1 | //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements loop unroll and jam as a routine, much like |
10 | // LoopUnroll.cpp implements loop unroll. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ADT/ArrayRef.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/STLExtras.h" |
17 | #include "llvm/ADT/SmallPtrSet.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/ADT/StringRef.h" |
21 | #include "llvm/ADT/Twine.h" |
22 | #include "llvm/Analysis/AssumptionCache.h" |
23 | #include "llvm/Analysis/DependenceAnalysis.h" |
24 | #include "llvm/Analysis/DomTreeUpdater.h" |
25 | #include "llvm/Analysis/LoopInfo.h" |
26 | #include "llvm/Analysis/LoopIterator.h" |
27 | #include "llvm/Analysis/MustExecute.h" |
28 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
29 | #include "llvm/Analysis/ScalarEvolution.h" |
30 | #include "llvm/IR/BasicBlock.h" |
31 | #include "llvm/IR/DebugInfoMetadata.h" |
32 | #include "llvm/IR/DebugLoc.h" |
33 | #include "llvm/IR/DiagnosticInfo.h" |
34 | #include "llvm/IR/Dominators.h" |
35 | #include "llvm/IR/Function.h" |
36 | #include "llvm/IR/Instruction.h" |
37 | #include "llvm/IR/Instructions.h" |
38 | #include "llvm/IR/IntrinsicInst.h" |
39 | #include "llvm/IR/User.h" |
40 | #include "llvm/IR/Value.h" |
41 | #include "llvm/IR/ValueHandle.h" |
42 | #include "llvm/IR/ValueMap.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/Debug.h" |
45 | #include "llvm/Support/ErrorHandling.h" |
46 | #include "llvm/Support/GenericDomTree.h" |
47 | #include "llvm/Support/raw_ostream.h" |
48 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
49 | #include "llvm/Transforms/Utils/Cloning.h" |
50 | #include "llvm/Transforms/Utils/LoopUtils.h" |
51 | #include "llvm/Transforms/Utils/UnrollLoop.h" |
52 | #include "llvm/Transforms/Utils/ValueMapper.h" |
53 | #include <assert.h> |
54 | #include <memory> |
55 | #include <type_traits> |
56 | #include <vector> |
57 | |
58 | using namespace llvm; |
59 | |
60 | #define DEBUG_TYPE "loop-unroll-and-jam" |
61 | |
62 | STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed" ); |
63 | STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed" ); |
64 | |
65 | typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; |
66 | |
67 | // Partition blocks in an outer/inner loop pair into blocks before and after |
68 | // the loop |
69 | static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks, |
70 | BasicBlockSet &AftBlocks, DominatorTree &DT) { |
71 | Loop *SubLoop = L.getSubLoops()[0]; |
72 | BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); |
73 | |
74 | for (BasicBlock *BB : L.blocks()) { |
75 | if (!SubLoop->contains(BB)) { |
76 | if (DT.dominates(A: SubLoopLatch, B: BB)) |
77 | AftBlocks.insert(Ptr: BB); |
78 | else |
79 | ForeBlocks.insert(Ptr: BB); |
80 | } |
81 | } |
82 | |
83 | // Check that all blocks in ForeBlocks together dominate the subloop |
84 | // TODO: This might ideally be done better with a dominator/postdominators. |
85 | BasicBlock * = SubLoop->getLoopPreheader(); |
86 | for (BasicBlock *BB : ForeBlocks) { |
87 | if (BB == SubLoopPreHeader) |
88 | continue; |
89 | Instruction *TI = BB->getTerminator(); |
90 | for (BasicBlock *Succ : successors(I: TI)) |
91 | if (!ForeBlocks.count(Ptr: Succ)) |
92 | return false; |
93 | } |
94 | |
95 | return true; |
96 | } |
97 | |
98 | /// Partition blocks in a loop nest into blocks before and after each inner |
99 | /// loop. |
100 | static bool partitionOuterLoopBlocks( |
101 | Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks, |
102 | DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
103 | DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) { |
104 | JamLoopBlocks.insert(I: JamLoop.block_begin(), E: JamLoop.block_end()); |
105 | |
106 | for (Loop *L : Root.getLoopsInPreorder()) { |
107 | if (L == &JamLoop) |
108 | break; |
109 | |
110 | if (!partitionLoopBlocks(L&: *L, ForeBlocks&: ForeBlocksMap[L], AftBlocks&: AftBlocksMap[L], DT)) |
111 | return false; |
112 | } |
113 | |
114 | return true; |
115 | } |
116 | |
117 | // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more |
118 | // than 2 levels loop. |
119 | static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, |
120 | BasicBlockSet &ForeBlocks, |
121 | BasicBlockSet &SubLoopBlocks, |
122 | BasicBlockSet &AftBlocks, |
123 | DominatorTree *DT) { |
124 | SubLoopBlocks.insert(I: SubLoop->block_begin(), E: SubLoop->block_end()); |
125 | return partitionLoopBlocks(L&: *L, ForeBlocks, AftBlocks, DT&: *DT); |
126 | } |
127 | |
128 | // Looks at the phi nodes in Header for values coming from Latch. For these |
129 | // instructions and all their operands calls Visit on them, keeping going for |
130 | // all the operands in AftBlocks. Returns false if Visit returns false, |
131 | // otherwise returns true. This is used to process the instructions in the |
132 | // Aft blocks that need to be moved before the subloop. It is used in two |
133 | // places. One to check that the required set of instructions can be moved |
134 | // before the loop. Then to collect the instructions to actually move in |
135 | // moveHeaderPhiOperandsToForeBlocks. |
