1 | //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This is the LLVM vectorization plan. It represents a candidate for |
11 | /// vectorization, allowing to plan and optimize how to vectorize a given loop |
12 | /// before generating LLVM-IR. |
13 | /// The vectorizer uses vectorization plans to estimate the costs of potential |
14 | /// candidates and if profitable to execute the desired plan, generating vector |
15 | /// LLVM-IR code. |
16 | /// |
17 | //===----------------------------------------------------------------------===// |
18 | |
19 | #include "VPlan.h" |
20 | #include "LoopVectorizationPlanner.h" |
21 | #include "VPlanCFG.h" |
22 | #include "VPlanDominatorTree.h" |
23 | #include "VPlanPatternMatch.h" |
24 | #include "llvm/ADT/PostOrderIterator.h" |
25 | #include "llvm/ADT/STLExtras.h" |
26 | #include "llvm/ADT/SmallVector.h" |
27 | #include "llvm/ADT/StringExtras.h" |
28 | #include "llvm/ADT/Twine.h" |
29 | #include "llvm/Analysis/DomTreeUpdater.h" |
30 | #include "llvm/Analysis/LoopInfo.h" |
31 | #include "llvm/IR/BasicBlock.h" |
32 | #include "llvm/IR/CFG.h" |
33 | #include "llvm/IR/IRBuilder.h" |
34 | #include "llvm/IR/Instruction.h" |
35 | #include "llvm/IR/Instructions.h" |
36 | #include "llvm/IR/Type.h" |
37 | #include "llvm/IR/Value.h" |
38 | #include "llvm/Support/Casting.h" |
39 | #include "llvm/Support/CommandLine.h" |
40 | #include "llvm/Support/Debug.h" |
41 | #include "llvm/Support/GenericDomTreeConstruction.h" |
42 | #include "llvm/Support/GraphWriter.h" |
43 | #include "llvm/Support/raw_ostream.h" |
44 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
45 | #include "llvm/Transforms/Utils/LoopVersioning.h" |
46 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
47 | #include <cassert> |
48 | #include <string> |
49 | #include <vector> |
50 | |
51 | using namespace llvm; |
52 | using namespace llvm::VPlanPatternMatch; |
53 | |
54 | namespace llvm { |
55 | extern cl::opt<bool> EnableVPlanNativePath; |
56 | } |
57 | |
58 | #define DEBUG_TYPE "vplan" |
59 | |
60 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
61 | raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { |
62 | const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); |
63 | VPSlotTracker SlotTracker( |
64 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
65 | V.print(OS, SlotTracker); |
66 | return OS; |
67 | } |
68 | #endif |
69 | |
70 | Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, |
71 | const ElementCount &VF) const { |
72 | switch (LaneKind) { |
73 | case VPLane::Kind::ScalableLast: |
74 | // Lane = RuntimeVF - VF.getKnownMinValue() + Lane |
75 | return Builder.CreateSub(LHS: getRuntimeVF(B&: Builder, Ty: Builder.getInt32Ty(), VF), |
76 | RHS: Builder.getInt32(C: VF.getKnownMinValue() - Lane)); |
77 | case VPLane::Kind::First: |
78 | return Builder.getInt32(C: Lane); |
79 | } |
80 | llvm_unreachable("Unknown lane kind" ); |
81 | } |
82 | |
83 | VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) |
84 | : SubclassID(SC), UnderlyingVal(UV), Def(Def) { |
85 | if (Def) |
86 | Def->addDefinedValue(V: this); |
87 | } |
88 | |
89 | VPValue::~VPValue() { |
90 | assert(Users.empty() && "trying to delete a VPValue with remaining users" ); |
91 | if (Def) |
92 | Def->removeDefinedValue(V: this); |
93 | } |
94 | |
95 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
96 | void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { |
97 | if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) |
98 | R->print(OS, "" , SlotTracker); |
99 | else |
100 | printAsOperand(OS, SlotTracker); |
101 | } |
102 | |
103 | void VPValue::dump() const { |
104 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); |
105 | VPSlotTracker SlotTracker( |
106 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
107 | print(dbgs(), SlotTracker); |
108 | dbgs() << "\n" ; |
109 | } |
110 | |
111 | void VPDef::dump() const { |
112 | const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); |
113 | VPSlotTracker SlotTracker( |
114 | (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
115 | print(dbgs(), "" , SlotTracker); |
116 | dbgs() << "\n" ; |
117 | } |
118 | #endif |
119 | |
120 | VPRecipeBase *VPValue::getDefiningRecipe() { |
121 | return cast_or_null<VPRecipeBase>(Val: Def); |
122 | } |
123 | |
124 | const VPRecipeBase *VPValue::getDefiningRecipe() const { |
125 | return cast_or_null<VPRecipeBase>(Val: Def); |
126 | } |
127 | |
128 | // Get the top-most entry block of \p Start. This is the entry block of the |
129 | // containing VPlan. This function is templated to support both const and non-const blocks |
130 | template <typename T> static T *getPlanEntry(T *Start) { |
131 | T *Next = Start; |
132 | T *Current = Start; |
133 | while ((Next = Next->getParent())) |
134 | Current = Next; |
135 | |
136 | SmallSetVector<T *, 8> WorkList; |
137 | WorkList.insert(Current); |
138 | |
139 | for (unsigned i = 0; i < WorkList.size(); i++) { |
140 | T *Current = WorkList[i]; |
141 | if (Current->getNumPredecessors() == 0) |
142 | return Current; |
143 | auto &Predecessors = Current->getPredecessors(); |
144 | WorkList.insert(Predecessors.begin(), Predecessors.end()); |
145 | } |
146 | |
147 | llvm_unreachable("VPlan without any entry node without predecessors" ); |
148 | } |
149 | |
150 | VPlan *VPBlockBase::getPlan() { return getPlanEntry(Start: this)->Plan; } |
151 | |
152 | const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(Start: this)->Plan; } |
153 | |
154 | /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. |
155 | const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { |
156 | const VPBlockBase *Block = this; |
157 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
158 | Block = Region->getEntry(); |
159 | return cast<VPBasicBlock>(Val: Block); |
160 | } |
161 | |
162 | VPBasicBlock *VPBlockBase::getEntryBasicBlock() { |
163 | VPBlockBase *Block = this; |
164 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
165 | Block = Region->getEntry(); |
166 | return cast<VPBasicBlock>(Val: Block); |
167 | } |
168 | |
169 | void VPBlockBase::setPlan(VPlan *ParentPlan) { |
170 | assert( |
171 | (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && |
172 | "Can only set plan on its entry or preheader block." ); |
173 | Plan = ParentPlan; |
174 | } |
175 | |
176 | /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. |
177 | const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { |
178 | const VPBlockBase *Block = this; |
179 | while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
180 | Block = Region->getExiting(); |
181 | return cast<VPBasicBlock>(Val: Block); |
182 | } |
183 | |
184 | VPBasicBlock *VPBlockBase::getExitingBasicBlock() { |
185 | VPBlockBase *Block = this; |
186 | while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
187 | Block = Region->getExiting(); |
188 | return cast<VPBasicBlock>(Val: Block); |
189 | } |
190 | |
191 | VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { |
192 | if (!Successors.empty() || !Parent) |
193 | return this; |
194 | assert(Parent->getExiting() == this && |
195 | "Block w/o successors not the exiting block of its parent." ); |
196 | return Parent->getEnclosingBlockWithSuccessors(); |
197 | } |
198 | |
199 | VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { |
200 | if (!Predecessors.empty() || !Parent) |
201 | return this; |
202 | assert(Parent->getEntry() == this && |
203 | "Block w/o predecessors not the entry of its parent." ); |
204 | return Parent->getEnclosingBlockWithPredecessors(); |
205 | } |
206 | |
207 | void VPBlockBase::deleteCFG(VPBlockBase *Entry) { |
208 | for (VPBlockBase *Block : to_vector(Range: vp_depth_first_shallow(G: Entry))) |
209 | delete Block; |
210 | } |
211 | |
212 | VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { |
213 | iterator It = begin(); |
214 | while (It != end() && It->isPhi()) |
215 | It++; |
216 | return It; |
217 | } |
218 | |
219 | VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI, |
220 | DominatorTree *DT, IRBuilderBase &Builder, |
221 | InnerLoopVectorizer *ILV, VPlan *Plan, |
222 | LLVMContext &Ctx) |
223 | : VF(VF), UF(UF), CFG(DT), LI(LI), Builder(Builder), ILV(ILV), Plan(Plan), |
224 | LVer(nullptr), |
225 | TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {} |
226 | |
227 | Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { |
228 | if (Def->isLiveIn()) |
229 | return Def->getLiveInIRValue(); |
230 | |
231 | if (hasScalarValue(Def, Instance)) { |
232 | return Data |
233 | .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; |
234 | } |
235 | if (!Instance.Lane.isFirstLane() && |
236 | vputils::isUniformAfterVectorization(VPV: Def) && |
