1 | //===- SSAUpdaterBulk.cpp - Unstructured SSA Update Tool ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the SSAUpdaterBulk class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" |
14 | #include "llvm/Analysis/IteratedDominanceFrontier.h" |
15 | #include "llvm/IR/BasicBlock.h" |
16 | #include "llvm/IR/Dominators.h" |
17 | #include "llvm/IR/IRBuilder.h" |
18 | #include "llvm/IR/Instructions.h" |
19 | #include "llvm/IR/Use.h" |
20 | #include "llvm/IR/Value.h" |
21 | |
22 | using namespace llvm; |
23 | |
24 | #define DEBUG_TYPE "ssaupdaterbulk" |
25 | |
26 | /// Helper function for finding a block which should have a value for the given |
27 | /// user. For PHI-nodes this block is the corresponding predecessor, for other |
28 | /// instructions it's their parent block. |
29 | static BasicBlock *getUserBB(Use *U) { |
30 | auto *User = cast<Instruction>(Val: U->getUser()); |
31 | |
32 | if (auto *UserPN = dyn_cast<PHINode>(Val: User)) |
33 | return UserPN->getIncomingBlock(U: *U); |
34 | else |
35 | return User->getParent(); |
36 | } |
37 | |
38 | /// Add a new variable to the SSA rewriter. This needs to be called before |
39 | /// AddAvailableValue or AddUse calls. |
40 | unsigned SSAUpdaterBulk::AddVariable(StringRef Name, Type *Ty) { |
41 | unsigned Var = Rewrites.size(); |
42 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": initialized with Ty = " |
43 | << *Ty << ", Name = " << Name << "\n" ); |
44 | RewriteInfo RI(Name, Ty); |
45 | Rewrites.push_back(Elt: RI); |
46 | return Var; |
47 | } |
48 | |
49 | /// Indicate that a rewritten value is available in the specified block with the |
50 | /// specified value. |
51 | void SSAUpdaterBulk::AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V) { |
52 | assert(Var < Rewrites.size() && "Variable not found!" ); |
53 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var |
54 | << ": added new available value " << *V << " in " |
55 | << BB->getName() << "\n" ); |
56 | Rewrites[Var].Defines[BB] = V; |
57 | } |
58 | |
59 | /// Record a use of the symbolic value. This use will be updated with a |
60 | /// rewritten value when RewriteAllUses is called. |
61 | void SSAUpdaterBulk::AddUse(unsigned Var, Use *U) { |
62 | assert(Var < Rewrites.size() && "Variable not found!" ); |
63 | LLVM_DEBUG(dbgs() << "SSAUpdater: Var=" << Var << ": added a use" << *U->get() |
64 | << " in " << getUserBB(U)->getName() << "\n" ); |
65 | Rewrites[Var].Uses.push_back(Elt: U); |
66 | } |
67 | |
68 | // Compute value at the given block BB. We either should already know it, or we |
69 | // should be able to recursively reach it going up dominator tree. |
70 | Value *SSAUpdaterBulk::computeValueAt(BasicBlock *BB, RewriteInfo &R, |
71 | DominatorTree *DT) { |
72 | if (!R.Defines.count(Val: BB)) { |
73 | if (DT->isReachableFromEntry(A: BB) && PredCache.get(BB).size()) { |
74 | BasicBlock *IDom = DT->getNode(BB)->getIDom()->getBlock(); |
75 | Value *V = computeValueAt(BB: IDom, R, DT); |
76 | R.Defines[BB] = V; |
77 | } else |
78 | R.Defines[BB] = UndefValue::get(T: R.Ty); |
79 | } |
80 | return R.Defines[BB]; |
81 | } |
82 | |
83 | /// Given sets of UsingBlocks and DefBlocks, compute the set of LiveInBlocks. |
84 | /// This is basically a subgraph limited by DefBlocks and UsingBlocks. |
85 | static void |
86 | ComputeLiveInBlocks(const SmallPtrSetImpl<BasicBlock *> &UsingBlocks, |
87 | const SmallPtrSetImpl<BasicBlock *> &DefBlocks, |
88 | SmallPtrSetImpl<BasicBlock *> &LiveInBlocks, |
89 | PredIteratorCache &PredCache) { |
90 | // To determine liveness, we must iterate through the predecessors of blocks |
91 | // where the def is live. Blocks are added to the worklist if we need to |
92 | // check their predecessors. Start with all the using blocks. |
93 | SmallVector<BasicBlock *, 64> LiveInBlockWorklist(UsingBlocks.begin(), |
94 | UsingBlocks.end()); |