136 | template <typename T> |
137 | static bool processHeaderPhiOperands(BasicBlock *, BasicBlock *Latch, |
138 | BasicBlockSet &AftBlocks, T Visit) { |
139 | SmallPtrSet<Instruction *, 8> VisitedInstr; |
140 | |
141 | std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) { |
142 | if (VisitedInstr.count(Ptr: I)) |
143 | return true; |
144 | |
145 | VisitedInstr.insert(Ptr: I); |
146 | |
147 | if (AftBlocks.count(Ptr: I->getParent())) |
148 | for (auto &U : I->operands()) |
149 | if (Instruction *II = dyn_cast<Instruction>(Val&: U)) |
150 | if (!ProcessInstr(II)) |
151 | return false; |
152 | |
153 | return Visit(I); |
154 | }; |
155 | |
156 | for (auto &Phi : Header->phis()) { |
157 | Value *V = Phi.getIncomingValueForBlock(BB: Latch); |
158 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
159 | if (!ProcessInstr(I)) |
160 | return false; |
161 | } |
162 | |
163 | return true; |
164 | } |
165 | |
166 | // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. |
167 | static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *, |
168 | BasicBlock *Latch, |
169 | Instruction *InsertLoc, |
170 | BasicBlockSet &AftBlocks) { |
171 | // We need to ensure we move the instructions in the correct order, |
172 | // starting with the earliest required instruction and moving forward. |
173 | processHeaderPhiOperands(Header, Latch, AftBlocks, |
174 | Visit: [&AftBlocks, &InsertLoc](Instruction *I) { |
175 | if (AftBlocks.count(Ptr: I->getParent())) |
176 | I->moveBefore(MovePos: InsertLoc); |
177 | return true; |
178 | }); |
179 | } |
180 | |
181 | /* |
182 | This method performs Unroll and Jam. For a simple loop like: |
183 | for (i = ..) |
184 | Fore(i) |
185 | for (j = ..) |
186 | SubLoop(i, j) |
187 | Aft(i) |
188 | |
189 | Instead of doing normal inner or outer unrolling, we do: |
190 | for (i = .., i+=2) |
191 | Fore(i) |
192 | Fore(i+1) |
193 | for (j = ..) |
194 | SubLoop(i, j) |
195 | SubLoop(i+1, j) |
196 | Aft(i) |
197 | Aft(i+1) |
198 | |
199 | So the outer loop is essetially unrolled and then the inner loops are fused |
200 | ("jammed") together into a single loop. This can increase speed when there |
201 | are loads in SubLoop that are invariant to i, as they become shared between |
202 | the now jammed inner loops. |
203 | |
204 | We do this by spliting the blocks in the loop into Fore, Subloop and Aft. |
205 | Fore blocks are those before the inner loop, Aft are those after. Normal |
206 | Unroll code is used to copy each of these sets of blocks and the results are |
207 | combined together into the final form above. |
208 | |
209 | isSafeToUnrollAndJam should be used prior to calling this to make sure the |
210 | unrolling will be valid. Checking profitablility is also advisable. |
211 | |
212 | If EpilogueLoop is non-null, it receives the epilogue loop (if it was |
213 | necessary to create one and not fully unrolled). |
214 | */ |
215 | LoopUnrollResult |
216 | llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, |
217 | unsigned TripMultiple, bool UnrollRemainder, |
218 | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, |
219 | AssumptionCache *AC, const TargetTransformInfo *TTI, |
220 | OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) { |
221 | |
222 | // When we enter here we should have already checked that it is safe |
223 | BasicBlock * = L->getHeader(); |
224 | assert(Header && "No header." ); |
225 | assert(L->getSubLoops().size() == 1); |
226 | Loop *SubLoop = *L->begin(); |
227 | |
228 | // Don't enter the unroll code if there is nothing to do. |
229 | if (TripCount == 0 && Count < 2) { |
230 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n" ); |
231 | return LoopUnrollResult::Unmodified; |
232 | } |
233 | |
234 | assert(Count > 0); |
235 | assert(TripMultiple > 0); |
236 | assert(TripCount == 0 || TripCount % TripMultiple == 0); |
237 | |
238 | // Are we eliminating the loop control altogether? |
239 | bool CompletelyUnroll = (Count == TripCount); |
240 | |
241 | // We use the runtime remainder in cases where we don't know trip multiple |
242 | if (TripMultiple % Count != 0) { |
243 | if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, |
244 | /*UseEpilogRemainder*/ true, |
245 | UnrollRemainder, /*ForgetAllSCEV*/ false, |
246 | LI, SE, DT, AC, TTI, PreserveLCSSA: true, ResultLoop: EpilogueLoop)) { |
247 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " |
248 | "generated when assuming runtime trip count\n" ); |
249 | return LoopUnrollResult::Unmodified; |
250 | } |
251 | } |
252 | |
253 | // Notify ScalarEvolution that the loop will be substantially changed, |
254 | // if not outright eliminated. |
255 | if (SE) { |
256 | SE->forgetLoop(L); |
257 | SE->forgetBlockAndLoopDispositions(); |
258 | } |
259 | |
260 | using namespace ore; |
261 | // Report the unrolling decision. |
262 | if (CompletelyUnroll) { |
263 | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" |
264 | << Header->getName() << " with trip count " << TripCount |
265 | << "!\n" ); |
266 | ORE->emit(OptDiag&: OptimizationRemark(DEBUG_TYPE, "FullyUnrolled" , L->getStartLoc(), |
267 | L->getHeader()) |