237 | hasScalarValue(Def, Instance: {Instance.Part, VPLane::getFirstLane()})) { |
238 | return Data.PerPartScalars[Def][Instance.Part][0]; |
239 | } |
240 | |
241 | assert(hasVectorValue(Def, Instance.Part)); |
242 | auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; |
243 | if (!VecPart->getType()->isVectorTy()) { |
244 | assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar" ); |
245 | return VecPart; |
246 | } |
247 | // TODO: Cache created scalar values. |
248 | Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); |
249 | auto * = Builder.CreateExtractElement(Vec: VecPart, Idx: Lane); |
250 | // set(Def, Extract, Instance); |
251 | return Extract; |
252 | } |
253 | |
254 | Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) { |
255 | if (NeedsScalar) { |
256 | assert((VF.isScalar() || Def->isLiveIn() || hasVectorValue(Def, Part) || |
257 | !vputils::onlyFirstLaneUsed(Def) || |
258 | (hasScalarValue(Def, VPIteration(Part, 0)) && |
259 | Data.PerPartScalars[Def][Part].size() == 1)) && |
260 | "Trying to access a single scalar per part but has multiple scalars " |
261 | "per part." ); |
262 | return get(Def, Instance: VPIteration(Part, 0)); |
263 | } |
264 | |
265 | // If Values have been set for this Def return the one relevant for \p Part. |
266 | if (hasVectorValue(Def, Part)) |
267 | return Data.PerPartOutput[Def][Part]; |
268 | |
269 | auto GetBroadcastInstrs = [this, Def](Value *V) { |
270 | bool SafeToHoist = Def->isDefinedOutsideVectorRegions(); |
271 | if (VF.isScalar()) |
272 | return V; |
273 | // Place the code for broadcasting invariant variables in the new preheader. |
274 | IRBuilder<>::InsertPointGuard Guard(Builder); |
275 | if (SafeToHoist) { |
276 | BasicBlock * = CFG.VPBB2IRBB[cast<VPBasicBlock>( |
277 | Val: Plan->getVectorLoopRegion()->getSinglePredecessor())]; |
278 | if (LoopVectorPreHeader) |
279 | Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); |
280 | } |
281 | |
282 | // Place the code for broadcasting invariant variables in the new preheader. |
283 | // Broadcast the scalar into all locations in the vector. |
284 | Value *Shuf = Builder.CreateVectorSplat(EC: VF, V, Name: "broadcast" ); |
285 | |
286 | return Shuf; |
287 | }; |
288 | |
289 | if (!hasScalarValue(Def, Instance: {Part, 0})) { |
290 | assert(Def->isLiveIn() && "expected a live-in" ); |
291 | if (Part != 0) |
292 | return get(Def, Part: 0); |
293 | Value *IRV = Def->getLiveInIRValue(); |
294 | Value *B = GetBroadcastInstrs(IRV); |
295 | set(Def, V: B, Part); |
296 | return B; |
297 | } |
298 | |
299 | Value *ScalarValue = get(Def, Instance: {Part, 0}); |
300 | // If we aren't vectorizing, we can just copy the scalar map values over |
301 | // to the vector map. |
302 | if (VF.isScalar()) { |
303 | set(Def, V: ScalarValue, Part); |
304 | return ScalarValue; |
305 | } |
306 | |
307 | bool IsUniform = vputils::isUniformAfterVectorization(VPV: Def); |
308 | |
309 | unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; |
310 | // Check if there is a scalar value for the selected lane. |
311 | if (!hasScalarValue(Def, Instance: {Part, LastLane})) { |
312 | // At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and |
313 | // VPExpandSCEVRecipes can also be uniform. |
314 | assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || |
315 | isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) || |
316 | isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) && |
317 | "unexpected recipe found to be invariant" ); |
318 | IsUniform = true; |
319 | LastLane = 0; |
320 | } |
321 | |
322 | auto *LastInst = cast<Instruction>(Val: get(Def, Instance: {Part, LastLane})); |
323 | // Set the insert point after the last scalarized instruction or after the |
324 | // last PHI, if LastInst is a PHI. This ensures the insertelement sequence |
325 | // will directly follow the scalar definitions. |
326 | auto OldIP = Builder.saveIP(); |
327 | auto NewIP = |
328 | isa<PHINode>(Val: LastInst) |
329 | ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) |
330 | : std::next(x: BasicBlock::iterator(LastInst)); |
331 | Builder.SetInsertPoint(&*NewIP); |
332 | |
333 | // However, if we are vectorizing, we need to construct the vector values. |
334 | // If the value is known to be uniform after vectorization, we can just |
335 | // broadcast the scalar value corresponding to lane zero for each unroll |
336 | // iteration. Otherwise, we construct the vector values using |
337 | // insertelement instructions. Since the resulting vectors are stored in |
338 | // State, we will only generate the insertelements once. |
339 | Value *VectorValue = nullptr; |
340 | if (IsUniform) { |
341 | VectorValue = GetBroadcastInstrs(ScalarValue); |
342 | set(Def, V: VectorValue, Part); |
343 | } else { |
344 | // Initialize packing with insertelements to start from undef. |
345 | assert(!VF.isScalable() && "VF is assumed to be non scalable." ); |
346 | Value *Undef = PoisonValue::get(T: VectorType::get(ElementType: LastInst->getType(), EC: VF)); |
347 | set(Def, V: Undef, Part); |
348 | for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) |
349 | packScalarIntoVectorValue(Def, Instance: {Part, Lane}); |
350 | VectorValue = get(Def, Part); |
351 | } |
352 | Builder.restoreIP(IP: OldIP); |
353 | return VectorValue; |
354 | } |
355 | |
356 | BasicBlock *VPTransformState::CFGState::(VPRecipeBase *R) { |
357 | VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); |
358 | return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; |
359 | } |
360 | |
361 | void VPTransformState::addNewMetadata(Instruction *To, |
362 | const Instruction *Orig) { |
363 | // If the loop was versioned with memchecks, add the corresponding no-alias |
364 | // metadata. |
365 | if (LVer && (isa<LoadInst>(Val: Orig) || isa<StoreInst>(Val: Orig))) |
366 | LVer->annotateInstWithNoAlias(VersionedInst: To, OrigInst: Orig); |
367 | } |
368 | |
369 | void VPTransformState::addMetadata(Value *To, Instruction *From) { |
370 | // No source instruction to transfer metadata from? |
371 | if (!From) |
372 | return; |
373 | |
374 | if (Instruction *ToI = dyn_cast<Instruction>(Val: To)) { |
375 | propagateMetadata(I: ToI, VL: From); |
376 | addNewMetadata(To: ToI, Orig: From); |
377 | } |
378 | } |
379 | |
380 | void VPTransformState::setDebugLocFrom(DebugLoc DL) { |
381 | const DILocation *DIL = DL; |
382 | // When a FSDiscriminator is enabled, we don't need to add the multiply |
383 | // factors to the discriminators. |
384 | if (DIL && |
385 | Builder.GetInsertBlock() |
386 | ->getParent() |
387 | ->shouldEmitDebugInfoForProfiling() && |
388 | !EnableFSDiscriminator) { |
389 | // FIXME: For scalable vectors, assume vscale=1. |
390 | auto NewDIL = |
391 | DIL->cloneByMultiplyingDuplicationFactor(DF: UF * VF.getKnownMinValue()); |
392 | if (NewDIL) |
393 | Builder.SetCurrentDebugLocation(*NewDIL); |
394 | else |
395 | LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " |
396 | << DIL->getFilename() << " Line: " << DIL->getLine()); |
397 | } else |
398 | Builder.SetCurrentDebugLocation(DIL); |
399 | } |
400 | |
401 | void VPTransformState::packScalarIntoVectorValue(VPValue *Def, |
402 | const VPIteration &Instance) { |
403 | Value *ScalarInst = get(Def, Instance); |
404 | Value *VectorValue = get(Def, Part: Instance.Part); |
405 | VectorValue = Builder.CreateInsertElement( |
406 | Vec: VectorValue, NewElt: ScalarInst, Idx: Instance.Lane.getAsRuntimeExpr(Builder, VF)); |
407 | set(Def, V: VectorValue, Part: Instance.Part); |
408 | } |
409 | |
410 | BasicBlock * |
411 | VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { |
412 | // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. |
413 | // Pred stands for Predessor. Prev stands for Previous - last visited/created. |
414 | BasicBlock *PrevBB = CFG.PrevBB; |
415 | BasicBlock *NewBB = BasicBlock::Create(Context&: PrevBB->getContext(), Name: getName(), |
416 | Parent: PrevBB->getParent(), InsertBefore: CFG.ExitBB); |
417 | LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); |
418 | |
419 | // Hook up the new basic block to its predecessors. |
420 | for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { |
421 | VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
422 | auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
423 | BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; |
424 | |
425 | assert(PredBB && "Predecessor basic-block not found building successor." ); |
426 | auto *PredBBTerminator = PredBB->getTerminator(); |
427 | LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); |
428 | |
429 | auto *TermBr = dyn_cast<BranchInst>(Val: PredBBTerminator); |