95 | |
96 | // Now that we have a set of blocks where the phi is live-in, recursively add |
97 | // their predecessors until we find the full region the value is live. |
98 | while (!LiveInBlockWorklist.empty()) { |
99 | BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); |
100 | |
101 | // The block really is live in here, insert it into the set. If already in |
102 | // the set, then it has already been processed. |
103 | if (!LiveInBlocks.insert(Ptr: BB).second) |
104 | continue; |
105 | |
106 | // Since the value is live into BB, it is either defined in a predecessor or |
107 | // live into it to. Add the preds to the worklist unless they are a |
108 | // defining block. |
109 | for (BasicBlock *P : PredCache.get(BB)) { |
110 | // The value is not live into a predecessor if it defines the value. |
111 | if (DefBlocks.count(Ptr: P)) |
112 | continue; |
113 | |
114 | // Otherwise it is, add to the worklist. |
115 | LiveInBlockWorklist.push_back(Elt: P); |
116 | } |
117 | } |
118 | } |
119 | |
120 | /// Perform all the necessary updates, including new PHI-nodes insertion and the |
121 | /// requested uses update. |
122 | void SSAUpdaterBulk::RewriteAllUses(DominatorTree *DT, |
123 | SmallVectorImpl<PHINode *> *InsertedPHIs) { |
124 | for (auto &R : Rewrites) { |
125 | // Compute locations for new phi-nodes. |
126 | // For that we need to initialize DefBlocks from definitions in R.Defines, |
127 | // UsingBlocks from uses in R.Uses, then compute LiveInBlocks, and then use |
128 | // this set for computing iterated dominance frontier (IDF). |
129 | // The IDF blocks are the blocks where we need to insert new phi-nodes. |
130 | ForwardIDFCalculator IDF(*DT); |
131 | LLVM_DEBUG(dbgs() << "SSAUpdater: rewriting " << R.Uses.size() |
132 | << " use(s)\n" ); |
133 | |
134 | SmallPtrSet<BasicBlock *, 2> DefBlocks; |
135 | for (auto &Def : R.Defines) |
136 | DefBlocks.insert(Ptr: Def.first); |
137 | IDF.setDefiningBlocks(DefBlocks); |
138 | |
139 | SmallPtrSet<BasicBlock *, 2> UsingBlocks; |
140 | for (Use *U : R.Uses) |
141 | UsingBlocks.insert(Ptr: getUserBB(U)); |
142 | |
143 | SmallVector<BasicBlock *, 32> IDFBlocks; |
144 | SmallPtrSet<BasicBlock *, 32> LiveInBlocks; |
145 | ComputeLiveInBlocks(UsingBlocks, DefBlocks, LiveInBlocks, PredCache); |
146 | IDF.resetLiveInBlocks(); |
147 | IDF.setLiveInBlocks(LiveInBlocks); |
148 | IDF.calculate(IDFBlocks); |
149 | |
150 | // We've computed IDF, now insert new phi-nodes there. |
151 | SmallVector<PHINode *, 4> InsertedPHIsForVar; |
152 | for (auto *FrontierBB : IDFBlocks) { |
153 | IRBuilder<> B(FrontierBB, FrontierBB->begin()); |
154 | PHINode *PN = B.CreatePHI(Ty: R.Ty, NumReservedValues: 0, Name: R.Name); |
155 | R.Defines[FrontierBB] = PN; |
156 | InsertedPHIsForVar.push_back(Elt: PN); |
157 | if (InsertedPHIs) |
158 | InsertedPHIs->push_back(Elt: PN); |
159 | } |
160 | |
161 | // Fill in arguments of the inserted PHIs. |
162 | for (auto *PN : InsertedPHIsForVar) { |
163 | BasicBlock *PBB = PN->getParent(); |
164 | for (BasicBlock *Pred : PredCache.get(BB: PBB)) |
165 | PN->addIncoming(V: computeValueAt(BB: Pred, R, DT), BB: Pred); |
166 | } |
167 | |
168 | // Rewrite actual uses with the inserted definitions. |
169 | SmallPtrSet<Use *, 4> ProcessedUses; |
170 | for (Use *U : R.Uses) { |
171 | if (!ProcessedUses.insert(Ptr: U).second) |
172 | continue; |
173 | Value *V = computeValueAt(BB: getUserBB(U), R, DT); |
174 | Value *OldVal = U->get(); |
175 | assert(OldVal && "Invalid use!" ); |
176 | // Notify that users of the existing value that it is being replaced. |
177 | if (OldVal != V && OldVal->hasValueHandle()) |
178 | ValueHandleBase::ValueIsRAUWd(Old: OldVal, New: V); |
179 | LLVM_DEBUG(dbgs() << "SSAUpdater: replacing " << *OldVal << " with " << *V |
180 | << "\n" ); |
181 | U->set(V); |
182 | } |
183 | } |
184 | } |
185 | |