268 | << "completely unroll and jammed loop with " |
269 | << NV("UnrollCount" , TripCount) << " iterations" ); |
270 | } else { |
271 | auto DiagBuilder = [&]() { |
272 | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled" , L->getStartLoc(), |
273 | L->getHeader()); |
274 | return Diag << "unroll and jammed loop by a factor of " |
275 | << NV("UnrollCount" , Count); |
276 | }; |
277 | |
278 | LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() |
279 | << " by " << Count); |
280 | if (TripMultiple != 1) { |
281 | LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch" ); |
282 | ORE->emit(RemarkBuilder: [&]() { |
283 | return DiagBuilder() << " with " << NV("TripMultiple" , TripMultiple) |
284 | << " trips per branch" ; |
285 | }); |
286 | } else { |
287 | LLVM_DEBUG(dbgs() << " with run-time trip count" ); |
288 | ORE->emit(RemarkBuilder: [&]() { return DiagBuilder() << " with run-time trip count" ; }); |
289 | } |
290 | LLVM_DEBUG(dbgs() << "!\n" ); |
291 | } |
292 | |
293 | BasicBlock * = L->getLoopPreheader(); |
294 | BasicBlock *LatchBlock = L->getLoopLatch(); |
295 | assert(Preheader && "No preheader" ); |
296 | assert(LatchBlock && "No latch block" ); |
297 | BranchInst *BI = dyn_cast<BranchInst>(Val: LatchBlock->getTerminator()); |
298 | assert(BI && !BI->isUnconditional()); |
299 | bool ContinueOnTrue = L->contains(BB: BI->getSuccessor(i: 0)); |
300 | BasicBlock *LoopExit = BI->getSuccessor(i: ContinueOnTrue); |
301 | bool SubLoopContinueOnTrue = SubLoop->contains( |
302 | BB: SubLoop->getLoopLatch()->getTerminator()->getSuccessor(Idx: 0)); |
303 | |
304 | // Partition blocks in an outer/inner loop pair into blocks before and after |
305 | // the loop |
306 | BasicBlockSet SubLoopBlocks; |
307 | BasicBlockSet ForeBlocks; |
308 | BasicBlockSet AftBlocks; |
309 | partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, |
310 | DT); |
311 | |
312 | // We keep track of the entering/first and exiting/last block of each of |
313 | // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of |
314 | // blocks easier. |
315 | std::vector<BasicBlock *> ForeBlocksFirst; |
316 | std::vector<BasicBlock *> ForeBlocksLast; |
317 | std::vector<BasicBlock *> SubLoopBlocksFirst; |
318 | std::vector<BasicBlock *> SubLoopBlocksLast; |
319 | std::vector<BasicBlock *> AftBlocksFirst; |
320 | std::vector<BasicBlock *> AftBlocksLast; |
321 | ForeBlocksFirst.push_back(x: Header); |
322 | ForeBlocksLast.push_back(x: SubLoop->getLoopPreheader()); |
323 | SubLoopBlocksFirst.push_back(x: SubLoop->getHeader()); |
324 | SubLoopBlocksLast.push_back(x: SubLoop->getExitingBlock()); |
325 | AftBlocksFirst.push_back(x: SubLoop->getExitBlock()); |
326 | AftBlocksLast.push_back(x: L->getExitingBlock()); |
327 | // Maps Blocks[0] -> Blocks[It] |
328 | ValueToValueMapTy LastValueMap; |
329 | |
330 | // Move any instructions from fore phi operands from AftBlocks into Fore. |
331 | moveHeaderPhiOperandsToForeBlocks( |
332 | Header, Latch: LatchBlock, InsertLoc: ForeBlocksLast[0]->getTerminator(), AftBlocks); |
333 | |
334 | // The current on-the-fly SSA update requires blocks to be processed in |
335 | // reverse postorder so that LastValueMap contains the correct value at each |
336 | // exit. |
337 | LoopBlocksDFS DFS(L); |
338 | DFS.perform(LI); |
339 | // Stash the DFS iterators before adding blocks to the loop. |
340 | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); |
341 | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); |
342 | |
343 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
344 | // factors to the discriminators. |
345 | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && |
346 | !EnableFSDiscriminator) |
347 | for (BasicBlock *BB : L->getBlocks()) |
348 | for (Instruction &I : *BB) |
349 | if (!I.isDebugOrPseudoInst()) |
350 | if (const DILocation *DIL = I.getDebugLoc()) { |
351 | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(DF: Count); |
352 | if (NewDIL) |
353 | I.setDebugLoc(*NewDIL); |
354 | else |
355 | LLVM_DEBUG(dbgs() |
356 | << "Failed to create new discriminator: " |
357 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
358 | } |
359 | |
360 | // Copy all blocks |
361 | for (unsigned It = 1; It != Count; ++It) { |
362 | SmallVector<BasicBlock *, 8> NewBlocks; |
363 | // Maps Blocks[It] -> Blocks[It-1] |
364 | DenseMap<Value *, Value *> PrevItValueMap; |
365 | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; |
366 | NewLoops[L] = L; |
367 | NewLoops[SubLoop] = SubLoop; |
368 | |
369 | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { |
370 | ValueToValueMapTy VMap; |
371 | BasicBlock *New = CloneBasicBlock(BB: *BB, VMap, NameSuffix: "." + Twine(It)); |
372 | Header->getParent()->insert(Position: Header->getParent()->end(), BB: New); |
373 | |
374 | // Tell LI about New. |
375 | addClonedBlockToLoopInfo(OriginalBB: *BB, ClonedBB: New, LI, NewLoops); |
376 | |
377 | if (ForeBlocks.count(Ptr: *BB)) { |
378 | if (*BB == ForeBlocksFirst[0]) |
379 | ForeBlocksFirst.push_back(x: New); |
380 | if (*BB == ForeBlocksLast[0]) |
381 | ForeBlocksLast.push_back(x: New); |
382 | } else if (SubLoopBlocks.count(Ptr: *BB)) { |