430 | if (isa<UnreachableInst>(Val: PredBBTerminator)) { |
431 | assert(PredVPSuccessors.size() == 1 && |
432 | "Predecessor ending w/o branch must have single successor." ); |
433 | DebugLoc DL = PredBBTerminator->getDebugLoc(); |
434 | PredBBTerminator->eraseFromParent(); |
435 | auto *Br = BranchInst::Create(IfTrue: NewBB, InsertBefore: PredBB); |
436 | Br->setDebugLoc(DL); |
437 | } else if (TermBr && !TermBr->isConditional()) { |
438 | TermBr->setSuccessor(idx: 0, NewSucc: NewBB); |
439 | } else { |
440 | // Set each forward successor here when it is created, excluding |
441 | // backedges. A backward successor is set when the branch is created. |
442 | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
443 | assert(!TermBr->getSuccessor(idx) && |
444 | "Trying to reset an existing successor block." ); |
445 | TermBr->setSuccessor(idx, NewSucc: NewBB); |
446 | } |
447 | CFG.DTU.applyUpdates(Updates: {{DominatorTree::Insert, PredBB, NewBB}}); |
448 | } |
449 | return NewBB; |
450 | } |
451 | |
452 | void VPIRBasicBlock::execute(VPTransformState *State) { |
453 | assert(getHierarchicalSuccessors().size() <= 2 && |
454 | "VPIRBasicBlock can have at most two successors at the moment!" ); |
455 | State->Builder.SetInsertPoint(getIRBasicBlock()->getTerminator()); |
456 | executeRecipes(State, BB: getIRBasicBlock()); |
457 | if (getSingleSuccessor()) { |
458 | assert(isa<UnreachableInst>(getIRBasicBlock()->getTerminator())); |
459 | auto *Br = State->Builder.CreateBr(Dest: getIRBasicBlock()); |
460 | Br->setOperand(i_nocapture: 0, Val_nocapture: nullptr); |
461 | getIRBasicBlock()->getTerminator()->eraseFromParent(); |
462 | } |
463 | |
464 | for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { |
465 | VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
466 | BasicBlock *PredBB = State->CFG.VPBB2IRBB[PredVPBB]; |
467 | assert(PredBB && "Predecessor basic-block not found building successor." ); |
468 | LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); |
469 | |
470 | auto *PredBBTerminator = PredBB->getTerminator(); |
471 | auto *TermBr = cast<BranchInst>(Val: PredBBTerminator); |
472 | // Set each forward successor here when it is created, excluding |
473 | // backedges. A backward successor is set when the branch is created. |
474 | const auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
475 | unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
476 | assert(!TermBr->getSuccessor(idx) && |
477 | "Trying to reset an existing successor block." ); |
478 | TermBr->setSuccessor(idx, NewSucc: IRBB); |
479 | State->CFG.DTU.applyUpdates(Updates: {{DominatorTree::Insert, PredBB, IRBB}}); |
480 | } |
481 | } |
482 | |
483 | void VPBasicBlock::execute(VPTransformState *State) { |
484 | bool Replica = State->Instance && !State->Instance->isFirstIteration(); |
485 | VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; |
486 | VPBlockBase *SingleHPred = nullptr; |
487 | BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. |
488 | |
489 | auto IsLoopRegion = [](VPBlockBase *BB) { |
490 | auto *R = dyn_cast<VPRegionBlock>(Val: BB); |
491 | return R && !R->isReplicator(); |
492 | }; |
493 | |
494 | // 1. Create an IR basic block. |
495 | if (PrevVPBB && /* A */ |
496 | !((SingleHPred = getSingleHierarchicalPredecessor()) && |
497 | SingleHPred->getExitingBasicBlock() == PrevVPBB && |
498 | PrevVPBB->getSingleHierarchicalSuccessor() && |
499 | (SingleHPred->getParent() == getEnclosingLoopRegion() && |
500 | !IsLoopRegion(SingleHPred))) && /* B */ |
501 | !(Replica && getPredecessors().empty())) { /* C */ |
502 | // The last IR basic block is reused, as an optimization, in three cases: |
503 | // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; |
504 | // B. when the current VPBB has a single (hierarchical) predecessor which |
505 | // is PrevVPBB and the latter has a single (hierarchical) successor which |
506 | // both are in the same non-replicator region; and |
507 | // C. when the current VPBB is an entry of a region replica - where PrevVPBB |
508 | // is the exiting VPBB of this region from a previous instance, or the |
509 | // predecessor of this region. |
510 | |
511 | NewBB = createEmptyBasicBlock(CFG&: State->CFG); |
512 | State->Builder.SetInsertPoint(NewBB); |
513 | // Temporarily terminate with unreachable until CFG is rewired. |
514 | UnreachableInst *Terminator = State->Builder.CreateUnreachable(); |
515 | // Register NewBB in its loop. In innermost loops its the same for all |
516 | // BB's. |
517 | if (State->CurrentVectorLoop) |
518 | State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, LI&: *State->LI); |
519 | State->Builder.SetInsertPoint(Terminator); |
520 | State->CFG.PrevBB = NewBB; |
521 | } |
522 | |
523 | // 2. Fill the IR basic block with IR instructions. |
524 | executeRecipes(State, BB: NewBB); |
525 | } |
526 | |
527 | void VPBasicBlock::dropAllReferences(VPValue *NewValue) { |
528 | for (VPRecipeBase &R : Recipes) { |
529 | for (auto *Def : R.definedValues()) |
530 | Def->replaceAllUsesWith(New: NewValue); |
531 | |
532 | for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) |
533 | R.setOperand(I, New: NewValue); |
534 | } |
535 | } |
536 | |
537 | void VPBasicBlock::executeRecipes(VPTransformState *State, BasicBlock *BB) { |
538 | LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() |
539 | << " in BB:" << BB->getName() << '\n'); |
540 | |
541 | State->CFG.VPBB2IRBB[this] = BB; |
542 | State->CFG.PrevVPBB = this; |
543 | |
544 | for (VPRecipeBase &Recipe : Recipes) |
545 | Recipe.execute(State&: *State); |
546 | |
547 | LLVM_DEBUG(dbgs() << "LV: filled BB:" << *BB); |
548 | } |
549 | |
550 | VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { |
551 | assert((SplitAt == end() || SplitAt->getParent() == this) && |
552 | "can only split at a position in the same block" ); |
553 | |
554 | SmallVector<VPBlockBase *, 2> Succs(successors()); |
555 | // First, disconnect the current block from its successors. |
556 | for (VPBlockBase *Succ : Succs) |
557 | VPBlockUtils::disconnectBlocks(From: this, To: Succ); |
558 | |
559 | // Create new empty block after the block to split. |
560 | auto *SplitBlock = new VPBasicBlock(getName() + ".split" ); |
561 | VPBlockUtils::insertBlockAfter(NewBlock: SplitBlock, BlockPtr: this); |
562 | |
563 | // Add successors for block to split to new block. |
564 | for (VPBlockBase *Succ : Succs) |
565 | VPBlockUtils::connectBlocks(From: SplitBlock, To: Succ); |
566 | |
567 | // Finally, move the recipes starting at SplitAt to new block. |
568 | for (VPRecipeBase &ToMove : |
569 | make_early_inc_range(Range: make_range(x: SplitAt, y: this->end()))) |
570 | ToMove.moveBefore(BB&: *SplitBlock, I: SplitBlock->end()); |
571 | |
572 | return SplitBlock; |
573 | } |
574 | |
575 | VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { |
576 | VPRegionBlock *P = getParent(); |
577 | if (P && P->isReplicator()) { |
578 | P = P->getParent(); |
579 | assert(!cast<VPRegionBlock>(P)->isReplicator() && |
580 | "unexpected nested replicate regions" ); |
581 | } |
582 | return P; |
583 | } |
584 | |
585 | static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { |
586 | if (VPBB->empty()) { |
587 | assert( |
588 | VPBB->getNumSuccessors() < 2 && |
589 | "block with multiple successors doesn't have a recipe as terminator" ); |
590 | return false; |
591 | } |
592 | |
593 | const VPRecipeBase *R = &VPBB->back(); |
594 | bool IsCondBranch = isa<VPBranchOnMaskRecipe>(Val: R) || |
595 | match(V: R, P: m_BranchOnCond(Op0: m_VPValue())) || |
596 | match(V: R, P: m_BranchOnCount(Op0: m_VPValue(), Op1: m_VPValue())); |
597 | (void)IsCondBranch; |
598 | |
599 | if (VPBB->getNumSuccessors() >= 2 || |
600 | (VPBB->isExiting() && !VPBB->getParent()->isReplicator())) { |
601 | assert(IsCondBranch && "block with multiple successors not terminated by " |
602 | "conditional branch recipe" ); |
603 | |
604 | return true; |
605 | } |
606 | |
607 | assert( |
608 | !IsCondBranch && |
609 | "block with 0 or 1 successors terminated by conditional branch recipe" ); |
610 | return false; |
611 | } |
612 | |
613 | VPRecipeBase *VPBasicBlock::getTerminator() { |
614 | if (hasConditionalTerminator(VPBB: this)) |
615 | return &back(); |
616 | return nullptr; |
617 | } |
618 | |
619 | const VPRecipeBase *VPBasicBlock::getTerminator() const { |
620 | if (hasConditionalTerminator(VPBB: this)) |
621 | return &back(); |
622 | return nullptr; |
623 | } |
624 | |
625 | bool VPBasicBlock::isExiting() const { |
626 | return getParent() && getParent()->getExitingBasicBlock() == this; |
627 | } |
628 | |
