false; |
945 | bool MultiExitLoop = false; |
946 | |
947 | if (!L->getExitingBlock()) |
948 | MultiExitLoop = true; |
949 | |
950 | for (BasicBlock::iterator I = Begin; I != End; ++I) { |
951 | |
952 | if (!isSafeToSpeculativelyExecute(I: &*I)) |
953 | return false; |
954 | |
955 | if (isa<DbgInfoIntrinsic>(Val: I)) |
956 | continue; |
957 | |
958 | switch (I->getOpcode()) { |
959 | default: |
960 | return false; |
961 | case Instruction::GetElementPtr: |
962 | // GEPs are cheap if all indices are constant. |
963 | if (!cast<GEPOperator>(Val&: I)->hasAllConstantIndices()) |
964 | return false; |
965 | // fall-thru to increment case |
966 | [[fallthrough]]; |
967 | case Instruction::Add: |
968 | case Instruction::Sub: |
969 | case Instruction::And: |
970 | case Instruction::Or: |
971 | case Instruction::Xor: |
972 | case Instruction::Shl: |
973 | case Instruction::LShr: |
974 | case Instruction::AShr: { |
975 | Value *IVOpnd = |
976 | !isa<Constant>(Val: I->getOperand(i: 0)) |
977 | ? I->getOperand(i: 0) |
978 | : !isa<Constant>(Val: I->getOperand(i: 1)) ? I->getOperand(i: 1) : nullptr; |
979 | if (!IVOpnd) |
980 | return false; |
981 | |
982 | // If increment operand is used outside of the loop, this speculation |
983 | // could cause extra live range interference. |
984 | if (MultiExitLoop) { |
985 | for (User *UseI : IVOpnd->users()) { |
986 | auto *UserInst = cast<Instruction>(Val: UseI); |
987 | if (!L->contains(Inst: UserInst)) |
988 | return false; |
989 | } |
990 | } |
991 | |
992 | if (seenIncrement) |
993 | return false; |
994 | seenIncrement = true; |
995 | break; |
996 | } |
997 | case Instruction::Trunc: |
998 | case Instruction::ZExt: |
999 | case Instruction::SExt: |
1000 | // ignore type conversions |
1001 | break; |
1002 | } |
1003 | } |
1004 | return true; |
1005 | } |
1006 | |
1007 | /// Fold the loop tail into the loop exit by speculating the loop tail |
1008 | /// instructions. Typically, this is a single post-increment. In the case of a |
1009 | /// simple 2-block loop, hoisting the increment can be much better than |
1010 | /// duplicating the entire loop header. In the case of loops with early exits, |
1011 | /// rotation will not work anyway, but simplifyLoopLatch will put the loop in |
1012 | /// canonical form so downstream passes can handle it. |
1013 | /// |
1014 | /// I don't believe this invalidates SCEV. |
1015 | bool LoopRotate::simplifyLoopLatch(Loop *L) { |
1016 | BasicBlock *Latch = L->getLoopLatch(); |
1017 | if (!Latch || Latch->hasAddressTaken()) |
1018 | return false; |
1019 | |
1020 | BranchInst *Jmp = dyn_cast<BranchInst>(Val: Latch->getTerminator()); |
1021 | if (!Jmp || !Jmp->isUnconditional()) |
1022 | return false; |
1023 | |
1024 | BasicBlock *LastExit = Latch->getSinglePredecessor(); |
1025 | if (!LastExit || !L->isLoopExiting(BB: LastExit)) |
1026 | return false; |
1027 | |
1028 | BranchInst *BI = dyn_cast<BranchInst>(Val: LastExit->getTerminator()); |
1029 | if (!BI) |
1030 | return false; |
1031 | |
1032 | if (!shouldSpeculateInstrs(Begin: Latch->begin(), End: Jmp->getIterator(), L)) |
1033 | return false; |
1034 | |
1035 | LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into " |
1036 | << LastExit->getName() << "\n" ); |
1037 | |
1038 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
1039 | MergeBlockIntoPredecessor(BB: Latch, DTU: &DTU, LI, MSSAU, MemDep: nullptr, |
1040 | /*PredecessorWithTwoSuccessors=*/true); |
1041 | |
1042 | if (SE) { |
1043 | // Merging blocks may remove blocks reference in the block disposition cache. Clear the cache. |
1044 | SE->forgetBlockAndLoopDispositions(); |
1045 | } |
1046 | |
1047 | if (MSSAU && VerifyMemorySSA) |
1048 | MSSAU->getMemorySSA()->verifyMemorySSA(); |
1049 | |
1050 | return true; |
1051 | } |
1052 | |
1053 | /// Rotate \c L, and return true if any modification was made. |
1054 | bool LoopRotate::processLoop(Loop *L) { |
1055 | // Save the loop metadata. |
1056 | MDNode *LoopMD = L->getLoopID(); |
1057 | |
1058 | bool SimplifiedLatch = false; |
1059 | |
1060 | // Simplify the loop latch before attempting to rotate the header |
1061 | // upward. Rotation may not be needed if the loop tail can be folded into the |
1062 | // loop exit. |
1063 | if (!RotationOnly) |
1064 | SimplifiedLatch = simplifyLoopLatch(L); |
1065 | |
1066 | bool MadeChange = rotateLoop(L, SimplifiedLatch); |
1067 | assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) && |
1068 | "Loop latch should be exiting after loop-rotate." ); |
1069 | |
1070 | // Restore the loop metadata. |
1071 | // NB! We presume LoopRotation DOESN'T ADD its own metadata. |
1072 | if ((MadeChange || SimplifiedLatch) && LoopMD) |
1073 | L->setLoopID(LoopMD); |
1074 | |
1075 | return MadeChange || SimplifiedLatch; |
1076 | } |
1077 | |
1078 | |
1079 | /// The utility to convert a loop into a loop with bottom test. |
1080 | bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI, |
1081 | AssumptionCache *AC, DominatorTree *DT, |
1082 | ScalarEvolution *SE, MemorySSAUpdater *MSSAU, |
1083 | const SimplifyQuery &SQ, bool RotationOnly = true, |
1084 | unsigned Threshold = unsigned(-1), |
1085 | bool IsUtilMode = true, bool PrepareForLTO) { |
1086 | LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly, |
1087 | IsUtilMode, PrepareForLTO); |
1088 | return LR.processLoop(L); |
1089 | } |
1090 | |