383 | if (*BB == SubLoopBlocksFirst[0]) |
384 | SubLoopBlocksFirst.push_back(x: New); |
385 | if (*BB == SubLoopBlocksLast[0]) |
386 | SubLoopBlocksLast.push_back(x: New); |
387 | } else if (AftBlocks.count(Ptr: *BB)) { |
388 | if (*BB == AftBlocksFirst[0]) |
389 | AftBlocksFirst.push_back(x: New); |
390 | if (*BB == AftBlocksLast[0]) |
391 | AftBlocksLast.push_back(x: New); |
392 | } else { |
393 | llvm_unreachable("BB being cloned should be in Fore/Sub/Aft" ); |
394 | } |
395 | |
396 | // Update our running maps of newest clones |
397 | PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]); |
398 | LastValueMap[*BB] = New; |
399 | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); |
400 | VI != VE; ++VI) { |
401 | PrevItValueMap[VI->second] = |
402 | const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]); |
403 | LastValueMap[VI->first] = VI->second; |
404 | } |
405 | |
406 | NewBlocks.push_back(Elt: New); |
407 | |
408 | // Update DomTree: |
409 | if (*BB == ForeBlocksFirst[0]) |
410 | DT->addNewBlock(BB: New, DomBB: ForeBlocksLast[It - 1]); |
411 | else if (*BB == SubLoopBlocksFirst[0]) |
412 | DT->addNewBlock(BB: New, DomBB: SubLoopBlocksLast[It - 1]); |
413 | else if (*BB == AftBlocksFirst[0]) |
414 | DT->addNewBlock(BB: New, DomBB: AftBlocksLast[It - 1]); |
415 | else { |
416 | // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree |
417 | // structure. |
418 | auto BBDomNode = DT->getNode(BB: *BB); |
419 | auto BBIDom = BBDomNode->getIDom(); |
420 | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); |
421 | assert(OriginalBBIDom); |
422 | assert(LastValueMap[cast<Value>(OriginalBBIDom)]); |
423 | DT->addNewBlock( |
424 | BB: New, DomBB: cast<BasicBlock>(Val&: LastValueMap[cast<Value>(Val: OriginalBBIDom)])); |
425 | } |
426 | } |
427 | |
428 | // Remap all instructions in the most recent iteration |
429 | remapInstructionsInBlocks(Blocks: NewBlocks, VMap&: LastValueMap); |
430 | for (BasicBlock *NewBlock : NewBlocks) { |
431 | for (Instruction &I : *NewBlock) { |
432 | if (auto *II = dyn_cast<AssumeInst>(Val: &I)) |
433 | AC->registerAssumption(CI: II); |
434 | } |
435 | } |
436 | |
437 | // Alter the ForeBlocks phi's, pointing them at the latest version of the |
438 | // value from the previous iteration's phis |
439 | for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { |
440 | Value *OldValue = Phi.getIncomingValueForBlock(BB: AftBlocksLast[It]); |
441 | assert(OldValue && "should have incoming edge from Aft[It]" ); |
442 | Value *NewValue = OldValue; |
443 | if (Value *PrevValue = PrevItValueMap[OldValue]) |
444 | NewValue = PrevValue; |
445 | |
446 | assert(Phi.getNumOperands() == 2); |
447 | Phi.setIncomingBlock(i: 0, BB: ForeBlocksLast[It - 1]); |
448 | Phi.setIncomingValue(i: 0, V: NewValue); |
449 | Phi.removeIncomingValue(Idx: 1); |
450 | } |
451 | } |
452 | |
453 | // Now that all the basic blocks for the unrolled iterations are in place, |
454 | // finish up connecting the blocks and phi nodes. At this point LastValueMap |
455 | // is the last unrolled iterations values. |
456 | |
457 | // Update Phis in BB from OldBB to point to NewBB and use the latest value |
458 | // from LastValueMap |
459 | auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, |
460 | BasicBlock *NewBB, |
461 | ValueToValueMapTy &LastValueMap) { |
462 | for (PHINode &Phi : BB->phis()) { |
463 | for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { |
464 | if (Phi.getIncomingBlock(i: b) == OldBB) { |
465 | Value *OldValue = Phi.getIncomingValue(i: b); |
466 | if (Value *LastValue = LastValueMap[OldValue]) |
467 | Phi.setIncomingValue(i: b, V: LastValue); |
468 | Phi.setIncomingBlock(i: b, BB: NewBB); |
469 | break; |
470 | } |
471 | } |
472 | } |
473 | }; |
474 | // Move all the phis from Src into Dest |
475 | auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { |
476 | BasicBlock::iterator insertPoint = Dest->getFirstNonPHIIt(); |
477 | while (PHINode *Phi = dyn_cast<PHINode>(Val: Src->begin())) |
478 | Phi->moveBefore(BB&: *Dest, I: insertPoint); |
479 | }; |
480 | |
481 | // Update the PHI values outside the loop to point to the last block |
482 | updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), |
483 | LastValueMap); |
484 | |
485 | // Update ForeBlocks successors and phi nodes |
486 | BranchInst *ForeTerm = |
487 | cast<BranchInst>(Val: ForeBlocksLast.back()->getTerminator()); |
488 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
489 | ForeTerm->setSuccessor(idx: 0, NewSucc: SubLoopBlocksFirst[0]); |
490 | |
491 | if (CompletelyUnroll) { |
492 | while (PHINode *Phi = dyn_cast<PHINode>(Val: ForeBlocksFirst[0]->begin())) { |
493 | Phi->replaceAllUsesWith(V: Phi->getIncomingValueForBlock(BB: Preheader)); |
494 | Phi->eraseFromParent(); |
495 | } |
496 | } else { |
497 | // Update the PHI values to point to the last aft block |
498 | updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], |
499 | AftBlocksLast.back(), LastValueMap); |
500 | } |
501 | |
502 | for (unsigned It = 1; It != Count; It++) { |
503 | // Remap ForeBlock successors from previous iteration to this |
504 | BranchInst *ForeTerm = |