629 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
630 | void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { |
631 | if (getSuccessors().empty()) { |
632 | O << Indent << "No successors\n" ; |
633 | } else { |
634 | O << Indent << "Successor(s): " ; |
635 | ListSeparator LS; |
636 | for (auto *Succ : getSuccessors()) |
637 | O << LS << Succ->getName(); |
638 | O << '\n'; |
639 | } |
640 | } |
641 | |
642 | void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, |
643 | VPSlotTracker &SlotTracker) const { |
644 | O << Indent << getName() << ":\n" ; |
645 | |
646 | auto RecipeIndent = Indent + " " ; |
647 | for (const VPRecipeBase &Recipe : *this) { |
648 | Recipe.print(O, RecipeIndent, SlotTracker); |
649 | O << '\n'; |
650 | } |
651 | |
652 | printSuccessors(O, Indent); |
653 | } |
654 | #endif |
655 | |
656 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry); |
657 | |
658 | // Clone the CFG for all nodes reachable from \p Entry, this includes cloning |
659 | // the blocks and their recipes. Operands of cloned recipes will NOT be updated. |
660 | // Remapping of operands must be done separately. Returns a pair with the new |
661 | // entry and exiting blocks of the cloned region. If \p Entry isn't part of a |
662 | // region, return nullptr for the exiting block. |
663 | static std::pair<VPBlockBase *, VPBlockBase *> cloneFrom(VPBlockBase *Entry) { |
664 | DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks; |
665 | VPBlockBase *Exiting = nullptr; |
666 | bool InRegion = Entry->getParent(); |
667 | // First, clone blocks reachable from Entry. |
668 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
669 | VPBlockBase *NewBB = BB->clone(); |
670 | Old2NewVPBlocks[BB] = NewBB; |
671 | if (InRegion && BB->getNumSuccessors() == 0) { |
672 | assert(!Exiting && "Multiple exiting blocks?" ); |
673 | Exiting = BB; |
674 | } |
675 | } |
676 | assert((!InRegion || Exiting) && "regions must have a single exiting block" ); |
677 | |
678 | // Second, update the predecessors & successors of the cloned blocks. |
679 | for (VPBlockBase *BB : vp_depth_first_shallow(G: Entry)) { |
680 | VPBlockBase *NewBB = Old2NewVPBlocks[BB]; |
681 | SmallVector<VPBlockBase *> NewPreds; |
682 | for (VPBlockBase *Pred : BB->getPredecessors()) { |
683 | NewPreds.push_back(Elt: Old2NewVPBlocks[Pred]); |
684 | } |
685 | NewBB->setPredecessors(NewPreds); |
686 | SmallVector<VPBlockBase *> NewSuccs; |
687 | for (VPBlockBase *Succ : BB->successors()) { |
688 | NewSuccs.push_back(Elt: Old2NewVPBlocks[Succ]); |
689 | } |
690 | NewBB->setSuccessors(NewSuccs); |
691 | } |
692 | |
693 | #if !defined(NDEBUG) |
694 | // Verify that the order of predecessors and successors matches in the cloned |
695 | // version. |
696 | for (const auto &[OldBB, NewBB] : |
697 | zip(vp_depth_first_shallow(Entry), |
698 | vp_depth_first_shallow(Old2NewVPBlocks[Entry]))) { |
699 | for (const auto &[OldPred, NewPred] : |
700 | zip(OldBB->getPredecessors(), NewBB->getPredecessors())) |
701 | assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors" ); |
702 | |
703 | for (const auto &[OldSucc, NewSucc] : |
704 | zip(OldBB->successors(), NewBB->successors())) |
705 | assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors" ); |
706 | } |
707 | #endif |
708 | |
709 | return std::make_pair(x&: Old2NewVPBlocks[Entry], |
710 | y: Exiting ? Old2NewVPBlocks[Exiting] : nullptr); |
711 | } |
712 | |
713 | VPRegionBlock *VPRegionBlock::clone() { |
714 | const auto &[NewEntry, NewExiting] = cloneFrom(Entry: getEntry()); |
715 | auto *NewRegion = |
716 | new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator()); |
717 | for (VPBlockBase *Block : vp_depth_first_shallow(G: NewEntry)) |
718 | Block->setParent(NewRegion); |
719 | return NewRegion; |
720 | } |
721 | |
722 | void VPRegionBlock::dropAllReferences(VPValue *NewValue) { |
723 | for (VPBlockBase *Block : vp_depth_first_shallow(G: Entry)) |
724 | // Drop all references in VPBasicBlocks and replace all uses with |
725 | // DummyValue. |
726 | Block->dropAllReferences(NewValue); |
727 | } |
728 | |
729 | void VPRegionBlock::execute(VPTransformState *State) { |
730 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> |
731 | RPOT(Entry); |
732 | |
733 | if (!isReplicator()) { |
734 | // Create and register the new vector loop. |
735 | Loop *PrevLoop = State->CurrentVectorLoop; |
736 | State->CurrentVectorLoop = State->LI->AllocateLoop(); |
737 | BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; |
738 | Loop *ParentLoop = State->LI->getLoopFor(BB: VectorPH); |
739 | |
740 | // Insert the new loop into the loop nest and register the new basic blocks |
741 | // before calling any utilities such as SCEV that require valid LoopInfo. |
742 | if (ParentLoop) |
743 | ParentLoop->addChildLoop(NewChild: State->CurrentVectorLoop); |
744 | else |
745 | State->LI->addTopLevelLoop(New: State->CurrentVectorLoop); |
746 | |
747 | // Visit the VPBlocks connected to "this", starting from it. |
748 | for (VPBlockBase *Block : RPOT) { |
749 | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
750 | Block->execute(State); |
751 | } |
752 | |
753 | State->CurrentVectorLoop = PrevLoop; |
754 | return; |
755 | } |
756 | |
757 | assert(!State->Instance && "Replicating a Region with non-null instance." ); |
758 | |
759 | // Enter replicating mode. |
760 | State->Instance = VPIteration(0, 0); |
761 | |
762 | for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { |
763 | State->Instance->Part = Part; |
764 | assert(!State->VF.isScalable() && "VF is assumed to be non scalable." ); |
765 | for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; |
766 | ++Lane) { |
767 | State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); |
768 | // Visit the VPBlocks connected to \p this, starting from it. |
769 | for (VPBlockBase *Block : RPOT) { |
770 | LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
771 | Block->execute(State); |
772 | } |
773 | } |
774 | } |
775 | |
776 | // Exit replicating mode. |
777 | State->Instance.reset(); |
778 | } |
779 | |
780 | InstructionCost VPBasicBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
781 | InstructionCost Cost = 0; |
782 | for (VPRecipeBase &R : Recipes) |
783 | Cost += R.cost(VF, Ctx); |
784 | return Cost; |
785 | } |
786 | |
787 | InstructionCost VPRegionBlock::cost(ElementCount VF, VPCostContext &Ctx) { |
788 | if (!isReplicator()) { |
789 | InstructionCost Cost = 0; |
790 | for (VPBlockBase *Block : vp_depth_first_shallow(G: getEntry())) |
791 | Cost += Block->cost(VF, Ctx); |
792 | InstructionCost BackedgeCost = |
793 | Ctx.TTI.getCFInstrCost(Opcode: Instruction::Br, CostKind: TTI::TCK_RecipThroughput); |
794 | LLVM_DEBUG(dbgs() << "Cost of " << BackedgeCost << " for VF " << VF |
795 | << ": vector loop backedge\n" ); |
796 | Cost += BackedgeCost; |
797 | return Cost; |
798 | } |
799 | |
800 | // Compute the cost of a replicate region. Replicating isn't supported for |
801 | // scalable vectors, return an invalid cost for them. |
802 | // TODO: Discard scalable VPlans with replicate recipes earlier after |
803 | // construction. |
804 | if (VF.isScalable()) |
805 | return InstructionCost::getInvalid(); |
806 | |
807 | // First compute the cost of the conditionally executed recipes, followed by |
808 | // account for the branching cost, except if the mask is a header mask or |
809 | // uniform condition. |
810 | using namespace llvm::VPlanPatternMatch; |
811 | VPBasicBlock *Then = cast<VPBasicBlock>(Val: getEntry()->getSuccessors()[0]); |
812 | InstructionCost ThenCost = Then->cost(VF, Ctx); |
813 | |
814 | // For the scalar case, we may not always execute the original predicated |
815 | // block, Thus, scale the block's cost by the probability of executing it. |
816 | if (VF.isScalar()) |
817 | return ThenCost / getReciprocalPredBlockProb(); |
818 | |
819 | return ThenCost; |
820 | } |
821 | |
822 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
823 | void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, |
824 | VPSlotTracker &SlotTracker) const { |
825 | O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> " ) << getName() << ": {" ; |
826 | auto NewIndent = Indent + " " ; |
827 | for (auto *BlockBase : vp_depth_first_shallow(Entry)) { |
828 | O << '\n'; |
829 | BlockBase->print(O, NewIndent, SlotTracker); |
830 | } |
831 | O << Indent << "}\n" ; |
832 | |
833 | printSuccessors(O, Indent); |
834 | } |
835 | #endif |
836 | |
837 | VPlan::~VPlan() { |
838 | for (auto &KV : LiveOuts) |
839 | delete KV.second; |
840 | LiveOuts.clear(); |
841 | |
842 | if (Entry) { |
843 | VPValue DummyValue; |
844 | for (VPBlockBase *Block : vp_depth_first_shallow(G: Entry)) |
845 | Block->dropAllReferences(NewValue: &DummyValue); |
846 | |
847 | VPBlockBase::deleteCFG(Entry); |
848 | |
849 | Preheader->dropAllReferences(NewValue: &DummyValue); |
850 | delete Preheader; |
851 | } |
852 | for (VPValue *VPV : VPLiveInsToFree) |
853 | delete VPV; |
854 | if (BackedgeTakenCount) |
855 | delete BackedgeTakenCount; |
856 | } |
857 | |
858 | VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE, |
859 | bool RequiresScalarEpilogueCheck, |
860 | bool TailFolded, Loop *TheLoop) { |
861 | VPIRBasicBlock *Entry = new VPIRBasicBlock(TheLoop->getLoopPreheader()); |
862 | VPBasicBlock * = new VPBasicBlock("vector.ph" ); |
863 | auto Plan = std::make_unique<VPlan>(args&: Entry, args&: VecPreheader); |
864 | Plan->TripCount = |
865 | vputils::getOrCreateVPValueForSCEVExpr(Plan&: *Plan, Expr: TripCount, SE); |
866 | // Create VPRegionBlock, with empty header and latch blocks, to be filled |
867 | // during processing later. |
868 | VPBasicBlock * = new VPBasicBlock("vector.body" ); |
869 | VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch" ); |
870 | VPBlockUtils::insertBlockAfter(NewBlock: LatchVPBB, BlockPtr: HeaderVPBB); |
871 | auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop" , |
872 | false /*isReplicator*/); |
873 | |
874 | VPBlockUtils::insertBlockAfter(NewBlock: TopRegion, BlockPtr: VecPreheader); |
875 | VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block" ); |
876 | VPBlockUtils::insertBlockAfter(NewBlock: MiddleVPBB, BlockPtr: TopRegion); |
877 | |
878 | VPBasicBlock *ScalarPH = new VPBasicBlock("scalar.ph" ); |
879 | if (!RequiresScalarEpilogueCheck) { |
880 | VPBlockUtils::connectBlocks(From: MiddleVPBB, To: ScalarPH); |
881 | return Plan; |
882 | } |
883 | |
884 | // If needed, add a check in the middle block to see if we have completed |
885 | // all of the iterations in the first vector loop. Three cases: |
886 | // 1) If (N - N%VF) == N, then we *don't* need to run the remainder. |
887 | // Thus if tail is to be folded, we know we don't need to run the |
888 | // remainder and we can set the condition to true. |
889 | // 2) If we require a scalar epilogue, there is no conditional branch as |
890 | // we unconditionally branch to the scalar preheader. Do nothing. |
891 | // 3) Otherwise, construct a runtime check. |
892 | BasicBlock *IRExitBlock = TheLoop->getUniqueExitBlock(); |
893 | auto *VPExitBlock = new VPIRBasicBlock(IRExitBlock); |
894 | // The connection order corresponds to the operands of the conditional branch. |
895 | VPBlockUtils::insertBlockAfter(NewBlock: VPExitBlock, BlockPtr: MiddleVPBB); |
896 | VPBlockUtils::connectBlocks(From: MiddleVPBB, To: ScalarPH); |
897 | |
898 | auto *ScalarLatchTerm = TheLoop->getLoopLatch()->getTerminator(); |
899 | // Here we use the same DebugLoc as the scalar loop latch terminator instead |
900 | // of the corresponding compare because they may have ended up with |
901 | // different line numbers and we want to avoid awkward line stepping while |
902 | // debugging. Eg. if the compare has got a line number inside the loop. |
903 | VPBuilder Builder(MiddleVPBB); |
904 | VPValue *Cmp = |
905 | TailFolded |
906 | ? Plan->getOrAddLiveIn(V: ConstantInt::getTrue( |
907 | Ty: IntegerType::getInt1Ty(C&: TripCount->getType()->getContext()))) |
908 | : Builder.createICmp(Pred: CmpInst::ICMP_EQ, A: Plan->getTripCount(), |
909 | B: &Plan->getVectorTripCount(), |
910 | DL: ScalarLatchTerm->getDebugLoc(), Name: "cmp.n" ); |
911 | Builder.createNaryOp(Opcode: VPInstruction::BranchOnCond, Operands: {Cmp}, |
912 | DL: ScalarLatchTerm->getDebugLoc()); |
913 | return Plan; |
914 | } |
915 | |
916 | void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, |
917 | Value *CanonicalIVStartValue, |
918 | VPTransformState &State) { |
919 | // Check if the backedge taken count is needed, and if so build it. |
920 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
921 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
922 | auto *TCMO = Builder.CreateSub(LHS: TripCountV, |
923 | RHS: ConstantInt::get(Ty: TripCountV->getType(), V: 1), |
924 | Name: "trip.count.minus.1" ); |
925 | BackedgeTakenCount->setUnderlyingValue(TCMO); |
926 | } |
927 | |
928 | VectorTripCount.setUnderlyingValue(VectorTripCountV); |
929 | |
930 | IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
931 | // FIXME: Model VF * UF computation completely in VPlan. |
932 | VFxUF.setUnderlyingValue( |
933 | createStepForVF(B&: Builder, Ty: TripCountV->getType(), VF: State.VF, Step: State.UF)); |
934 | |
935 | // When vectorizing the epilogue loop, the canonical induction start value |
936 | // needs to be changed from zero to the value after the main vector loop. |
937 | // FIXME: Improve modeling for canonical IV start values in the epilogue loop. |
938 | if (CanonicalIVStartValue) { |
939 | VPValue *VPV = getOrAddLiveIn(V: CanonicalIVStartValue); |
940 | auto *IV = getCanonicalIV(); |
941 | assert(all_of(IV->users(), |
942 | [](const VPUser *U) { |
943 | return isa<VPScalarIVStepsRecipe>(U) || |
944 | isa<VPScalarCastRecipe>(U) || |
945 | isa<VPDerivedIVRecipe>(U) || |
946 | cast<VPInstruction>(U)->getOpcode() == |
947 | Instruction::Add; |
948 | }) && |
949 | "the canonical IV should only be used by its increment or " |
950 | "ScalarIVSteps when resetting the start value" ); |
951 | IV->setOperand(I: 0, New: VPV); |
952 | } |
953 | } |
954 | |
955 | /// Replace \p VPBB with a VPIRBasicBlock wrapping \p IRBB. All recipes from \p |
956 | /// VPBB are moved to the newly created VPIRBasicBlock. VPBB must have a single |
957 | /// predecessor, which is rewired to the new VPIRBasicBlock. All successors of |
958 | /// VPBB, if any, are rewired to the new VPIRBasicBlock. |
959 | static void replaceVPBBWithIRVPBB(VPBasicBlock *VPBB, BasicBlock *IRBB) { |
960 | VPIRBasicBlock *IRMiddleVPBB = new VPIRBasicBlock(IRBB); |
961 | for (auto &R : make_early_inc_range(Range&: *VPBB)) |
962 | R.moveBefore(BB&: *IRMiddleVPBB, I: IRMiddleVPBB->end()); |
963 | VPBlockBase *PredVPBB = VPBB->getSinglePredecessor(); |
964 | VPBlockUtils::disconnectBlocks(From: PredVPBB, To: VPBB); |
965 | VPBlockUtils::connectBlocks(From: PredVPBB, To: IRMiddleVPBB); |
966 | for (auto *Succ : to_vector(Range&: VPBB->getSuccessors())) { |
967 | VPBlockUtils::connectBlocks(From: IRMiddleVPBB, To: Succ); |
968 | VPBlockUtils::disconnectBlocks(From: VPBB, To: Succ); |
969 | } |
970 | delete VPBB; |
971 | } |
972 | |
973 | /// Generate the code inside the preheader and body of the vectorized loop. |
974 | /// Assumes a single pre-header basic-block was created for this. Introduce |
975 | /// additional basic-blocks as needed, and fill them all. |
976 | void VPlan::execute(VPTransformState *State) { |
977 | // Initialize CFG state. |
978 | State->CFG.PrevVPBB = nullptr; |
979 | State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); |
980 | BasicBlock * = State->CFG.PrevBB; |
981 | State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); |
982 | |
983 | // Disconnect VectorPreHeader from ExitBB in both the CFG and DT. |
984 | cast<BranchInst>(Val: VectorPreHeader->getTerminator())->setSuccessor(idx: 0, NewSucc: nullptr); |
985 | State->CFG.DTU.applyUpdates( |
986 | Updates: {{DominatorTree::Delete, VectorPreHeader, State->CFG.ExitBB}}); |
987 | |
988 | // Replace regular VPBB's for the middle and scalar preheader blocks with |
989 | // VPIRBasicBlocks wrapping their IR blocks. The IR blocks are created during |
990 | // skeleton creation, so we can only create the VPIRBasicBlocks now during |
991 | // VPlan execution rather than earlier during VPlan construction. |
992 | BasicBlock *MiddleBB = State->CFG.ExitBB; |
993 | VPBasicBlock *MiddleVPBB = |
994 | cast<VPBasicBlock>(Val: getVectorLoopRegion()->getSingleSuccessor()); |
995 | // Find the VPBB for the scalar preheader, relying on the current structure |
996 | // when creating the middle block and its successrs: if there's a single |
997 | // predecessor, it must be the scalar preheader. Otherwise, the second |
998 | // successor is the scalar preheader. |
999 | BasicBlock *ScalarPh = MiddleBB->getSingleSuccessor(); |
1000 | auto &MiddleSuccs = MiddleVPBB->getSuccessors(); |
1001 | assert((MiddleSuccs.size() == 1 || MiddleSuccs.size() == 2) && |
1002 | "middle block has unexpected successors" ); |
1003 | VPBasicBlock *ScalarPhVPBB = cast<VPBasicBlock>( |
1004 | Val: MiddleSuccs.size() == 1 ? MiddleSuccs[0] : MiddleSuccs[1]); |
1005 | assert(!isa<VPIRBasicBlock>(ScalarPhVPBB) && |
1006 | "scalar preheader cannot be wrapped already" ); |