505 | cast<BranchInst>(Val: ForeBlocksLast[It - 1]->getTerminator()); |
506 | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor" ); |
507 | ForeTerm->setSuccessor(idx: 0, NewSucc: ForeBlocksFirst[It]); |
508 | } |
509 | |
510 | // Subloop successors and phis |
511 | BranchInst *SubTerm = |
512 | cast<BranchInst>(Val: SubLoopBlocksLast.back()->getTerminator()); |
513 | SubTerm->setSuccessor(idx: !SubLoopContinueOnTrue, NewSucc: SubLoopBlocksFirst[0]); |
514 | SubTerm->setSuccessor(idx: SubLoopContinueOnTrue, NewSucc: AftBlocksFirst[0]); |
515 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: ForeBlocksLast[0], |
516 | New: ForeBlocksLast.back()); |
517 | SubLoopBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
518 | New: SubLoopBlocksLast.back()); |
519 | |
520 | for (unsigned It = 1; It != Count; It++) { |
521 | // Replace the conditional branch of the previous iteration subloop with an |
522 | // unconditional one to this one |
523 | BranchInst *SubTerm = |
524 | cast<BranchInst>(Val: SubLoopBlocksLast[It - 1]->getTerminator()); |
525 | BranchInst::Create(IfTrue: SubLoopBlocksFirst[It], InsertBefore: SubTerm->getIterator()); |
526 | SubTerm->eraseFromParent(); |
527 | |
528 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: ForeBlocksLast[It], |
529 | New: ForeBlocksLast.back()); |
530 | SubLoopBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
531 | New: SubLoopBlocksLast.back()); |
532 | movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); |
533 | } |
534 | |
535 | // Aft blocks successors and phis |
536 | BranchInst *AftTerm = cast<BranchInst>(Val: AftBlocksLast.back()->getTerminator()); |
537 | if (CompletelyUnroll) { |
538 | BranchInst::Create(IfTrue: LoopExit, InsertBefore: AftTerm->getIterator()); |
539 | AftTerm->eraseFromParent(); |
540 | } else { |
541 | AftTerm->setSuccessor(idx: !ContinueOnTrue, NewSucc: ForeBlocksFirst[0]); |
542 | assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit && |
543 | "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit" ); |
544 | } |
545 | AftBlocksFirst[0]->replacePhiUsesWith(Old: SubLoopBlocksLast[0], |
546 | New: SubLoopBlocksLast.back()); |
547 | |
548 | for (unsigned It = 1; It != Count; It++) { |
549 | // Replace the conditional branch of the previous iteration subloop with an |
550 | // unconditional one to this one |
551 | BranchInst *AftTerm = |
552 | cast<BranchInst>(Val: AftBlocksLast[It - 1]->getTerminator()); |
553 | BranchInst::Create(IfTrue: AftBlocksFirst[It], InsertBefore: AftTerm->getIterator()); |
554 | AftTerm->eraseFromParent(); |
555 | |
556 | AftBlocksFirst[It]->replacePhiUsesWith(Old: SubLoopBlocksLast[It], |
557 | New: SubLoopBlocksLast.back()); |
558 | movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); |
559 | } |
560 | |
561 | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); |
562 | // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the |
563 | // new ones required. |
564 | if (Count != 1) { |
565 | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; |
566 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, Args&: ForeBlocksLast[0], |
567 | Args&: SubLoopBlocksFirst[0]); |
568 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Delete, |
569 | Args&: SubLoopBlocksLast[0], Args&: AftBlocksFirst[0]); |
570 | |
571 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
572 | Args&: ForeBlocksLast.back(), Args&: SubLoopBlocksFirst[0]); |
573 | DTUpdates.emplace_back(Args: DominatorTree::UpdateKind::Insert, |
574 | Args&: SubLoopBlocksLast.back(), Args&: AftBlocksFirst[0]); |
575 | DTU.applyUpdatesPermissive(Updates: DTUpdates); |
576 | } |
577 | |
578 | // Merge adjacent basic blocks, if possible. |
579 | SmallPtrSet<BasicBlock *, 16> MergeBlocks; |
580 | MergeBlocks.insert(I: ForeBlocksLast.begin(), E: ForeBlocksLast.end()); |
581 | MergeBlocks.insert(I: SubLoopBlocksLast.begin(), E: SubLoopBlocksLast.end()); |
582 | MergeBlocks.insert(I: AftBlocksLast.begin(), E: AftBlocksLast.end()); |
583 | |
584 | MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, DTU: &DTU, LI); |
585 | |
586 | // Apply updates to the DomTree. |
587 | DT = &DTU.getDomTree(); |
588 | |
589 | // At this point, the code is well formed. We now do a quick sweep over the |
590 | // inserted code, doing constant propagation and dead code elimination as we |
591 | // go. |
592 | simplifyLoopAfterUnroll(L: SubLoop, SimplifyIVs: true, LI, SE, DT, AC, TTI); |
593 | simplifyLoopAfterUnroll(L, SimplifyIVs: !CompletelyUnroll && Count > 1, LI, SE, DT, AC, |
594 | TTI); |
595 | |
596 | NumCompletelyUnrolledAndJammed += CompletelyUnroll; |
597 | ++NumUnrolledAndJammed; |
598 | |
599 | // Update LoopInfo if the loop is completely removed. |
600 | if (CompletelyUnroll) |
601 | LI->erase(L); |
602 | |
603 | #ifndef NDEBUG |
604 | // We shouldn't have done anything to break loop simplify form or LCSSA. |
605 | Loop *OutestLoop = SubLoop->getParentLoop() |
606 | ? SubLoop->getParentLoop()->getParentLoop() |
607 | ? SubLoop->getParentLoop()->getParentLoop() |
608 | : SubLoop->getParentLoop() |
609 | : SubLoop; |
610 | assert(DT->verify()); |
611 | LI->verify(*DT); |