1007 | replaceVPBBWithIRVPBB(VPBB: ScalarPhVPBB, IRBB: ScalarPh); |
1008 | replaceVPBBWithIRVPBB(VPBB: MiddleVPBB, IRBB: MiddleBB); |
1009 | |
1010 | // Disconnect the middle block from its single successor (the scalar loop |
1011 | // header) in both the CFG and DT. The branch will be recreated during VPlan |
1012 | // execution. |
1013 | auto *BrInst = new UnreachableInst(MiddleBB->getContext()); |
1014 | BrInst->insertBefore(InsertPos: MiddleBB->getTerminator()); |
1015 | MiddleBB->getTerminator()->eraseFromParent(); |
1016 | State->CFG.DTU.applyUpdates(Updates: {{DominatorTree::Delete, MiddleBB, ScalarPh}}); |
1017 | |
1018 | // Generate code in the loop pre-header and body. |
1019 | for (VPBlockBase *Block : vp_depth_first_shallow(G: Entry)) |
1020 | Block->execute(State); |
1021 | |
1022 | VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); |
1023 | BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; |
1024 | |
1025 | // Fix the latch value of canonical, reduction and first-order recurrences |
1026 | // phis in the vector loop. |
1027 | VPBasicBlock * = getVectorLoopRegion()->getEntryBasicBlock(); |
1028 | for (VPRecipeBase &R : Header->phis()) { |
1029 | // Skip phi-like recipes that generate their backedege values themselves. |
1030 | if (isa<VPWidenPHIRecipe>(Val: &R)) |
1031 | continue; |
1032 | |
1033 | if (isa<VPWidenPointerInductionRecipe>(Val: &R) || |
1034 | isa<VPWidenIntOrFpInductionRecipe>(Val: &R)) { |
1035 | PHINode *Phi = nullptr; |
1036 | if (isa<VPWidenIntOrFpInductionRecipe>(Val: &R)) { |
1037 | Phi = cast<PHINode>(Val: State->get(Def: R.getVPSingleValue(), Part: 0)); |
1038 | } else { |
1039 | auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(Val: &R); |
1040 | assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) && |
1041 | "recipe generating only scalars should have been replaced" ); |
1042 | auto *GEP = cast<GetElementPtrInst>(Val: State->get(Def: WidenPhi, Part: 0)); |
1043 | Phi = cast<PHINode>(Val: GEP->getPointerOperand()); |
1044 | } |
1045 | |
1046 | Phi->setIncomingBlock(i: 1, BB: VectorLatchBB); |
1047 | |
1048 | // Move the last step to the end of the latch block. This ensures |
1049 | // consistent placement of all induction updates. |
1050 | Instruction *Inc = cast<Instruction>(Val: Phi->getIncomingValue(i: 1)); |
1051 | Inc->moveBefore(MovePos: VectorLatchBB->getTerminator()->getPrevNode()); |
1052 | continue; |
1053 | } |
1054 | |
1055 | auto *PhiR = cast<VPHeaderPHIRecipe>(Val: &R); |
1056 | // For canonical IV, first-order recurrences and in-order reduction phis, |
1057 | // only a single part is generated, which provides the last part from the |
1058 | // previous iteration. For non-ordered reductions all UF parts are |
1059 | // generated. |
1060 | bool SinglePartNeeded = |
1061 | isa<VPCanonicalIVPHIRecipe>(Val: PhiR) || |
1062 | isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(Val: PhiR) || |
1063 | (isa<VPReductionPHIRecipe>(Val: PhiR) && |
1064 | cast<VPReductionPHIRecipe>(Val: PhiR)->isOrdered()); |
1065 | bool NeedsScalar = |
1066 | isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(Val: PhiR) || |
1067 | (isa<VPReductionPHIRecipe>(Val: PhiR) && |
1068 | cast<VPReductionPHIRecipe>(Val: PhiR)->isInLoop()); |
1069 | unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; |
1070 | |
1071 | for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { |
1072 | Value *Phi = State->get(Def: PhiR, Part, NeedsScalar); |
1073 | Value *Val = |
1074 | State->get(Def: PhiR->getBackedgeValue(), |
1075 | Part: SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar); |
1076 | cast<PHINode>(Val: Phi)->addIncoming(V: Val, BB: VectorLatchBB); |
1077 | } |
1078 | } |
1079 | |
1080 | State->CFG.DTU.flush(); |
1081 | assert(State->CFG.DTU.getDomTree().verify( |
1082 | DominatorTree::VerificationLevel::Fast) && |
1083 | "DT not preserved correctly" ); |
1084 | } |
1085 | |
1086 | InstructionCost VPlan::cost(ElementCount VF, VPCostContext &Ctx) { |
1087 | // For now only return the cost of the vector loop region, ignoring any other |
1088 | // blocks, like the preheader or middle blocks. |
1089 | return getVectorLoopRegion()->cost(VF, Ctx); |
1090 | } |
1091 | |
1092 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1093 | void VPlan::printLiveIns(raw_ostream &O) const { |
1094 | VPSlotTracker SlotTracker(this); |
1095 | |
1096 | if (VFxUF.getNumUsers() > 0) { |
1097 | O << "\nLive-in " ; |
1098 | VFxUF.printAsOperand(O, SlotTracker); |
1099 | O << " = VF * UF" ; |
1100 | } |
1101 | |
1102 | if (VectorTripCount.getNumUsers() > 0) { |
1103 | O << "\nLive-in " ; |
1104 | VectorTripCount.printAsOperand(O, SlotTracker); |
1105 | O << " = vector-trip-count" ; |
1106 | } |
1107 | |
1108 | if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
1109 | O << "\nLive-in " ; |
1110 | BackedgeTakenCount->printAsOperand(O, SlotTracker); |
1111 | O << " = backedge-taken count" ; |
1112 | } |
1113 | |
1114 | O << "\n" ; |
1115 | if (TripCount->isLiveIn()) |
1116 | O << "Live-in " ; |
1117 | TripCount->printAsOperand(O, SlotTracker); |
1118 | O << " = original trip-count" ; |
1119 | O << "\n" ; |
1120 | } |
1121 | |
1122 | LLVM_DUMP_METHOD |
1123 | void VPlan::print(raw_ostream &O) const { |
1124 | VPSlotTracker SlotTracker(this); |
1125 | |
1126 | O << "VPlan '" << getName() << "' {" ; |
1127 | |
1128 | printLiveIns(O); |
1129 | |
1130 | if (!getPreheader()->empty()) { |
1131 | O << "\n" ; |
1132 | getPreheader()->print(O, "" , SlotTracker); |
1133 | } |
1134 | |
1135 | for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { |
1136 | O << '\n'; |
1137 | Block->print(O, "" , SlotTracker); |
1138 | } |
1139 | |
1140 | if (!LiveOuts.empty()) |
1141 | O << "\n" ; |
1142 | for (const auto &KV : LiveOuts) { |
1143 | KV.second->print(O, SlotTracker); |
1144 | } |
1145 | |
1146 | O << "}\n" ; |
1147 | } |
1148 | |
1149 | std::string VPlan::getName() const { |
1150 | std::string Out; |
1151 | raw_string_ostream RSO(Out); |
1152 | RSO << Name << " for " ; |
1153 | if (!VFs.empty()) { |
1154 | RSO << "VF={" << VFs[0]; |
1155 | for (ElementCount VF : drop_begin(VFs)) |
1156 | RSO << "," << VF; |
1157 | RSO << "}," ; |
1158 | } |
1159 | |
1160 | if (UFs.empty()) { |
1161 | RSO << "UF>=1" ; |
1162 | } else { |
1163 | RSO << "UF={" << UFs[0]; |
1164 | for (unsigned UF : drop_begin(UFs)) |
1165 | RSO << "," << UF; |
1166 | RSO << "}" ; |
1167 | } |
1168 | |
1169 | return Out; |
1170 | } |
1171 | |
1172 | LLVM_DUMP_METHOD |
1173 | void VPlan::printDOT(raw_ostream &O) const { |
1174 | VPlanPrinter Printer(O, *this); |
1175 | Printer.dump(); |
1176 | } |
1177 | |
1178 | LLVM_DUMP_METHOD |
1179 | void VPlan::dump() const { print(dbgs()); } |
1180 | #endif |
1181 | |
1182 | void VPlan::addLiveOut(PHINode *PN, VPValue *V) { |
1183 | assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists" ); |
1184 | LiveOuts.insert(KV: {PN, new VPLiveOut(PN, V)}); |
1185 | } |
1186 | |
1187 | static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry, |
1188 | DenseMap<VPValue *, VPValue *> &Old2NewVPValues) { |
1189 | // Update the operands of all cloned recipes starting at NewEntry. This |
1190 | // traverses all reachable blocks. This is done in two steps, to handle cycles |
1191 | // in PHI recipes. |
1192 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
1193 | OldDeepRPOT(Entry); |
1194 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>> |
1195 | NewDeepRPOT(NewEntry); |
1196 | // First, collect all mappings from old to new VPValues defined by cloned |
1197 | // recipes. |
1198 | for (const auto &[OldBB, NewBB] : |
1199 | zip(t: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: OldDeepRPOT), |
1200 | u: VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT))) { |
1201 | assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() && |
1202 | "blocks must have the same number of recipes" ); |
1203 | for (const auto &[OldR, NewR] : zip(t&: *OldBB, u&: *NewBB)) { |
1204 | assert(OldR.getNumOperands() == NewR.getNumOperands() && |
1205 | "recipes must have the same number of operands" ); |
1206 | assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() && |
1207 | "recipes must define the same number of operands" ); |
1208 | for (const auto &[OldV, NewV] : |
1209 | zip(t: OldR.definedValues(), u: NewR.definedValues())) |
1210 | Old2NewVPValues[OldV] = NewV; |
1211 | } |
1212 | } |
1213 | |
1214 | // Update all operands to use cloned VPValues. |
1215 | for (VPBasicBlock *NewBB : |
1216 | VPBlockUtils::blocksOnly<VPBasicBlock>(Range: NewDeepRPOT)) { |
1217 | for (VPRecipeBase &NewR : *NewBB) |
1218 | for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) { |
1219 | VPValue *NewOp = Old2NewVPValues.lookup(Val: NewR.getOperand(N: I)); |
1220 | NewR.setOperand(I, New: NewOp); |
1221 | } |
1222 | } |
1223 | } |
1224 | |
1225 | VPlan *VPlan::duplicate() { |
1226 | // Clone blocks. |
1227 | VPBasicBlock * = Preheader->clone(); |
1228 | const auto &[NewEntry, __] = cloneFrom(Entry); |
1229 | |
1230 | // Create VPlan, clone live-ins and remap operands in the cloned blocks. |
1231 | auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(Val: NewEntry)); |
1232 | DenseMap<VPValue *, VPValue *> Old2NewVPValues; |
1233 | for (VPValue *OldLiveIn : VPLiveInsToFree) { |
1234 | Old2NewVPValues[OldLiveIn] = |
1235 | NewPlan->getOrAddLiveIn(V: OldLiveIn->getLiveInIRValue()); |
1236 | } |
1237 | Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount; |
1238 | Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF; |
1239 | if (BackedgeTakenCount) { |
1240 | NewPlan->BackedgeTakenCount = new VPValue(); |
1241 | Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount; |
1242 | } |
1243 | assert(TripCount && "trip count must be set" ); |
1244 | if (TripCount->isLiveIn()) |
1245 | Old2NewVPValues[TripCount] = |
1246 | NewPlan->getOrAddLiveIn(V: TripCount->getLiveInIRValue()); |
1247 | // else NewTripCount will be created and inserted into Old2NewVPValues when |
1248 | // TripCount is cloned. In any case NewPlan->TripCount is updated below. |
1249 | |
1250 | remapOperands(Entry: Preheader, NewEntry: NewPreheader, Old2NewVPValues); |
1251 | remapOperands(Entry, NewEntry, Old2NewVPValues); |
1252 | |
1253 | // Clone live-outs. |
1254 | for (const auto &[_, LO] : LiveOuts) |
1255 | NewPlan->addLiveOut(PN: LO->getPhi(), V: Old2NewVPValues[LO->getOperand(N: 0)]); |
1256 | |
1257 | // Initialize remaining fields of cloned VPlan. |
1258 | NewPlan->VFs = VFs; |
1259 | NewPlan->UFs = UFs; |
1260 | // TODO: Adjust names. |
1261 | NewPlan->Name = Name; |
1262 | assert(Old2NewVPValues.contains(TripCount) && |
1263 | "TripCount must have been added to Old2NewVPValues" ); |
1264 | NewPlan->TripCount = Old2NewVPValues[TripCount]; |
1265 | return NewPlan; |
1266 | } |
1267 | |
1268 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1269 | |
1270 | Twine VPlanPrinter::getUID(const VPBlockBase *Block) { |
1271 | return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N" ) + |
1272 | Twine(getOrCreateBID(Block)); |
1273 | } |
1274 | |
1275 | Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { |
1276 | const std::string &Name = Block->getName(); |
1277 | if (!Name.empty()) |
1278 | return Name; |
1279 | return "VPB" + Twine(getOrCreateBID(Block)); |
1280 | } |
1281 | |
1282 | void VPlanPrinter::dump() { |
1283 | Depth = 1; |
1284 | bumpIndent(0); |
1285 | OS << "digraph VPlan {\n" ; |
1286 | OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan" ; |
1287 | if (!Plan.getName().empty()) |
1288 | OS << "\\n" << DOT::EscapeString(Plan.getName()); |
1289 | |
1290 | { |
1291 | // Print live-ins. |
1292 | std::string Str; |
1293 | raw_string_ostream SS(Str); |
1294 | Plan.printLiveIns(SS); |
1295 | SmallVector<StringRef, 0> Lines; |
1296 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
1297 | for (auto Line : Lines) |
1298 | OS << DOT::EscapeString(Line.str()) << "\\n" ; |
1299 | } |
1300 | |
1301 | OS << "\"]\n" ; |
1302 | OS << "node [shape=rect, fontname=Courier, fontsize=30]\n" ; |
1303 | OS << "edge [fontname=Courier, fontsize=30]\n" ; |
1304 | OS << "compound=true\n" ; |
1305 | |
1306 | dumpBlock(Plan.getPreheader()); |
1307 | |
1308 | for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) |
1309 | dumpBlock(Block); |
1310 | |
1311 | OS << "}\n" ; |
1312 | } |
1313 | |
1314 | void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { |
1315 | if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) |
1316 | dumpBasicBlock(BasicBlock); |
1317 | else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
1318 | dumpRegion(Region); |
1319 | else |
1320 | llvm_unreachable("Unsupported kind of VPBlock." ); |
1321 | } |
1322 | |
1323 | void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, |
1324 | bool Hidden, const Twine &Label) { |
1325 | // Due to "dot" we print an edge between two regions as an edge between the |
1326 | // exiting basic block and the entry basic of the respective regions. |
1327 | const VPBlockBase *Tail = From->getExitingBasicBlock(); |
1328 | const VPBlockBase *Head = To->getEntryBasicBlock(); |
1329 | OS << Indent << getUID(Tail) << " -> " << getUID(Head); |
1330 | OS << " [ label=\"" << Label << '\"'; |
1331 | if (Tail != From) |
1332 | OS << " ltail=" << getUID(From); |
1333 | if (Head != To) |
1334 | OS << " lhead=" << getUID(To); |
1335 | if (Hidden) |
1336 | OS << "; splines=none" ; |
1337 | OS << "]\n" ; |
1338 | } |
1339 | |
1340 | void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { |
1341 | auto &Successors = Block->getSuccessors(); |
1342 | if (Successors.size() == 1) |
1343 | drawEdge(Block, Successors.front(), false, "" ); |
1344 | else if (Successors.size() == 2) { |
1345 | drawEdge(Block, Successors.front(), false, "T" ); |
1346 | drawEdge(Block, Successors.back(), false, "F" ); |
1347 | } else { |
1348 | unsigned SuccessorNumber = 0; |
1349 | for (auto *Successor : Successors) |
1350 | drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); |
1351 | } |
1352 | } |
1353 | |
1354 | void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { |
1355 | // Implement dot-formatted dump by performing plain-text dump into the |
1356 | // temporary storage followed by some post-processing. |
1357 | OS << Indent << getUID(BasicBlock) << " [label =\n" ; |
1358 | bumpIndent(1); |
1359 | std::string Str; |
1360 | raw_string_ostream SS(Str); |
1361 | // Use no indentation as we need to wrap the lines into quotes ourselves. |
1362 | BasicBlock->print(SS, "" , SlotTracker); |
1363 | |
1364 | // We need to process each line of the output separately, so split |
1365 | // single-string plain-text dump. |
1366 | SmallVector<StringRef, 0> Lines; |
1367 | StringRef(Str).rtrim('\n').split(Lines, "\n" ); |
1368 | |
1369 | auto EmitLine = [&](StringRef Line, StringRef Suffix) { |
1370 | OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; |
1371 | }; |
1372 | |
1373 | // Don't need the "+" after the last line. |
1374 | for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) |
1375 | EmitLine(Line, " +\n" ); |
1376 | EmitLine(Lines.back(), "\n" ); |
1377 | |
1378 | bumpIndent(-1); |
1379 | OS << Indent << "]\n" ; |
1380 | |
1381 | dumpEdges(BasicBlock); |
1382 | } |
1383 | |
1384 | void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { |
1385 | OS << Indent << "subgraph " << getUID(Region) << " {\n" ; |
1386 | bumpIndent(1); |
1387 | OS << Indent << "fontname=Courier\n" |
1388 | << Indent << "label=\"" |
1389 | << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> " ) |
1390 | << DOT::EscapeString(Region->getName()) << "\"\n" ; |
1391 | // Dump the blocks of the region. |
1392 | assert(Region->getEntry() && "Region contains no inner blocks." ); |
1393 | for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) |
1394 | dumpBlock(Block); |
1395 | bumpIndent(-1); |
1396 | OS << Indent << "}\n" ; |
1397 | dumpEdges(Region); |
1398 | } |
1399 | |
1400 | void VPlanIngredient::print(raw_ostream &O) const { |
1401 | if (auto *Inst = dyn_cast<Instruction>(V)) { |
1402 | if (!Inst->getType()->isVoidTy()) { |
1403 | Inst->printAsOperand(O, false); |
1404 | O << " = " ; |
1405 | } |
1406 | O << Inst->getOpcodeName() << " " ; |
1407 | unsigned E = Inst->getNumOperands(); |
1408 | if (E > 0) { |
1409 | Inst->getOperand(0)->printAsOperand(O, false); |
1410 | for (unsigned I = 1; I < E; ++I) |
1411 | Inst->getOperand(I)->printAsOperand(O << ", " , false); |
1412 | } |
1413 | } else // !Inst |
1414 | V->printAsOperand(O, false); |
1415 | } |
1416 | |
1417 | #endif |
1418 | |
1419 | template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); |
1420 | |
1421 | void VPValue::replaceAllUsesWith(VPValue *New) { |
1422 | replaceUsesWithIf(New, ShouldReplace: [](VPUser &, unsigned) { return true; }); |
1423 | } |
1424 | |
1425 | void VPValue::replaceUsesWithIf( |
1426 | VPValue *New, |
1427 | llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) { |
1428 | // Note that this early exit is required for correctness; the implementation |
1429 | // below relies on the number of users for this VPValue to decrease, which |
1430 | // isn't the case if this == New. |
1431 | if (this == New) |
1432 | return; |
1433 | |
1434 | for (unsigned J = 0; J < getNumUsers();) { |
1435 | VPUser *User = Users[J]; |
1436 | bool RemovedUser = false; |