612 | assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); |
613 | if (!CompletelyUnroll) |
614 | assert(L->isLoopSimplifyForm()); |
615 | assert(SubLoop->isLoopSimplifyForm()); |
616 | SE->verify(); |
617 | #endif |
618 | |
619 | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled |
620 | : LoopUnrollResult::PartiallyUnrolled; |
621 | } |
622 | |
623 | static bool getLoadsAndStores(BasicBlockSet &Blocks, |
624 | SmallVector<Instruction *, 4> &MemInstr) { |
625 | // Scan the BBs and collect legal loads and stores. |
626 | // Returns false if non-simple loads/stores are found. |
627 | for (BasicBlock *BB : Blocks) { |
628 | for (Instruction &I : *BB) { |
629 | if (auto *Ld = dyn_cast<LoadInst>(Val: &I)) { |
630 | if (!Ld->isSimple()) |
631 | return false; |
632 | MemInstr.push_back(Elt: &I); |
633 | } else if (auto *St = dyn_cast<StoreInst>(Val: &I)) { |
634 | if (!St->isSimple()) |
635 | return false; |
636 | MemInstr.push_back(Elt: &I); |
637 | } else if (I.mayReadOrWriteMemory()) { |
638 | return false; |
639 | } |
640 | } |
641 | } |
642 | return true; |
643 | } |
644 | |
645 | static bool preservesForwardDependence(Instruction *Src, Instruction *Dst, |
646 | unsigned UnrollLevel, unsigned JamLevel, |
647 | bool Sequentialized, Dependence *D) { |
648 | // UnrollLevel might carry the dependency Src --> Dst |
649 | // Does a different loop after unrolling? |
650 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
651 | ++CurLoopDepth) { |
652 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
653 | if (JammedDir == Dependence::DVEntry::LT) |
654 | return true; |
655 | |
656 | if (JammedDir & Dependence::DVEntry::GT) |
657 | return false; |
658 | } |
659 | |
660 | return true; |
661 | } |
662 | |
663 | static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst, |
664 | unsigned UnrollLevel, unsigned JamLevel, |
665 | bool Sequentialized, Dependence *D) { |
666 | // UnrollLevel might carry the dependency Dst --> Src |
667 | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; |
668 | ++CurLoopDepth) { |
669 | auto JammedDir = D->getDirection(Level: CurLoopDepth); |
670 | if (JammedDir == Dependence::DVEntry::GT) |
671 | return true; |
672 | |
673 | if (JammedDir & Dependence::DVEntry::LT) |
674 | return false; |
675 | } |
676 | |
677 | // Backward dependencies are only preserved if not interleaved. |
678 | return Sequentialized; |
679 | } |
680 | |
681 | // Check whether it is semantically safe Src and Dst considering any potential |
682 | // dependency between them. |
683 | // |
684 | // @param UnrollLevel The level of the loop being unrolled |
685 | // @param JamLevel The level of the loop being jammed; if Src and Dst are on |
686 | // different levels, the outermost common loop counts as jammed level |
687 | // |
688 | // @return true if is safe and false if there is a dependency violation. |
689 | static bool checkDependency(Instruction *Src, Instruction *Dst, |
690 | unsigned UnrollLevel, unsigned JamLevel, |
691 | bool Sequentialized, DependenceInfo &DI) { |
692 | assert(UnrollLevel <= JamLevel && |
693 | "Expecting JamLevel to be at least UnrollLevel" ); |
694 | |
695 | if (Src == Dst) |
696 | return true; |
697 | // Ignore Input dependencies. |
698 | if (isa<LoadInst>(Val: Src) && isa<LoadInst>(Val: Dst)) |
699 | return true; |
700 | |
701 | // Check whether unroll-and-jam may violate a dependency. |
702 | // By construction, every dependency will be lexicographically non-negative |
703 | // (if it was, it would violate the current execution order), such as |
704 | // (0,0,>,*,*) |
705 | // Unroll-and-jam changes the GT execution of two executions to the same |
706 | // iteration of the chosen unroll level. That is, a GT dependence becomes a GE |
707 | // dependence (or EQ, if we fully unrolled the loop) at the loop's position: |
708 | // (0,0,>=,*,*) |
709 | // Now, the dependency is not necessarily non-negative anymore, i.e. |
710 | // unroll-and-jam may violate correctness. |
711 | std::unique_ptr<Dependence> D = DI.depends(Src, Dst, PossiblyLoopIndependent: true); |
712 | if (!D) |
713 | return true; |
714 | assert(D->isOrdered() && "Expected an output, flow or anti dep." ); |
715 | |
716 | if (D->isConfused()) { |
717 | LLVM_DEBUG(dbgs() << " Confused dependency between:\n" |
718 | << " " << *Src << "\n" |
719 | << " " << *Dst << "\n" ); |
720 | return false; |
721 | } |
722 | |
723 | // If outer levels (levels enclosing the loop being unroll-and-jammed) have a |
724 | // non-equal direction, then the locations accessed in the inner levels cannot |
725 | // overlap in memory. We assumes the indexes never overlap into neighboring |
726 | // dimensions. |
727 | for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth) |
728 | if (!(D->getDirection(Level: CurLoopDepth) & Dependence::DVEntry::EQ)) |
729 | return true; |
730 | |
731 | auto UnrollDirection = D->getDirection(Level: UnrollLevel); |
732 | |
733 | // If the distance carried by the unrolled loop is 0, then after unrolling |
734 | // that distance will become non-zero resulting in non-overlapping accesses in |
735 | // the inner loops. |
736 | if (UnrollDirection == Dependence::DVEntry::EQ) |