1437 | for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { |
1438 | if (User->getOperand(N: I) != this || !ShouldReplace(*User, I)) |
1439 | continue; |
1440 | |
1441 | RemovedUser = true; |
1442 | User->setOperand(I, New); |
1443 | } |
1444 | // If a user got removed after updating the current user, the next user to |
1445 | // update will be moved to the current position, so we only need to |
1446 | // increment the index if the number of users did not change. |
1447 | if (!RemovedUser) |
1448 | J++; |
1449 | } |
1450 | } |
1451 | |
1452 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1453 | void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { |
1454 | OS << Tracker.getOrCreateName(this); |
1455 | } |
1456 | |
1457 | void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { |
1458 | interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { |
1459 | Op->printAsOperand(O, SlotTracker); |
1460 | }); |
1461 | } |
1462 | #endif |
1463 | |
1464 | void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, |
1465 | Old2NewTy &Old2New, |
1466 | InterleavedAccessInfo &IAI) { |
1467 | ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> |
1468 | RPOT(Region->getEntry()); |
1469 | for (VPBlockBase *Base : RPOT) { |
1470 | visitBlock(Block: Base, Old2New, IAI); |
1471 | } |
1472 | } |
1473 | |
1474 | void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, |
1475 | InterleavedAccessInfo &IAI) { |
1476 | if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Val: Block)) { |
1477 | for (VPRecipeBase &VPI : *VPBB) { |
1478 | if (isa<VPWidenPHIRecipe>(Val: &VPI)) |
1479 | continue; |
1480 | assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions" ); |
1481 | auto *VPInst = cast<VPInstruction>(Val: &VPI); |
1482 | |
1483 | auto *Inst = dyn_cast_or_null<Instruction>(Val: VPInst->getUnderlyingValue()); |
1484 | if (!Inst) |
1485 | continue; |
1486 | auto *IG = IAI.getInterleaveGroup(Instr: Inst); |
1487 | if (!IG) |
1488 | continue; |
1489 | |
1490 | auto NewIGIter = Old2New.find(Val: IG); |
1491 | if (NewIGIter == Old2New.end()) |
1492 | Old2New[IG] = new InterleaveGroup<VPInstruction>( |
1493 | IG->getFactor(), IG->isReverse(), IG->getAlign()); |
1494 | |
1495 | if (Inst == IG->getInsertPos()) |
1496 | Old2New[IG]->setInsertPos(VPInst); |
1497 | |
1498 | InterleaveGroupMap[VPInst] = Old2New[IG]; |
1499 | InterleaveGroupMap[VPInst]->insertMember( |
1500 | Instr: VPInst, Index: IG->getIndex(Instr: Inst), |
1501 | NewAlign: Align(IG->isReverse() ? (-1) * int(IG->getFactor()) |
1502 | : IG->getFactor())); |
1503 | } |
1504 | } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Val: Block)) |
1505 | visitRegion(Region, Old2New, IAI); |
1506 | else |
1507 | llvm_unreachable("Unsupported kind of VPBlock." ); |
1508 | } |
1509 | |
1510 | VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, |
1511 | InterleavedAccessInfo &IAI) { |
1512 | Old2NewTy Old2New; |
1513 | visitRegion(Region: Plan.getVectorLoopRegion(), Old2New, IAI); |
1514 | } |
1515 | |
1516 | void VPSlotTracker::assignName(const VPValue *V) { |
1517 | assert(!VPValue2Name.contains(V) && "VPValue already has a name!" ); |
1518 | auto *UV = V->getUnderlyingValue(); |
1519 | if (!UV) { |
1520 | VPValue2Name[V] = (Twine("vp<%" ) + Twine(NextSlot) + ">" ).str(); |
1521 | NextSlot++; |
1522 | return; |
1523 | } |
1524 | |
1525 | // Use the name of the underlying Value, wrapped in "ir<>", and versioned by |
1526 | // appending ".Number" to the name if there are multiple uses. |
1527 | std::string Name; |
1528 | raw_string_ostream S(Name); |
1529 | UV->printAsOperand(O&: S, PrintType: false); |
1530 | assert(!Name.empty() && "Name cannot be empty." ); |
1531 | std::string BaseName = (Twine("ir<" ) + Name + Twine(">" )).str(); |
1532 | |
1533 | // First assign the base name for V. |
1534 | const auto &[A, _] = VPValue2Name.insert(KV: {V, BaseName}); |
1535 | // Integer or FP constants with different types will result in he same string |
1536 | // due to stripping types. |
1537 | if (V->isLiveIn() && isa<ConstantInt, ConstantFP>(Val: UV)) |
1538 | return; |
1539 | |
1540 | // If it is already used by C > 0 other VPValues, increase the version counter |
1541 | // C and use it for V. |
1542 | const auto &[C, UseInserted] = BaseName2Version.insert(KV: {BaseName, 0}); |
1543 | if (!UseInserted) { |
1544 | C->second++; |
1545 | A->second = (BaseName + Twine("." ) + Twine(C->second)).str(); |
1546 | } |
1547 | } |
1548 | |
1549 | void VPSlotTracker::assignNames(const VPlan &Plan) { |
1550 | if (Plan.VFxUF.getNumUsers() > 0) |
1551 | assignName(V: &Plan.VFxUF); |
1552 | assignName(V: &Plan.VectorTripCount); |
1553 | if (Plan.BackedgeTakenCount) |
1554 | assignName(V: Plan.BackedgeTakenCount); |
1555 | for (VPValue *LI : Plan.VPLiveInsToFree) |
1556 | assignName(V: LI); |
1557 | assignNames(VPBB: Plan.getPreheader()); |
1558 | |
1559 | ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> |
1560 | RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); |
1561 | for (const VPBasicBlock *VPBB : |
1562 | VPBlockUtils::blocksOnly<const VPBasicBlock>(Range: RPOT)) |
1563 | assignNames(VPBB); |
1564 | } |
1565 | |
1566 | void VPSlotTracker::assignNames(const VPBasicBlock *VPBB) { |
1567 | for (const VPRecipeBase &Recipe : *VPBB) |
1568 | for (VPValue *Def : Recipe.definedValues()) |
1569 | assignName(V: Def); |
1570 | } |
1571 | |
1572 | std::string VPSlotTracker::getOrCreateName(const VPValue *V) const { |
1573 | std::string Name = VPValue2Name.lookup(Val: V); |
1574 | if (!Name.empty()) |
1575 | return Name; |
1576 | |
1577 | // If no name was assigned, no VPlan was provided when creating the slot |
1578 | // tracker or it is not reachable from the provided VPlan. This can happen, |
1579 | // e.g. when trying to print a recipe that has not been inserted into a VPlan |
1580 | // in a debugger. |
1581 | // TODO: Update VPSlotTracker constructor to assign names to recipes & |
1582 | // VPValues not associated with a VPlan, instead of constructing names ad-hoc |
1583 | // here. |
1584 | const VPRecipeBase *DefR = V->getDefiningRecipe(); |
1585 | (void)DefR; |
1586 | assert((!DefR || !DefR->getParent() || !DefR->getParent()->getPlan()) && |
1587 | "VPValue defined by a recipe in a VPlan?" ); |
1588 | |
1589 | // Use the underlying value's name, if there is one. |
1590 | if (auto *UV = V->getUnderlyingValue()) { |
1591 | std::string Name; |
1592 | raw_string_ostream S(Name); |
1593 | UV->printAsOperand(O&: S, PrintType: false); |
1594 | return (Twine("ir<" ) + Name + ">" ).str(); |
1595 | } |
1596 | |
1597 | return "<badref>" ; |
1598 | } |
1599 | |
1600 | bool vputils::onlyFirstLaneUsed(const VPValue *Def) { |
1601 | return all_of(Range: Def->users(), |
1602 | P: [Def](const VPUser *U) { return U->onlyFirstLaneUsed(Op: Def); }); |
1603 | } |
1604 | |
1605 | bool vputils::onlyFirstPartUsed(const VPValue *Def) { |
1606 | return all_of(Range: Def->users(), |
1607 | P: [Def](const VPUser *U) { return U->onlyFirstPartUsed(Op: Def); }); |
1608 | } |
1609 | |
1610 | VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, |
1611 | ScalarEvolution &SE) { |
1612 | if (auto *Expanded = Plan.getSCEVExpansion(S: Expr)) |
1613 | return Expanded; |
1614 | VPValue *Expanded = nullptr; |
1615 | if (auto *E = dyn_cast<SCEVConstant>(Val: Expr)) |
1616 | Expanded = Plan.getOrAddLiveIn(V: E->getValue()); |
1617 | else if (auto *E = dyn_cast<SCEVUnknown>(Val: Expr)) |
1618 | Expanded = Plan.getOrAddLiveIn(V: E->getValue()); |
1619 | else { |
1620 | Expanded = new VPExpandSCEVRecipe(Expr, SE); |
1621 | Plan.getPreheader()->appendRecipe(Recipe: Expanded->getDefiningRecipe()); |
1622 | } |
1623 | Plan.addSCEVExpansion(S: Expr, V: Expanded); |
1624 | return Expanded; |
1625 | } |
1626 | |
1627 | bool vputils::(VPValue *V, VPlan &Plan) { |
1628 | if (isa<VPActiveLaneMaskPHIRecipe>(Val: V)) |
1629 | return true; |
1630 | |
1631 | auto IsWideCanonicalIV = [](VPValue *A) { |
1632 | return isa<VPWidenCanonicalIVRecipe>(Val: A) || |
1633 | (isa<VPWidenIntOrFpInductionRecipe>(Val: A) && |
1634 | cast<VPWidenIntOrFpInductionRecipe>(Val: A)->isCanonical()); |
1635 | }; |
1636 | |
1637 | VPValue *A, *B; |
1638 | if (match(V, P: m_ActiveLaneMask(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B)))) |
1639 | return B == Plan.getTripCount() && |
1640 | (match(V: A, P: m_ScalarIVSteps(Op0: m_CanonicalIV(), Op1: m_SpecificInt(V: 1))) || |
1641 | IsWideCanonicalIV(A)); |
1642 | |
1643 | return match(V, P: m_Binary<Instruction::ICmp>(Op0: m_VPValue(V&: A), Op1: m_VPValue(V&: B))) && |
1644 | IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount(); |
1645 | } |
1646 | |