737 | return true; |
738 | |
739 | if (UnrollDirection & Dependence::DVEntry::LT && |
740 | !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel, |
741 | Sequentialized, D: D.get())) |
742 | return false; |
743 | |
744 | if (UnrollDirection & Dependence::DVEntry::GT && |
745 | !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel, |
746 | Sequentialized, D: D.get())) |
747 | return false; |
748 | |
749 | return true; |
750 | } |
751 | |
752 | static bool |
753 | checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks, |
754 | const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, |
755 | const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, |
756 | DependenceInfo &DI, LoopInfo &LI) { |
757 | SmallVector<BasicBlockSet, 8> AllBlocks; |
758 | for (Loop *L : Root.getLoopsInPreorder()) |
759 | if (ForeBlocksMap.contains(Val: L)) |
760 | AllBlocks.push_back(Elt: ForeBlocksMap.lookup(Val: L)); |
761 | AllBlocks.push_back(Elt: SubLoopBlocks); |
762 | for (Loop *L : Root.getLoopsInPreorder()) |
763 | if (AftBlocksMap.contains(Val: L)) |
764 | AllBlocks.push_back(Elt: AftBlocksMap.lookup(Val: L)); |
765 | |
766 | unsigned LoopDepth = Root.getLoopDepth(); |
767 | SmallVector<Instruction *, 4> EarlierLoadsAndStores; |
768 | SmallVector<Instruction *, 4> CurrentLoadsAndStores; |
769 | for (BasicBlockSet &Blocks : AllBlocks) { |
770 | CurrentLoadsAndStores.clear(); |
771 | if (!getLoadsAndStores(Blocks, MemInstr&: CurrentLoadsAndStores)) |
772 | return false; |
773 | |
774 | Loop *CurLoop = LI.getLoopFor(BB: (*Blocks.begin())->front().getParent()); |
775 | unsigned CurLoopDepth = CurLoop->getLoopDepth(); |
776 | |
777 | for (auto *Earlier : EarlierLoadsAndStores) { |
778 | Loop *EarlierLoop = LI.getLoopFor(BB: Earlier->getParent()); |
779 | unsigned EarlierDepth = EarlierLoop->getLoopDepth(); |
780 | unsigned CommonLoopDepth = std::min(a: EarlierDepth, b: CurLoopDepth); |
781 | for (auto *Later : CurrentLoadsAndStores) { |
782 | if (!checkDependency(Src: Earlier, Dst: Later, UnrollLevel: LoopDepth, JamLevel: CommonLoopDepth, Sequentialized: false, |
783 | DI)) |
784 | return false; |
785 | } |
786 | } |
787 | |
788 | size_t NumInsts = CurrentLoadsAndStores.size(); |
789 | for (size_t I = 0; I < NumInsts; ++I) { |
790 | for (size_t J = I; J < NumInsts; ++J) { |
791 | if (!checkDependency(Src: CurrentLoadsAndStores[I], Dst: CurrentLoadsAndStores[J], |
792 | UnrollLevel: LoopDepth, JamLevel: CurLoopDepth, Sequentialized: true, DI)) |
793 | return false; |
794 | } |
795 | } |
796 | |
797 | EarlierLoadsAndStores.append(in_start: CurrentLoadsAndStores.begin(), |
798 | in_end: CurrentLoadsAndStores.end()); |
799 | } |
800 | return true; |
801 | } |
802 | |
803 | static bool isEligibleLoopForm(const Loop &Root) { |
804 | // Root must have a child. |
805 | if (Root.getSubLoops().size() != 1) |
806 | return false; |
807 | |
808 | const Loop *L = &Root; |
809 | do { |
810 | // All loops in Root need to be in simplify and rotated form. |
811 | if (!L->isLoopSimplifyForm()) |
812 | return false; |
813 | |
814 | if (!L->isRotatedForm()) |
815 | return false; |
816 | |
817 | if (L->getHeader()->hasAddressTaken()) { |
818 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n" ); |
819 | return false; |
820 | } |
821 | |
822 | unsigned SubLoopsSize = L->getSubLoops().size(); |
823 | if (SubLoopsSize == 0) |
824 | return true; |
825 | |
826 | // Only one child is allowed. |
827 | if (SubLoopsSize != 1) |
828 | return false; |
829 | |
830 | // Only loops with a single exit block can be unrolled and jammed. |
831 | // The function getExitBlock() is used for this check, rather than |
832 | // getUniqueExitBlock() to ensure loops with mulitple exit edges are |
833 | // disallowed. |
834 | if (!L->getExitBlock()) { |
835 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit " |
836 | "blocks can be unrolled and jammed.\n" ); |
837 | return false; |
838 | } |
839 | |
840 | // Only loops with a single exiting block can be unrolled and jammed. |
841 | if (!L->getExitingBlock()) { |
842 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single " |
843 | "exiting blocks can be unrolled and jammed.\n" ); |
844 | return false; |
845 | } |
846 | |
847 | L = L->getSubLoops()[0]; |
848 | } while (L); |
849 | |
850 | return true; |
851 | } |
852 | |
853 | static Loop *getInnerMostLoop(Loop *L) { |
854 | while (!L->getSubLoops().empty()) |
855 | L = L->getSubLoops()[0]; |
856 | return L; |
857 | } |
858 | |
859 | bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, |
860 | DependenceInfo &DI, LoopInfo &LI) { |
861 | if (!isEligibleLoopForm(Root: *L)) { |
862 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n" ); |
863 | return false; |
864 | } |
865 | |
866 | /* We currently handle outer loops like this: |
867 | | |
868 | ForeFirst <------\ } |
869 | Blocks | } ForeBlocks of L |
870 | ForeLast | } |
871 | | | |
872 | ... | |
873 | | | |
874 | ForeFirst <----\ | } |
875 | Blocks | | } ForeBlocks of a inner loop of L |
876 | ForeLast | | } |
877 | | | | |
878 | JamLoopFirst <\ | | } |
879 | Blocks | | | } JamLoopBlocks of the innermost loop |
880 | JamLoopLast -/ | | } |
881 | | | | |
882 | AftFirst | | } |
883 | Blocks | | } AftBlocks of a inner loop of L |
884 | AftLast ------/ | } |
885 | | | |
886 | ... | |
887 | | | |
888 | AftFirst | } |
889 | Blocks | } AftBlocks of L |
890 | AftLast --------/ } |
891 | | |
892 | |
893 | There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks |
894 | and AftBlocks, providing that there is one edge from Fores to SubLoops, |
895 | one edge from SubLoops to Afts and a single outer loop exit (from Afts). |
896 | In practice we currently limit Aft blocks to a single block, and limit |
897 | things further in the profitablility checks of the unroll and jam pass. |
898 | |
899 | Because of the way we rearrange basic blocks, we also require that |
900 | the Fore blocks of L on all unrolled iterations are safe to move before the |
901 | blocks of the direct child of L of all iterations. So we require that the |
902 | phi node looping operands of ForeHeader can be moved to at least the end of |
903 | ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and |
904 | match up Phi's correctly. |
905 | |
906 | i.e. The old order of blocks used to be |
907 | (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2. |
908 | It needs to be safe to transform this to |
909 | (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2. |
910 | |
911 | There are then a number of checks along the lines of no calls, no |
912 | exceptions, inner loop IV is consistent, etc. Note that for loops requiring |
913 | runtime unrolling, UnrollRuntimeLoopRemainder can also fail in |
914 | UnrollAndJamLoop if the trip count cannot be easily calculated. |
915 | */ |
916 | |
917 | // Split blocks into Fore/SubLoop/Aft based on dominators |
918 | Loop *JamLoop = getInnerMostLoop(L); |
919 | BasicBlockSet SubLoopBlocks; |
920 | DenseMap<Loop *, BasicBlockSet> ForeBlocksMap; |
921 | DenseMap<Loop *, BasicBlockSet> AftBlocksMap; |
922 | if (!partitionOuterLoopBlocks(Root&: *L, JamLoop&: *JamLoop, JamLoopBlocks&: SubLoopBlocks, ForeBlocksMap, |
923 | AftBlocksMap, DT)) { |
924 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n" ); |
925 | return false; |
926 | } |
927 | |
928 | // Aft blocks may need to move instructions to fore blocks, which becomes more |
929 | // difficult if there are multiple (potentially conditionally executed) |
930 | // blocks. For now we just exclude loops with multiple aft blocks. |
931 | if (AftBlocksMap[L].size() != 1) { |
932 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle " |
933 | "multiple blocks after the loop\n" ); |
934 | return false; |
935 | } |
936 | |
937 | // Check inner loop backedge count is consistent on all iterations of the |
938 | // outer loop |
939 | if (any_of(Range: L->getLoopsInPreorder(), P: [&SE](Loop *SubLoop) { |
940 | return !hasIterationCountInvariantInParent(L: SubLoop, SE); |
941 | })) { |
942 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is " |
943 | "not consistent on each iteration\n" ); |
944 | return false; |
945 | } |
946 | |
947 | // Check the loop safety info for exceptions. |
948 | SimpleLoopSafetyInfo LSI; |
949 | LSI.computeLoopSafetyInfo(CurLoop: L); |
950 | if (LSI.anyBlockMayThrow()) { |
951 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n" ); |
952 | return false; |
953 | } |
954 | |
955 | // We've ruled out the easy stuff and now need to check that there are no |
956 | // interdependencies which may prevent us from moving the: |
957 | // ForeBlocks before Subloop and AftBlocks. |
958 | // Subloop before AftBlocks. |
959 | // ForeBlock phi operands before the subloop |
960 | |
961 | // Make sure we can move all instructions we need to before the subloop |
962 | BasicBlock * = L->getHeader(); |
963 | BasicBlock *Latch = L->getLoopLatch(); |
964 | BasicBlockSet AftBlocks = AftBlocksMap[L]; |
965 | Loop *SubLoop = L->getSubLoops()[0]; |
966 | if (!processHeaderPhiOperands( |
967 | Header, Latch, AftBlocks, Visit: [&AftBlocks, &SubLoop](Instruction *I) { |
968 | if (SubLoop->contains(BB: I->getParent())) |
969 | return false; |
970 | if (AftBlocks.count(Ptr: I->getParent())) { |
971 | // If we hit a phi node in afts we know we are done (probably |
972 | // LCSSA) |
973 | if (isa<PHINode>(Val: I)) |
974 | return false; |
975 | // Can't move instructions with side effects or memory |
976 | // reads/writes |
977 | if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) |
978 | return false; |
979 | } |
980 | // Keep going |
981 | return true; |
982 | })) { |
983 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required " |
984 | "instructions after subloop to before it\n" ); |
985 | return false; |
986 | } |
987 | |
988 | // Check for memory dependencies which prohibit the unrolling we are doing. |
989 | // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check |
990 | // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. |
991 | if (!checkDependencies(Root&: *L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI, |
992 | LI)) { |
993 | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n" ); |
994 | return false; |
995 | } |
996 | |
997 | return true; |
998 | } |
999 | |